AdityaNG commited on
Commit
8a8680d
·
1 Parent(s): a5690cf

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +33 -0
README.md CHANGED
@@ -1,3 +1,36 @@
1
  ---
2
  license: mit
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: mit
3
+ tags:
4
+ - video
5
+ - driving
6
+ - Bengaluru
7
+ - disparity maps
8
+ - depth dataset
9
+ homepage: https://adityang.github.io/AdityaNG/BengaluruDrivingDataset/
10
  ---
11
+
12
+ # Bengaluru Semantic Occupancy Dataset
13
+
14
+ <img src="https://adityang.github.io/AdityaNG/BengaluruDrivingDataset/index_files/BDD_Iterator_Demo-2023-08-30_08.25.17.gif" >
15
+
16
+ ## Dataset Summary
17
+
18
+ We gathered a dataset spanning 114 minutes and 165K frames in Bengaluru, India. Our dataset consists of video data from a calibrated camera sensor with a resolution of 1920×1080 recorded at a framerate of 30 Hz. We utilize a Depth Dataset Generation pipeline that only uses videos as input to produce high-resolution disparity maps.
19
+
20
+ ## Paper
21
+
22
+ [Bengaluru Driving Dataset: 3D Occupancy Convolutional Transformer Network in Unstructured Traffic Scenarios](https://arxiv.org/abs/2307.10934)
23
+
24
+ ## Citation
25
+
26
+ ```bibtex
27
+ @misc{analgund2023octran,
28
+ title={Bengaluru Driving Dataset: 3D Occupancy Convolutional Transformer Network in Unstructured Traffic Scenarios},
29
+ author={Ganesh, Aditya N and Pobbathi Badrinath, Dhruval and
30
+ Kumar, Harshith Mohan and S, Priya and Narayan, Surabhi
31
+ },
32
+ year={2023},
33
+ howpublished={Spotlight Presentation at the Transformers for Vision Workshop, CVPR},
34
+ url={https://sites.google.com/view/t4v-cvpr23/papers#h.enx3bt45p649},
35
+ note={Transformers for Vision Workshop, CVPR 2023}
36
+ }