yoshitomo-matsubara commited on
Commit
49cc4ce
·
1 Parent(s): b065544

Update paper link

Browse files
Files changed (1) hide show
  1. README.md +7 -6
README.md CHANGED
@@ -58,12 +58,12 @@ license: cdla-permissive-2.0
58
  ## Dataset Description
59
 
60
  - **Homepage:** [Amazon Science](https://www.amazon.science/publications/cross-lingual-knowledge-distillation-for-answer-sentence-selection-in-low-resource-languages)
61
- - **Paper:** [Cross-Lingual Knowledge Distillation for Answer Sentence Selection in Low-Resource Languages](https://arxiv.org/abs/2305.16302)
62
  - **Point of Contact:** [Yoshitomo Matsubara]([email protected])
63
 
64
  ### Dataset Summary
65
 
66
- ***Xtr-WikiQA*** is an Answer Sentence Selection (AS2) dataset in 9 non-English languages, proposed in our paper accepted at ACL 2023 (Findings): **Cross-Lingual Knowledge Distillation for Answer Sentence Selection in Low-Resource Languages**.
67
  This dataset is based on an English AS2 dataset, WikiQA ([Original](https://msropendata.com/datasets/21032bb1-88bd-4656-9570-3172ae1757f0), [Hugging Face](https://huggingface.co/datasets/wiki_qa)).
68
  For translations, we used [Amazon Translate](https://aws.amazon.com/translate/).
69
 
@@ -142,11 +142,12 @@ The source of Xtr-WikiQA dataset is [WikiQA](https://msropendata.com/datasets/21
142
 
143
  ### Citation Information
144
 
145
- ```
146
- @article{gupta2023cross-lingual,
147
- title={Cross-Lingual Knowledge Distillation for Answer Sentence Selection in Low-Resource Languages},
148
  author={Gupta, Shivanshu and Matsubara, Yoshitomo and Chadha, Ankit and Moschitti, Alessandro},
149
- journal={arXiv preprint arXiv:2305.16302},
 
150
  year={2023}
151
  }
152
  ```
 
58
  ## Dataset Description
59
 
60
  - **Homepage:** [Amazon Science](https://www.amazon.science/publications/cross-lingual-knowledge-distillation-for-answer-sentence-selection-in-low-resource-languages)
61
+ - **Paper:** [Cross-Lingual Knowledge Distillation for Answer Sentence Selection in Low-Resource Languages](https://aclanthology.org/2023.findings-acl.885/)
62
  - **Point of Contact:** [Yoshitomo Matsubara]([email protected])
63
 
64
  ### Dataset Summary
65
 
66
+ ***Xtr-WikiQA*** is an Answer Sentence Selection (AS2) dataset in 9 non-English languages, proposed in our paper accepted at ACL 2023 (Findings): [**Cross-Lingual Knowledge Distillation for Answer Sentence Selection in Low-Resource Languages**](https://aclanthology.org/2023.findings-acl.885/).
67
  This dataset is based on an English AS2 dataset, WikiQA ([Original](https://msropendata.com/datasets/21032bb1-88bd-4656-9570-3172ae1757f0), [Hugging Face](https://huggingface.co/datasets/wiki_qa)).
68
  For translations, we used [Amazon Translate](https://aws.amazon.com/translate/).
69
 
 
142
 
143
  ### Citation Information
144
 
145
+ ```bibtex
146
+ @inproceedings{gupta2023cross-lingual,
147
+ title={{Cross-Lingual Knowledge Distillation for Answer Sentence Selection in Low-Resource Languages}},
148
  author={Gupta, Shivanshu and Matsubara, Yoshitomo and Chadha, Ankit and Moschitti, Alessandro},
149
+ booktitle={Findings of the Association for Computational Linguistics: ACL 2023},
150
+ pages={14078--14092},
151
  year={2023}
152
  }
153
  ```