File size: 3,008 Bytes
36329c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5b6f302
 
 
 
 
 
 
 
 
 
95c243d
 
 
 
 
 
5b6f302
36329c2
95c243d
 
 
 
 
36329c2
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
Error executing job with overrides: ['backend.model=NousResearch/Hermes-3-Llama-3.1-8B', 'backend.processor=NousResearch/Hermes-3-Llama-3.1-8B']
Traceback (most recent call last):
  File "/optimum-benchmark/optimum_benchmark/cli.py", line 65, in benchmark_cli
    benchmark_report: BenchmarkReport = launch(experiment_config=experiment_config)
  File "/optimum-benchmark/optimum_benchmark/experiment.py", line 102, in launch
    raise error
  File "/optimum-benchmark/optimum_benchmark/experiment.py", line 90, in launch
    report = launcher.launch(run, experiment_config.benchmark, experiment_config.backend)
  File "/optimum-benchmark/optimum_benchmark/launchers/process/launcher.py", line 47, in launch
    while not process_context.join():
  File "/opt/conda/lib/python3.9/site-packages/torch/multiprocessing/spawn.py", line 189, in join
    raise ProcessRaisedException(msg, error_index, failed_process.pid)
torch.multiprocessing.spawn.ProcessRaisedException: 

-- Process 0 terminated with the following error:
Traceback (most recent call last):
  File "/opt/conda/lib/python3.9/site-packages/torch/multiprocessing/spawn.py", line 76, in _wrap
    fn(i, *args)
  File "/optimum-benchmark/optimum_benchmark/launchers/process/launcher.py", line 63, in entrypoint
    worker_output = worker(*worker_args)
  File "/optimum-benchmark/optimum_benchmark/experiment.py", line 55, in run
    backend: Backend = backend_factory(backend_config)
  File "/optimum-benchmark/optimum_benchmark/backends/pytorch/backend.py", line 81, in __init__
    self.load_model_with_no_weights()
  File "/optimum-benchmark/optimum_benchmark/backends/pytorch/backend.py", line 246, in load_model_with_no_weights
    self.load_model_from_pretrained()
  File "/optimum-benchmark/optimum_benchmark/backends/pytorch/backend.py", line 204, in load_model_from_pretrained
    self.pretrained_model = self.automodel_class.from_pretrained(
  File "/opt/conda/lib/python3.9/site-packages/transformers/models/auto/auto_factory.py", line 564, in from_pretrained
    return model_class.from_pretrained(
  File "/opt/conda/lib/python3.9/site-packages/transformers/modeling_utils.py", line 3738, in from_pretrained
    state_dict = load_state_dict(resolved_archive_file)
  File "/opt/conda/lib/python3.9/site-packages/transformers/modeling_utils.py", line 556, in load_state_dict
    return safe_load_file(checkpoint_file)
  File "/opt/conda/lib/python3.9/site-packages/safetensors/torch.py", line 315, in load_file
    result[k] = f.get_tensor(k)
  File "/opt/conda/lib/python3.9/site-packages/torch/utils/_device.py", line 79, in __torch_function__
    return func(*args, **kwargs)
RuntimeError: CUDA error: out of memory
CUDA kernel errors might be asynchronously reported at some other API call, so the stacktrace below might be incorrect.
For debugging consider passing CUDA_LAUNCH_BLOCKING=1
Compile with `TORCH_USE_CUDA_DSA` to enable device-side assertions.



Set the environment variable HYDRA_FULL_ERROR=1 for a complete stack trace.