File size: 8,358 Bytes
862213b
1
{"results": [{"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rouge1_precision": 0.08094756912598497, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences.  {% for i in references %}\n  ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.002409102863540913}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rouge1_recall": 0.14127847705177338, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences.  {% for i in references %}\n  ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.0017639762306188122}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rouge1_fmeasure": 0.07376523883400579, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences.  {% for i in references %}\n  ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.001716973465887151}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rouge2_precision": 0.001962954313202467, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences.  {% for i in references %}\n  ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.00024283176641268995}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rouge2_recall": 0.0034433920977868515, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences.  {% for i in references %}\n  ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.0003613572553244804}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rouge2_fmeasure": 0.001825879960798421, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences.  {% for i in references %}\n  ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.00021705897236105626}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rougeL_precision": 0.07101385752649907, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences.  {% for i in references %}\n  ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.002044467304290158}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rougeL_recall": 0.13371197995222325, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences.  {% for i in references %}\n  ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.0016174280494899666}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rougeL_fmeasure": 0.06611311172184264, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences.  {% for i in references %}\n  ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.0014225513611251844}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rougeLsum_precision": 0.06148301912905695, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences.  {% for i in references %}\n  ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.0020032593057346037}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rougeLsum_recall": 0.10281964626274133, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences.  {% for i in references %}\n  ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.0014198843683178699}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rougeLsum_fmeasure": 0.0544351778389216, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences.  {% for i in references %}\n  ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.0013592853283299524}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "bleu": 0.005224322194484081, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences.  {% for i in references %}\n  ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.00021302968079536623}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-4b2-84b-c4-repetitions/4b284b84bc4/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 0, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}