File size: 13,996 Bytes
10bf19f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
""" Evaluate Medical Tests Classification in LLMS """
## Setup
#### Load the API key and libaries.
import json
import pandas as pd
import os
import openai
from dotenv import load_dotenv, find_dotenv
import argparse
import re
import subprocess

from langchain.prompts import PromptTemplate
from langchain.chat_models import ChatOpenAI
from langchain.llms import OpenAI
from langchain.llms import LlamaCpp

from langchain.agents import initialize_agent, Tool
from langchain.tools import tool
from langchain.agents import AgentType
from langchain.agents.react.base import DocstoreExplorer

#from langchain_community.tools.pubmed.tool import PubmedQueryRun
from langchain.retrievers import PubMedRetriever
from langchain.utilities import WikipediaAPIWrapper
from langchain.tools import DuckDuckGoSearchRun

#from langchain.globals import set_verbose

#set_verbose(True)

from langchain.output_parsers import ResponseSchema
from langchain.output_parsers import StructuredOutputParser
from langchain.output_parsers import OutputFixingParser

from langchain.chains import LLMChain


### Download LLAMA model:
def download_and_rename(url, filename):
    """Downloads a file from the given URL and renames it to the given new file name.

    Args:
        url: The URL of the file to download.
        new_file_name: The new file name for the downloaded file.
    """

    os.makedirs(os.path.dirname(filename), exist_ok=True)

    print(f'Downloading the weights of the model: {url} ...')
    subprocess.run(["wget", "-q", "-O", filename, url])
    print(f'Done!')

def download_hugging_face_model(model_version='Llama-2-7b'):
    if model_version not in ['Llama-2-7b', 'Llama-2-13b', 'Llama-2-70b', 'Mistral-7b']:
        raise ValueError("Options for Llama model should be 7b, 13b or 70b, or Mistral-7b")

    MODEL_URL = {
        'Llama-2-7b': 'https://huggingface.co/TheBloke/Llama-2-7b-Chat-GGUF/resolve/main/llama-2-7b-chat.Q8_0.gguf', 
        'Llama-2-13b': 'https://huggingface.co/TheBloke/Llama-2-13B-chat-GGUF/resolve/main/llama-2-13b-chat.Q8_0.gguf', 
        'Llama-2-70b': 'https://huggingface.co/TheBloke/Llama-2-70B-chat-GGUF/resolve/main/llama-2-70b-chat.Q5_0.gguf',
        'Mistral-7b': 'https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.1-GGUF/resolve/main/mistral-7b-instruct-v0.1.Q8_0.gguf'
    }

    MODEL_URL = MODEL_URL[model_version]

    model_path = f'Models/{model_version}.gguf'

    if os.path.exists(model_path):
        confirmation = input(f"The model file '{model_path}' already exists. Do you want to overwrite it? (yes/no): ").strip().lower()
        if confirmation != 'yes':
            print("Model installation aborted.")
            return model_path

    download_and_rename(MODEL_URL, model_path)

    return model_path


# Function to validate JSON format
def is_valid_json(text):
    try:
        json.loads(text)
        return True
    except:
        return False


def get_completion_from_messages(messages, 
                                 model):

    #try:
    response = model(messages)['output']
    print('response')
    print(response)
    if is_valid_json(response):
        response = json.loads(response)
        
        print('Loaded JSON response:')
        print(response)
        
        return response
    else:
        if '"response": "a"' in response.lower() or '"response":"a"' in response.lower() or ': "a"' in response.lower() or ':"a"' in response.lower() or '"response": a' in response.lower() or '"response":a' in response.lower() or ': a' in response.lower() or ':a' in response.lower() or "'response': 'a'" in response.lower() or "'response':'a'" in response.lower() or ": 'a'" in response.lower() or ":'a'" in response.lower() or "'response': a" in response.lower() or "'response':a" in response.lower():
            response = {'response': 'a'}
        elif '"response": "b"' in response.lower() or '"response":"b"' in response.lower() or ': "b"' in response.lower() or ':"b"' in response.lower() or '"response": b' in response.lower() or '"response":b' in response.lower() or ': b' in response.lower() or ':b' in response.lower() or "'response': 'b'" in response.lower() or "'response':'b'" in response.lower() or ": 'b'" in response.lower() or ":'b'" in response.lower() or "'response': b" in response.lower() or "'response':b" in response.lower():
            response = {'response': 'b'}
        elif '"response": "c"' in response.lower() or '"response":"c"' in response.lower() or ': "c"' in response.lower() or ':"c"' in response.lower() or '"response": c' in response.lower() or '"response":c' in response.lower() or ': c' in response.lower() or ':c' in response.lower() or "'response': 'c'" in response.lower() or "'response':'c'" in response.lower() or ": 'c'" in response.lower() or ":'c'" in response.lower() or "'response': c" in response.lower() or "'response':c" in response.lower():
            response = {'response': 'c'}
        elif '"response": "d"' in response.lower() or '"response":"d"' in response.lower() or ': "d"' in response.lower() or ':"d"' in response.lower() or '"response": d' in response.lower() or '"response":d' in response.lower() or ': d' in response.lower() or ':d' in response.lower() or "'response': 'd'" in response.lower() or "'response':'d'" in response.lower() or ": 'd'" in response.lower() or ":'d'" in response.lower() or "'response': d" in response.lower() or "'response':d" in response.lower():
            response = {'response': 'd'}
        
        return response



def llm_language_evaluation(path='data/Portuguese.csv', model='gpt-3.5-turbo', temperature=0.0, n_repetitions=1, reasoning=False, languages=['english', 'portuguese'], llm_chain=False):
    
    # Load API key if GPT, or Model if LLAMA
    if 'gpt' in model:
        _ = load_dotenv(find_dotenv()) # read local .env file
        openai.api_key  = os.environ['OPENAI_API_KEY']
        llm = OpenAI(temperature=temperature, model_name=model)
        
    elif 'Llama-2' in model or ('Mistral-7b' in model):    
        
        model_path = download_hugging_face_model(model_version=model)
        llm = LlamaCpp(
            model_path=model_path,
            temperature=temperature,
            n_ctx=2048,
            verbose=False,  # VERBOSE
        )
        
    else:
        print('Model should be a GPT, Llama-2, or Mistral-7b model')
        return 0
    
    #### Load the Constants
    PATH = path # 'data/Portuguese.csv'
    MODEL = model # "gpt-3.5-turbo"
    TEMPERATURE = temperature # 0.0
    N_REPETITIONS = n_repetitions # 1
    REASONING = reasoning # False
    LANGUAGES = languages # ['english', 'portuguese']
    
    ##### RAG:
    
    pubmed = PubMedRetriever()
    wikipedia = WikipediaAPIWrapper()
    search = DuckDuckGoSearchRun()
    
    @tool
    def json_format(response: str) -> dict:
        """Given the correct response's letter a, b, c or d; generates the output json. If input is not a, b, c or d, returns an error message."""
        if response in ['a', 'b', 'c', 'd']:
            return {"response": response}
        else:
            return "Error: response should be a, b, c or d."
    
    ##### Tools:
    tools = [
        Tool(
            name = "Pubmed search",
            func=pubmed.run,
            description="useful for when you need to search for a medical topic, treatment or outcome on pubmed"
        ),
        Tool(
            name = "JSON format",
            func=json_format,
            description="Given the correct response's letter a, b, c or d; generates the output json. If input is not a, b, c or d, returns an error message."
        ),
        #Tool(
        #    name='Wikipedia',
        #    func= wikipedia.run,
        #    description="Useful for when you need to look up an specific topic, object, or procedure on wikipedia"
        #), 
        Tool(
            name='DuckDuckGo Search',
            func= search.run,
            description="Useful for when you need to do a search on the internet to find information that another tool can't find. be specific with your input."
        )
    ]

    ##### Agent:
    react_agent = initialize_agent(tools, llm, agent="zero-shot-react-description", verbose=True, handle_parsing_errors="Check your output and make sure it is a JSON file with the key response and value a letter a, b, c, or d. Make sure you can parse that using Python", max_iterations=10)#AgentType.REACT_DOCSTORE, verbose=True)

#Wikipedia: Useful for when you need to look up an specific topic, object, or procedure on wikipedia
#Wikipedia
    prompt = '''
Answer the following questions as best you can. You have access to the following tools:

Pubmed search: useful for when you need to search for a medical topic, treatment or outcome on pubmed
JSON format: Given the correct response's letter a, b, c or d; generates the output json. If input is not a, b, c or d, returns an error message.

DuckDuckGo Search: Useful for when you need to do a search on the internet to find information that another tool can't find. be specific with your input.


Use the following format:

Question: the input question you must answer
Thought: you should always think about what to do
Action: the action to take, should be one of [Pubmed search, JSON format, DuckDuckGo Search]. Don't use the same tool more than 3 times.
Action Input: the input to the action
Observation: the result of the action
... (this Thought/Action/Action Input/Observation can repeat 4 times maximum, then you should answer the question. Don't iterate more than 4 times. Just provide a response to the question after that in the expected format.)
Thought: I now know the final answer, or I reached the limit of iterations. I will provide the final answer now.
Final Answer: the final answer to the original input question. The final answer should be a JSON object with the key "response" and the value being the letter a, b, c or d with the correct answer.

Begin!

Question: {input}
Thought:{agent_scratchpad}
    '''
    
    react_agent.agent.llm_chain.prompt.template = prompt
    

    ##### Experiments:
    if N_REPETITIONS <= 0 or (N_REPETITIONS != int(N_REPETITIONS)):
        print(f'N_REPETITIONS should be a positive integer, not {N_REPETITIONS}')
        print('N_REPETITIONS will be set to 1')
        N_REPETITIONS = 1

    ### Questions from a csv file:
    df = pd.read_csv(PATH)

    ### Evaluate the model in question answering per language:
    responses = {}
    reasoning = {}
    for language in LANGUAGES:
        responses[language] = [[] for n in range(N_REPETITIONS)]

        if REASONING:
            reasoning[language] = [[] for n in range(N_REPETITIONS)]


    for row in range(df.shape[0]):

        print('*'*50)
        print(f'Question {row+1}: ')
        for language in LANGUAGES:
            print(f'Language: {language}')
            question = df[language][row]
            print('Question: ')
            print(question)

            for n in range(N_REPETITIONS): 
                print(f'Test #{n}: ')
                
                response = get_completion_from_messages(question, react_agent)

                print(type(response))
                print(response)
            
                # Append to the list:
                responses[language][n].append(response['response'])
                if REASONING:
                    reasoning[language][n].append(response['reasoning'])
                
        print('*'*50)

    ### Save the results in a csv file:
    for language in LANGUAGES:
        if N_REPETITIONS == 1:
            df[f'responses_{language}'] = responses[language][0]
            if REASONING:
                df[f'reasoning_{language}'] = reasoning[language][0]
                
        for n in range(N_REPETITIONS):
            df[f'responses_{language}_{n}'] = responses[language][n]
            if REASONING:
                df[f'reasoning_{language}_{n}'] = reasoning[language][n]

    if not os.path.exists('responses'):
        os.makedirs('responses')
    if N_REPETITIONS == 1:
        df.to_csv(f"responses/rag_{MODEL}_Temperature{str(TEMPERATURE).replace('.', '_')}.csv", index=False)
    else:
        df.to_csv(f"responses/rag_{MODEL}_Temperature{str(TEMPERATURE).replace('.', '_')}_{N_REPETITIONS}Repetitions.csv", index=False)

def main():
    # Add argparse code to handle command-line arguments
    parser = argparse.ArgumentParser(description="Evaluate Medical Tests Classification in LLMS")
    parser.add_argument("--csv_file", default="data/Portuguese.csv", help="Path to the CSV file with the questions")
    parser.add_argument("--model", default="gpt-3.5-turbo", help="LLM to use e.g: gpt-3.5-turbo, gpt-4, Llama-2-7b, Llama-2-13b, or Llama-2-70b")
    parser.add_argument("--temperature", type=float, default=0.0, help="Temperature parameter of the model between 0 and 1. Used to modifiy the model's creativity. 0 is deterministic and 1 is the most creative")
    parser.add_argument("--n_repetitions", type=int, default=1, help="Number of repetitions to run each experiment. Used to measure the model's hallucinations")
    parser.add_argument("--reasoning", action="store_true", default=False, help="Enable reasoning mode. If set to True, the model will be asked to provide a reasoning for its answer. If set to True the model uses more tokens")
    parser.add_argument("--languages", nargs='+', default=['english', 'portuguese'], help="List of languages")
    parser.add_argument("--llm_chain", action="store_true", default=False, help="Enable the use of ")
    
    args = parser.parse_args()


    PATH = args.csv_file
    MODEL = args.model
    TEMPERATURE = args.temperature
    N_REPETITIONS = args.n_repetitions
    REASONING = args.reasoning
    LANGUAGES = args.languages
    llm_chain = args.llm_chain
    
    llm_language_evaluation(path=PATH, model=MODEL, temperature=TEMPERATURE, n_repetitions=N_REPETITIONS, reasoning=REASONING, languages=LANGUAGES, llm_chain=llm_chain)


if __name__ == "__main__":
    main()