Datasets:

Modalities:
Text
Formats:
parquet
Languages:
English
Libraries:
Datasets
pandas
License:
phucdev commited on
Commit
69e3dfc
·
verified ·
1 Parent(s): ad6907d

Delete loading script

Browse files
Files changed (1) hide show
  1. fabner.py +0 -230
fabner.py DELETED
@@ -1,230 +0,0 @@
1
- # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- """FabNER is a manufacturing text corpus of 350,000+ words for Named Entity Recognition."""
15
-
16
- import datasets
17
-
18
-
19
- # Find for instance the citation on arxiv or on the dataset repo/website
20
- _CITATION = """\
21
- @article{DBLP:journals/jim/KumarS22,
22
- author = {Aman Kumar and
23
- Binil Starly},
24
- title = {"FabNER": information extraction from manufacturing process science
25
- domain literature using named entity recognition},
26
- journal = {J. Intell. Manuf.},
27
- volume = {33},
28
- number = {8},
29
- pages = {2393--2407},
30
- year = {2022},
31
- url = {https://doi.org/10.1007/s10845-021-01807-x},
32
- doi = {10.1007/s10845-021-01807-x},
33
- timestamp = {Sun, 13 Nov 2022 17:52:57 +0100},
34
- biburl = {https://dblp.org/rec/journals/jim/KumarS22.bib},
35
- bibsource = {dblp computer science bibliography, https://dblp.org}
36
- }
37
- """
38
-
39
- # You can copy an official description
40
- _DESCRIPTION = """\
41
- FabNER is a manufacturing text corpus of 350,000+ words for Named Entity Recognition.
42
- It is a collection of abstracts obtained from Web of Science through known journals available in manufacturing process
43
- science research.
44
- For every word, there were categories/entity labels defined namely Material (MATE), Manufacturing Process (MANP),
45
- Machine/Equipment (MACEQ), Application (APPL), Features (FEAT), Mechanical Properties (PRO), Characterization (CHAR),
46
- Parameters (PARA), Enabling Technology (ENAT), Concept/Principles (CONPRI), Manufacturing Standards (MANS) and
47
- BioMedical (BIOP). Annotation was performed in all categories along with the output tag in 'BIOES' format:
48
- B=Beginning, I-Intermediate, O=Outside, E=End, S=Single.
49
- """
50
-
51
- _HOMEPAGE = "https://figshare.com/articles/dataset/Dataset_NER_Manufacturing_-_FabNER_Information_Extraction_from_Manufacturing_Process_Science_Domain_Literature_Using_Named_Entity_Recognition/14782407"
52
-
53
- # TODO: Add the licence for the dataset here if you can find it
54
- _LICENSE = ""
55
-
56
- # The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
57
- # This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
58
- _URLS = {
59
- "train": "https://figshare.com/ndownloader/files/28405854/S2-train.txt",
60
- "validation": "https://figshare.com/ndownloader/files/28405857/S3-val.txt",
61
- "test": "https://figshare.com/ndownloader/files/28405851/S1-test.txt",
62
- }
63
-
64
-
65
- def map_fabner_labels(string_tag):
66
- tag = string_tag[2:]
67
- # MATERIAL (FABNER)
68
- if tag == "MATE":
69
- return "Material"
70
- # MANUFACTURING PROCESS (FABNER)
71
- elif tag == "MANP":
72
- return "Method"
73
- # MACHINE/EQUIPMENT, MECHANICAL PROPERTIES, CHARACTERIZATION, ENABLING TECHNOLOGY (FABNER)
74
- elif tag in ["MACEQ", "PRO", "CHAR", "ENAT"]:
75
- return "Technological System"
76
- # APPLICATION (FABNER)
77
- elif tag == "APPL":
78
- return "Technical Field"
79
- # FEATURES, PARAMETERS, CONCEPT/PRINCIPLES, MANUFACTURING STANDARDS, BIOMEDICAL, O (FABNER)
80
- else:
81
- return "O"
82
-
83
-
84
- class FabNER(datasets.GeneratorBasedBuilder):
85
- """FabNER is a manufacturing text corpus of 350,000+ words for Named Entity Recognition."""
86
-
87
- VERSION = datasets.Version("1.2.0")
88
-
89
- # This is an example of a dataset with multiple configurations.
90
- # If you don't want/need to define several sub-sets in your dataset,
91
- # just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
92
-
93
- # If you need to make complex sub-parts in the datasets with configurable options
94
- # You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
95
- # BUILDER_CONFIG_CLASS = MyBuilderConfig
96
-
97
- # You will be able to load one or the other configurations in the following list with
98
- # data = datasets.load_dataset('my_dataset', 'first_domain')
99
- # data = datasets.load_dataset('my_dataset', 'second_domain')
100
- BUILDER_CONFIGS = [
101
- datasets.BuilderConfig(name="fabner", version=VERSION,
102
- description="The FabNER dataset with the original BIOES tagging format"),
103
- datasets.BuilderConfig(name="fabner_bio", version=VERSION,
104
- description="The FabNER dataset with BIO tagging format"),
105
- datasets.BuilderConfig(name="fabner_simple", version=VERSION,
106
- description="The FabNER dataset with no tagging format"),
107
- datasets.BuilderConfig(name="text2tech", version=VERSION,
108
- description="The FabNER dataset mapped to the Text2Tech tag set"),
109
- ]
110
- DEFAULT_CONFIG_NAME = "fabner"
111
-
112
- def _info(self):
113
- entity_types = [
114
- "MATE", # Material
115
- "MANP", # Manufacturing Process
116
- "MACEQ", # Machine/Equipment
117
- "APPL", # Application
118
- "FEAT", # Engineering Features
119
- "PRO", # Mechanical Properties
120
- "CHAR", # Process Characterization
121
- "PARA", # Process Parameters
122
- "ENAT", # Enabling Technology
123
- "CONPRI", # Concept/Principles
124
- "MANS", # Manufacturing Standards
125
- "BIOP", # BioMedical
126
- ]
127
- if self.config.name == "text2tech":
128
- class_labels = ["O", "Technological System", "Method", "Material", "Technical Field"]
129
- elif self.config.name == "fabner":
130
- class_labels = ["O"]
131
- for entity_type in entity_types:
132
- class_labels.extend(
133
- [
134
- "B-" + entity_type,
135
- "I-" + entity_type,
136
- "E-" + entity_type,
137
- "S-" + entity_type,
138
- ]
139
- )
140
- elif self.config.name == "fabner_bio":
141
- class_labels = ["O"]
142
- for entity_type in entity_types:
143
- class_labels.extend(
144
- [
145
- "B-" + entity_type,
146
- "I-" + entity_type,
147
- ]
148
- )
149
- else:
150
- class_labels = ["O"] + entity_types
151
- features = datasets.Features(
152
- {
153
- "id": datasets.Value("string"),
154
- "tokens": datasets.Sequence(datasets.Value("string")),
155
- "ner_tags": datasets.Sequence(
156
- datasets.features.ClassLabel(
157
- names=class_labels
158
- )
159
- ),
160
- }
161
- )
162
- return datasets.DatasetInfo(
163
- # This is the description that will appear on the datasets page.
164
- description=_DESCRIPTION,
165
- # This defines the different columns of the dataset and their types
166
- features=features, # Here we define them above because they are different between the two configurations
167
- # If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
168
- # specify them. They'll be used if as_supervised=True in builder.as_dataset.
169
- # supervised_keys=("sentence", "label"),
170
- # Homepage of the dataset for documentation
171
- homepage=_HOMEPAGE,
172
- # License for the dataset if available
173
- license=_LICENSE,
174
- # Citation for the dataset
175
- citation=_CITATION,
176
- )
177
-
178
- def _split_generators(self, dl_manager):
179
- # If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
180
-
181
- # dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
182
- # It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
183
- # By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
184
- downloaded_files = dl_manager.download_and_extract(_URLS)
185
-
186
- return [datasets.SplitGenerator(name=i, gen_kwargs={"filepath": downloaded_files[str(i)]})
187
- for i in [datasets.Split.TRAIN, datasets.Split.VALIDATION, datasets.Split.TEST]]
188
-
189
- # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
190
- def _generate_examples(self, filepath):
191
- # The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
192
- with open(filepath, encoding="utf-8") as f:
193
- guid = 0
194
- tokens = []
195
- ner_tags = []
196
- for line in f:
197
- if line == "" or line == "\n":
198
- if tokens:
199
- yield guid, {
200
- "id": str(guid),
201
- "tokens": tokens,
202
- "ner_tags": ner_tags,
203
- }
204
- guid += 1
205
- tokens = []
206
- ner_tags = []
207
- else:
208
- splits = line.split(" ")
209
- tokens.append(splits[0])
210
- ner_tag = splits[1].rstrip()
211
- if self.config.name == "fabner_simple":
212
- if ner_tag == "O":
213
- ner_tag = "O"
214
- else:
215
- ner_tag = ner_tag.split("-")[1]
216
- elif self.config.name == "fabner_bio":
217
- if ner_tag == "O":
218
- ner_tag = "O"
219
- else:
220
- ner_tag = ner_tag.replace("S-", "B-").replace("E-", "I-")
221
- elif self.config.name == "text2tech":
222
- ner_tag = map_fabner_labels(ner_tag)
223
- ner_tags.append(ner_tag)
224
- # last example
225
- if tokens:
226
- yield guid, {
227
- "id": str(guid),
228
- "tokens": tokens,
229
- "ner_tags": ner_tags,
230
- }