karolyartur commited on
Commit
c174f79
·
1 Parent(s): 486b7b4

Update dataset card and add dataset builder

Browse files
Files changed (2) hide show
  1. README.md +64 -0
  2. SMVB.py +140 -0
README.md CHANGED
@@ -1,3 +1,67 @@
1
  ---
 
 
2
  license: gpl-3.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ language:
3
+ - en
4
  license: gpl-3.0
5
+ tags:
6
+ - vision
7
+ - image-segmentation
8
+ - instance-segmentation
9
+ - object-detection
10
+ - optical-flow
11
+ - depth
12
+ - synthetic
13
+ - sim-to-real
14
+ annotations_creators:
15
+ - machine-generated
16
+ pretty_name: SMVB Dataset
17
+ size_categories:
18
+ - 1K<n<10K
19
+ task_categories:
20
+ - object-detection
21
+ - zero-shot-object-detection
22
+ - image-segmentation
23
+ - depth-estimation
24
+ - video-classification
25
+ - other
26
+ task_ids:
27
+ - instance-segmentation
28
+ - semantic-segmentation
29
  ---
30
+
31
+ # Synthetic Multimodal Video Benchmark (SMVB)
32
+
33
+ A dataset consisting of synthetic images from distinct synthetic scenes, annotated with object/instance/semantic segmentation masks, depth data, surface normal information and optical for testing and benchmarking model performance for multi-task/multi-objective learning.
34
+
35
+ ### Supported Tasks and Leaderboards
36
+
37
+ The dataset supports tasks such as semantic segmentation, instance segmentation, object detection, image classification, depth, surface normal, and optical flow estimation, and video object segmentation.
38
+
39
+ ## Dataset Structure
40
+
41
+ ### Data Instances
42
+
43
+
44
+ ### Data Fields
45
+
46
+ ### Data Splits
47
+
48
+
49
+ ## Dataset Creation
50
+
51
+ ### Curation Rationale
52
+
53
+ ### Source Data
54
+
55
+ ### Citation Information
56
+
57
+ ```bibtex
58
+ @INPROCEEDINGS{karoly2024synthetic,
59
+ author={Károly, Artúr I. and Nádas, Imre and Galambos, Péter},
60
+ booktitle={2024 IEEE 22nd World Symposium on Applied Machine Intelligence and Informatics (SAMI)},
61
+ title={Synthetic Multimodal Video Benchmark (SMVB): Utilizing Blender for rich dataset generation},
62
+ year={2024},
63
+ volume={},
64
+ number={},
65
+ pages={},
66
+ doi={}}
67
+ ```
SMVB.py ADDED
@@ -0,0 +1,140 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #
2
+ # This file is part of the SMVB distribution (https://huggingface.co/datasets/ABC-iRobotics/SMVB).
3
+ # Copyright (c) 2023 ABC-iRobotics.
4
+ #
5
+ # This program is free software: you can redistribute it and/or modify
6
+ # it under the terms of the GNU General Public License as published by
7
+ # the Free Software Foundation, version 3.
8
+ #
9
+ # This program is distributed in the hope that it will be useful, but
10
+ # WITHOUT ANY WARRANTY; without even the implied warranty of
11
+ # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12
+ # General Public License for more details.
13
+ #
14
+ # You should have received a copy of the GNU General Public License
15
+ # along with this program. If not, see <http://www.gnu.org/licenses/>.
16
+ #
17
+ """SMVB dataset"""
18
+
19
+ import sys
20
+ import pathlib
21
+ if sys.version_info < (3, 9):
22
+ from typing import Sequence, Generator, Tuple
23
+ else:
24
+ from collections.abc import Sequence, Generator
25
+ Tuple = tuple
26
+
27
+ from typing import Optional, IO
28
+
29
+ import datasets
30
+ import itertools
31
+
32
+
33
+ # ---- Constants ----
34
+
35
+ _CITATION = """\
36
+ @INPROCEEDINGS{karoly2024synthetic,
37
+ author={Károly, Artúr I. and Nádas, Imre and Galambos, Péter},
38
+ booktitle={2024 IEEE 22nd World Symposium on Applied Machine Intelligence and Informatics (SAMI)},
39
+ title={Synthetic Multimodal Video Benchmark (SMVB): Utilizing Blender for rich dataset generation},
40
+ year={2024},
41
+ volume={},
42
+ number={},
43
+ pages={},
44
+ doi={}}
45
+
46
+ """
47
+
48
+ _DESCRIPTION = """\
49
+ Amultimodal video benchmark for evaluating models in multi-task learning scenarios.
50
+ """
51
+
52
+ _HOMEPAGE = "https://huggingface.co/ABC-iRobotics/SMVB"
53
+
54
+ _LICENSE = "GNU General Public License v3.0"
55
+
56
+ _BASE_URL = "https://huggingface.co/datasets/ABC-iRobotics/SMVB/resolve/main/data"
57
+
58
+ _VERSION = '1.0.0'
59
+
60
+
61
+ # ---- SMVB dataset Configs ----
62
+
63
+ class SMVBDatasetConfig(datasets.BuilderConfig):
64
+ """BuilderConfig for SMVB dataset."""
65
+
66
+ def __init__(self, name: str, data_urls: Sequence[str], version: Optional[str] = None, **kwargs):
67
+ super(SMVBDatasetConfig, self).__init__(version=datasets.Version(version), name=name, **kwargs)
68
+ self._data_urls = data_urls
69
+
70
+ @property
71
+ def features(self):
72
+ return datasets.Features(
73
+ {
74
+ "image": datasets.Image(),
75
+ "mask": datasets.Image(),
76
+ "depth": datasets.Sequence(datasets.Value("float32")),
77
+ "flow": datasets.Sequence(datasets.Value("float32")),
78
+ "normal": datasets.Sequence(datasets.Value("float32"))
79
+ }
80
+ )
81
+
82
+ @property
83
+ def supervised_keys(self):
84
+ return ("image", "mask", "depth", "flow", "normal")
85
+
86
+
87
+
88
+ # ---- SMVB dataset Loader ----
89
+
90
+ class SMVBDataset(datasets.GeneratorBasedBuilder):
91
+ """SMVB dataset."""
92
+
93
+ BUILDER_CONFIG_CLASS = SMVBDatasetConfig
94
+ BUILDER_CONFIGS = [
95
+ SMVBDatasetConfig(
96
+ name = "all",
97
+ description = "Photorealistic synthetic images",
98
+ data_urls = [_BASE_URL],
99
+ version = _VERSION
100
+ ),
101
+ ]
102
+ DEFAULT_WRITER_BATCH_SIZE = 10
103
+
104
+ def _info(self):
105
+ return datasets.DatasetInfo(
106
+ description=_DESCRIPTION,
107
+ features=self.config.features,
108
+ supervised_keys=self.config.supervised_keys,
109
+ homepage=_HOMEPAGE,
110
+ license=_LICENSE,
111
+ citation=_CITATION,
112
+ version=self.config.version,
113
+ )
114
+
115
+ def _split_generators(self, dl_manager):
116
+ local_data_paths = dl_manager.download(self.config._data_urls)
117
+ archives = itertools.chain.from_iterable([pathlib.Path(path).rglob('*.tar.gz') for path in local_data_paths])
118
+ local_data_gen = itertools.chain.from_iterable([dl_manager.iter_archive(path) for path in archives])
119
+
120
+ return [
121
+ datasets.SplitGenerator(
122
+ name=datasets.Split.TRAIN,
123
+ gen_kwargs={
124
+ "data": local_data_gen
125
+ }
126
+ )
127
+ ]
128
+
129
+ def _generate_examples(
130
+ self,
131
+ data: Generator[Tuple[str,IO], None, None]
132
+ ):
133
+ file_infos = []
134
+ keys = self.config.supervised_keys
135
+
136
+ for i, info in enumerate(data):
137
+ if file_infos and i%len(keys) == 0:
138
+ yield (i//len(keys))-1, {k:{'path':d[0],'bytes':d[1].read()} for k,d in zip(keys,file_infos)}
139
+ file_infos = []
140
+ file_infos.append(info)