Datasets:

Modalities:
Text
Formats:
parquet
Languages:
English
Libraries:
Datasets
pandas
License:
File size: 13,260 Bytes
36655e7
 
 
 
 
1f3a0db
 
36655e7
 
 
 
 
 
 
 
 
 
 
1f3a0db
 
 
 
36655e7
da8cf68
36655e7
 
 
 
 
 
 
 
 
 
 
 
1f3a0db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da8cf68
 
 
 
 
 
 
 
 
 
1f3a0db
da8cf68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c5f45a
da8cf68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36655e7
 
 
 
 
 
 
 
 
 
 
 
d0f5cd2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1f3a0db
 
 
 
 
 
 
 
 
 
9c5f45a
 
 
 
 
 
 
 
36655e7
 
5766a52
36655e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5766a52
36655e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da8cf68
36655e7
 
 
 
 
 
 
 
da8cf68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d0f5cd2
 
 
 
 
 
 
 
 
36655e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da8cf68
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
---
annotations_creators:
- expert-generated
language_creators:
- found
language:
- en
license:
- other
multilinguality:
- monolingual
size_categories:
- 10K<n<100K
source_datasets: []
task_categories:
- token-classification
task_ids:
- named-entity-recognition
pretty_name: FabNER is a manufacturing text dataset for Named Entity Recognition.
tags:
- manufacturing
- 2000-2020
dataset_info:
- config_name: fabner
  features:
  - name: id
    dtype: string
  - name: tokens
    sequence: string
  - name: ner_tags
    sequence:
      class_label:
        names:
          '0': O
          '1': B-MATE
          '2': I-MATE
          '3': E-MATE
          '4': S-MATE
          '5': B-MANP
          '6': I-MANP
          '7': E-MANP
          '8': S-MANP
          '9': B-MACEQ
          '10': I-MACEQ
          '11': E-MACEQ
          '12': S-MACEQ
          '13': B-APPL
          '14': I-APPL
          '15': E-APPL
          '16': S-APPL
          '17': B-FEAT
          '18': I-FEAT
          '19': E-FEAT
          '20': S-FEAT
          '21': B-PRO
          '22': I-PRO
          '23': E-PRO
          '24': S-PRO
          '25': B-CHAR
          '26': I-CHAR
          '27': E-CHAR
          '28': S-CHAR
          '29': B-PARA
          '30': I-PARA
          '31': E-PARA
          '32': S-PARA
          '33': B-ENAT
          '34': I-ENAT
          '35': E-ENAT
          '36': S-ENAT
          '37': B-CONPRI
          '38': I-CONPRI
          '39': E-CONPRI
          '40': S-CONPRI
          '41': B-MANS
          '42': I-MANS
          '43': E-MANS
          '44': S-MANS
          '45': B-BIOP
          '46': I-BIOP
          '47': E-BIOP
          '48': S-BIOP
  splits:
  - name: train
    num_bytes: 4394010
    num_examples: 9435
  - name: validation
    num_bytes: 934347
    num_examples: 2183
  - name: test
    num_bytes: 940136
    num_examples: 2064
  download_size: 1265830
  dataset_size: 6268493
- config_name: fabner_bio
  features:
  - name: id
    dtype: string
  - name: tokens
    sequence: string
  - name: ner_tags
    sequence:
      class_label:
        names:
          '0': O
          '1': B-MATE
          '2': I-MATE
          '3': B-MANP
          '4': I-MANP
          '5': B-MACEQ
          '6': I-MACEQ
          '7': B-APPL
          '8': I-APPL
          '9': B-FEAT
          '10': I-FEAT
          '11': B-PRO
          '12': I-PRO
          '13': B-CHAR
          '14': I-CHAR
          '15': B-PARA
          '16': I-PARA
          '17': B-ENAT
          '18': I-ENAT
          '19': B-CONPRI
          '20': I-CONPRI
          '21': B-MANS
          '22': I-MANS
          '23': B-BIOP
          '24': I-BIOP
  splits:
  - name: train
    num_bytes: 4394010
    num_examples: 9435
  - name: validation
    num_bytes: 934347
    num_examples: 2183
  - name: test
    num_bytes: 940136
    num_examples: 2064
  download_size: 1258672
  dataset_size: 6268493
- config_name: fabner_simple
  features:
  - name: id
    dtype: string
  - name: tokens
    sequence: string
  - name: ner_tags
    sequence:
      class_label:
        names:
          '0': O
          '1': MATE
          '2': MANP
          '3': MACEQ
          '4': APPL
          '5': FEAT
          '6': PRO
          '7': CHAR
          '8': PARA
          '9': ENAT
          '10': CONPRI
          '11': MANS
          '12': BIOP
  splits:
  - name: train
    num_bytes: 4394010
    num_examples: 9435
  - name: validation
    num_bytes: 934347
    num_examples: 2183
  - name: test
    num_bytes: 940136
    num_examples: 2064
  download_size: 3793613
  dataset_size: 6268493
- config_name: text2tech
  features:
  - name: id
    dtype: string
  - name: tokens
    sequence: string
  - name: ner_tags
    sequence:
      class_label:
        names:
          '0': O
          '1': Technological System
          '2': Method
          '3': Material
          '4': Technical Field
  splits:
  - name: train
    num_bytes: 4394010
    num_examples: 9435
  - name: validation
    num_bytes: 934347
    num_examples: 2183
  - name: test
    num_bytes: 940136
    num_examples: 2064
  download_size: 3793613
  dataset_size: 6268493
configs:
- config_name: fabner
  data_files:
  - split: train
    path: fabner/train-*
  - split: validation
    path: fabner/validation-*
  - split: test
    path: fabner/test-*
  default: true
- config_name: fabner_bio
  data_files:
  - split: train
    path: fabner_bio/train-*
  - split: validation
    path: fabner_bio/validation-*
  - split: test
    path: fabner_bio/test-*
---

# Dataset Card for FabNER

## Table of Contents
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **Homepage:** [https://figshare.com/articles/dataset/Dataset_NER_Manufacturing_-_FabNER_Information_Extraction_from_Manufacturing_Process_Science_Domain_Literature_Using_Named_Entity_Recognition/14782407](https://figshare.com/articles/dataset/Dataset_NER_Manufacturing_-_FabNER_Information_Extraction_from_Manufacturing_Process_Science_Domain_Literature_Using_Named_Entity_Recognition/14782407)
- **Paper:** ["FabNER": information extraction from manufacturing process science domain literature using named entity recognition](https://par.nsf.gov/servlets/purl/10290810)
- **Size of downloaded dataset files:** 3.79 MB
- **Size of the generated dataset:** 6.27 MB

### Dataset Summary

FabNER is a manufacturing text corpus of 350,000+ words for Named Entity Recognition.
It is a collection of abstracts obtained from Web of Science through known journals available in manufacturing process 
science research.
For every word, there were categories/entity labels defined, namely Material (MATE), Manufacturing Process (MANP), 
Machine/Equipment (MACEQ), Application (APPL), Features (FEAT), Mechanical Properties (PRO), Characterization (CHAR), 
Parameters (PARA), Enabling Technology (ENAT), Concept/Principles (CONPRI), Manufacturing Standards (MANS) and 
BioMedical (BIOP). Annotation was performed in all categories along with the output tag in 'BIOES' format: 
B=Beginning, I-Intermediate, O=Outside, E=End, S=Single.

For details about the dataset, please refer to the paper: ["FabNER": information extraction from manufacturing process science domain literature using named entity recognition](https://par.nsf.gov/servlets/purl/10290810)

### Supported Tasks and Leaderboards

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Languages

The language in the dataset is English.

## Dataset Structure

### Data Instances

- **Size of downloaded dataset files:** 3.79 MB
- **Size of the generated dataset:** 6.27 MB
  
An example of 'train' looks as follows:
```json
{
  "id": "0", 
  "tokens": ["Revealed", "the", "location-specific", "flow", "patterns", "and", "quantified", "the", "speeds", "of", "various", "types", "of", "flow", "."], 
  "ner_tags": [0, 0, 0, 46, 49, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
}
```

### Data Fields

#### fabner
- `id`: the instance id of this sentence, a `string` feature.
- `tokens`: the list of tokens of this sentence, a `list` of `string` features.
- `ner_tags`: the list of entity tags, a `list` of classification labels.

```json
{"O": 0, "B-MATE": 1, "I-MATE": 2, "O-MATE": 3, "E-MATE": 4, "S-MATE": 5, "B-MANP": 6, "I-MANP": 7, "O-MANP": 8, "E-MANP": 9, "S-MANP": 10, "B-MACEQ": 11, "I-MACEQ": 12, "O-MACEQ": 13, "E-MACEQ": 14, "S-MACEQ": 15, "B-APPL": 16, "I-APPL": 17, "O-APPL": 18, "E-APPL": 19, "S-APPL": 20, "B-FEAT": 21, "I-FEAT": 22, "O-FEAT": 23, "E-FEAT": 24, "S-FEAT": 25, "B-PRO": 26, "I-PRO": 27, "O-PRO": 28, "E-PRO": 29, "S-PRO": 30, "B-CHAR": 31, "I-CHAR": 32, "O-CHAR": 33, "E-CHAR": 34, "S-CHAR": 35, "B-PARA": 36, "I-PARA": 37, "O-PARA": 38, "E-PARA": 39, "S-PARA": 40, "B-ENAT": 41, "I-ENAT": 42, "O-ENAT": 43, "E-ENAT": 44, "S-ENAT": 45, "B-CONPRI": 46, "I-CONPRI": 47, "O-CONPRI": 48, "E-CONPRI": 49, "S-CONPRI": 50, "B-MANS": 51, "I-MANS": 52, "O-MANS": 53, "E-MANS": 54, "S-MANS": 55, "B-BIOP": 56, "I-BIOP": 57, "O-BIOP": 58, "E-BIOP": 59, "S-BIOP": 60}
```

#### fabner_bio
- `id`: the instance id of this sentence, a `string` feature.
- `tokens`: the list of tokens of this sentence, a `list` of `string` features.
- `ner_tags`: the list of entity tags, a `list` of classification labels.

```json
{"O": 0, "B-MATE": 1, "I-MATE": 2, "B-MANP": 3, "I-MANP": 4, "B-MACEQ": 5, "I-MACEQ": 6, "B-APPL": 7, "I-APPL": 8, "B-FEAT": 9, "I-FEAT": 10, "B-PRO": 11, "I-PRO": 12, "B-CHAR": 13, "I-CHAR": 14, "B-PARA": 15, "I-PARA": 16, "B-ENAT": 17, "I-ENAT": 18, "B-CONPRI": 19, "I-CONPRI": 20, "B-MANS": 21, "I-MANS": 22, "B-BIOP": 23, "I-BIOP": 24}
```

#### fabner_simple
- `id`: the instance id of this sentence, a `string` feature.
- `tokens`: the list of tokens of this sentence, a `list` of `string` features.
- `ner_tags`: the list of entity tags, a `list` of classification labels.

```json
{"O": 0, "MATE": 1, "MANP": 2, "MACEQ": 3, "APPL": 4, "FEAT": 5, "PRO": 6, "CHAR": 7, "PARA": 8, "ENAT": 9, "CONPRI": 10, "MANS": 11, "BIOP": 12}
```

#### text2tech
- `id`: the instance id of this sentence, a `string` feature.
- `tokens`: the list of tokens of this sentence, a `list` of `string` features.
- `ner_tags`: the list of entity tags, a `list` of classification labels.

```json
{"O": 0, "Technological System": 1, "Method": 2, "Material": 3, "Technical Field": 4}
```

### Data Splits

|        | Train | Dev  | Test |
|--------|-------|------|------|
| fabner | 9435  | 2183 | 2064 |

## Dataset Creation

### Curation Rationale

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Source Data

#### Initial Data Collection and Normalization

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

#### Who are the source language producers?

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Annotations

#### Annotation process

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

#### Who are the annotators?

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Personal and Sensitive Information

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

## Considerations for Using the Data

### Social Impact of Dataset

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Discussion of Biases

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Other Known Limitations

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

## Additional Information

### Dataset Curators

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Licensing Information

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Citation Information

```
@article{DBLP:journals/jim/KumarS22,
  author    = {Aman Kumar and
               Binil Starly},
  title     = {"FabNER": information extraction from manufacturing process science
               domain literature using named entity recognition},
  journal   = {J. Intell. Manuf.},
  volume    = {33},
  number    = {8},
  pages     = {2393--2407},
  year      = {2022},
  url       = {https://doi.org/10.1007/s10845-021-01807-x},
  doi       = {10.1007/s10845-021-01807-x},
  timestamp = {Sun, 13 Nov 2022 17:52:57 +0100},
  biburl    = {https://dblp.org/rec/journals/jim/KumarS22.bib},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}
```

### Contributions

Thanks to [@phucdev](https://github.com/phucdev) for adding this dataset.