Datasets:
Tasks:
Token Classification
Modalities:
Text
Formats:
parquet
Sub-tasks:
named-entity-recognition
Languages:
English
Size:
10K - 100K
License:
File size: 13,260 Bytes
36655e7 1f3a0db 36655e7 1f3a0db 36655e7 da8cf68 36655e7 1f3a0db da8cf68 1f3a0db da8cf68 9c5f45a da8cf68 36655e7 d0f5cd2 1f3a0db 9c5f45a 36655e7 5766a52 36655e7 5766a52 36655e7 da8cf68 36655e7 da8cf68 d0f5cd2 36655e7 da8cf68 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 |
---
annotations_creators:
- expert-generated
language_creators:
- found
language:
- en
license:
- other
multilinguality:
- monolingual
size_categories:
- 10K<n<100K
source_datasets: []
task_categories:
- token-classification
task_ids:
- named-entity-recognition
pretty_name: FabNER is a manufacturing text dataset for Named Entity Recognition.
tags:
- manufacturing
- 2000-2020
dataset_info:
- config_name: fabner
features:
- name: id
dtype: string
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-MATE
'2': I-MATE
'3': E-MATE
'4': S-MATE
'5': B-MANP
'6': I-MANP
'7': E-MANP
'8': S-MANP
'9': B-MACEQ
'10': I-MACEQ
'11': E-MACEQ
'12': S-MACEQ
'13': B-APPL
'14': I-APPL
'15': E-APPL
'16': S-APPL
'17': B-FEAT
'18': I-FEAT
'19': E-FEAT
'20': S-FEAT
'21': B-PRO
'22': I-PRO
'23': E-PRO
'24': S-PRO
'25': B-CHAR
'26': I-CHAR
'27': E-CHAR
'28': S-CHAR
'29': B-PARA
'30': I-PARA
'31': E-PARA
'32': S-PARA
'33': B-ENAT
'34': I-ENAT
'35': E-ENAT
'36': S-ENAT
'37': B-CONPRI
'38': I-CONPRI
'39': E-CONPRI
'40': S-CONPRI
'41': B-MANS
'42': I-MANS
'43': E-MANS
'44': S-MANS
'45': B-BIOP
'46': I-BIOP
'47': E-BIOP
'48': S-BIOP
splits:
- name: train
num_bytes: 4394010
num_examples: 9435
- name: validation
num_bytes: 934347
num_examples: 2183
- name: test
num_bytes: 940136
num_examples: 2064
download_size: 1265830
dataset_size: 6268493
- config_name: fabner_bio
features:
- name: id
dtype: string
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-MATE
'2': I-MATE
'3': B-MANP
'4': I-MANP
'5': B-MACEQ
'6': I-MACEQ
'7': B-APPL
'8': I-APPL
'9': B-FEAT
'10': I-FEAT
'11': B-PRO
'12': I-PRO
'13': B-CHAR
'14': I-CHAR
'15': B-PARA
'16': I-PARA
'17': B-ENAT
'18': I-ENAT
'19': B-CONPRI
'20': I-CONPRI
'21': B-MANS
'22': I-MANS
'23': B-BIOP
'24': I-BIOP
splits:
- name: train
num_bytes: 4394010
num_examples: 9435
- name: validation
num_bytes: 934347
num_examples: 2183
- name: test
num_bytes: 940136
num_examples: 2064
download_size: 1258672
dataset_size: 6268493
- config_name: fabner_simple
features:
- name: id
dtype: string
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': MATE
'2': MANP
'3': MACEQ
'4': APPL
'5': FEAT
'6': PRO
'7': CHAR
'8': PARA
'9': ENAT
'10': CONPRI
'11': MANS
'12': BIOP
splits:
- name: train
num_bytes: 4394010
num_examples: 9435
- name: validation
num_bytes: 934347
num_examples: 2183
- name: test
num_bytes: 940136
num_examples: 2064
download_size: 3793613
dataset_size: 6268493
- config_name: text2tech
features:
- name: id
dtype: string
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': Technological System
'2': Method
'3': Material
'4': Technical Field
splits:
- name: train
num_bytes: 4394010
num_examples: 9435
- name: validation
num_bytes: 934347
num_examples: 2183
- name: test
num_bytes: 940136
num_examples: 2064
download_size: 3793613
dataset_size: 6268493
configs:
- config_name: fabner
data_files:
- split: train
path: fabner/train-*
- split: validation
path: fabner/validation-*
- split: test
path: fabner/test-*
default: true
- config_name: fabner_bio
data_files:
- split: train
path: fabner_bio/train-*
- split: validation
path: fabner_bio/validation-*
- split: test
path: fabner_bio/test-*
---
# Dataset Card for FabNER
## Table of Contents
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [https://figshare.com/articles/dataset/Dataset_NER_Manufacturing_-_FabNER_Information_Extraction_from_Manufacturing_Process_Science_Domain_Literature_Using_Named_Entity_Recognition/14782407](https://figshare.com/articles/dataset/Dataset_NER_Manufacturing_-_FabNER_Information_Extraction_from_Manufacturing_Process_Science_Domain_Literature_Using_Named_Entity_Recognition/14782407)
- **Paper:** ["FabNER": information extraction from manufacturing process science domain literature using named entity recognition](https://par.nsf.gov/servlets/purl/10290810)
- **Size of downloaded dataset files:** 3.79 MB
- **Size of the generated dataset:** 6.27 MB
### Dataset Summary
FabNER is a manufacturing text corpus of 350,000+ words for Named Entity Recognition.
It is a collection of abstracts obtained from Web of Science through known journals available in manufacturing process
science research.
For every word, there were categories/entity labels defined, namely Material (MATE), Manufacturing Process (MANP),
Machine/Equipment (MACEQ), Application (APPL), Features (FEAT), Mechanical Properties (PRO), Characterization (CHAR),
Parameters (PARA), Enabling Technology (ENAT), Concept/Principles (CONPRI), Manufacturing Standards (MANS) and
BioMedical (BIOP). Annotation was performed in all categories along with the output tag in 'BIOES' format:
B=Beginning, I-Intermediate, O=Outside, E=End, S=Single.
For details about the dataset, please refer to the paper: ["FabNER": information extraction from manufacturing process science domain literature using named entity recognition](https://par.nsf.gov/servlets/purl/10290810)
### Supported Tasks and Leaderboards
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Languages
The language in the dataset is English.
## Dataset Structure
### Data Instances
- **Size of downloaded dataset files:** 3.79 MB
- **Size of the generated dataset:** 6.27 MB
An example of 'train' looks as follows:
```json
{
"id": "0",
"tokens": ["Revealed", "the", "location-specific", "flow", "patterns", "and", "quantified", "the", "speeds", "of", "various", "types", "of", "flow", "."],
"ner_tags": [0, 0, 0, 46, 49, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
}
```
### Data Fields
#### fabner
- `id`: the instance id of this sentence, a `string` feature.
- `tokens`: the list of tokens of this sentence, a `list` of `string` features.
- `ner_tags`: the list of entity tags, a `list` of classification labels.
```json
{"O": 0, "B-MATE": 1, "I-MATE": 2, "O-MATE": 3, "E-MATE": 4, "S-MATE": 5, "B-MANP": 6, "I-MANP": 7, "O-MANP": 8, "E-MANP": 9, "S-MANP": 10, "B-MACEQ": 11, "I-MACEQ": 12, "O-MACEQ": 13, "E-MACEQ": 14, "S-MACEQ": 15, "B-APPL": 16, "I-APPL": 17, "O-APPL": 18, "E-APPL": 19, "S-APPL": 20, "B-FEAT": 21, "I-FEAT": 22, "O-FEAT": 23, "E-FEAT": 24, "S-FEAT": 25, "B-PRO": 26, "I-PRO": 27, "O-PRO": 28, "E-PRO": 29, "S-PRO": 30, "B-CHAR": 31, "I-CHAR": 32, "O-CHAR": 33, "E-CHAR": 34, "S-CHAR": 35, "B-PARA": 36, "I-PARA": 37, "O-PARA": 38, "E-PARA": 39, "S-PARA": 40, "B-ENAT": 41, "I-ENAT": 42, "O-ENAT": 43, "E-ENAT": 44, "S-ENAT": 45, "B-CONPRI": 46, "I-CONPRI": 47, "O-CONPRI": 48, "E-CONPRI": 49, "S-CONPRI": 50, "B-MANS": 51, "I-MANS": 52, "O-MANS": 53, "E-MANS": 54, "S-MANS": 55, "B-BIOP": 56, "I-BIOP": 57, "O-BIOP": 58, "E-BIOP": 59, "S-BIOP": 60}
```
#### fabner_bio
- `id`: the instance id of this sentence, a `string` feature.
- `tokens`: the list of tokens of this sentence, a `list` of `string` features.
- `ner_tags`: the list of entity tags, a `list` of classification labels.
```json
{"O": 0, "B-MATE": 1, "I-MATE": 2, "B-MANP": 3, "I-MANP": 4, "B-MACEQ": 5, "I-MACEQ": 6, "B-APPL": 7, "I-APPL": 8, "B-FEAT": 9, "I-FEAT": 10, "B-PRO": 11, "I-PRO": 12, "B-CHAR": 13, "I-CHAR": 14, "B-PARA": 15, "I-PARA": 16, "B-ENAT": 17, "I-ENAT": 18, "B-CONPRI": 19, "I-CONPRI": 20, "B-MANS": 21, "I-MANS": 22, "B-BIOP": 23, "I-BIOP": 24}
```
#### fabner_simple
- `id`: the instance id of this sentence, a `string` feature.
- `tokens`: the list of tokens of this sentence, a `list` of `string` features.
- `ner_tags`: the list of entity tags, a `list` of classification labels.
```json
{"O": 0, "MATE": 1, "MANP": 2, "MACEQ": 3, "APPL": 4, "FEAT": 5, "PRO": 6, "CHAR": 7, "PARA": 8, "ENAT": 9, "CONPRI": 10, "MANS": 11, "BIOP": 12}
```
#### text2tech
- `id`: the instance id of this sentence, a `string` feature.
- `tokens`: the list of tokens of this sentence, a `list` of `string` features.
- `ner_tags`: the list of entity tags, a `list` of classification labels.
```json
{"O": 0, "Technological System": 1, "Method": 2, "Material": 3, "Technical Field": 4}
```
### Data Splits
| | Train | Dev | Test |
|--------|-------|------|------|
| fabner | 9435 | 2183 | 2064 |
## Dataset Creation
### Curation Rationale
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
#### Who are the source language producers?
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Annotations
#### Annotation process
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
#### Who are the annotators?
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Personal and Sensitive Information
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Discussion of Biases
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Other Known Limitations
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Additional Information
### Dataset Curators
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Licensing Information
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Citation Information
```
@article{DBLP:journals/jim/KumarS22,
author = {Aman Kumar and
Binil Starly},
title = {"FabNER": information extraction from manufacturing process science
domain literature using named entity recognition},
journal = {J. Intell. Manuf.},
volume = {33},
number = {8},
pages = {2393--2407},
year = {2022},
url = {https://doi.org/10.1007/s10845-021-01807-x},
doi = {10.1007/s10845-021-01807-x},
timestamp = {Sun, 13 Nov 2022 17:52:57 +0100},
biburl = {https://dblp.org/rec/journals/jim/KumarS22.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
```
### Contributions
Thanks to [@phucdev](https://github.com/phucdev) for adding this dataset. |