Update README.md
Browse files* explain 'data_profile_uri'
* add disclaim that a new viewer (codatta's data profiler) supports the view of whole image slide.
README.md
CHANGED
@@ -34,6 +34,7 @@ This presents a challenge for AI pathology models, as reported high accuracy mig
|
|
34 |
This dataset includes two primary files:
|
35 |
1. Slide-Level Labels ([PRAD.csv](https://huggingface.co/datasets/Codatta/Refined-TCGA-PRAD-Prostate-Cancer-Pathology-Dataset/blob/main/dataset/PRAD/PRAD.csv))
|
36 |
* Contains comprehensive metadata and diagnostic details:
|
|
|
37 |
* `slide_id`: Unique slide identifier.
|
38 |
* `slide_name`: TCGA Whole Slide Image (WSI) name.
|
39 |
* `label`: Corrected Gleason grade (e.g., 4+3, 5+4).
|
@@ -78,8 +79,7 @@ Some labels can be improved by adding alternative opinions to enhance the labels
|
|
78 |
### For AI Training Pipelines
|
79 |
Combine Whole Slide Images (WSI) from TCGA PRAD with this dataset's slide-level labels (PRAD.csv) and ROI annotations (.geojson) to generate high-quality [X, y] pairs.
|
80 |
### For Pathology Research
|
81 |
-
Use the ROI annotations in
|
82 |
-
Explore detailed reasoning behind Gleason grade decisions to understand tumor composition.
|
83 |
### How to Load the Dataset
|
84 |
1. **CSV File**
|
85 |
Use pandas to explore slide-level metadata:
|
|
|
34 |
This dataset includes two primary files:
|
35 |
1. Slide-Level Labels ([PRAD.csv](https://huggingface.co/datasets/Codatta/Refined-TCGA-PRAD-Prostate-Cancer-Pathology-Dataset/blob/main/dataset/PRAD/PRAD.csv))
|
36 |
* Contains comprehensive metadata and diagnostic details:
|
37 |
+
* `data_profile_uri`: A URI that links to Codatta's web application, offering a detailed view of the slide's metadata and its associated data lineage.
|
38 |
* `slide_id`: Unique slide identifier.
|
39 |
* `slide_name`: TCGA Whole Slide Image (WSI) name.
|
40 |
* `label`: Corrected Gleason grade (e.g., 4+3, 5+4).
|
|
|
79 |
### For AI Training Pipelines
|
80 |
Combine Whole Slide Images (WSI) from TCGA PRAD with this dataset's slide-level labels (PRAD.csv) and ROI annotations (.geojson) to generate high-quality [X, y] pairs.
|
81 |
### For Pathology Research
|
82 |
+
Use the ROI annotations in Whole Slide Images (WSIs) to interactively visualize labeled tumor regions. The slides can be viewed through Codatta's data profile (e.g., https://data.codatta.io/[slide_id]) or other compatible viewers like QuPath. Additionally, explore detailed reasoning behind Gleason grade decisions to gain insights into tumor composition.
|
|
|
83 |
### How to Load the Dataset
|
84 |
1. **CSV File**
|
85 |
Use pandas to explore slide-level metadata:
|