Datasets:
Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,36 @@
|
|
1 |
---
|
2 |
license: mit
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: mit
|
3 |
+
tags:
|
4 |
+
- video
|
5 |
+
- driving
|
6 |
+
- Bengaluru
|
7 |
+
- disparity maps
|
8 |
+
- depth dataset
|
9 |
+
homepage: https://adityang.github.io/AdityaNG/BengaluruDrivingDataset/
|
10 |
---
|
11 |
+
|
12 |
+
# Bengaluru Semantic Occupancy Dataset
|
13 |
+
|
14 |
+
<img src="https://adityang.github.io/AdityaNG/BengaluruDrivingDataset/index_files/BDD_Iterator_Demo-2023-08-30_08.25.17.gif" >
|
15 |
+
|
16 |
+
## Dataset Summary
|
17 |
+
|
18 |
+
We gathered a dataset spanning 114 minutes and 165K frames in Bengaluru, India. Our dataset consists of video data from a calibrated camera sensor with a resolution of 1920×1080 recorded at a framerate of 30 Hz. We utilize a Depth Dataset Generation pipeline that only uses videos as input to produce high-resolution disparity maps.
|
19 |
+
|
20 |
+
## Paper
|
21 |
+
|
22 |
+
[Bengaluru Driving Dataset: 3D Occupancy Convolutional Transformer Network in Unstructured Traffic Scenarios](https://arxiv.org/abs/2307.10934)
|
23 |
+
|
24 |
+
## Citation
|
25 |
+
|
26 |
+
```bibtex
|
27 |
+
@misc{analgund2023octran,
|
28 |
+
title={Bengaluru Driving Dataset: 3D Occupancy Convolutional Transformer Network in Unstructured Traffic Scenarios},
|
29 |
+
author={Ganesh, Aditya N and Pobbathi Badrinath, Dhruval and
|
30 |
+
Kumar, Harshith Mohan and S, Priya and Narayan, Surabhi
|
31 |
+
},
|
32 |
+
year={2023},
|
33 |
+
howpublished={Spotlight Presentation at the Transformers for Vision Workshop, CVPR},
|
34 |
+
url={https://sites.google.com/view/t4v-cvpr23/papers#h.enx3bt45p649},
|
35 |
+
note={Transformers for Vision Workshop, CVPR 2023}
|
36 |
+
}
|