Datasets:
Tasks:
Multiple Choice
Modalities:
Text
Formats:
parquet
Sub-tasks:
multiple-choice-qa
Languages:
English
Size:
10M - 100M
ArXiv:
License:
Commit
·
e12fccd
1
Parent(s):
7c144b1
Delete loading script
Browse files
asnq.py
DELETED
@@ -1,151 +0,0 @@
|
|
1 |
-
# coding=utf-8
|
2 |
-
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
-
#
|
4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
-
# you may not use this file except in compliance with the License.
|
6 |
-
# You may obtain a copy of the License at
|
7 |
-
#
|
8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
-
#
|
10 |
-
# Unless required by applicable law or agreed to in writing, software
|
11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
-
# See the License for the specific language governing permissions and
|
14 |
-
# limitations under the License.
|
15 |
-
"""Answer-Sentence Natural Questions (ASNQ)
|
16 |
-
|
17 |
-
ASNQ is a dataset for answer sentence selection derived from Google's
|
18 |
-
Natural Questions (NQ) dataset (Kwiatkowski et al. 2019). It converts
|
19 |
-
NQ's dataset into an AS2 (answer-sentence-selection) format.
|
20 |
-
|
21 |
-
The dataset details can be found in the paper at
|
22 |
-
https://arxiv.org/abs/1911.04118
|
23 |
-
|
24 |
-
The dataset can be downloaded at
|
25 |
-
https://d3t7erp6ge410c.cloudfront.net/tanda-aaai-2020/data/asnq.tar
|
26 |
-
|
27 |
-
"""
|
28 |
-
|
29 |
-
|
30 |
-
import csv
|
31 |
-
import os
|
32 |
-
|
33 |
-
import datasets
|
34 |
-
|
35 |
-
|
36 |
-
_CITATION = """\
|
37 |
-
@article{garg2019tanda,
|
38 |
-
title={TANDA: Transfer and Adapt Pre-Trained Transformer Models for Answer Sentence Selection},
|
39 |
-
author={Siddhant Garg and Thuy Vu and Alessandro Moschitti},
|
40 |
-
year={2019},
|
41 |
-
eprint={1911.04118},
|
42 |
-
}
|
43 |
-
"""
|
44 |
-
|
45 |
-
_DESCRIPTION = """\
|
46 |
-
ASNQ is a dataset for answer sentence selection derived from
|
47 |
-
Google's Natural Questions (NQ) dataset (Kwiatkowski et al. 2019).
|
48 |
-
|
49 |
-
Each example contains a question, candidate sentence, label indicating whether or not
|
50 |
-
the sentence answers the question, and two additional features --
|
51 |
-
sentence_in_long_answer and short_answer_in_sentence indicating whether ot not the
|
52 |
-
candidate sentence is contained in the long_answer and if the short_answer is in the candidate sentence.
|
53 |
-
|
54 |
-
For more details please see
|
55 |
-
https://arxiv.org/pdf/1911.04118.pdf
|
56 |
-
|
57 |
-
and
|
58 |
-
|
59 |
-
https://research.google/pubs/pub47761/
|
60 |
-
"""
|
61 |
-
|
62 |
-
_URL = "data/asnq.zip"
|
63 |
-
|
64 |
-
|
65 |
-
class ASNQ(datasets.GeneratorBasedBuilder):
|
66 |
-
"""ASNQ is a dataset for answer sentence selection derived
|
67 |
-
ASNQ is a dataset for answer sentence selection derived from
|
68 |
-
Google's Natural Questions (NQ) dataset (Kwiatkowski et al. 2019).
|
69 |
-
|
70 |
-
The dataset details can be found in the paper:
|
71 |
-
https://arxiv.org/abs/1911.04118
|
72 |
-
"""
|
73 |
-
|
74 |
-
VERSION = datasets.Version("1.0.0")
|
75 |
-
|
76 |
-
def _info(self):
|
77 |
-
|
78 |
-
return datasets.DatasetInfo(
|
79 |
-
# This is the description that will appear on the datasets page.
|
80 |
-
description=_DESCRIPTION,
|
81 |
-
# This defines the different columns of the dataset and their types
|
82 |
-
features=datasets.Features(
|
83 |
-
{
|
84 |
-
"question": datasets.Value("string"),
|
85 |
-
"sentence": datasets.Value("string"),
|
86 |
-
"label": datasets.ClassLabel(names=["neg", "pos"]),
|
87 |
-
"sentence_in_long_answer": datasets.Value("bool"),
|
88 |
-
"short_answer_in_sentence": datasets.Value("bool"),
|
89 |
-
}
|
90 |
-
),
|
91 |
-
# No default supervised_keys
|
92 |
-
supervised_keys=None,
|
93 |
-
# Homepage of the dataset for documentation
|
94 |
-
homepage="https://github.com/alexa/wqa_tanda#answer-sentence-natural-questions-asnq",
|
95 |
-
citation=_CITATION,
|
96 |
-
)
|
97 |
-
|
98 |
-
def _split_generators(self, dl_manager):
|
99 |
-
"""Returns SplitGenerators."""
|
100 |
-
# dl_manager is a datasets.download.DownloadManager that can be used to
|
101 |
-
# download and extract URLs
|
102 |
-
dl_dir = dl_manager.download_and_extract(_URL)
|
103 |
-
data_dir = os.path.join(dl_dir, "data", "asnq")
|
104 |
-
return [
|
105 |
-
datasets.SplitGenerator(
|
106 |
-
name=datasets.Split.TRAIN,
|
107 |
-
# These kwargs will be passed to _generate_examples
|
108 |
-
gen_kwargs={
|
109 |
-
"filepath": os.path.join(data_dir, "train.tsv"),
|
110 |
-
"split": "train",
|
111 |
-
},
|
112 |
-
),
|
113 |
-
datasets.SplitGenerator(
|
114 |
-
name=datasets.Split.VALIDATION,
|
115 |
-
# These kwargs will be passed to _generate_examples
|
116 |
-
gen_kwargs={
|
117 |
-
"filepath": os.path.join(data_dir, "dev.tsv"),
|
118 |
-
"split": "dev",
|
119 |
-
},
|
120 |
-
),
|
121 |
-
]
|
122 |
-
|
123 |
-
def _generate_examples(self, filepath, split):
|
124 |
-
"""Yields examples.
|
125 |
-
|
126 |
-
Original dataset contains labels '1', '2', '3' and '4', with labels
|
127 |
-
'1', '2' and '3' considered negative (sentence does not answer the question),
|
128 |
-
and label '4' considered positive (sentence does answer the question).
|
129 |
-
We map these labels to two classes, returning the other properties as additional
|
130 |
-
features."""
|
131 |
-
|
132 |
-
# Mapping of dataset's original labels to a tuple of
|
133 |
-
# (label, sentence_in_long_answer, short_answer_in_sentence)
|
134 |
-
label_map = {
|
135 |
-
"1": ("neg", False, False),
|
136 |
-
"2": ("neg", False, True),
|
137 |
-
"3": ("neg", True, False),
|
138 |
-
"4": ("pos", True, True),
|
139 |
-
}
|
140 |
-
with open(filepath, encoding="utf-8") as tsvfile:
|
141 |
-
tsvreader = csv.reader(tsvfile, delimiter="\t")
|
142 |
-
for id_, row in enumerate(tsvreader):
|
143 |
-
question, sentence, orig_label = row
|
144 |
-
label, sentence_in_long_answer, short_answer_in_sentence = label_map[orig_label]
|
145 |
-
yield id_, {
|
146 |
-
"question": question,
|
147 |
-
"sentence": sentence,
|
148 |
-
"label": label,
|
149 |
-
"sentence_in_long_answer": sentence_in_long_answer,
|
150 |
-
"short_answer_in_sentence": short_answer_in_sentence,
|
151 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|