Multi-Opthalingua
/
LLMs_Language_bias-main
/src
/.ipynb_checkpoints
/Language_Evaluation-checkpoint.py
""" Evaluate Medical Tests Classification in LLMS """ | |
## Setup | |
#### Load the API key and libaries. | |
import json | |
import pandas as pd | |
import os | |
import openai | |
from dotenv import load_dotenv, find_dotenv | |
import argparse | |
import re | |
import subprocess | |
import time | |
### Download LLAMA model: | |
def download_and_rename(url, filename): | |
"""Downloads a file from the given URL and renames it to the given new file name. | |
Args: | |
url: The URL of the file to download. | |
new_file_name: The new file name for the downloaded file. | |
""" | |
os.makedirs(os.path.dirname(filename), exist_ok=True) | |
print(f'Downloading the weights of the model: {url} ...') | |
subprocess.run(["wget", "-q", "-O", filename, url]) | |
print(f'Done!') | |
def download_hugging_face_model(model_version='Llama-2-7b'): | |
if model_version not in ['Llama-2-7b', 'Llama-2-13b', 'Llama-2-70b', 'Mistral-7b']: | |
raise ValueError("Options for Llama model should be 7b, 13b or 70b, or Mistral-7b") | |
MODEL_URL = { | |
'Llama-2-7b': 'https://huggingface.co/TheBloke/Llama-2-7b-Chat-GGUF/resolve/main/llama-2-7b-chat.Q8_0.gguf', | |
'Llama-2-13b': 'https://huggingface.co/TheBloke/Llama-2-13B-chat-GGUF/resolve/main/llama-2-13b-chat.Q8_0.gguf', | |
'Llama-2-70b': 'https://huggingface.co/TheBloke/Llama-2-70B-chat-GGUF/resolve/main/llama-2-70b-chat.Q5_0.gguf', | |
'Mistral-7b': 'https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.1-GGUF/resolve/main/mistral-7b-instruct-v0.1.Q8_0.gguf' | |
} | |
MODEL_URL = MODEL_URL[model_version] | |
model_path = f'Models/{model_version}.gguf' | |
if os.path.exists(model_path): | |
confirmation = input(f"The model file '{model_path}' already exists. Do you want to overwrite it? (yes/no): ").strip().lower() | |
if confirmation != 'yes': | |
print("Model installation aborted.") | |
return model_path | |
download_and_rename(MODEL_URL, model_path) | |
return model_path | |
### Model GPT: | |
def get_completion_from_messages(messages, | |
model="gpt-3.5-turbo", | |
temperature=0, | |
max_tokens=500): | |
try: | |
response = openai.ChatCompletion.create( | |
model=model, | |
messages=messages, | |
temperature=temperature, | |
max_tokens=max_tokens, | |
request_timeout=10 | |
) | |
except: | |
time.sleep(60) | |
response = get_completion_from_messages(messages, model=model, temperature=temperature, max_tokens=max_tokens) | |
return response | |
return response.choices[0].message["content"] | |
def get_completion_from_messages_hf(messages, | |
model): | |
response = model(messages)[0]['generated_text'].replace(messages, '') | |
return {'response': response} | |
#### Model Llama 2 | |
def get_completion_from_messages_llama(messages, | |
model, | |
temperature=0, | |
max_tokens=500, | |
reasoning=False): | |
# Get the response: | |
response = model.create_chat_completion( | |
messages, | |
temperature=temperature, | |
max_tokens=max_tokens | |
) | |
model.set_cache(None) | |
response = response['choices'][0]['message']["content"] | |
# Convert the string into a JSON object | |
# Due to some problems with Llama 2 generating JSON formats, the output requires more preprocessing than GPT. | |
try: | |
# Use regular expressions to extract JSON | |
json_pattern = r'\{.*\}' # Match everything between '{' and '}' | |
match = re.search(json_pattern, response, re.DOTALL) | |
response = match.group() | |
# Define a regex pattern to identify unquoted string values | |
pattern = r'("[^"]*":\s*)([A-Za-z_][A-Za-z0-9_]*)' | |
# Use a lambda function to add quotes to unquoted string values | |
response = re.sub(pattern, lambda m: f'{m.group(1)}"{m.group(2)}"', response) | |
if not reasoning: | |
# Convert from {'response': 'A' ) some text without quotes} to {'response': 'A'} | |
# Use regular expression to extract the letter and surrounding characters | |
match = re.search(r'"response": "([A-Da-d][^\"]*)"', response) | |
if match: | |
response = f'{{{match.group(0)}}}' | |
# Convert | |
response = json.loads(response) | |
resp = response['response'] | |
except: | |
print(f'Error converting respose to json: {response}') | |
print('Generating new response...') | |
response = get_completion_from_messages_llama(messages, model=model, temperature=temperature, max_tokens=max_tokens, reasoning=reasoning) | |
return response | |
if reasoning: | |
# Iterate through the keys of the dictionary | |
for key in list(response.keys()): | |
if 'reas' in key.lower(): | |
# Update the dictionary with the new key and its corresponding value | |
response['reasoning'] = response.pop(key) | |
return response | |
#### Template for the Questions | |
def generate_question(question, LANGUAGES, REASONING, Responses=['A', 'B', 'C', 'D']): | |
delimiter = "####" | |
languages_text = ", ".join(LANGUAGES) | |
if REASONING: | |
system_message = f""" | |
You will be provided with medical queries in this languages: {languages_text}. \ | |
The medical query will be delimited with {delimiter} characters. | |
Each question will have {len(Responses)} possible answer options.\ | |
provide the letter with the answer and a short sentence answering why the answer was selected \ | |
Provide your output in json format with the \ | |
keys: response and reasoning. | |
Responses: {", ".join(Responses)}. | |
""" | |
else: | |
system_message = f""" | |
You will be provided with medical queries in this languages: {languages_text}. \ | |
The medical query will be delimited with {delimiter} characters. | |
Each question will have {len(Responses)} possible answer options.\ | |
Provide only the letter with the response. | |
Provide your output in json format with: | |
the key: response. | |
Responses: {", ".join(Responses)}. | |
E.g. if response is 'a', the output should be: {{"response" : "a"}} | |
""" | |
user_message = f"""/ | |
{question}""" | |
messages = [ | |
{'role':'system', | |
'content': system_message}, | |
{'role':'user', | |
'content': f"{delimiter}{user_message}{delimiter}"}, | |
] | |
return messages | |
def generate_template_text_generation(question, LANGUAGES, Responses=['A', 'B', 'C', 'D']): | |
delimiter = "####" | |
languages_text = ", ".join(LANGUAGES) | |
messages = f"""You will be provided with medical queries in this languages: {languages_text}. \ | |
The medical query will be delimited with {delimiter} characters. | |
Each question will have {len(Responses)} possible answer options.Provide just the letter with the answer. | |
Responses: {", ".join(Responses)}. | |
Question: | |
{delimiter}{question}{delimiter} | |
The response is: """ | |
return messages | |
#### Template for the Questions | |
def generate_question_llama(question, LANGUAGES, REASONING, Responses=['A', 'B', 'C', 'D']): | |
delimiter = "####" | |
out_template = "" | |
if REASONING: | |
output_keys = ['response', 'reasoning'] | |
else: | |
output_keys = ['response'] | |
for response in Responses: | |
response_dict = {key: f'something describing {key}' for key in output_keys} | |
response_dict[output_keys[0]] = response | |
response_str = ', '.join([f"'{k}': '{v}'" for k, v in response_dict.items()]) | |
out_template += f"If response is {response}: {{ {response_str} }}\n" | |
languages_text = ", ".join(LANGUAGES) | |
if REASONING: | |
system_message = f""" | |
You will be provided with medical queries in this languages: {languages_text}. \ | |
The medical query will be delimited with \ | |
{delimiter} characters. | |
Each question will have {len(Responses)} possible answer options.\ | |
provide just the letter with the answer and a short sentence answering why the answer was selected. | |
Provide your output in json format with the \ | |
keys: response and reasoning. Make sure to always use the those keys, do not modify the keys. | |
Response option: {", ".join(Responses)}. | |
Always use the JSON format. | |
The output shoulb be: {{"response": "Response option", "", ""}} | |
""" | |
else: | |
system_message = f""" | |
You will be provided with medical queries in this languages: {languages_text}. \ | |
The medical query will be delimited with \ | |
{delimiter} characters. | |
Each question will have {len(Responses)} possible answer options.\ | |
provide just the letter with the answer. | |
Provide your output in json format with the \ | |
key: response. Make sure to always use the that key, do not modify the key. | |
Response option: {", ".join(Responses)}. | |
Always use the JSON format. | |
The output shoulb be: {{"response": "Response option"}} | |
""" | |
user_message = f"""/ | |
{question}""" | |
messages = [ | |
{'role':'system', | |
'content': system_message}, | |
{'role':'user', | |
'content': f"{delimiter}{user_message}{delimiter}"}, | |
] | |
return messages | |
def llm_language_evaluation(path='data/Portuguese.csv', model='gpt-3.5-turbo', temperature=0.0, n_repetitions=1, reasoning=False, languages=['english', 'portuguese']): | |
# Load API key if GPT, or Model if LLAMA | |
if 'gpt' in model: | |
_ = load_dotenv(find_dotenv()) # read local .env file | |
openai.api_key = os.environ['OPENAI_API_KEY'] | |
elif 'Llama-2' in model or ('Mistral-7b' in model): | |
model_path = download_hugging_face_model(model_version=model) | |
from llama_cpp import Llama | |
llm = Llama(model_path=model_path, verbose=False, n_ctx=2048) | |
elif 'bloom': | |
from transformers import pipeline | |
llm = pipeline( | |
task="text-generation", | |
model=model, | |
model_kwargs={"temperature": temperature, "max_length": 5}) | |
reasoning = False | |
else: | |
print('Model should be a GPT or Llama-2 model') | |
return 0 | |
#### Load the Constants | |
PATH = path # 'data/Portuguese.csv' | |
MODEL = model # "gpt-3.5-turbo" | |
TEMPERATURE = temperature # 0.0 | |
N_REPETITIONS = n_repetitions # 1 | |
REASONING = reasoning # False | |
LANGUAGES = languages # ['english', 'portuguese'] | |
if N_REPETITIONS <= 0 or (N_REPETITIONS != int(N_REPETITIONS)): | |
print(f'N_REPETITIONS should be a positive integer, not {N_REPETITIONS}') | |
print('N_REPETITIONS will be set to 1') | |
N_REPETITIONS = 1 | |
### Questions from a csv file: | |
df = pd.read_csv(PATH) | |
### Evaluate the model in question answering per language: | |
responses = {} | |
reasoning = {} | |
for language in LANGUAGES: | |
responses[language] = [[] for n in range(N_REPETITIONS)] | |
if REASONING: | |
reasoning[language] = [[] for n in range(N_REPETITIONS)] | |
for row in range(df.shape[0]): | |
print('*'*50) | |
print(f'Question {row+1}: ') | |
for language in LANGUAGES: | |
print(f'Language: {language}') | |
question = df[language][row] | |
print('Question: ') | |
print(question) | |
if 'gpt' in model: | |
messages = generate_question(question, LANGUAGES, REASONING) | |
elif 'Llama-2' in model or ('Mistral-7b' in model): | |
messages = generate_question_llama(question, LANGUAGES, REASONING) | |
elif 'bloom' in model: | |
messages = generate_template_text_generation(question, LANGUAGES) | |
else: | |
print('Model should be a GPT or Llama-2 model') | |
return 0 | |
for n in range(N_REPETITIONS): | |
print(f'Test #{n}: ') | |
if 'gpt' in model: | |
response = get_completion_from_messages(messages, MODEL, TEMPERATURE) | |
# Convert the string into a JSON object | |
response = json.loads(response) | |
elif 'Llama-2' in model or ('Mistral-7b' in model): | |
response = get_completion_from_messages_llama(messages, llm, TEMPERATURE, reasoning=REASONING) | |
elif 'bloom' in model: | |
response = get_completion_from_messages_hf(messages, llm) | |
else: | |
print('Model should be a GPT or Llama-2 model') | |
return 0 | |
print(response) | |
# Append to the list: | |
responses[language][n].append(response['response']) | |
if REASONING: | |
reasoning[language][n].append(response['reasoning']) | |
print('*'*50) | |
### Save the results in a csv file: | |
for language in LANGUAGES: | |
if N_REPETITIONS == 1: | |
df[f'responses_{language}'] = responses[language][0] | |
if REASONING: | |
df[f'reasoning_{language}'] = reasoning[language][0] | |
for n in range(N_REPETITIONS): | |
df[f'responses_{language}_{n}'] = responses[language][n] | |
if REASONING: | |
df[f'reasoning_{language}_{n}'] = reasoning[language][n] | |
if not os.path.exists('responses'): | |
os.makedirs('responses') | |
if N_REPETITIONS == 1: | |
df.to_csv(f"responses/{MODEL}_Temperature{str(TEMPERATURE).replace('.', '_')}.csv", index=False) | |
else: | |
df.to_csv(f"responses/{MODEL}_Temperature{str(TEMPERATURE).replace('.', '_')}_{N_REPETITIONS}Repetitions.csv", index=False) | |
def main(): | |
# Add argparse code to handle command-line arguments | |
parser = argparse.ArgumentParser(description="Evaluate Medical Tests Classification in LLMS") | |
parser.add_argument("--csv_file", default="data/Portuguese.csv", help="Path to the CSV file with the questions") | |
parser.add_argument("--model", default="gpt-3.5-turbo", help="LLM to use e.g: gpt-3.5-turbo, gpt-4, Llama-2-7b, Llama-2-13b, or Llama-2-70b") | |
parser.add_argument("--temperature", type=float, default=0.0, help="Temperature parameter of the model between 0 and 1. Used to modifiy the model's creativity. 0 is deterministic and 1 is the most creative") | |
parser.add_argument("--n_repetitions", type=int, default=1, help="Number of repetitions to run each experiment. Used to measure the model's hallucinations") | |
parser.add_argument("--reasoning", action="store_true", default=False, help="Enable reasoning mode. If set to True, the model will be asked to provide a reasoning for its answer. If set to True the model uses more tokens") | |
parser.add_argument("--languages", nargs='+', default=['english', 'portuguese'], help="List of languages") | |
args = parser.parse_args() | |
PATH = args.csv_file | |
MODEL = args.model | |
TEMPERATURE = args.temperature | |
N_REPETITIONS = args.n_repetitions | |
REASONING = args.reasoning | |
LANGUAGES = args.languages | |
llm_language_evaluation(path=PATH, model=MODEL, temperature=TEMPERATURE, n_repetitions=N_REPETITIONS, reasoning=REASONING, languages=LANGUAGES) | |
if __name__ == "__main__": | |
main() |