File size: 9,527 Bytes
23bc0aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9480872
23bc0aa
9480872
bfb0b0b
9480872
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bfb0b0b
9480872
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d729e88
 
9480872
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23bc0aa
83541e2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
---
license: cc-by-nc-4.0
task_categories:
- visual-question-answering
- image-to-text
language:
- ar
- de
- vi
- ja
- ko
- fr
- ru
- it
- th
tags:
- multilingual
- text-centric
size_categories:
- 10K<n<100K
---

# Dataset Card
The dataset is oriented toward visual question answering of multilingual text scenes in nine languages, including Korean, Japanese, Italian, Russian, Deutsch, French, Thai, Arabic, and Vietnamese. The question-answer pairs are labeled by native annotators following a series of rules. A comprehensive description of the dataset can be found in the paper [MTVQA](https://arxiv.org/pdf/2405.11985).

## - Image Distribution
<table style="width:60%;">
    <tr>
        <td><b>KO</b></td>
        <td><b>JA</b></td>
        <td><b>IT</b></td>
        <td><b>RU</b></td>
        <td><b>DE</b></td>
        <td><b>FR</b></td>
        <td><b>TH</b></td>
        <td><b>AR</b></td>
        <td><b>VI</b></td>
        <td><b>Total</b></td>
    </tr>
    <tr>
        <td><b>Train Images</b></td>
        <td>580</td>
        <td>1039</td>
        <td>622</td>
        <td>635</td>
        <td>984</td>
        <td>792</td>
        <td>319</td>
        <td>568</td>
        <td>1139</td>
    </tr>
    <tr>
        <td><b>Test Images</b></td>
        <td>250</td>
        <td>250</td>
        <td>250</td>
        <td>250</td>
        <td>250</td>
        <td>250</td>
        <td>116</td>
        <td>250</td>
        <td>250</td>
    </tr>
    <tr>
        <td><b>Train QA</b></td>
        <td>1280</td>
        <td>3332</td>
        <td>2168</td>
        <td>1835</td>
        <td>4238</td>
        <td>2743</td>
        <td>625</td>
        <td>1597</td>
        <td>4011</td>
    </tr>
    <tr>
        <td><b>Test QA</b></td>
        <td>558</td>
        <td>828</td>
        <td>884</td>
        <td>756</td>
        <td>1048</td>
        <td>886</td>
        <td>231</td>
        <td>703</td>
        <td>884</td>
    </tr>
</table>


## - LeaderBoard
<table style="width:75%;">
    <tr>
        <th>Models</th>
        <td><b>AR</b></td>
        <td><b><b>DE</b></td>
        <td><b>FR</b></td>
        <td><b>IT</b></td>
        <td><b>JA</b></td>
        <td><b>KO</b></td>
        <td><b>RU</b></td>
        <td><b>TH</b></td>
        <td><b>VI</b></td>
        <td><b>Average</b> </td>
    </tr>
    <tr>
        <th>Claude3 Opus</th>
        <td>15.1 </td>
        <td>33.4 </td>
        <td>40.6 </td>
        <td>34.4 </td>
        <td>19.4 </td>
        <td>27.2 </td>
        <td>13.0 </td>
        <td>19.5 </td>
        <td>29.1 </td>
        <td>25.7  </td>
    </tr>
    <tr>
        <th>Gemini Ultra</th>
        <td>14.7 </td>
        <td>32.3 </td>
        <td>40.0 </td>
        <td>31.8 </td>
        <td>12.3 </td>
        <td>17.2 </td>
        <td>11.8 </td>
        <td>20.3 </td>
        <td>28.6 </td>
        <td>23.2  </td>
    </tr>
    <tr>
        <th>GPT-4V</th>
        <td>11.5 </td>
        <td>31.5 </td>
        <td>40.4 </td>
        <td>32.3 </td>
        <td>11.5 </td>
        <td>16.7 </td>
        <td>10.3 </td>
        <td>15.0 </td>
        <td>28.9 </td>
        <td>22.0  </td>
    </tr>
    <tr>
        <th>QwenVL Max</th>
        <td>7.7 </td>
        <td>31.4 </td>
        <td>37.6 </td>
        <td>30.2 </td>
        <td>18.6 </td>
        <td>25.4 </td>
        <td>10.4 </td>
        <td>4.8 </td>
        <td>23.5 </td>
        <td>21.1  </td>
    </tr>
    <tr>
        <th>Claude3 Sonnet</th>
        <td>10.5 </td>
        <td>28.9 </td>
        <td>35.6 </td>
        <td>31.8 </td>
        <td>13.9 </td>
        <td>22.2 </td>
        <td>11.0 </td>
        <td>15.2 </td>
        <td>20.8 </td>
        <td>21.1  </td>
    </tr>
    <tr>
        <th>QwenVL Plus</th>
        <td>4.8 </td>
        <td>28.8 </td>
        <td>33.7 </td>
        <td>27.1 </td>
        <td>12.8 </td>
        <td>19.9 </td>
        <td>9.4 </td>
        <td>5.6 </td>
        <td>18.1 </td>
        <td>17.8  </td>
    </tr>
    <tr>
        <th>MiniCPM-Llama3-V-2_5</th>
        <td>6.1 </td>
        <td>29.6 </td>
        <td>35.7 </td>
        <td>26.0 </td>
        <td>12.1 </td>
        <td>13.1 </td>
        <td>5.7 </td>
        <td>12.6 </td>
        <td>15.3 </td>
        <td>17.3  </td>
    </tr>
    <tr>
        <th>InternVL-V1.5</th>
        <td>3.4 </td>
        <td>27.1 </td>
        <td>31.4 </td>
        <td>27.1 </td>
        <td>9.9 </td>
        <td>9.0 </td>
        <td>4.9 </td>
        <td>8.7 </td>
        <td>12.4 </td>
        <td>14.9  </td>
    </tr>
    <tr>
        <th>GLM4V</th>
        <td>0.3 </td>
        <td>30.0 </td>
        <td>34.1 </td>
        <td>30.1 </td>
        <td>3.4 </td>
        <td>5.7 </td>
        <td>3.0 </td>
        <td>3.5 </td>
        <td>12.3 </td>
        <td>13.6  </td>
    </tr>
    <tr>
        <th>TextSquare</th>
        <td>3.7 </td>
        <td>27.0 </td>
        <td>30.8 </td>
        <td>26.7 </td>
        <td>3.2 </td>
        <td>7.2 </td>
        <td>6.7 </td>
        <td>5.2 </td>
        <td>12.4 </td>
        <td>13.6  </td>
    </tr>
    <tr>
        <th>Mini-Gemini-HD-34B</th>
        <td>2.2 </td>
        <td>25.0 </td>
        <td>29.2 </td>
        <td>25.5 </td>
        <td>6.1 </td>
        <td>8.6 </td>
        <td>4.1 </td>
        <td>4.3 </td>
        <td>11.8 </td>
        <td>13.0  </td>
    </tr>
    <tr>
        <th>InternLM-Xcomposer2-4KHD</th>
        <td>2.0 </td>
        <td>20.6 </td>
        <td>23.2 </td>
        <td>21.6 </td>
        <td>5.6 </td>
        <td>7.7 </td>
        <td>4.1 </td>
        <td>6.1 </td>
        <td>10.1 </td>
        <td>11.2  </td>
    </tr>
    <tr>
        <th>Llava-Next-34B</th>
        <td>3.3 </td>
        <td>24.0 </td>
        <td>28.0 </td>
        <td>22.3 </td>
        <td>3.6 </td>
        <td>6.1 </td>
        <td>2.6 </td>
        <td>0.4 </td>
        <td>9.8 </td>
        <td>11.1  </td>
    </tr>
    <tr>
        <th>TextMonkey</th>
        <td>2.0 </td>
        <td>18.1 </td>
        <td>19.9 </td>
        <td>22.1 </td>
        <td>4.6 </td>
        <td>7.2 </td>
        <td>3.2 </td>
        <td>0.9 </td>
        <td>11.1 </td>
        <td>9.9  </td>
    </tr>
    <tr>
        <th>MiniCPM-V-2</th>
        <td>1.3 </td>
        <td>12.7 </td>
        <td>14.9 </td>
        <td>17.0 </td>
        <td>3.7 </td>
        <td>5.6 </td>
        <td>2.2 </td>
        <td>2.2 </td>
        <td>6.8 </td>
        <td>7.4  </td>
    </tr>
    <tr>
        <th>mPLUG-DocOwl 1.5</th>
        <td>1.0 </td>
        <td>13.9 </td>
        <td>14.9 </td>
        <td>18.2 </td>
        <td>2.9 </td>
        <td>5.0 </td>
        <td>2.0 </td>
        <td>0.9 </td>
        <td>6.4 </td>
        <td>7.2  </td>
    </tr>
    <tr>
        <th>YI-VL-34B</th>
        <td>1.7 </td>
        <td>13.5 </td>
        <td>15.7 </td>
        <td>12.1 </td>
        <td>4.8 </td>
        <td>5.2 </td>
        <td>0.8 </td>
        <td>3.5 </td>
        <td>4.1 </td>
        <td>6.8  </td>
    </tr>
    <tr>
        <th>DeepSeek-VL</th>
        <td>0.6 </td>
        <td>14.2 </td>
        <td>15.3 </td>
        <td>15.2 </td>
        <td>2.9 </td>
        <td>3.8 </td>
        <td>1.6 </td>
        <td>0.9 </td>
        <td>5.2 </td>
        <td>6.6 </td>
    </tr>
</table>


## - Direct usage
The data is designed to evaluate and enhance the multilingual textual vqa capabilities of multimodal models in the hope of facilitating the understanding of multilingual images, enabling AI to reach more people in the world.

### -- Huggingface dataloader
```
from datasets import load_dataset
dataset = load_dataset("ByteDance/MTVQA")
```



## - Out-of-Scope usage
Academic use only, not supported for commercial usage.

## - Ethics Assessment
Both GPT4V and manual assessment are employed to filter out unethical question and answer pairs.

## - Bias, Risks, and Limitations
Your access to and use of this dataset are at your own risk. We do not guarantee the accuracy of this dataset. The dataset is provided “as is” and we make no warranty or representation to you with respect to it and we expressly disclaim, and hereby expressly waive, all warranties, express, implied, statutory or otherwise. This includes, without limitation, warranties of quality, performance, merchantability or fitness for a particular purpose, non-infringement, absence of latent or other defects, accuracy, or the presence or absence of errors, whether or not known or discoverable. In no event will we be liable to you on any legal theory (including, without limitation, negligence) or otherwise for any direct, special, indirect, incidental, consequential, punitive, exemplary, or other losses, costs, expenses, or damages arising out of this public license or use of the licensed material. The disclaimer of warranties and limitation of liability provided above shall be interpreted in a manner that, to the extent possible, most closely approximates an absolute disclaimer and waiver of all liability.


## - Citation
```
@misc{tang2024mtvqa,
      title={MTVQA: Benchmarking Multilingual Text-Centric Visual Question Answering}, 
      author={Jingqun Tang and Qi Liu and Yongjie Ye and Jinghui Lu and Shu Wei and Chunhui Lin and Wanqing Li and Mohamad Fitri Faiz Bin Mahmood and Hao Feng and Zhen Zhao and Yanjie Wang and Yuliang Liu and Hao Liu and Xiang Bai and Can Huang},
      year={2024},
      eprint={2405.11985},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
```

#WIP Coming Soon