Dan Jacobellis commited on
Commit
fc74cbd
·
1 Parent(s): 97437b1

add visual comparison

Browse files
README.ipynb CHANGED
@@ -21,7 +21,29 @@
21
  "\n",
22
  "- [Project page and documentation](https://danjacobellis.net/walloc)\n",
23
  "- [Paper: \"Learned Compression for Compressed Learning\"](https://danjacobellis.net/_static/walloc.pdf)\n",
24
- "- [Additional code accompanying the paper](https://github.com/danjacobellis/lccl)"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25
  ]
26
  },
27
  {
@@ -35,24 +57,39 @@
35
  ]
36
  },
37
  {
38
- "attachments": {},
39
  "cell_type": "markdown",
40
- "id": "241f408a-7a78-414a-b03c-a28c39fc6275",
 
 
 
 
 
 
 
 
 
 
 
 
41
  "metadata": {},
42
  "source": [
43
- "![](https://danjacobellis.net/walloc/_images/wpt.svg)\n",
44
- "Example of forward and inverse WPT with $J=2$ levels. Each level applies filters $\\text{L}_{\\text{A}}$ and $\\text{H}_{\\text{A}}$ independently to each of the signal channels, followed by downsampling by two $(\\downarrow 2)$. An inverse level consists of upsampling $(\\uparrow 2)$ followed by $\\text{L}_{\\text{S}}$\n",
45
- "and $\\text{H}_{\\text{S}}$, then summing the two channels. The full WPT $\\tilde{\\textbf{X}}$ of consists of $J$ levels."
46
  ]
47
  },
48
  {
49
  "cell_type": "markdown",
50
- "id": "84b21fc4-875c-468e-b0ee-201e71bd5737",
51
  "metadata": {},
52
  "source": [
53
- "![](https://danjacobellis.net/walloc/_images/walloc.svg)\n",
54
- "WaLLoC’s encode-decode pipeline. The entropy bottleneck and entropy coding steps are only required to achieve high compression ratios for storage and transmission. For compressed-domain learning where dimensionality reduction is the primary goal, these steps can be skipped to reduce overhead and completely eliminate CPU-GPU transfers.\n",
55
- "\n"
 
 
 
 
 
 
56
  ]
57
  },
58
  {
@@ -60,10 +97,6 @@
60
  "id": "612736c3-c47f-4447-9d1a-07a07cfe4c47",
61
  "metadata": {},
62
  "source": [
63
- "# Wavelet Learned Lossy Compression (WaLLoC)\n",
64
- "\n",
65
- "WaLLoC sandwiches a convolutional autoencoder between time-frequency analysis and synthesis transforms using CDF 9/7 wavelet filters. The time-frequency transform increases the number of signal channels, but reduces the temporal or spatial resolution, resulting in lower GPU memory consumption and higher throughput. WaLLoC's training procedure is highly simplified compared to other $\\beta$-VAEs, VQ-VAEs, and neural codecs, but still offers significant dimensionality reduction and compression. This makes it suitable for dataset storage and compressed-domain learning. It currently supports 1D and 2D signals, including mono, stereo, or multi-channel audio, and grayscale, RGB, or hyperspectral images.\n",
66
- "\n",
67
  "## Installation\n",
68
  "\n",
69
  "1. Follow the installation instructions for [torch](https://pytorch.org/get-started/locally/)\n",
@@ -775,7 +808,7 @@
775
  },
776
  {
777
  "cell_type": "code",
778
- "execution_count": 11,
779
  "id": "0ae9e5bb-d616-4d22-a9c9-6743e4216802",
780
  "metadata": {},
781
  "outputs": [
@@ -785,7 +818,7 @@
785
  "text": [
786
  "[NbConvertApp] Converting notebook README.ipynb to markdown\n",
787
  "[NbConvertApp] Support files will be in README_files/\n",
788
- "[NbConvertApp] Writing 11629 bytes to README.md\n"
789
  ]
790
  }
791
  ],
@@ -795,7 +828,7 @@
795
  },
796
  {
797
  "cell_type": "code",
798
- "execution_count": 12,
799
  "id": "3d4794d5-a26a-4789-804e-7aa543db89d6",
800
  "metadata": {},
801
  "outputs": [],
@@ -805,7 +838,7 @@
805
  },
806
  {
807
  "cell_type": "code",
808
- "execution_count": 16,
809
  "id": "8a386d35-9cdc-4e0b-8d5a-b58c4e055c28",
810
  "metadata": {},
811
  "outputs": [],
 
21
  "\n",
22
  "- [Project page and documentation](https://danjacobellis.net/walloc)\n",
23
  "- [Paper: \"Learned Compression for Compressed Learning\"](https://danjacobellis.net/_static/walloc.pdf)\n",
24
+ "- [Additional code accompanying the paper](https://github.com/danjacobellis/lccl)\n",
25
+ "\n",
26
+ "WaLLoC (Wavelet-Domain Learned Lossy Compression) is an architecture for learned compression that simultaneously satisfies three key\n",
27
+ "requirements of compressed-domain learning:\n",
28
+ "\n",
29
+ "1. **Computationally efficient encoding** to reduce overhead in compressed-domain learning and support resource constrained mobile and remote sensors. WaLLoC uses a wavelet packet transform to expose signal redundancies prior to autoencoding. This allows us to replace the encoding DNN with a single linear layer (<100k parameters) without significant loss in quality. WaLLoC incurs <5% of the encoding cost compared to other neural codecs.\n",
30
+ "\n",
31
+ "2. **High compression ratio** for storage and transmission efficiency. Lossy codecs typically achieve high compression with a combination of quantization and entropy coding. However, naive quantization of autoencoder latents leads to unpredictable and unbounded distortion. Instead, we apply additive noise during training as an\n",
32
+ "entropy bottleneck, leading to quantization-resiliant latents. When combined with entropy coding, this provides nearly 12× higher compression ratio compared to the VAE used in Stable Diffusion 3, despite offering a higher degree of dimensionality reduction and similar quality.\n",
33
+ "\n",
34
+ "3. **Dimensionality reduction** to accelerate compressed-domain modeling. WaLLoC’s encoder projects high-dimensional signal patches to low-dimensional latent representations, providing a reduction of up to 20×. This allows WaLLoC to be used as a drop-in replacement for resolution reduction while providing superior detail preservation and downstream accuracy.\n",
35
+ "\n",
36
+ "WaLLoC does not require perceptual or adversarial losses to represent high-frequency detail, making it compatible with a wide variety of signal types. It currently supports 1D and 2D signals, including mono, stereo, and multi-channel audio and grayscale, RGB, and hyperspectral images."
37
+ ]
38
+ },
39
+ {
40
+ "cell_type": "markdown",
41
+ "id": "84b21fc4-875c-468e-b0ee-201e71bd5737",
42
+ "metadata": {},
43
+ "source": [
44
+ "![](https://danjacobellis.net/walloc/_images/walloc.svg)\n",
45
+ "WaLLoC’s encode-decode pipeline. The entropy bottleneck and entropy coding steps are only required to achieve high compression ratios for storage and transmission. For compressed-domain learning where dimensionality reduction is the primary goal, these steps can be skipped to reduce overhead and completely eliminate CPU-GPU transfers.\n",
46
+ "\n"
47
  ]
48
  },
49
  {
 
57
  ]
58
  },
59
  {
 
60
  "cell_type": "markdown",
61
+ "id": "6dd81040-1e6e-45e3-b37d-1a1aabce8962",
62
+ "metadata": {},
63
+ "source": [
64
+ "![](https://danjacobellis.net/walloc/_images/walloc_4x.svg)\n",
65
+ "\n",
66
+ "![](https://danjacobellis.net/walloc/_images/sd3.svg)\n",
67
+ "\n",
68
+ "![](https://danjacobellis.net/walloc/_images/walloc_16x.svg)"
69
+ ]
70
+ },
71
+ {
72
+ "cell_type": "markdown",
73
+ "id": "3651a78e-c5c9-44e3-9f6d-ef44928ef0a7",
74
  "metadata": {},
75
  "source": [
76
+ "![](https://danjacobellis.net/walloc/_images/audio_comparison.svg)"
 
 
77
  ]
78
  },
79
  {
80
  "cell_type": "markdown",
81
+ "id": "e756f6fb-6caa-4587-9767-9735043291f4",
82
  "metadata": {},
83
  "source": [
84
+ "```\n",
85
+ "@article{jacobellis2024learned,\n",
86
+ " title={Learned Compression for Compressed Learning},\n",
87
+ " author={Jacobellis, Dan and Yadwadkar, Neeraja J.},\n",
88
+ " year={2024},\n",
89
+ " note={Under review},\n",
90
+ " url={http://danjacobellis.net/walloc}\n",
91
+ "}\n",
92
+ "```"
93
  ]
94
  },
95
  {
 
97
  "id": "612736c3-c47f-4447-9d1a-07a07cfe4c47",
98
  "metadata": {},
99
  "source": [
 
 
 
 
100
  "## Installation\n",
101
  "\n",
102
  "1. Follow the installation instructions for [torch](https://pytorch.org/get-started/locally/)\n",
 
808
  },
809
  {
810
  "cell_type": "code",
811
+ "execution_count": 1,
812
  "id": "0ae9e5bb-d616-4d22-a9c9-6743e4216802",
813
  "metadata": {},
814
  "outputs": [
 
818
  "text": [
819
  "[NbConvertApp] Converting notebook README.ipynb to markdown\n",
820
  "[NbConvertApp] Support files will be in README_files/\n",
821
+ "[NbConvertApp] Writing 12900 bytes to README.md\n"
822
  ]
823
  }
824
  ],
 
828
  },
829
  {
830
  "cell_type": "code",
831
+ "execution_count": 2,
832
  "id": "3d4794d5-a26a-4789-804e-7aa543db89d6",
833
  "metadata": {},
834
  "outputs": [],
 
838
  },
839
  {
840
  "cell_type": "code",
841
+ "execution_count": 3,
842
  "id": "8a386d35-9cdc-4e0b-8d5a-b58c4e055c28",
843
  "metadata": {},
844
  "outputs": [],
README.md CHANGED
@@ -9,23 +9,45 @@ datasets:
9
  - [Paper: "Learned Compression for Compressed Learning"](https://danjacobellis.net/_static/walloc.pdf)
10
  - [Additional code accompanying the paper](https://github.com/danjacobellis/lccl)
11
 
12
- ![](https://danjacobellis.net/walloc/_images/radar.svg)
13
- Comparison of WaLLoC with other autoencoder designs for RGB Images and stereo audio.
 
 
14
 
 
 
15
 
 
16
 
17
- ![](https://danjacobellis.net/walloc/_images/wpt.svg)
18
- Example of forward and inverse WPT with $J=2$ levels. Each level applies filters $\text{L}_{\text{A}}$ and $\text{H}_{\text{A}}$ independently to each of the signal channels, followed by downsampling by two $(\downarrow 2)$. An inverse level consists of upsampling $(\uparrow 2)$ followed by $\text{L}_{\text{S}}$
19
- and $\text{H}_{\text{S}}$, then summing the two channels. The full WPT $\tilde{\textbf{X}}$ of consists of $J$ levels.
20
 
21
  ![](https://danjacobellis.net/walloc/_images/walloc.svg)
22
  WaLLoC’s encode-decode pipeline. The entropy bottleneck and entropy coding steps are only required to achieve high compression ratios for storage and transmission. For compressed-domain learning where dimensionality reduction is the primary goal, these steps can be skipped to reduce overhead and completely eliminate CPU-GPU transfers.
23
 
24
 
25
 
26
- # Wavelet Learned Lossy Compression (WaLLoC)
 
 
27
 
28
- WaLLoC sandwiches a convolutional autoencoder between time-frequency analysis and synthesis transforms using CDF 9/7 wavelet filters. The time-frequency transform increases the number of signal channels, but reduces the temporal or spatial resolution, resulting in lower GPU memory consumption and higher throughput. WaLLoC's training procedure is highly simplified compared to other $\beta$-VAEs, VQ-VAEs, and neural codecs, but still offers significant dimensionality reduction and compression. This makes it suitable for dataset storage and compressed-domain learning. It currently supports 1D and 2D signals, including mono, stereo, or multi-channel audio, and grayscale, RGB, or hyperspectral images.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29
 
30
  ## Installation
31
 
@@ -90,7 +112,7 @@ img
90
 
91
 
92
 
93
- ![png](https://huggingface.co/danjacobellis/walloc/resolve/main/README_files/README_11_0.png)
94
 
95
 
96
 
@@ -115,7 +137,7 @@ ToPILImage()(x_hat[0]+0.5)
115
 
116
 
117
 
118
- ![png](https://huggingface.co/danjacobellis/walloc/resolve/main/README_files/README_13_0.png)
119
 
120
 
121
 
@@ -151,7 +173,7 @@ plt.xlim([-25,25]);
151
 
152
 
153
 
154
- ![png](https://huggingface.co/danjacobellis/walloc/resolve/main/README_files/README_16_0.png)
155
 
156
 
157
 
@@ -183,7 +205,7 @@ print("compression_ratio: ", x.numel()/os.path.getsize("latent.png"))
183
 
184
 
185
 
186
- ![png](https://huggingface.co/danjacobellis/walloc/resolve/main/README_files/README_20_0.png)
187
 
188
 
189
 
@@ -205,7 +227,7 @@ print("compression_ratio: ", x.numel()/os.path.getsize("latent.webp"))
205
 
206
 
207
 
208
- ![png](https://huggingface.co/danjacobellis/walloc/resolve/main/README_files/README_22_0.png)
209
 
210
 
211
 
@@ -228,7 +250,7 @@ print("compression_ratio: ", x.numel()/os.path.getsize("latent.tif"))
228
 
229
 
230
 
231
- ![jpeg](README_files/README_24_0.jpg)
232
 
233
 
234
 
@@ -357,7 +379,7 @@ plt.xlim([-25,25]);
357
 
358
 
359
 
360
- ![png](https://huggingface.co/danjacobellis/walloc/resolve/main/README_files/README_39_0.png)
361
 
362
 
363
 
@@ -398,7 +420,7 @@ webp
398
 
399
 
400
 
401
- ![png](https://huggingface.co/danjacobellis/walloc/resolve/main/README_files/README_42_1.png)
402
 
403
 
404
 
@@ -438,7 +460,7 @@ plt.yticks([]);
438
 
439
 
440
 
441
- ![png](https://huggingface.co/danjacobellis/walloc/resolve/main/README_files/README_45_0.png)
442
 
443
 
444
 
@@ -449,10 +471,15 @@ plt.yticks([]);
449
 
450
  [NbConvertApp] Converting notebook README.ipynb to markdown
451
  [NbConvertApp] Support files will be in README_files/
452
- [NbConvertApp] Writing 1409744 bytes to README.md
453
 
454
 
455
 
456
  ```python
457
  !sed -i 's|!\[png](README_files/\(README_[0-9]*_[0-9]*\.png\))|![png](https://huggingface.co/danjacobellis/walloc/resolve/main/README_files/\1)|g' README.md
458
  ```
 
 
 
 
 
 
9
  - [Paper: "Learned Compression for Compressed Learning"](https://danjacobellis.net/_static/walloc.pdf)
10
  - [Additional code accompanying the paper](https://github.com/danjacobellis/lccl)
11
 
12
+ WaLLoC (Wavelet-Domain Learned Lossy Compression) is an architecture for learned compression that simultaneously satisfies three key
13
+ requirements of compressed-domain learning:
14
+
15
+ 1. **Computationally efficient encoding** to reduce overhead in compressed-domain learning and support resource constrained mobile and remote sensors. WaLLoC uses a wavelet packet transform to expose signal redundancies prior to autoencoding. This allows us to replace the encoding DNN with a single linear layer (<100k parameters) without significant loss in quality. WaLLoC incurs <5% of the encoding cost compared to other neural codecs.
16
 
17
+ 2. **High compression ratio** for storage and transmission efficiency. Lossy codecs typically achieve high compression with a combination of quantization and entropy coding. However, naive quantization of autoencoder latents leads to unpredictable and unbounded distortion. Instead, we apply additive noise during training as an
18
+ entropy bottleneck, leading to quantization-resiliant latents. When combined with entropy coding, this provides nearly 12× higher compression ratio compared to the VAE used in Stable Diffusion 3, despite offering a higher degree of dimensionality reduction and similar quality.
19
 
20
+ 3. **Dimensionality reduction** to accelerate compressed-domain modeling. WaLLoC’s encoder projects high-dimensional signal patches to low-dimensional latent representations, providing a reduction of up to 20×. This allows WaLLoC to be used as a drop-in replacement for resolution reduction while providing superior detail preservation and downstream accuracy.
21
 
22
+ WaLLoC does not require perceptual or adversarial losses to represent high-frequency detail, making it compatible with a wide variety of signal types. It currently supports 1D and 2D signals, including mono, stereo, and multi-channel audio and grayscale, RGB, and hyperspectral images.
 
 
23
 
24
  ![](https://danjacobellis.net/walloc/_images/walloc.svg)
25
  WaLLoC’s encode-decode pipeline. The entropy bottleneck and entropy coding steps are only required to achieve high compression ratios for storage and transmission. For compressed-domain learning where dimensionality reduction is the primary goal, these steps can be skipped to reduce overhead and completely eliminate CPU-GPU transfers.
26
 
27
 
28
 
29
+ ![](https://danjacobellis.net/walloc/_images/radar.svg)
30
+ Comparison of WaLLoC with other autoencoder designs for RGB Images and stereo audio.
31
+
32
 
33
+
34
+ ![](https://danjacobellis.net/walloc/_images/walloc_4x.svg)
35
+
36
+ ![](https://danjacobellis.net/walloc/_images/sd3.svg)
37
+
38
+ ![](https://danjacobellis.net/walloc/_images/walloc_16x.svg)
39
+
40
+ ![](https://danjacobellis.net/walloc/_images/audio_comparison.svg)
41
+
42
+ ```
43
+ @article{jacobellis2024learned,
44
+ title={Learned Compression for Compressed Learning},
45
+ author={Jacobellis, Dan and Yadwadkar, Neeraja J.},
46
+ year={2024},
47
+ note={Under review},
48
+ url={http://danjacobellis.net/walloc}
49
+ }
50
+ ```
51
 
52
  ## Installation
53
 
 
112
 
113
 
114
 
115
+ ![png](https://huggingface.co/danjacobellis/walloc/resolve/main/README_files/README_13_0.png)
116
 
117
 
118
 
 
137
 
138
 
139
 
140
+ ![png](https://huggingface.co/danjacobellis/walloc/resolve/main/README_files/README_15_0.png)
141
 
142
 
143
 
 
173
 
174
 
175
 
176
+ ![png](https://huggingface.co/danjacobellis/walloc/resolve/main/README_files/README_18_0.png)
177
 
178
 
179
 
 
205
 
206
 
207
 
208
+ ![png](https://huggingface.co/danjacobellis/walloc/resolve/main/README_files/README_22_0.png)
209
 
210
 
211
 
 
227
 
228
 
229
 
230
+ ![png](https://huggingface.co/danjacobellis/walloc/resolve/main/README_files/README_24_0.png)
231
 
232
 
233
 
 
250
 
251
 
252
 
253
+ ![jpeg](README_files/README_26_0.jpg)
254
 
255
 
256
 
 
379
 
380
 
381
 
382
+ ![png](https://huggingface.co/danjacobellis/walloc/resolve/main/README_files/README_41_0.png)
383
 
384
 
385
 
 
420
 
421
 
422
 
423
+ ![png](https://huggingface.co/danjacobellis/walloc/resolve/main/README_files/README_44_1.png)
424
 
425
 
426
 
 
460
 
461
 
462
 
463
+ ![png](https://huggingface.co/danjacobellis/walloc/resolve/main/README_files/README_47_0.png)
464
 
465
 
466
 
 
471
 
472
  [NbConvertApp] Converting notebook README.ipynb to markdown
473
  [NbConvertApp] Support files will be in README_files/
474
+ [NbConvertApp] Writing 11629 bytes to README.md
475
 
476
 
477
 
478
  ```python
479
  !sed -i 's|!\[png](README_files/\(README_[0-9]*_[0-9]*\.png\))|![png](https://huggingface.co/danjacobellis/walloc/resolve/main/README_files/\1)|g' README.md
480
  ```
481
+
482
+
483
+ ```python
484
+ !sed -i 's|src="README_files/\(README_[0-9]*\.wav\)"|src="https://huggingface.co/danjacobellis/walloc/resolve/main/README_files/\1"|g' README.md
485
+ ```
README_files/README_13_0.jpg CHANGED

Git LFS Details

  • SHA256: 51ee0fbeca8c10dde8015661389776c9b89d758f718104417a95634eba58405b
  • Pointer size: 130 Bytes
  • Size of remote file: 85.3 kB

Git LFS Details

  • SHA256: ef41fc5759775e9ed83f9850321bd1fc7db7891d0dd0b23521071bd4414045ec
  • Pointer size: 131 Bytes
  • Size of remote file: 101 kB
README_files/README_13_0.png CHANGED

Git LFS Details

  • SHA256: ee8d99bd1ea3cb2d0bf03a0896ac2fe676aaef09edb764b3725af24983b75705
  • Pointer size: 131 Bytes
  • Size of remote file: 737 kB

Git LFS Details

  • SHA256: d69f75f606233935cf37e7e89d4127e5258084bf96e03ff9b23fe393991683e7
  • Pointer size: 131 Bytes
  • Size of remote file: 802 kB
README_files/README_15_0.jpg ADDED
README_files/README_15_0.png ADDED
README_files/README_18_0.png CHANGED

Git LFS Details

  • SHA256: 88dcffd10acf44f41d94b3bbeabcbbae58024f86edba64192b66f91ad30366e2
  • Pointer size: 130 Bytes
  • Size of remote file: 90.6 kB

Git LFS Details

  • SHA256: 8d3dd038eecd9f8273d4469aa732cc954126f8a5992f50161b488d068a70b0b1
  • Pointer size: 130 Bytes
  • Size of remote file: 16.9 kB
README_files/README_22_0.jpg CHANGED

Git LFS Details

  • SHA256: 48a418b935f97d2080d0f5aeb8628470b22a09c3eef57f009308957c7a5b6009
  • Pointer size: 129 Bytes
  • Size of remote file: 2.32 kB

Git LFS Details

  • SHA256: 69d0c68acb587f7d644679d23fbc577ab49f8a92a6e07bbf37ed13e969cc9708
  • Pointer size: 129 Bytes
  • Size of remote file: 7.75 kB
README_files/README_22_0.png CHANGED

Git LFS Details

  • SHA256: ff39249f219ca35fbb59c296ebf2b00dd80f9b8cdb4889c4b244fa98b1caad25
  • Pointer size: 130 Bytes
  • Size of remote file: 49.6 kB

Git LFS Details

  • SHA256: 50e38751610b35578c90925fc3b6c0a6179235001e172b20fbb5749cb2578e12
  • Pointer size: 130 Bytes
  • Size of remote file: 49.9 kB
README_files/README_24_0.jpg CHANGED

Git LFS Details

  • SHA256: f763a4a4d1a6df907646ba1fdfef8be5794a513ab2653709ceb9df5d246e24d2
  • Pointer size: 129 Bytes
  • Size of remote file: 7.75 kB

Git LFS Details

  • SHA256: 48a418b935f97d2080d0f5aeb8628470b22a09c3eef57f009308957c7a5b6009
  • Pointer size: 129 Bytes
  • Size of remote file: 2.32 kB
README_files/README_24_0.png ADDED
README_files/README_26_0.jpg ADDED
README_files/README_41_0.png CHANGED

Git LFS Details

  • SHA256: 918a199e695ebe68d2c30e952e8685dde865757ad0d3af6b688a9925a52a989c
  • Pointer size: 131 Bytes
  • Size of remote file: 113 kB

Git LFS Details

  • SHA256: e1838cff71a67a084e312f2b1075db25ed1aff966eaa64460924a2b509081fe8
  • Pointer size: 130 Bytes
  • Size of remote file: 18.8 kB
README_files/README_44_1.jpg ADDED
README_files/README_44_1.png ADDED
README_files/README_47_0.png ADDED