File size: 1,844 Bytes
9dd69c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
---
license: mit
tags:
- generated_from_trainer
datasets:
- commonsense_qa
metrics:
- accuracy
model_index:
- name: aristo-roberta-finetuned-csqa
  results:
  - dataset:
      name: commonsense_qa
      type: commonsense_qa
      args: default
    metric:
      name: Accuracy
      type: accuracy
      value: 0.7305487394332886
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# aristo-roberta-finetuned-csqa

This model is a fine-tuned version of [LIAMF-USP/aristo-roberta](https://huggingface.co/LIAMF-USP/aristo-roberta) on the commonsense_qa dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2187
- Accuracy: 0.7305

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.131         | 1.0   | 609  | 0.7109          | 0.7232   |
| 0.6957        | 2.0   | 1218 | 0.6912          | 0.7346   |
| 0.459         | 3.0   | 1827 | 0.8364          | 0.7305   |
| 0.3063        | 4.0   | 2436 | 1.0595          | 0.7322   |
| 0.2283        | 5.0   | 3045 | 1.2187          | 0.7305   |


### Framework versions

- Transformers 4.9.0
- Pytorch 1.9.0
- Datasets 1.10.2
- Tokenizers 0.10.3