|
from src.Language_Evaluation import llm_language_evaluation |
|
from src.data_analysis import run_analysis |
|
|
|
import argparse |
|
|
|
|
|
def main(): |
|
|
|
parser = argparse.ArgumentParser(description="Evaluate Medical Tests Classification in LLMS") |
|
parser.add_argument("--csv_file", default="data/full_dataset.csv", help="Path to the CSV file with the questions") |
|
parser.add_argument("--model", default="gpt-4", help="LLM to use e.g: gpt-3.5-turbo, gpt-4, Llama-2-7b, Llama-2-13b, or Llama-2-70b") |
|
parser.add_argument("--temperature", type=float, default=0.0, help="Temperature parameter of the model between 0 and 1. Used to modifiy the model's creativity. 0 is deterministic and 1 is the most creative") |
|
parser.add_argument("--n_repetitions", type=int, default=0, help="Number of repetitions to run each experiment. Used to measure the model's hallucinations") |
|
parser.add_argument("--reasoning", action="store_true", default=False, help="Enable reasoning mode. If set to True, the model will be asked to provide a reasoning for its answer. If set to True the model uses more tokens") |
|
parser.add_argument("--languages", nargs='+', default=['spanish', 'tagalog', 'portuguese', 'english'], help="List of languages") |
|
args = parser.parse_args() |
|
|
|
PATH = args.csv_file |
|
MODEL = args.model |
|
TEMPERATURE = args.temperature |
|
N_REPETITIONS = args.n_repetitions |
|
REASONING = args.reasoning |
|
LANGUAGES = args.languages |
|
|
|
llm_language_evaluation(path=PATH, model=MODEL, temperature=TEMPERATURE, n_repetitions=N_REPETITIONS, reasoning=REASONING, languages=LANGUAGES) |
|
|
|
|
|
TEMPERATURE = str(TEMPERATURE).replace('.', '_') |
|
run_analysis(model=MODEL, temperature=TEMPERATURE, n_repetitions=N_REPETITIONS, languages=LANGUAGES) |
|
|
|
if __name__ == "__main__": |
|
main() |