File size: 41,078 Bytes
10bf19f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 3,
"id": "28224481-4cb0-4bc6-bf88-2d2b383094df",
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"\n",
"os.environ[\"TAVILY_API_KEY\"] = \"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\""
]
},
{
"cell_type": "markdown",
"id": "55ec4c0c-65cc-4816-86df-c40b55f9c2d5",
"metadata": {},
"source": [
"### Tracing\n",
"\n",
"Optionally, use [LangSmith](https://docs.smith.langchain.com/) for tracing (shown at bottom)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "68fed362-871a-46df-8ba0-579797ff2e9c",
"metadata": {},
"outputs": [],
"source": [
"# os.environ[\"LANGCHAIN_TRACING_V2\"] = \"true\"\n",
"# os.environ[\"LANGCHAIN_ENDPOINT\"] = \"https://api.smith.langchain.com\"\n",
"# os.environ[\"LANGCHAIN_API_KEY\"] = \"<your-api-key>\""
]
},
{
"cell_type": "markdown",
"id": "c059c3a3-7f01-4d46-8289-fde4c1b4155f",
"metadata": {},
"source": [
"## Configuration\n",
"\n",
"Decide to run locally and select LLM to use with Ollama."
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "2f4db331-c4d0-4c7c-a9a5-0bebc8a89c6c",
"metadata": {},
"outputs": [],
"source": [
"run_local = \"Yes\"\n",
"local_llm = \"llama2-13b\""
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "632ae5bb-8b63-43a8-bfb8-da05d1c1bde4",
"metadata": {},
"outputs": [],
"source": [
"# !pip install langchain_nomic"
]
},
{
"cell_type": "markdown",
"id": "6e2b6eed-3b3f-44b5-a34a-4ade1e94caf0",
"metadata": {},
"source": [
"## Index\n",
"\n",
"Let's index 3 blog posts."
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "d3f4d43f-eb93-4f7d-9cab-1ab3c7de6c6a",
"metadata": {},
"outputs": [
{
"ename": "ModuleNotFoundError",
"evalue": "No module named 'fitz'",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mModuleNotFoundError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m/var/folders/z2/flyw6y956lz1rzq3xqs85jmw0000gn/T/ipykernel_33228/418487326.py\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mos\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mrequests\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 4\u001b[0;31m \u001b[0;32mimport\u001b[0m \u001b[0mfitz\u001b[0m \u001b[0;31m# (pymupdf, found this is better than pypdf for our use case, note: licence is AGPL-3.0, keep that in mind if you want to use any code commercially)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 5\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mtqdm\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mauto\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mtqdm\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 6\u001b[0m \u001b[0;31m# Get PDF document\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;31mModuleNotFoundError\u001b[0m: No module named 'fitz'"
]
}
],
"source": [
"# Download PDF file\n",
"import os\n",
"import requests\n",
"import fitz # (pymupdf, found this is better than pypdf for our use case, note: licence is AGPL-3.0, keep that in mind if you want to use any code commercially)\n",
"from tqdm.auto import tqdm\n",
"# Get PDF document\n",
"\n",
"# Download PDF if it doesn't already exist\n",
"if not os.path.exists(pdf_path):\n",
" print(\"File doesn't exist, downloading...\")\n",
"\n",
" # The URL of the PDF you want to download\n",
" url = \"https://pressbooks.oer.hawaii.edu/humannutrition2/open/download?type=pdf\"\n",
"\n",
" # The local filename to save the downloaded file\n",
" filename = pdf_path\n",
"\n",
" # Send a GET request to the URL\n",
" response = requests.get(url)\n",
"\n",
" # Check if the request was successful\n",
" if response.status_code == 200:\n",
" # Open a file in binary write mode and save the content to it\n",
" with open(filename, \"wb\") as file:\n",
" file.write(response.content)\n",
" print(f\"The file has been downloaded and saved as {filename}\")\n",
" else:\n",
" print(f\"Failed to download the file. Status code: {response.status_code}\")\n",
"else:\n",
" print(f\"File {pdf_path} exists.\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a5debec4-983b-462e-b871-81b8cf3dd33b",
"metadata": {},
"outputs": [],
"source": [
"# # Requires !pip install PyMuPDF, see: https://github.com/pymupdf/pymupdf\n",
"# import fitz # (pymupdf, found this is better than pypdf for our use case, note: licence is AGPL-3.0, keep that in mind if you want to use any code commercially)\n",
"# from tqdm.auto import tqdm # for progress bars, requires !pip install tqdm \n",
"\n",
"# def text_formatter(text: str) -> str:\n",
"# \"\"\"Performs minor formatting on text.\"\"\"\n",
"# cleaned_text = text.replace(\"\\n\", \" \").strip() # note: this might be different for each doc (best to experiment)\n",
"\n",
"# # Other potential text formatting functions can go here\n",
"# return cleaned_text\n",
"\n",
"# # Open PDF and get lines/pages\n",
"# # Note: this only focuses on text, rather than images/figures etc\n",
"# def open_and_read_pdf(pdf_path: str) -> list[dict]:\n",
"# \"\"\"\n",
"# Opens a PDF file, reads its text content page by page, and collects statistics.\n",
"\n",
"# Parameters:\n",
"# pdf_path (str): The file path to the PDF document to be opened and read.\n",
"\n",
"# Returns:\n",
"# list[dict]: A list of dictionaries, each containing the page number\n",
"# (adjusted), character count, word count, sentence count, token count, and the extracted text\n",
"# for each page.\n",
"# \"\"\"\n",
"# doc = fitz.open(pdf_path) # open a document\n",
"# pages_and_texts = \"\"\n",
"# for page_number, page in tqdm(enumerate(doc)): # iterate the document pages\n",
"# text = page.get_text() # get plain text encoded as UTF-8\n",
"# text = text_formatter(text)\n",
"# pages_and_texts+=text\n",
"# # pages_and_texts.append({\"page_number\": page_number - 41, # adjust page numbers since our PDF starts on page 42\n",
"# # \"page_char_count\": len(text),\n",
"# # \"page_word_count\": len(text.split(\" \")),\n",
"# # \"page_sentence_count_raw\": len(text.split(\". \")),\n",
"# # \"page_token_count\": len(text) / 4, # 1 token = ~4 chars, see: https://help.openai.com/en/articles/4936856-what-are-tokens-and-how-to-count-them\n",
"# # \"text\": text})\n",
"# return pages_and_texts\n",
"\n",
"# pages_and_texts = open_and_read_pdf(pdf_path=pdf_path)\n",
"# pages_and_texts[:100]"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c19560ff-2808-406a-aa70-b8c4d303121e",
"metadata": {},
"outputs": [],
"source": [
"# !pip install fastembed"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "bb8b789b-475b-4e1b-9c66-03504c837830",
"metadata": {},
"outputs": [],
"source": [
"# from langchain.text_splitter import RecursiveCharacterTextSplitter,CharacterTextSplitter\n",
"# from langchain_community.document_loaders import WebBaseLoader\n",
"# from langchain_community.vectorstores import Chroma\n",
"# from langchain_mistralai import MistralAIEmbeddings\n",
"# # from langchain_nomic.embeddings import NomicEmbeddings\n",
"# from langchain_community.embeddings import OllamaEmbeddings\n",
"# # ollama_emb = \n",
"# # Load\n",
"# from langchain_community.embeddings.fastembed import FastEmbedEmbeddings\n",
"\n",
"# # # Split\n",
"# # text_splitter = RecursiveCharacterTextSplitter.from_tiktoken_encoder(\n",
"# # chunk_size=500, chunk_overlap=100\n",
"# # )\n",
"\n",
"# text_splitter = CharacterTextSplitter(\n",
"# chunk_size=1000,\n",
"# chunk_overlap=200,\n",
"# separator=\"\\n\"\n",
"# )\n",
"\n",
"\n",
"# all_splits = text_splitter.create_documents(pages_and_texts)\n",
"\n",
"# # Embed and index\n",
"# if run_local == \"Yes\":\n",
"# embedding = FastEmbedEmbeddings(model_name=\"BAAI/bge-base-en-v1.5\",device=\"cuda\")\n",
"\n",
"# else:\n",
"# embedding = MistralAIEmbeddings(mistral_api_key=mistral_api_key)\n",
"\n",
"# # Index\n",
"# vectorstore = Chroma.from_documents(\n",
"# documents=all_splits,\n",
"# collection_name=\"rag-chroma\",\n",
"# embedding=embedding,\n",
"# )\n",
"# retriever = vectorstore.as_retriever()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "bc1efd13-576f-4bae-996b-81dd8f8863df",
"metadata": {},
"outputs": [],
"source": [
"import fitz # PyMuPDF\n",
"def text_formatter(text: str) -> str:\n",
" \"\"\"Performs minor formatting on text.\"\"\"\n",
" cleaned_text = text.replace(\"\\n\", \" \").strip() # note: this might be different for each doc (best to experiment)\n",
"\n",
" # Other potential text formatting functions can go here\n",
" return cleaned_text\n",
"def extract_text_from_pdf(pdf_path):\n",
" document = fitz.open(pdf_path)\n",
" pages_and_texts = []\n",
" for page_num in range(len(document)):\n",
" page = document.load_page(page_num)\n",
" text = page.get_text(\"text\")\n",
" text = text_formatter(text)\n",
" pages_and_texts.append(text)\n",
" return pages_and_texts\n",
"\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "15dcb261-2197-4207-bf1d-e9d9ddcc007a",
"metadata": {},
"outputs": [],
"source": [
"pages_and_texts = basic+surgery"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "4e57c3b2-060c-4f0d-aae4-d052a202ea5e",
"metadata": {},
"outputs": [],
"source": [
"from langchain.text_splitter import RecursiveCharacterTextSplitter, CharacterTextSplitter\n",
"from langchain_community.document_loaders import WebBaseLoader\n",
"from langchain_community.vectorstores import Chroma\n",
"from sentence_transformers import SentenceTransformer\n",
"import torch\n",
"\n",
"# Define your text splitter\n",
"text_splitter = CharacterTextSplitter(\n",
" chunk_size=1000,\n",
" chunk_overlap=200,\n",
" separator=\" \"\n",
")\n",
"\n",
"# Assuming 'pages_and_texts' is your list of documents' text\n",
"all_splits = text_splitter.create_documents(pages_and_texts)\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "dcf9e2f5-009b-4320-ad0f-23b0fd231072",
"metadata": {},
"outputs": [],
"source": [
"len(all_splits)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "0b37fc4b-ee00-4523-86d6-e9657e2b8c91",
"metadata": {},
"outputs": [],
"source": [
"# !pip install langchain_openai"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "cdc20558-395f-4330-83f8-13070e377526",
"metadata": {},
"outputs": [],
"source": [
"from langchain_community.embeddings.sentence_transformer import (\n",
" SentenceTransformerEmbeddings,\n",
")\n",
"\n",
"if run_local == \"Yes\":\n",
" embedding = SentenceTransformerEmbeddings(model_name=\"BAAI/bge-base-en-v1.5\")\n",
"# from langchain_openai import OpenAIEmbeddings\n",
"\n",
"# embedding = OpenAIEmbeddings(api_key=\"sk-proj-KQ4DlWOH3c1mSlTGHXbqT3BlbkFJ3TxJ8nsKKJyk98rFXx1x\")\n",
"else:\n",
" # Handle the case when not running locally\n",
" embedding = MistralAIEmbeddings(mistral_api_key=mistral_api_key)\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d43b5ba7-c2e7-45b1-bcdd-156e53ef9f68",
"metadata": {},
"outputs": [],
"source": [
"all_splits[156]"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "9bb98da2-e40d-46e7-be5b-0f85a801b9db",
"metadata": {},
"outputs": [],
"source": [
"from tqdm.notebook import tqdm\n",
"\n",
"# Embed the documents with progress tracking\n",
"embedded_docs = []\n",
"# for doc in tqdm(all_splits, desc=\"Embedding Documents\"):\n",
"# embedded_docs.append(embedding.embed_documents([doc.page_content])[0])\n",
"\n",
" # # Embed and index\n",
"# if run_local == \"Yes\":\n",
"# embedding = FastEmbedEmbeddings(model_name=\"BAAI/bge-base-en-v1.5\",device=\"cuda\")\n",
"\n",
"# else:\n",
"# embedding = MistralAIEmbeddings(mistral_api_key=mistral_api_key)\n",
"\n",
"# # Index\n",
"# vectorstore = Chroma.from_documents(\n",
"# documents=all_splits,\n",
"# collection_name=\"rag-chroma\",\n",
"# embedding=embedding,\n",
"# )\n",
"# retriever = vectorstore.as_retriever()\n",
" \n",
" \n",
"# Store in Chroma vector store\n",
"vectorstore = Chroma.from_documents(\n",
" embedding=embedding,\n",
" documents=all_splits,\n",
" collection_name=\"rag-chroma\"\n",
")\n",
"\n",
"# Use the vector store as a retriever\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "f008f94e-5f17-4596-a9e3-64cc6a153249",
"metadata": {},
"outputs": [],
"source": [
"# # Embed the documents\n",
"# embedded_docs = embedding.embed_documents([doc.page_content for doc in all_splits])\n",
"\n",
"# # Store in Chroma vector store\n",
"# vectorstore = Chroma.from_embeddings(\n",
"# embeddings=embedded_docs,\n",
"# documents=all_splits,\n",
"# collection_name=\"rag-chroma\"\n",
"# )\n",
"\n",
"# # Use the vector store as a retriever\n",
"# retriever = vectorstore.as_retriever()\n",
"\n",
"retriever = vectorstore.as_retriever(search_kwargs={\"k\": 3})"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "29c4d43b-0ca2-4183-81ef-abf880c4e66d",
"metadata": {},
"outputs": [],
"source": [
"retriever"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "ec422828-696d-455c-9f6a-34a6dd0e6ac8",
"metadata": {},
"outputs": [],
"source": [
"# !pip install langchain_huggingface"
]
},
{
"cell_type": "markdown",
"id": "fe7fd10a-f64a-48de-a116-6d5890def1af",
"metadata": {},
"source": [
"## LLMs"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "0e75c029-6c10-47c7-871c-1f4932b25309",
"metadata": {},
"outputs": [],
"source": [
"### Retrieval Grader\n",
"\n",
"from langchain.prompts import PromptTemplate\n",
"from langchain_community.chat_models import ChatOllama\n",
"from langchain_core.output_parsers import JsonOutputParser\n",
"from langchain_mistralai.chat_models import ChatMistralAI\n",
"from langchain_core.messages import (\n",
" HumanMessage,\n",
" SystemMessage,\n",
")\n",
"from langchain_huggingface import ChatHuggingFace\n",
"# LLM\n",
"\n",
"from langchain_openai import ChatOpenAI\n",
"\n",
"\n",
"if run_local == \"Yes\":\n",
"\n",
"# from langchain_huggingface.llms import HuggingFacePipeline\n",
"\n",
"# hf = HuggingFacePipeline.from_model_id(\n",
"# model_id=\"meta-llama/Llama-2-13b-chat-hf\",\n",
"# task=\"text-generation\",\n",
"# pipeline_kwargs={\"max_new_tokens\": 256,'temperature' :1e-10},\n",
"# device = 0,\n",
"# )\n",
" llm = ChatOpenAI(\n",
" model=\"gpt-4o\",\n",
" temperature=0,\n",
" max_tokens=None,\n",
" timeout=None,\n",
" max_retries=2,\n",
" api_key=\"sk-proj-HuhcUUXH7vs9SxE26VvdT3BlbkFJX8cOCyM7wDb3ZMoxmnRS\", # if you prefer to pass api key in directly instaed of using env vars\n",
" # base_url=\"...\",\n",
" # organization=\"...\",\n",
" # other params...\n",
" )\n",
" # chat_model = ChatHuggingFace(llm=llm)\n",
" chat_model = llm\n",
"else:\n",
" llm = ChatMistralAI(\n",
" model=\"mistral-medium\", temperature=0, mistral_api_key=mistral_api_key\n",
" )\n",
" print(\"yesmistral\")\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "7c719323-f184-4747-9479-7414deeffd01",
"metadata": {},
"outputs": [],
"source": [
"from langchain_core.prompts import (\n",
" ChatPromptTemplate,\n",
" FewShotChatMessagePromptTemplate,\n",
")\n",
"examples = [\n",
" {\"input\": \"\"\"Here is the retrieved document: \n",
"\n",
" are packaged into the lipid-containing chylomicrons inside small intestine mucosal cells and then transported to the liver. In the liver, carotenoids are repackaged into lipoproteins, which transport them to cells. The retinoids are aptly named as their most notable function is in the retina of the eye where they aid in vision, particularly in seeing under low-light conditions. This is why night blindness is the most definitive sign of vitamin A deficiency.Vitamin A has several important functions in the body, including maintaining vision and a healthy immune system. Many of vitamin A’s functions in the body are similar to the functions of hormones (for example, vitamin A can interact with DNA, causing a change in protein function). Vitamin A assists in maintaining healthy skin and the linings and coverings of tissues; it also regulates growth and development. As an antioxidant, vitamin A protects cellular membranes, helps in maintaining glutathione levels, and influences the amount \n",
"\n",
" \n",
" Here is the user question: What is Vitamin A? Is this retrieved document relevant to user question? Yes or no.\"\"\", \"output\": \"yes\"},\n",
"\n",
"]"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "cfa8ab09-61cc-413b-b9c5-754792f2d1a9",
"metadata": {},
"outputs": [],
"source": [
"example_prompt = ChatPromptTemplate.from_messages(\n",
" [\n",
" (\"human\", \"{input}\"),\n",
" (\"ai\", \"{output}\"),\n",
" ]\n",
")\n",
"few_shot_prompt = FewShotChatMessagePromptTemplate(\n",
" example_prompt=example_prompt,\n",
" examples=examples,\n",
")\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "0e76ba41-f6ab-4cd8-bf35-d9ebaada3600",
"metadata": {},
"outputs": [],
"source": [
"\n",
"from langchain_core.output_parsers import StrOutputParser\n",
"# prompt = PromptTemplate(\n",
"# template=\"\"\"You are a grader assessing relevance of a retrieved document to a user question. \\n \n",
"# Here is the retrieved document: \\n\\n {document} \\n\\n \n",
"# Here is the user question: {question} \\n \n",
"# Is this retrieved document relevant to user question? Yes or no. \"\"\",\n",
"# input_variables=[\"question\", \"document\"],\n",
"# )\n",
"\n",
"# messages = [\n",
"# SystemMessage(content=\"You are a grader assessing relevance of a retrieved document to a user question. Your answer should only be 'yes' or 'no'\"),\n",
"# HumanMessage(\n",
"# content=\"What happens when an unstoppable force meets an immovable object?\"\n",
"# ),\n",
"# ]\n",
"prompt = ChatPromptTemplate.from_messages(\n",
" [\n",
" (\"system\", \"You are a grader assessing relevance of a retrieved document to a user question. Your answer should only be 'yes' or 'no'\"),\n",
" few_shot_prompt,\n",
" (\"human\", \"\"\"Here is the retrieved document: \\n\\n {document} \\n\\n \n",
" Here is the user question: {question} \\n \n",
" Is this retrieved document relevant to user question? Yes or no. \"\"\"),\n",
" ]\n",
")\n",
"\n",
"retrieval_grader = prompt | chat_model \n",
"question = \"what is Vitamin D?\"\n",
"docs = retriever.get_relevant_documents(question)\n",
"doc_txt = docs[1].page_content\n",
"print(retrieval_grader.invoke({\"question\": question, \"document\": doc_txt}))"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "fdf3f319-9448-4706-b042-c292d0fb3283",
"metadata": {},
"outputs": [],
"source": [
"docs"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "dad03302-bd93-43fc-949e-af51a3298cfa",
"metadata": {},
"outputs": [],
"source": [
"### Generate\n",
"\n",
"from langchain import hub\n",
"\n",
"# Prompt\n",
"prompt = hub.pull(\"rlm/rag-prompt\")\n",
"\n",
"\n",
"# Post-processing\n",
"def format_docs(docs):\n",
" return \"\\n\\n\".join(doc.page_content for doc in docs)\n",
"\n",
"\n",
"# Chain\n",
"rag_chain = prompt | chat_model | StrOutputParser()\n",
"\n",
"# Run\n",
"generation = rag_chain.invoke({\"context\": docs, \"question\": question})\n",
"print(generation)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "f4b61211-70b5-4471-a714-feb9cc91e860",
"metadata": {},
"outputs": [],
"source": [
"examples2 = [\n",
" {\"input\": \"\"\"Here is the initial question: \\n what is Vitamin D? \\n Write me an improved question only with no explanation: \"\"\", \"output\": \"What are the key properties and benefits of vitamin D, and how does it contribute to maintaining overall health and wellness?\"},\n",
"\n",
"]\n",
"\n",
"example_prompt2 = ChatPromptTemplate.from_messages(\n",
" [\n",
" (\"human\", \"{input}\"),\n",
" (\"ai\", \"{output}\"),\n",
" ]\n",
")\n",
"few_shot_prompt2 = FewShotChatMessagePromptTemplate(\n",
" example_prompt=example_prompt2,\n",
" examples=examples2,\n",
")\n",
"\n",
"re_write_prompt = ChatPromptTemplate.from_messages(\n",
" [\n",
" (\"system\", \"You a question re-writer that converts an input question to a better version that is optimized for vectorstore retrieval. Look at the initial and formulate an improved question.\"),\n",
" few_shot_prompt2,\n",
" (\"human\", \"\"\"Here is the initial question: \\n\\n {question} \\n\\n \n",
" Write me an improved question only with no explanation: \"\"\"),\n",
" \n",
" ]\n",
")\n",
"\n",
"question = \"what is love?\"\n",
"# re_write_prompt = PromptTemplate(\n",
"# template=\"\"\"You a question re-writer that converts an input question to a better version that is optimized \\n \n",
"# for vectorstore retrieval. Look at the initial and formulate an improved question. \\n\n",
"# Here is the initial question: \\n\\n {question}. Improved question with no explanation: \\n \"\"\",\n",
"# input_variables=[\"generation\", \"question\"],\n",
"# )\n",
"\n",
"question_rewriter = re_write_prompt | chat_model | StrOutputParser()\n",
"question_rewriter.invoke({\"question\": question})"
]
},
{
"cell_type": "markdown",
"id": "5cd97fcd-218c-431b-8447-2a88cface6f6",
"metadata": {},
"source": [
"# Translator"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "63857bdd-5c99-456a-a2cf-8ffb4319e610",
"metadata": {},
"outputs": [],
"source": [
"# \n",
"\n",
"translate_prompt = ChatPromptTemplate.from_messages(\n",
" [\n",
" (\"system\", \"You are a multilingual medical question translator, if the input question is in english, directly return the question. If it is in Portuguese/Spanish/Filipino, directly return the question translated in English.\"),\n",
" (\"human\", \"\"\"Here is the initial question: \\n\\n {question} \\n\\n \n",
" If not in English, return the question in English ONLY: \"\"\"), \n",
" ]\n",
")\n",
"\n",
"question = \"\"\"\"\n",
"什么是视网膜? A 眼球 B 视网膜 C 视神经 D不知道\"\"\"\n",
"\n",
"\n",
"question_translator = translate_prompt | chat_model | StrOutputParser()\n",
"question_translator.invoke({\"question\": question})"
]
},
{
"cell_type": "markdown",
"id": "5d7fde29-e62e-4445-80f9-122eee0a3922",
"metadata": {},
"source": [
"## Web Search Tool"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b36a2f36-bc5f-408d-a5e8-3fa203c233f6",
"metadata": {},
"outputs": [],
"source": [
"### Search\n",
"\n",
"from langchain_community.tools.tavily_search import TavilySearchResults\n",
"\n",
"web_search_tool = TavilySearchResults(k=3)"
]
},
{
"cell_type": "markdown",
"id": "a3421cf0-9067-43fe-8681-0d3189d15dd3",
"metadata": {},
"source": [
"# Graph \n",
"\n",
"Capture the flow in as a graph.\n",
"\n",
"## Graph state"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "10028794-2fbc-43f9-aa4c-7fe3abd69c1e",
"metadata": {},
"outputs": [],
"source": [
"from typing import List\n",
"\n",
"from typing_extensions import TypedDict\n",
"\n",
"\n",
"class GraphState(TypedDict):\n",
" \"\"\"\n",
" Represents the state of our graph.\n",
"\n",
" Attributes:\n",
" question: question\n",
" generation: LLM generation\n",
" web_search: whether to add search\n",
" documents: list of documents\n",
" \"\"\"\n",
"\n",
" question: str\n",
" generation: str\n",
" web_search: str\n",
" documents: List[str]"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "447d1333-082d-479a-a6fa-0ac0df78bb9d",
"metadata": {},
"outputs": [],
"source": [
"from langchain.schema import Document\n",
"\n",
"\n",
"def translate(state):\n",
" \"\"\"\n",
" Translate to english\n",
" \"\"\"\n",
" print(\"---Translate---\")\n",
" question = state[\"question\"]\n",
"\n",
" # Retrieval\n",
" question = question_translator.invoke({\"question\": question})\n",
" return {\"question\": question}\n",
"\n",
"\n",
"def retrieve(state):\n",
" \"\"\"\n",
" Retrieve documents\n",
"\n",
" Args:\n",
" state (dict): The current graph state\n",
"\n",
" Returns:ß\n",
" state (dict): New key added to state, documents, that contains retrieved documents\n",
" \"\"\"\n",
" print(\"---RETRIEVE---\")\n",
" question = state[\"question\"]\n",
"\n",
" # Retrieval\n",
" documents = retriever.get_relevant_documents(question)\n",
" return {\"documents\": documents, \"question\": question}\n",
"\n",
"\n",
"def generate(state):\n",
" \"\"\"\n",
" Generate answer\n",
"\n",
" Args:\n",
" state (dict): The current graph state\n",
"\n",
" Returns:\n",
" state (dict): New key added to state, generation, that contains LLM generation\n",
" \"\"\"\n",
" print(\"---GENERATE---\")\n",
" question = state[\"question\"]\n",
" documents = state[\"documents\"]\n",
"\n",
" # RAG generation\n",
" generation = rag_chain.invoke({\"context\": documents, \"question\": question})\n",
" return {\"documents\": documents, \"question\": question, \"generation\": generation}\n",
"\n",
"\n",
"def grade_documents(state):\n",
" \"\"\"\n",
" Determines whether the retrieved documents are relevant to the question.\n",
"\n",
" Args:\n",
" state (dict): The current graph state\n",
"\n",
" Returns:\n",
" state (dict): Updates documents key with only filtered relevant documents\n",
" \"\"\"\n",
"\n",
" print(\"---CHECK DOCUMENT RELEVANCE TO QUESTION---\")\n",
" question = state[\"question\"]\n",
" documents = state[\"documents\"]\n",
"\n",
" # Score each doc\n",
" filtered_docs = []\n",
" web_search = \"No\"\n",
" for d in documents:\n",
" score = retrieval_grader.invoke(\n",
" {\"question\": question, \"document\": d.page_content}\n",
" )\n",
" print(\"SC\", score)\n",
" grade = score.content\n",
" if grade == \"yes\":\n",
" print(\"---GRADE: DOCUMENT RELEVANT---\")\n",
" filtered_docs.append(d)\n",
" else:\n",
" print(\"---GRADE: DOCUMENT NOT RELEVANT---\")\n",
" web_search = \"Yes\"\n",
" continue\n",
" return {\"documents\": filtered_docs, \"question\": question, \"web_search\": web_search}\n",
"\n",
"\n",
"def transform_query(state):\n",
" \"\"\"\n",
" Transform the query to produce a better question.\n",
"\n",
" Args:\n",
" state (dict): The current graph state\n",
"\n",
" Returns:\n",
" state (dict): Updates question key with a re-phrased question\n",
" \"\"\"\n",
"\n",
" print(\"---TRANSFORM QUERY---\")\n",
" question = state[\"question\"]\n",
" documents = state[\"documents\"]\n",
"\n",
" # Re-write question\n",
" # better_question = question_rewriter.invoke({\"question\": question})\n",
" return {\"documents\": documents, \"question\": question}\n",
"\n",
"\n",
"def web_search(state):\n",
" \"\"\"\n",
" Web search based on the re-phrased question.\n",
"\n",
" Args:\n",
" state (dict): The current graph state\n",
"\n",
" Returns:\n",
" state (dict): Updates documents key with appended web results\n",
" \"\"\"\n",
"\n",
" print(\"---WEB SEARCH---\")\n",
" question = state[\"question\"]\n",
" documents = state[\"documents\"]\n",
" print(\"WEB SEARCH\", question)\n",
" # Web search\n",
" docs = web_search_tool.invoke({\"query\": question[:100]})\n",
"\n",
" web_results = \"\\n\".join([d[\"content\"] for d in docs])\n",
"\n",
" web_results = Document(page_content=web_results)\n",
" documents.append(web_results)\n",
"\n",
" return {\"documents\": documents, \"question\": question}\n",
"\n",
"\n",
"### Edges\n",
"\n",
"\n",
"def decide_to_generate(state):\n",
" \"\"\"\n",
" Determines whether to generate an answer, or re-generate a question.\n",
"\n",
" Args:\n",
" state (dict): The current graph state\n",
"\n",
" Returns:\n",
" str: Binary decision for next node to call\n",
" \"\"\"\n",
"\n",
" print(\"---ASSESS GRADED DOCUMENTS---\")\n",
" state[\"question\"]\n",
" web_search = state[\"web_search\"]\n",
" state[\"documents\"]\n",
"\n",
" if web_search == \"Yes\":\n",
" # All documents have been filtered check_relevance\n",
" # We will re-generate a new query\n",
" print(\n",
" \"---DECISION: ALL DOCUMENTS ARE NOT RELEVANT TO QUESTION, TRANSFORM QUERY---\"\n",
" )\n",
" return \"transform_query\"\n",
" else:\n",
" # We have relevant documents, so generate answer\n",
" print(\"---DECISION: GENERATE---\")\n",
" return \"generate\""
]
},
{
"cell_type": "markdown",
"id": "6096626d-dfa5-48e0-8a24-3747b298bc67",
"metadata": {},
"source": [
"## Build Graph\n",
"\n",
"This just follows the flow we outlined in the figure above."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "0a63776c-f9cd-46ce-b8cf-95c066dc5b06",
"metadata": {},
"outputs": [],
"source": [
"from langgraph.graph import END, StateGraph\n",
"\n",
"workflow = StateGraph(GraphState)\n",
"\n",
"# Define the nodes\n",
"workflow.add_node(\"translate\", translate)\n",
"workflow.add_node(\"retrieve\", retrieve) # retrieve\n",
"workflow.add_node(\"grade_documents\", grade_documents) # grade documents\n",
"workflow.add_node(\"generate\", generate) # generatae\n",
"workflow.add_node(\"transform_query\", transform_query) # transform_query\n",
"workflow.add_node(\"web_search_node\", web_search) # web search\n",
"\n",
"# Build graph\n",
"workflow.set_entry_point(\"translate\")\n",
"workflow.add_edge(\"translate\",\"retrieve\")\n",
"workflow.add_edge(\"retrieve\", \"grade_documents\")\n",
"workflow.add_conditional_edges(\n",
" \"grade_documents\",\n",
" decide_to_generate,\n",
" {\n",
" \"transform_query\": \"transform_query\",\n",
" \"generate\": \"generate\",\n",
" },\n",
")\n",
"workflow.add_edge(\"transform_query\", \"web_search_node\")\n",
"workflow.add_edge(\"web_search_node\", \"generate\")\n",
"workflow.add_edge(\"generate\", END)\n",
"\n",
"# Compile\n",
"app = workflow.compile()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "54623177-0572-4f9a-b32c-0de3bec45b01",
"metadata": {},
"outputs": [],
"source": [
"QA"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "3b32741c-dbca-4075-ba80-c45e3728059e",
"metadata": {},
"outputs": [],
"source": [
"q_phi =QA['spanish'].copy()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "3ab1d8df-a74e-4b48-a30b-e39bbfd5925a",
"metadata": {},
"outputs": [],
"source": [
"from pprint import pprint\n",
"results_phi = []\n",
"from tqdm.notebook import tqdm\n",
"for q_e in tqdm(q_phi): \n",
" inputs = {\"question\": \"Only answer in a,b,c,d.\" +q_e }\n",
" for output in app.stream(inputs):\n",
" for key, value in output.items():\n",
" # Node\n",
" pprint(f\"Node '{key}':\")\n",
" # Optional: print full state at each node\n",
" # pprint.pprint(value[\"keys\"], indent=2, width=80, depth=None)\n",
" pprint(\"\\n---\\n\")\n",
"\n",
" # Final generation\n",
" pprint(value[\"generation\"])\n",
" results_phi.append(value[\"generation\"])"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "4837cd9d-a86b-4611-b7b8-f85d2df6edae",
"metadata": {},
"outputs": [],
"source": [
"len(results_phi)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "71777932-7710-47d8-93dc-2a1657c48909",
"metadata": {},
"outputs": [],
"source": [
"import csv\n",
"file_name = 'output_spanish.csv'\n",
"\n",
"# Open the file in write mode\n",
"with open(file_name, mode='w', newline='') as file:\n",
" writer = csv.writer(file)\n",
"\n",
" # Write each item in the list as a new row in the CSV file\n",
" for item in results_phi:\n",
" writer.writerow([item]) "
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "71b2cd11-9435-4a47-9027-3c2718dd5284",
"metadata": {},
"outputs": [],
"source": [
"\n",
"\n",
"# Find all indexes of strings that start with \"I don\"\n",
"indexes = [index for index, item in enumerate(results_phi) if item.startswith(\"I don\")]\n",
"\n",
"print(indexes)\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "44c29209-f759-445d-ba52-79b6019fd6de",
"metadata": {},
"outputs": [],
"source": [
"len(indexes)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "614970c7-02bf-4ee4-9e78-cd025b2e43bf",
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"import pandas as pd\n",
"res = pd.read_csv(\"output_spanish.csv\",header=None)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "ab9393e4-8b9b-4bf0-970a-8ebb54b83246",
"metadata": {},
"outputs": [],
"source": [
"res"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "50a5d9c6-dd60-4033-9e20-673d2cdd50cc",
"metadata": {},
"outputs": [],
"source": [
"gt = QA.answer.str.lower().tolist()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c86b57dd-7d6f-4b1e-9566-d9ebc8b10b5d",
"metadata": {},
"outputs": [],
"source": [
"preds = res[0]"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "fa6fc4a4-cd10-44a7-926f-6bdbc68345bc",
"metadata": {},
"outputs": [],
"source": [
"first_chars = [s[0] for s in preds if s] # the 'if s' ensures the string is not empty\n",
"\n",
"print(first_chars)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "935cb5e2-d9e2-4c08-9989-44d4cc6cac8e",
"metadata": {},
"outputs": [],
"source": [
"(np.array(first_chars) == np.array(gt)).sum()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "362733c3-b419-46b4-8b52-88f6473eb1a2",
"metadata": {},
"outputs": [],
"source": [
"(np.array(first_chars) == np.array(gt)).sum()/164"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "6d927ae5-9179-400e-85f2-23a8afa01dc1",
"metadata": {},
"outputs": [],
"source": [
"from pprint import pprint\n",
"results_phi2 = []\n",
"from tqdm.notebook import tqdm\n",
"for q_e in tqdm(q_phi[indexes]): \n",
" inputs = {\"question\": \"Only answer in a,b,c,d.\" +q_e }\n",
" for output in app.stream(inputs):\n",
" for key, value in output.items():\n",
" # Node\n",
" pprint(f\"Node '{key}':\")\n",
" # Optional: print full state at each node\n",
" # pprint.pprint(value[\"keys\"], indent=2, width=80, depth=None)\n",
" pprint(\"\\n---\\n\")\n",
"\n",
" # Final generation\n",
" pprint(value[\"generation\"])\n",
" results_phi2.append(value[\"generation\"])"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "5fdece1a-2159-458e-b1a9-e85c518475eb",
"metadata": {},
"outputs": [],
"source": [
"gt_2 = np.array(QA.answer.str.lower().tolist())[indexes]"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "8cbc16c8-55ea-4aff-bade-f43d20332a6d",
"metadata": {},
"outputs": [],
"source": [
"first_chars2 = [s[0] for s in results_phi2 if s] # the 'if s' ensures the string is not empty\n",
"\n",
"print(first_chars2)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "0666dfbb-6273-41e9-8d75-a1ccd118c7e4",
"metadata": {},
"outputs": [],
"source": [
"((gt_2==first_chars2).sum()+(np.array(first_chars) == np.array(gt)).sum() )/164"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "565853fc-73f9-47b4-ad88-bf0831335006",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"id": "b9a18a07-0965-4d33-b6f9-5b4f96144a1f",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"id": "106e7d28-9a6f-41d4-a61c-a3aba19e7649",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.13"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|