|
|
|
|
|
import os |
|
import random |
|
import requests |
|
|
|
import datasets |
|
|
|
import numpy as np |
|
from bs4 import BeautifulSoup, ResultSet |
|
from syntok.tokenizer import Tokenizer |
|
|
|
tokenizer = Tokenizer() |
|
|
|
_CITATION = """\ |
|
@report{Magnini2021, \ |
|
author = {Bernardo Magnini and Begoña Altuna and Alberto Lavelli and Manuela Speranza \ |
|
and Roberto Zanoli and Fondazione Bruno Kessler}, \ |
|
keywords = {Clinical data,clinical enti-ties,corpus,multilingual,temporal information}, \ |
|
title = {The E3C Project: \ |
|
European Clinical Case Corpus El proyecto E3C: European Clinical Case Corpus}, \ |
|
url = {https://uts.nlm.nih.gov/uts/umls/home}, \ |
|
year = {2021}, \ |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
E3C is a freely available multilingual corpus (English, French, Italian, Spanish, and Basque) \ |
|
of semantically annotated clinical narratives to allow for the linguistic analysis, benchmarking, \ |
|
and training of information extraction systems. It consists of two types of annotations: \ |
|
(i) clinical entities (e.g., pathologies), (ii) temporal information and factuality (e.g., events). \ |
|
Researchers can use the benchmark training and test splits of our corpus to develop and test \ |
|
their own models. |
|
""" |
|
|
|
_URL = "https://github.com/hltfbk/E3C-Corpus/archive/refs/tags/v2.0.0.zip" |
|
|
|
_LANGUAGES = ["English","Spanish","Basque","French","Italian"] |
|
|
|
class StringIndex: |
|
|
|
def __init__(self, vocab): |
|
|
|
self.vocab_struct = {} |
|
|
|
print("Start building the index!") |
|
for t in vocab: |
|
|
|
if len(t) == 0: |
|
continue |
|
|
|
|
|
key = (t[0], len(t)) |
|
|
|
if (key in self.vocab_struct) == False: |
|
self.vocab_struct[key] = [] |
|
|
|
self.vocab_struct[key].append(t) |
|
|
|
print("Finished building the index!") |
|
|
|
def find(self, t): |
|
|
|
key = (t[0], len(t)) |
|
|
|
if (key in self.vocab_struct) == False: |
|
return "is_oov" |
|
|
|
return "is_not_oov" if t in self.vocab_struct[key] else "is_oov" |
|
|
|
_VOCAB = StringIndex(vocab=requests.get("https://huggingface.co/datasets/BioMedTok/vocabulary_nachos_lowercased/resolve/main/vocabulary_nachos_lowercased.txt").text.split("\n")) |
|
|
|
class E3C(datasets.GeneratorBasedBuilder): |
|
|
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig(name=f"{lang}_clinical", version="1.0.0", description=f"The {lang} subset of the E3C corpus") for lang in _LANGUAGES |
|
] |
|
|
|
BUILDER_CONFIGS += [ |
|
datasets.BuilderConfig(name=f"{lang}_temporal", version="1.0.0", description=f"The {lang} subset of the E3C corpus") for lang in _LANGUAGES |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "French_clinical" |
|
|
|
def _info(self): |
|
|
|
if self.config.name == "default": |
|
self.config.name = self.DEFAULT_CONFIG_NAME |
|
|
|
if self.config.name.find("clinical") != -1: |
|
names = ["O","B-CLINENTITY","I-CLINENTITY"] |
|
elif self.config.name.find("temporal") != -1: |
|
names = ["O", "B-EVENT", "B-ACTOR", "B-BODYPART", "B-TIMEX3", "B-RML", "I-EVENT", "I-ACTOR", "I-BODYPART", "I-TIMEX3", "I-RML"] |
|
|
|
features = datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"text": datasets.Value("string"), |
|
"tokens": datasets.Sequence(datasets.Value("string")), |
|
"ner_tags": datasets.Sequence( |
|
datasets.features.ClassLabel( |
|
names=names, |
|
), |
|
), |
|
"is_oov": datasets.Sequence( |
|
datasets.features.ClassLabel( |
|
names=['is_not_oov', 'is_oov'], |
|
), |
|
), |
|
} |
|
) |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
citation=_CITATION, |
|
supervised_keys=None, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
|
|
data_dir = dl_manager.download_and_extract(_URL) |
|
|
|
print(data_dir) |
|
|
|
if self.config.name.find("clinical") != -1: |
|
|
|
print("clinical") |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": os.path.join(data_dir, "E3C-Corpus-2.0.0/data_annotation", self.config.name.replace("_clinical",""), "layer2"), |
|
"split": "train", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"filepath": os.path.join(data_dir, "E3C-Corpus-2.0.0/data_annotation", self.config.name.replace("_clinical",""), "layer2"), |
|
"split": "validation", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"filepath": os.path.join(data_dir, "E3C-Corpus-2.0.0/data_annotation", self.config.name.replace("_clinical",""), "layer1"), |
|
"split": "test", |
|
}, |
|
), |
|
] |
|
|
|
elif self.config.name.find("temporal") != -1: |
|
|
|
print("temporal") |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": os.path.join(data_dir, "E3C-Corpus-2.0.0/data_annotation", self.config.name.replace("_temporal",""), "layer1"), |
|
"split": "train", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"filepath": os.path.join(data_dir, "E3C-Corpus-2.0.0/data_annotation", self.config.name.replace("_temporal",""), "layer1"), |
|
"split": "validation", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"filepath": os.path.join(data_dir, "E3C-Corpus-2.0.0/data_annotation", self.config.name.replace("_temporal",""), "layer1"), |
|
"split": "test", |
|
}, |
|
), |
|
] |
|
|
|
@staticmethod |
|
def get_annotations(entities: ResultSet, text: str) -> list: |
|
|
|
return [[ |
|
int(entity.get("begin")), |
|
int(entity.get("end")), |
|
text[int(entity.get("begin")) : int(entity.get("end"))], |
|
] for entity in entities] |
|
|
|
def get_clinical_annotations(self, entities: ResultSet, text: str) -> list: |
|
|
|
return [[ |
|
int(entity.get("begin")), |
|
int(entity.get("end")), |
|
text[int(entity.get("begin")) : int(entity.get("end"))], |
|
entity.get("entityID"), |
|
] for entity in entities] |
|
|
|
def get_parsed_data(self, filepath: str): |
|
|
|
for root, _, files in os.walk(filepath): |
|
|
|
for file in files: |
|
|
|
with open(f"{root}/{file}") as soup_file: |
|
|
|
soup = BeautifulSoup(soup_file, "xml") |
|
text = soup.find("cas:Sofa").get("sofaString") |
|
|
|
yield { |
|
"CLINENTITY": self.get_clinical_annotations(soup.find_all("custom:CLINENTITY"), text), |
|
"EVENT": self.get_annotations(soup.find_all("custom:EVENT"), text), |
|
"ACTOR": self.get_annotations(soup.find_all("custom:ACTOR"), text), |
|
"BODYPART": self.get_annotations(soup.find_all("custom:BODYPART"), text), |
|
"TIMEX3": self.get_annotations(soup.find_all("custom:TIMEX3"), text), |
|
"RML": self.get_annotations(soup.find_all("custom:RML"), text), |
|
"SENTENCE": self.get_annotations(soup.find_all("type4:Sentence"), text), |
|
"TOKENS": self.get_annotations(soup.find_all("type4:Token"), text), |
|
} |
|
|
|
def _generate_examples(self, filepath, split): |
|
|
|
all_res = [] |
|
|
|
key = 0 |
|
|
|
parsed_content = self.get_parsed_data(filepath) |
|
|
|
for content in parsed_content: |
|
|
|
for sentence in content["SENTENCE"]: |
|
|
|
tokens = [( |
|
token.offset + sentence[0], |
|
token.offset + sentence[0] + len(token.value), |
|
token.value, |
|
) for token in list(tokenizer.tokenize(sentence[-1]))] |
|
|
|
filtered_tokens = list( |
|
filter( |
|
lambda token: token[0] >= sentence[0] and token[1] <= sentence[1], |
|
tokens, |
|
) |
|
) |
|
|
|
tokens_offsets = [ |
|
[token[0] - sentence[0], token[1] - sentence[0]] for token in filtered_tokens |
|
] |
|
|
|
clinical_labels = ["O"] * len(filtered_tokens) |
|
clinical_cuid = ["CUI_LESS"] * len(filtered_tokens) |
|
temporal_information_labels = ["O"] * len(filtered_tokens) |
|
|
|
for entity_type in ["CLINENTITY","EVENT","ACTOR","BODYPART","TIMEX3","RML"]: |
|
|
|
if len(content[entity_type]) != 0: |
|
|
|
for entities in list(content[entity_type]): |
|
|
|
annotated_tokens = [ |
|
idx_token |
|
for idx_token, token in enumerate(filtered_tokens) |
|
if token[0] >= entities[0] and token[1] <= entities[1] |
|
] |
|
|
|
for idx_token in annotated_tokens: |
|
|
|
if entity_type == "CLINENTITY": |
|
if idx_token == annotated_tokens[0]: |
|
clinical_labels[idx_token] = f"B-{entity_type}" |
|
else: |
|
clinical_labels[idx_token] = f"I-{entity_type}" |
|
clinical_cuid[idx_token] = entities[-1] |
|
else: |
|
if idx_token == annotated_tokens[0]: |
|
temporal_information_labels[idx_token] = f"B-{entity_type}" |
|
else: |
|
temporal_information_labels[idx_token] = f"I-{entity_type}" |
|
|
|
if self.config.name.find("clinical") != -1: |
|
_labels = clinical_labels |
|
elif self.config.name.find("temporal") != -1: |
|
_labels = temporal_information_labels |
|
|
|
all_res.append({ |
|
"id": key, |
|
"text": sentence[-1].lower(), |
|
"tokens": [tok.lower() for tok in list(map(lambda token: token[2], filtered_tokens))], |
|
"ner_tags": _labels, |
|
"is_oov": [_VOCAB.find(tt.lower()) for tt in list(map(lambda token: token[2], filtered_tokens))], |
|
}) |
|
|
|
key += 1 |
|
|
|
if self.config.name.find("clinical") != -1: |
|
|
|
if split != "test": |
|
|
|
ids = [r["id"] for r in all_res] |
|
|
|
random.seed(4) |
|
random.shuffle(ids) |
|
random.shuffle(ids) |
|
random.shuffle(ids) |
|
|
|
train, validation = np.split(ids, [int(len(ids)*0.8738)]) |
|
|
|
if split == "train": |
|
allowed_ids = list(train) |
|
elif split == "validation": |
|
allowed_ids = list(validation) |
|
|
|
for r in all_res: |
|
if r["id"] in allowed_ids: |
|
yield r["id"], r |
|
else: |
|
|
|
for r in all_res: |
|
yield r["id"], r |
|
|
|
elif self.config.name.find("temporal") != -1: |
|
|
|
ids = [r["id"] for r in all_res] |
|
|
|
random.seed(4) |
|
random.shuffle(ids) |
|
random.shuffle(ids) |
|
random.shuffle(ids) |
|
|
|
train, validation, test = np.split(ids, [int(len(ids)*0.70), int(len(ids)*0.80)]) |
|
|
|
if split == "train": |
|
allowed_ids = list(train) |
|
elif split == "validation": |
|
allowed_ids = list(validation) |
|
elif split == "test": |
|
allowed_ids = list(test) |
|
|
|
for r in all_res: |
|
if r["id"] in allowed_ids: |
|
yield r["id"], r |