html_url
stringlengths 48
51
| title
stringlengths 5
268
| comments
stringlengths 70
51.8k
| body
stringlengths 0
29.8k
| comment_length
int64 16
1.52k
| text
stringlengths 164
54.1k
| embeddings
sequence |
---|---|---|---|---|---|---|
https://github.com/huggingface/datasets/issues/435 | ImportWarning for pyarrow 1.0.0 | This was fixed in #434
We'll do a release later this week to include this fix.
Thanks for reporting | The following PR raised ImportWarning at `pyarrow ==1.0.0` https://github.com/huggingface/nlp/pull/265/files | 19 | ImportWarning for pyarrow 1.0.0
The following PR raised ImportWarning at `pyarrow ==1.0.0` https://github.com/huggingface/nlp/pull/265/files
This was fixed in #434
We'll do a release later this week to include this fix.
Thanks for reporting | [
-0.0830755755,
-0.1102309227,
-0.0867729038,
-0.1396402568,
0.2431191355,
-0.2674666047,
0.3366217613,
0.3281984329,
-0.1044742763,
0.1609235406,
-0.0459903665,
0.218455106,
-0.1111821681,
0.0628345162,
0.0275804065,
-0.256803751,
0.0977708399,
0.2359912992,
0.0056411047,
-0.0169458464,
0.0004629269,
0.2912735343,
-0.1947281659,
0.3621996939,
-0.2395529151,
0.0270072911,
0.0885713995,
0.1242647618,
-0.2790332735,
-0.5286542177,
0.1933573186,
-0.1631900966,
-0.0732051879,
-0.0040342882,
-0.0001010639,
0.1438983977,
0.4179384112,
0.1709831953,
0.1610470563,
-0.0188633427,
0.4765138924,
-0.3481637239,
0.3162205815,
0.0011415184,
-0.2127273083,
-0.3874780536,
0.2012824416,
0.6739887595,
0.2996214628,
0.0531937629,
0.3520937264,
0.56515342,
0.306794852,
0.2126061618,
0.3988426924,
-0.1721242219,
-0.0575683489,
0.233461678,
0.0991276354,
-0.4453288317,
-0.2211326063,
0.1063567027,
-0.0244037807,
-0.0982079953,
0.0148003809,
-0.0480625927,
0.0487468801,
-0.1012411043,
-0.2533308268,
0.031561628,
-0.1268711686,
-0.2548312843,
-0.111874342,
-0.0782758445,
0.0606307872,
-0.4917185903,
0.2599358857,
0.2389287353,
-0.0639469251,
0.2154645324,
0.0959483311,
0.0326450504,
-0.1715608239,
0.1390213519,
0.0803398341,
0.5061991811,
0.0320003144,
-0.03658114,
0.1415234506,
-0.1213112026,
-0.0105366595,
0.1806744039,
-0.0656801611,
-0.01507161,
-0.0555660799,
-0.0517712049,
0.2417272329,
0.2598070502,
0.1269374937,
-0.1598718464,
-0.0539518334,
0.1668395102,
0.1308996826,
0.2279284,
0.0629450604,
0.0282735564,
0.1008224934,
-0.3034650385,
0.3983905911,
0.0791476145,
0.1498910487,
0.098792851,
0.1599191278,
-0.3288707733,
0.0572977513,
-0.0595709831,
0.2322986871,
-0.158936277,
-0.183083564,
-0.1484586596,
-0.2489198595,
0.0096770488,
-0.0996640995,
0.2695371211,
-0.0973091424,
-0.0196074247,
0.0986450762,
0.2622402906,
-0.350464195,
-0.233278513,
-0.2548336983,
0.0658040494,
-0.3251516819,
-0.099765785,
0.1824347973,
-0.0633447021,
0.3893644214,
0.2999077141,
-0.0197894201,
0.1312524229,
-0.0293193758,
0.2258114666,
-0.0064860396,
0.2267415822,
0.0049192607,
-0.0279849321,
-0.0467879623,
-0.1139087677,
-0.0660099089,
0.074158594,
0.0568600968,
-0.1301456839,
-0.3839264512,
0.3116228282,
-0.2090821564,
-0.104519397,
0.0282636601,
0.0513058603,
0.1286737621,
-0.0548703335,
-0.0117076375,
-0.1456810236,
0.0393041223,
-0.1020550877,
-0.0698950738,
0.0730504245,
-0.1338869482,
-0.1944650114,
0.2042917162,
-0.4161703885,
0.2749917507,
0.3692952394,
-0.2970248461,
-0.078908816,
-0.2009682208,
0.3247885406,
-0.0235640034,
-0.0966948718,
-0.1888204664,
0.0235763416,
-0.266833663,
-0.0348267853,
0.0754943341,
-0.12176615,
-0.2040689886,
0.0721505433,
0.0707329288,
0.391930759,
0.1285735518,
0.2569901943,
-0.4870687127,
-0.2503655553,
0.1534607112,
0.0033284798,
-0.0707067996,
-0.2464267462,
-0.0404124223,
-0.1909307688,
0.3194949627,
-0.1372531205,
-0.0349236131,
0.0468537845,
0.0672134161,
0.0690260231,
-0.0961693376,
0.0366541147,
-0.1779851466,
0.0214935765,
-0.3616139889,
0.3930592537,
-0.1452842951,
-0.3226925135,
-0.0786097199,
0.0359089524,
-0.1544843763,
-0.1556722373,
0.3084647954,
-0.058961045,
-0.0215107612,
0.231310457,
0.0603006482,
-0.1698934287,
-0.0058378503,
0.1254484504,
0.0518527292,
0.1411393881,
-0.3814887702,
-0.3911996782,
0.1973902881,
-0.0112611018,
0.1413130164,
0.0031073876,
0.1131296456,
0.0895702094,
-0.199830696,
0.3266764581,
-0.3180729449,
-0.0501882583,
0.1342685968,
-0.3729343116,
0.0234288219,
0.0651892871,
-0.1765624732,
-0.0148426369,
0.2517153621,
0.4727601409,
0.281113714,
-0.1402590573,
-0.0036965087,
-0.1384203583,
0.1402436197,
-0.1233885512,
0.094248414,
-0.0179687887,
0.0567537919,
0.1691506654,
0.0611515939,
-0.1107051075,
-0.3336110711,
0.0328678116,
0.3761783838,
0.0379984006,
0.1958343983,
0.0069669262,
-0.028111238,
-0.1388167888,
0.2378652245,
-0.4669156671,
-0.0157598183,
0.2753905654,
0.0200039335,
0.2059600949,
-0.2243594676,
-0.4125035107,
0.0481904,
0.0607329831,
-0.0026753806,
0.1401380897,
0.4111927748,
-0.227991268,
-0.7777083516,
0.2353705466,
-0.0812938958,
0.0095218588,
-0.2907806635,
0.0664653331,
-0.2939154804,
-0.3391763568,
-0.0755746812,
-0.2050060332,
-0.3589579463,
-0.0981444344,
0.3100820184,
0.1755023152,
-0.2631776929,
0.3151647449,
0.3475990593,
-0.064247489,
-0.075679332,
-0.1202403009,
-0.1154795066,
-0.2051045895,
-0.2663136125,
0.1959460676,
0.0624704286,
0.0458270833,
0.1699757576,
-0.113983959,
-0.0664580241,
0.0129905101,
-0.5971787572,
0.0656021088,
-0.212193504,
0.1207147092,
0.1933069378,
0.1167022958,
-0.0155745149,
-0.2416051626,
0.229631424,
-0.3196703792,
-0.4370694757,
-0.0598571599,
-0.1593147218,
0.1028262824,
-0.3726235032,
-0.1548135877,
-0.1904670447,
-0.3148065209,
0.184797287,
0.0559415594,
0.0161650293,
0.310484767,
0.1640840173,
0.0933732539,
-0.3175966144,
0.0469767749,
-0.0244121104,
-0.1549778432,
0.1693422794,
-0.2249409258,
-0.4008026719,
0.0334064662,
0.0106635243,
0.0975720286,
-0.3147258461,
-0.4104328752,
-0.3181375563,
-0.0403934643,
0.5853022337,
0.3685543835,
-0.0770061165,
0.2899482846,
0.1316105276,
-0.2970889807,
-0.0523833632,
-0.3068104982,
0.0330356658,
-0.1884211004,
0.0231342167,
-0.1692149043,
0.0882596374,
-0.0709630623,
0.6686915159,
-0.3755656183,
-0.1222005039,
0.5347421765,
-0.0492613986,
0.3575074673,
0.0169340167,
-0.0162533037,
0.0615125969,
0.0671218261,
0.2661388516,
0.1894720197,
-0.1099518985,
-0.4191835523,
-0.0454813987,
-0.4166471064,
-0.0361577384,
-0.225738734,
-0.0053759478,
0.5628577471,
-0.0140687414,
0.1647194028,
0.0120686293,
0.0173970498,
-0.269515872,
0.2594311833,
0.000852149,
-0.1660768241,
-0.0606491417,
-0.1289085597,
-0.063842915,
-0.3101234436,
0.0570144095,
0.2350651026,
-0.0570895337,
-0.0245719776,
-0.2583800554,
0.1342055649,
-0.1056806445,
0.4005039632,
0.2934620976,
0.166564405,
0.2135401219,
0.0701528564,
-0.2036423534,
-0.1704910696,
-0.1556850672,
-0.0211959966,
0.3835707009,
0.0528601892,
-0.438958019,
-0.1754422933,
0.3004759848,
0.2820097208,
0.002745986,
-0.0153145604,
-0.5284617543,
-0.2185235769,
-0.1631640196,
0.1246431246,
0.0985191762,
0.2308525741,
-0.183267802,
0.0624201968,
0.0380946472,
-0.1195351556,
-0.182424888,
0.371052891,
0.030996222,
-0.1367567778,
-0.0074473992,
-0.0881536752,
-0.0357666798,
-0.0579180196,
0.3514463902,
0.0464074761,
-0.2605161369,
-0.1223316491,
0.2231658101,
0.0523235351,
0.1710092127,
0.0057618357,
0.1916314662,
-0.1243807971,
0.0281499512,
0.1198756024,
0.1390539259,
0.34975335,
-0.0350485221,
0.209264949,
0.2415165156,
0.3253232241,
-0.0578267612,
0.0641008466,
-0.03398294,
0.2301050276,
-0.143718034,
0.2209854573,
0.0451650657,
0.8207979202,
0.0330352038,
0.2702250481,
0.6261534691,
-0.2362237871,
0.3250897825,
0.1172430217,
0.200028196,
-0.3581176996,
0.0033049174,
0.260087043,
-0.0228625163,
0.0847513601,
-0.1178092957,
0.0181823969,
0.0287803002,
0.1112659425,
-0.0092795864,
0.0248551089,
0.178178221,
0.1207871884,
-0.0127581349,
-0.3865136802,
0.1847658157,
-0.0098461341,
0.2434543371,
-0.1725933999,
-0.3018137217,
0.2809736729,
-0.3456580341,
0.0044911951,
0.3744014502,
0.0178188719,
0.1027281731,
0.2606957555,
-0.2044041306,
-0.1182841659,
0.0858619735,
-0.0166333057,
-0.0952286571,
-0.1101048067,
0.305088073,
0.0727005899,
-0.2583868802,
-0.1442804635,
0.3166055083,
0.0560268015,
-0.2428623587,
-0.354996562,
0.2014130056,
0.046935413,
-0.0237468705,
-0.1675529331,
0.0315036215,
-0.0152522791,
-0.0413670056,
0.1499980241,
-0.046761591,
0.1018388048,
-0.2062681019,
0.2574655414,
0.0557675213,
-0.0219870284,
-0.0316200182,
0.2130370438,
-0.1793029159,
-0.2644486427,
0.420232892,
-0.1042946875,
0.0694813803,
0.3385529816,
0.3837929666,
-0.3116827011,
-0.2122027874,
-0.2277962267,
0.0619233511,
-0.570969522,
-0.0075391009,
0.2905109525,
-0.1169249117,
0.0515385643,
0.311224848,
-0.0189903937,
-0.0013941713,
0.055565618,
-0.0304722488,
-0.1131909192,
0.1001549289,
-0.0573815331,
-0.016594626,
0.43993783,
0.4364562929,
0.1472831666,
-0.1039575487,
-0.411329776,
0.0673325211,
-0.1125500649,
0.1381011009,
-0.2909934819,
-0.2318255007,
0.2360019684,
0.1290106773,
0.2740168571,
0.0868184417,
-0.1110764742,
-0.3384961784,
-0.1322935373,
0.0018456131,
-0.0048817685,
-0.0717099011,
0.1792272627,
0.2255893648,
0.0820273682,
0.1244023964,
0.3096895218,
-0.0295085199,
-0.1503887624,
0.2898205817,
0.1425185055,
0.0353096128,
0.1465828717,
-0.2073166966,
-0.1482467949,
0.277308017,
0.1130543053,
-0.0286238641,
-0.1440723389,
0.0268371925,
0.2978824675,
-0.0621419922,
-0.1109967232,
0.1789116114,
0.1344168335,
-0.2298992276,
-0.3243169188,
-0.2257205844,
0.2501016259,
0.1445128173,
-0.2257967889,
-0.1727877557,
0.3819532692,
0.3430962861,
-0.4943428338,
-0.0907823592,
-0.0316526145,
0.1363240182,
0.0802180171,
0.0350173116,
-0.0199276283,
-0.0952980369,
0.1967452914,
0.3701380789,
0.1514441073,
0.0223534852,
-0.2284718156,
0.0744998008,
-0.2980051339,
-0.1211715937,
0.4549670815,
0.1497990936,
0.2490098774,
0.0247081798,
-0.121581845,
0.0598123148,
-0.2983397245,
0.1750702709,
-0.1613067538,
-0.1363922954,
-0.1171567738,
0.3793142438,
0.2954331934,
-0.1782365143,
0.1823407412,
0.4003159106,
0.2745028734,
-0.1360538006,
-0.051577881,
0.605923593,
-0.184661895,
-0.0462745614,
-0.0622539744,
0.124380067,
0.0385915637,
0.233267501,
-0.0319231264,
0.0491472036,
0.2032890916,
0.0685301721,
-0.1821647882,
-0.3582144976,
0.0103544872,
0.0803230628,
0.214805454,
-0.0225483924,
0.2984032631,
0.2142087668,
-0.1925636083,
-0.1964104623,
0.2984683514,
0.4337419868,
0.1835551411,
-0.054359775,
-0.160557285,
-0.2027056813,
0.0328567252,
-0.2084276974,
0.1702621132,
0.2215858102,
0.5038294196,
0.1546587795,
0.1907962561,
-0.3705567122,
0.0332401432,
0.1691541821,
-0.0247027166,
0.0629138499,
0.0638836399,
-0.029770812,
-0.2653667033,
-0.3680843115,
-0.1542308629,
-0.3825880587,
0.2647889853,
0.0980389565,
0.2649372518,
-0.0150410347,
-0.4861191511,
0.1417194158,
0.1846013814,
0.6637269258,
0.2069656551,
0.2684610784,
-0.1088387445,
-0.0998881012,
-0.4346324801,
0.3114920855,
-0.3065361083,
0.0421799943,
-0.0522694662,
0.0214559957,
-0.1013637483,
0.2282584012,
0.0045616925,
0.0757820606,
-0.0998054296,
-0.2323068827,
-0.3131776154,
0.3172433674,
0.0876184851,
-0.2602441609,
0.1048864275,
-0.1456599087,
0.2333255708,
-0.4985121787,
0.2598398328,
-0.243278116,
-0.0090718195,
-0.1888142526,
0.3120507002,
0.2228731513,
0.1276970059,
0.1513315588,
-0.0133231655,
-0.0628324896,
-0.1417474449,
-0.3774046302,
-0.2469454259,
0.1444800794,
-0.0085266875,
0.165446803,
0.0690771118,
-0.1187744141,
-0.2045988292,
0.4295693338,
-0.0040785372,
0.0780156627,
0.1664194465,
0.2578724623,
0.1175776944,
-0.0706557333,
-0.2239869237,
0.0518487357,
0.0200978778,
-0.2055513114,
-0.4341715574,
-0.5926020741,
0.3476406038,
-0.4550388455,
0.0570192486,
0.0646058768,
0.1482396871,
0.1230562031,
-0.3943464458,
-0.4716579914,
0.3042541146,
0.1011686474,
0.1949094683,
-0.2898896635,
0.1886671633,
0.0005849823,
-0.0815227181,
-0.0591254979,
0.113367036,
0.2314946353,
-0.2264800072,
0.0893161893,
-0.1714506745
] |
https://github.com/huggingface/datasets/issues/435 | ImportWarning for pyarrow 1.0.0 | I dont know if the fix was made but the problem is still present :
Instaled with pip : NLP 0.3.0 // pyarrow 1.0.0
OS : archlinux with kernel zen 5.8.5 | The following PR raised ImportWarning at `pyarrow ==1.0.0` https://github.com/huggingface/nlp/pull/265/files | 31 | ImportWarning for pyarrow 1.0.0
The following PR raised ImportWarning at `pyarrow ==1.0.0` https://github.com/huggingface/nlp/pull/265/files
I dont know if the fix was made but the problem is still present :
Instaled with pip : NLP 0.3.0 // pyarrow 1.0.0
OS : archlinux with kernel zen 5.8.5 | [
-0.1463131458,
-0.082523264,
-0.0497648306,
-0.082114771,
0.1566719711,
-0.2191778272,
0.1178101003,
0.4189061224,
-0.2502536178,
0.1290671825,
0.076492928,
0.2807860076,
-0.2030649036,
-0.1170991957,
0.0609497838,
-0.1767264307,
0.1294215322,
0.2613933086,
-0.043257419,
-0.0118179917,
-0.1181318238,
0.3794071674,
-0.3579396904,
0.4410782754,
-0.1741458476,
0.00802611,
0.1847313046,
0.1068229377,
-0.274545759,
-0.7176745534,
0.3703354001,
-0.2556539178,
0.1187353432,
-0.1453179121,
-0.0001122298,
0.1098699272,
0.4844830036,
0.1264277101,
0.2048351616,
-0.286917448,
0.3934238851,
-0.727304697,
0.3218924403,
-0.0929811299,
-0.0015562996,
-0.3426614106,
0.2967853546,
0.7822845578,
0.3996649086,
0.175871104,
0.2156397402,
0.5306108594,
0.3595180511,
0.3860242367,
0.3381446004,
-0.2313631028,
-0.0678986832,
0.2951614857,
0.0531934127,
-0.5167249441,
-0.0443868861,
0.150931567,
-0.1811769307,
-0.1192702353,
0.0169099867,
-0.1557047367,
0.2961472869,
-0.2603825331,
-0.3814114928,
0.0868635252,
-0.2023058087,
-0.2443892807,
-0.1900428087,
-0.0965145752,
0.2009541839,
-0.4492745399,
0.3753639758,
0.2514258921,
-0.0926634669,
0.2638774812,
0.1020494774,
0.14376463,
-0.2070805877,
0.2501847446,
0.1616180241,
0.7215539813,
0.1772343069,
0.1274003685,
0.1793176681,
-0.0906529278,
0.2533273995,
0.1564490497,
-0.1677650213,
0.2413886786,
-0.0913616046,
-0.120178543,
0.1022298932,
0.3962029517,
0.0492238253,
-0.1726311296,
-0.1069480628,
-0.0338303894,
0.2005788088,
0.1612656116,
0.1280687898,
-0.0260971114,
0.2030234784,
-0.2324661463,
0.2462068796,
0.1590733528,
0.1445093751,
0.0729053169,
-0.0251888279,
-0.3879303336,
0.1451654434,
-0.0661642998,
0.3707584143,
-0.1980351508,
-0.2538054287,
-0.2639264762,
-0.3639075458,
0.0195965096,
-0.0219475329,
0.1275431067,
-0.1162193865,
0.1894866228,
0.0578527451,
0.1939164847,
-0.3054687381,
-0.1874004155,
-0.042539712,
0.1129768193,
-0.3520487547,
-0.0135483891,
0.0832815766,
-0.1224774867,
0.4979560971,
0.2246409804,
-0.1518141031,
0.0297390968,
0.0791251212,
0.1071715206,
0.0368607268,
0.261490047,
-0.0684241876,
-0.0179727711,
0.0009732079,
-0.0820257813,
-0.2350456715,
0.2638751268,
-0.0133770257,
-0.2735420763,
-0.460339874,
0.2024456561,
-0.3389338255,
-0.1279256791,
0.1861554533,
0.0615639277,
0.1776737571,
-0.352486074,
0.0419458225,
-0.3899522126,
0.1260899752,
0.0136418976,
-0.1244793832,
-0.0413493365,
-0.0070416033,
-0.1972960979,
-0.0320975333,
-0.4223330915,
0.3923663497,
0.369894594,
-0.3251796365,
-0.022359807,
-0.0978620127,
0.2279031277,
0.2245868444,
-0.3489608169,
-0.3137611449,
0.0563647151,
-0.1993920803,
-0.1143459976,
0.2462940365,
-0.0272545647,
-0.1828133166,
-0.0191405639,
-0.0409663692,
0.3157666028,
0.0823568851,
0.1319957376,
-0.4862547517,
-0.2567752004,
0.1407625079,
-0.0223902725,
0.0237173792,
-0.1570114642,
-0.0441812277,
-0.0445419326,
0.3431511521,
-0.0166795608,
0.0339642838,
-0.0141076129,
0.0175171942,
0.1112063602,
-0.1198918372,
0.07799384,
-0.0134685822,
-0.0226791129,
-0.5015804172,
0.3683542013,
-0.1919390112,
-0.3551448286,
-0.1008395627,
-0.0070901997,
-0.0447306782,
-0.1006919593,
0.1612116098,
-0.1429766417,
0.0715139061,
0.2534146011,
-0.0067579001,
-0.3259924054,
-0.0255908668,
0.1006077901,
0.0014615525,
0.1108679399,
-0.3691414893,
-0.5070371628,
0.0286353976,
0.2058617324,
0.2018126249,
0.1119772345,
0.0981957838,
-0.0303254612,
-0.308216393,
0.2859079242,
-0.4791698456,
-0.1952307224,
0.11722745,
-0.4769583642,
0.0436516926,
-0.0142158065,
-0.1687175333,
0.1005285829,
0.4360941947,
0.4499977231,
0.1965039372,
-0.0531025566,
-0.1498877555,
-0.0545804501,
0.1406522542,
-0.1640535593,
0.0259626433,
-0.003624551,
0.1470004171,
0.1947023273,
0.1001417339,
-0.0109531134,
-0.1298133284,
-0.1207539141,
0.3967890143,
0.0622107834,
0.0553404987,
0.0301929973,
0.0124042016,
-0.1178828329,
0.3387460411,
-0.354740411,
0.0835557953,
0.303925097,
-0.0718045458,
0.3368051648,
-0.1803065836,
-0.2905812263,
0.1546371877,
0.1677266955,
0.0824363306,
0.2134034038,
0.4092853963,
-0.1627026349,
-0.6508200765,
0.1368491054,
-0.0687038079,
0.1575958431,
-0.1914119422,
0.0635448396,
-0.2776796818,
-0.4018156528,
-0.1863516122,
-0.2930059433,
-0.336479038,
-0.1061578244,
0.1684435606,
0.3411310315,
-0.0711147934,
0.3280318975,
0.3384559155,
-0.1754705161,
-0.2444179356,
-0.0481760129,
-0.150870949,
-0.2504648566,
-0.3752196431,
0.0670828372,
0.2000457495,
0.1900666207,
0.1615681052,
-0.1450312734,
-0.2201218158,
0.0846733674,
-0.4907342792,
0.0075794915,
-0.2482958585,
0.1981132776,
0.1954681724,
-0.0094682649,
-0.1259323061,
-0.2910658419,
0.1533662081,
-0.3169590831,
-0.3713766038,
-0.1456780434,
-0.3450288177,
0.2003511339,
-0.3035595119,
-0.0370840393,
-0.4336917996,
-0.2729845047,
0.1849348247,
0.0883676708,
0.0782102719,
0.32213673,
0.0923089087,
0.1517428756,
-0.278113544,
-0.1642435193,
0.1256397516,
-0.0698489547,
0.1968343854,
-0.0362186655,
-0.2200053483,
0.1404720843,
-0.026114963,
0.1026241332,
-0.2304702401,
-0.4257999659,
-0.2739189267,
-0.0281990711,
0.6165578365,
0.2406509668,
-0.1069805995,
0.4314077497,
0.0798536465,
-0.1554449946,
0.0156343132,
-0.1081201881,
-0.0195612721,
-0.2196580172,
0.1145342141,
-0.0134998756,
0.1643051952,
0.0284327343,
0.7524278164,
-0.2021986246,
-0.0865355954,
0.5082700849,
-0.0427488349,
0.2506544888,
0.1585094333,
0.0116208717,
-0.0751905292,
0.2429631054,
0.1551570594,
0.0164744034,
-0.1186719388,
-0.31673792,
0.1006592065,
-0.4192092419,
0.0081104934,
-0.0788078159,
-0.0037509892,
0.4223542213,
0.1017466187,
0.2647044063,
-0.109194003,
-0.0516462475,
-0.4151854515,
0.1822401881,
0.1336538494,
-0.1440279037,
-0.0040654913,
-0.066097334,
-0.3085957766,
-0.4389861822,
0.0151169561,
0.3585348725,
-0.0007143244,
0.015641056,
-0.1333149076,
0.2848252654,
-0.0649420246,
0.2460819483,
0.1447225213,
0.0827083141,
0.231577605,
0.161717847,
-0.2495650947,
-0.1933170557,
-0.1135945916,
-0.0307923462,
0.4878688753,
0.0340220183,
-0.315823555,
-0.1914642006,
0.6278870702,
0.2776321769,
0.0078311786,
-0.159543708,
-0.5531589389,
-0.34033373,
-0.0945025906,
0.1357284933,
0.059589088,
0.228224054,
-0.0856162161,
0.1425573379,
-0.0233298521,
0.113845177,
-0.2402733117,
0.2719138861,
0.0305835381,
-0.1417431235,
-0.080213964,
-0.1551508307,
-0.2209054381,
0.0045705196,
0.2699088454,
0.2285873294,
-0.2923700511,
-0.2940798402,
0.3749372959,
0.0400975794,
0.0891680494,
0.0762599856,
0.1906945258,
-0.1389033943,
0.0279940236,
0.1909883171,
0.0107703619,
0.3302232027,
0.0095625743,
0.2052787542,
0.2049917877,
0.3583038151,
0.0759073496,
0.020304665,
0.1160153598,
0.0630373582,
-0.3131760955,
0.1893793046,
0.1192527339,
0.7727371454,
0.0468881242,
0.2768119276,
0.7808104753,
0.0381206274,
0.3821662962,
0.2557759881,
0.140675053,
-0.3187012076,
0.0656815469,
0.1776506305,
-0.0057662874,
0.1608765423,
-0.1035434604,
-0.0871678293,
0.1506627649,
0.3170357943,
-0.1086106151,
0.145494476,
0.1781947464,
-0.120065853,
0.0131122693,
-0.4551364481,
0.0432027802,
-0.0728660524,
0.3411371112,
-0.1738138795,
-0.3098096848,
0.26176548,
-0.2420981526,
-0.063148573,
0.2948923111,
0.0729020908,
0.1800820231,
0.18674694,
-0.0979664475,
-0.01696302,
0.2230790854,
-0.0047039203,
-0.1608379632,
-0.0243569985,
0.2252330482,
0.0777621195,
-0.3879621625,
-0.0755172521,
0.3331817687,
0.0539723337,
-0.2730442286,
-0.3842213154,
0.1162780896,
0.0047672242,
0.0226522237,
-0.0530638248,
-0.0094608963,
0.0467626713,
0.0904527083,
0.0458834283,
-0.060307432,
0.0528455526,
-0.1239376888,
0.1723188907,
-0.0085579827,
-0.0709716454,
-0.0210487396,
0.05375541,
-0.3723714948,
-0.1013083458,
0.3956668377,
0.0173615068,
0.0825559422,
0.5533750653,
0.1342069209,
-0.172598362,
-0.1685627401,
0.0888209343,
-0.1204932034,
-0.5595666766,
-0.0649080351,
0.3915896416,
0.0053680837,
0.0524308644,
0.3142743707,
0.17299591,
0.0728257298,
-0.1409644783,
-0.1577624828,
-0.1599016339,
0.2311977148,
-0.0303479377,
-0.221803993,
0.3306157589,
0.4356176853,
0.1888483763,
-0.2454167008,
-0.2971188128,
0.0243446752,
-0.1334157586,
0.221260041,
-0.2471287847,
-0.1050408781,
0.0576606616,
0.0880887732,
0.1166143492,
0.0358038172,
-0.0557490177,
-0.2365224212,
-0.1890361756,
0.0993036106,
0.0874451101,
-0.1711908728,
0.0329073705,
0.1443337351,
0.1743555069,
0.1258204728,
-0.0252647214,
0.0263154879,
-0.0780583471,
0.3505369127,
0.1515220404,
0.1835599542,
-0.0883227214,
-0.0433659777,
-0.3393919766,
0.2155552804,
0.0755553544,
0.1742347032,
0.0559471808,
0.0806269795,
0.103827402,
-0.2235941589,
-0.136244297,
0.0465389155,
0.0684804618,
-0.2091192603,
-0.3051456511,
-0.1213174462,
0.1599952579,
0.2268364131,
-0.2400153577,
-0.219330281,
0.39596048,
0.2351081669,
-0.3919548392,
0.0256282799,
-0.0590796918,
0.0732117146,
-0.1173323244,
-0.0312863141,
0.0447251946,
-0.2196572721,
0.2954951227,
0.288069874,
0.1427745521,
-0.1183967888,
-0.1173935533,
0.2002958953,
-0.0627438873,
-0.0369547717,
0.4063512683,
0.0467901714,
0.3146167397,
-0.1146049947,
-0.129618749,
0.2657224536,
-0.2911004126,
0.2943759561,
-0.3425345421,
-0.1696184576,
-0.228296265,
0.3689376712,
0.2435634136,
-0.2419521511,
0.2854422331,
0.3730119169,
0.2542882562,
-0.1198336333,
0.0358058438,
0.6180186272,
-0.1489039063,
-0.1216965318,
-0.2572515011,
0.2055368572,
0.0619050413,
0.2556103468,
0.0212981366,
0.1901593059,
0.2496863157,
0.2022266835,
-0.2579721808,
-0.3524664044,
-0.0519878007,
0.332054317,
0.2005598843,
-0.1307684034,
0.255276978,
0.1283192039,
-0.1924658865,
-0.2567720115,
0.4530803561,
0.6163247228,
0.2657214105,
0.1032022089,
-0.2209657133,
-0.2673633397,
0.075257659,
-0.1873041093,
0.2475882769,
0.2774338424,
0.7746675014,
-0.0107691512,
0.0944809467,
-0.2811930776,
-0.0117220199,
0.1550171673,
-0.2454234958,
-0.014271535,
-0.0159775056,
0.0552085899,
-0.3199709058,
-0.2273921967,
0.1110948473,
-0.3247715831,
0.393057704,
0.0914082378,
0.3334451914,
-0.0036915913,
-0.4467831254,
0.0685935915,
0.0960261151,
0.4824589491,
0.2509271502,
0.1322212517,
-0.2348388433,
-0.1713163555,
-0.586373508,
0.2388713658,
-0.4293251932,
-0.0694377869,
0.1120380685,
-0.1098489687,
-0.357976526,
0.253603071,
-0.1213653535,
0.157455489,
-0.1195032746,
-0.2146402448,
-0.1870661378,
0.3027909398,
0.2191273421,
-0.2342186719,
-0.0289157368,
-0.2543507218,
0.2548309267,
-0.5901120901,
0.0814796984,
-0.231928423,
-0.034266077,
-0.0690836906,
0.523057878,
0.1959627122,
0.194503203,
0.300786376,
0.0861575156,
0.1274978817,
-0.1984216273,
-0.3919109702,
-0.3851029873,
0.2205197215,
-0.0796592161,
0.1576745808,
-0.1454688311,
-0.0824463964,
-0.2672021091,
0.438623935,
-0.1976334006,
0.0326675475,
0.2748298049,
0.1524995714,
0.0448477715,
0.0765509307,
-0.1438394785,
-0.0142236091,
0.094659023,
-0.1970761567,
-0.5314705372,
-0.4598426819,
0.2082961202,
-0.5019981265,
0.0528518111,
0.0206667334,
0.23187989,
0.1214506924,
-0.4394001663,
-0.403578043,
0.1622239053,
0.2716174126,
0.2200744152,
-0.1676879227,
0.2431372553,
0.1953085959,
0.0246981978,
-0.0125455111,
-0.144671768,
0.120196104,
-0.3154447973,
0.1479806304,
-0.2379944324
] |
https://github.com/huggingface/datasets/issues/433 | How to reuse functionality of a (generic) dataset? | Hi @ArneBinder, we have a few "generic" datasets which are intended to load data files with a predefined format:
- csv: https://github.com/huggingface/nlp/tree/master/datasets/csv
- json: https://github.com/huggingface/nlp/tree/master/datasets/json
- text: https://github.com/huggingface/nlp/tree/master/datasets/text
You can find more details about this way to load datasets here in the documentation: https://huggingface.co/nlp/loading_datasets.html#from-local-files
Maybe your brat loading script could be shared in a similar fashion? | I have written a generic dataset for corpora created with the Brat annotation tool ([specification](https://brat.nlplab.org/standoff.html), [dataset code](https://github.com/ArneBinder/nlp/blob/brat/datasets/brat/brat.py)). Now I wonder how to use that to create specific dataset instances. What's the recommended way to reuse formats and loading functionality for datasets with a common format?
In my case, it took a bit of time to create the Brat dataset and I think others would appreciate to not have to think about that again. Also, I assume there are other formats (e.g. conll) that are widely used, so having this would really ease dataset onboarding and adoption of the library. | 56 | How to reuse functionality of a (generic) dataset?
I have written a generic dataset for corpora created with the Brat annotation tool ([specification](https://brat.nlplab.org/standoff.html), [dataset code](https://github.com/ArneBinder/nlp/blob/brat/datasets/brat/brat.py)). Now I wonder how to use that to create specific dataset instances. What's the recommended way to reuse formats and loading functionality for datasets with a common format?
In my case, it took a bit of time to create the Brat dataset and I think others would appreciate to not have to think about that again. Also, I assume there are other formats (e.g. conll) that are widely used, so having this would really ease dataset onboarding and adoption of the library.
Hi @ArneBinder, we have a few "generic" datasets which are intended to load data files with a predefined format:
- csv: https://github.com/huggingface/nlp/tree/master/datasets/csv
- json: https://github.com/huggingface/nlp/tree/master/datasets/json
- text: https://github.com/huggingface/nlp/tree/master/datasets/text
You can find more details about this way to load datasets here in the documentation: https://huggingface.co/nlp/loading_datasets.html#from-local-files
Maybe your brat loading script could be shared in a similar fashion? | [
-0.1659950316,
-0.1904751211,
0.1139431149,
0.3808880448,
0.2183724046,
-0.0047783256,
0.1885104775,
0.1122673079,
-0.1110896543,
-0.2132681757,
-0.1955657005,
0.2885513008,
-0.0397951156,
0.5394510031,
0.1926316321,
-0.1346114725,
-0.2117359191,
0.2186618596,
-0.1162287593,
-0.0262854546,
0.039408654,
-0.1943163723,
0.0686829537,
-0.1159504801,
-0.3702632785,
0.131892249,
-0.2384282947,
-0.0179266017,
0.2592284679,
-0.2346275002,
0.5442934632,
0.3445178568,
0.4595023394,
0.2523491979,
-0.0001251961,
0.0330157578,
-0.0391848497,
-0.1448282301,
-0.2924484015,
-0.1255922318,
-0.2134353817,
-0.2233888209,
0.0898033828,
-0.2437823713,
-0.3222342134,
-0.3877212107,
0.1589096189,
-0.5658189058,
0.4574593604,
-0.0978452712,
0.0306624398,
-0.0806688592,
-0.2010449171,
-0.1027777344,
-0.1274458617,
0.3995327652,
-0.0048824921,
0.4021580517,
0.6236608028,
0.3071167767,
0.114258714,
0.0186161287,
0.1892266273,
0.0923044756,
0.2961037755,
-0.1304035634,
-0.032115154,
0.0373829454,
0.0351921581,
0.3731415272,
0.9288995862,
-0.3871006072,
-0.0573190488,
-0.1039510146,
-0.0022315532,
-0.2916268706,
-0.2740899324,
0.1782109886,
0.1706529856,
0.1169879138,
-0.2853218317,
-0.3464595079,
-0.297486186,
0.1213213354,
0.2955725193,
0.0247340128,
-0.0860804319,
0.2227663994,
-0.2029817551,
-0.0876896977,
0.0028411895,
-0.2409485877,
-0.1546610892,
0.0481967665,
0.1250666678,
-0.1266932338,
-0.431887567,
0.1242783815,
0.3226211667,
0.4385861456,
0.3070447743,
0.2488360703,
-0.3475719392,
0.0543899797,
0.4337314069,
0.0727873221,
0.3920845389,
0.275516659,
0.0898748636,
0.2174173594,
-0.4256953597,
-0.160503149,
-0.4732807279,
0.4096368849,
0.2828016281,
-0.0478398614,
0.02586063,
-0.2413187027,
-0.005772084,
-0.0553797111,
-0.3146697879,
-0.1710859835,
0.2200734168,
0.0787811875,
-0.1268192679,
0.1943234056,
-0.0760902092,
0.2540782094,
-0.0605480596,
-0.3372294009,
0.0072381236,
0.0385018475,
-0.3324479461,
0.1706180274,
0.3277180791,
-0.4035722911,
0.2055001855,
0.3074683845,
-0.1498452574,
-0.1152978241,
0.3684355021,
0.1104316339,
-0.2815550566,
-0.5091330409,
-0.1593074799,
0.0936785564,
0.2187216878,
0.1501327157,
-0.3380337358,
0.0335502513,
-0.1240275353,
-0.3322886229,
-0.1301240474,
0.0158545822,
-0.2962246239,
0.0313484184,
-0.106465444,
0.4295430183,
-0.0012107641,
-0.3559828699,
-0.2109795362,
-0.1043995321,
-0.2914376557,
-0.0680790395,
0.1657023728,
0.2590589821,
-0.5212171078,
-0.1286893189,
-0.115143545,
0.0005086418,
0.414929837,
0.2499229163,
-0.4169626236,
0.2172119617,
-0.1238056049,
-0.1836063415,
0.4553328753,
-0.0797948092,
-0.0108389072,
-0.1229194701,
0.2009916306,
0.1629839242,
0.0826168954,
0.0667765737,
0.1893799901,
-0.247602582,
-0.3442699909,
0.5017465949,
0.1047514603,
-0.2457324862,
-0.0767716616,
-0.2122576237,
0.1183501929,
0.0398369357,
-0.2308101058,
0.1301294118,
0.0850554705,
0.2706215084,
0.0201237667,
-0.2445561141,
0.1147237197,
-0.1340279728,
0.0210207216,
0.3941364288,
0.1071012318,
-0.2427257597,
-0.5016253591,
0.1725225896,
-0.3441225886,
-0.2779970169,
0.5025932193,
-0.5051971078,
-0.3756369054,
-0.2438971698,
-0.1494171172,
-0.0231219232,
0.0117688999,
0.5268942714,
0.107581228,
-0.0793847144,
-0.1046642289,
0.1127332002,
-0.116244778,
-0.0206029564,
-0.0946503952,
0.2827682793,
0.1337835491,
0.0327416807,
0.080849804,
0.5369932652,
0.0391521305,
-0.0522329658,
0.1695105433,
0.2841658294,
0.1377079189,
0.1723065525,
0.0890182406,
0.1135610342,
0.1253344119,
0.1243244037,
0.4157353938,
-0.0623392537,
0.3338618577,
-0.143680796,
-0.493360728,
0.2344050854,
0.0853986591,
0.0032412931,
0.0942285508,
-0.0990343392,
0.1269899905,
-0.1194887012,
-0.163817063,
-0.1160496846,
-0.1618516445,
0.1668628305,
-0.0490618162,
0.3370724916,
-0.3186077476,
-0.0587678365,
0.2334952652,
-0.167667076,
0.21270518,
-0.1248299032,
-0.1789674461,
-0.1150684804,
0.3755521476,
-0.1696302295,
0.0814921185,
0.0510556474,
0.2505190074,
-0.0093402993,
-0.0731734335,
0.0596739501,
0.2454487234,
-0.19965446,
0.1939686388,
-0.203809768,
0.1229525954,
0.0725698471,
0.0402917415,
-0.0532918535,
0.2882682383,
0.035352394,
-0.1095574424,
0.1736059487,
-0.7263829112,
-0.2955489755,
-0.3641792536,
0.0308195911,
0.0220965967,
0.0343480557,
-0.2832489908,
0.0523052029,
0.1293506026,
0.1510513425,
0.1038259491,
0.5219681263,
-0.3055053353,
-0.0818175748,
0.0544113889,
-0.3273837566,
-0.3867365718,
0.0133745037,
0.4593730569,
0.3856507242,
0.4869644046,
-0.0203826651,
0.0797765404,
-0.4213524163,
-0.2247267962,
0.200858444,
0.2226726264,
-0.0748153552,
0.1745201051,
0.0166827757,
-0.3718516231,
-0.2864752412,
0.198257789,
0.1177975908,
0.2160825282,
-0.1023506373,
-0.4804202318,
0.1640374959,
-0.1767153293,
-0.0417492166,
-0.0790918618,
-0.2007598281,
0.285194248,
-0.0058263391,
-0.0302386768,
0.3705191016,
-0.2798820734,
0.2028847933,
-0.1104381233,
0.2872949839,
-0.2397325039,
-0.2474447191,
0.2628941536,
-0.1447513998,
-0.1490288079,
-0.1419075429,
-0.3319853842,
0.1567605287,
0.5356492996,
-0.2468813807,
-0.3932583928,
-0.1005752683,
-0.2145652175,
0.2922900319,
0.2270691842,
0.0891076401,
0.0088776723,
0.1633802503,
-0.0381373502,
-0.1159495786,
0.243732959,
-0.0833874792,
0.1644113064,
0.4508980811,
0.0424262211,
0.2239996046,
0.3212425709,
0.2181173563,
-0.4716590643,
0.4767278433,
-0.1040032357,
0.426432848,
0.0322028585,
0.0494237542,
0.2493749857,
-0.099895753,
0.1182430834,
0.2240379453,
0.0198331475,
0.1488358676,
-0.142451942,
0.0832242668,
-0.067477636,
-0.4802445471,
0.126770094,
-0.2630293667,
0.5065649748,
0.2004096508,
-0.1666419506,
-0.2821269035,
0.0118125267,
0.2048152834,
0.1115636677,
0.1518702656,
0.1114138961,
-0.3922576904,
0.1145911366,
0.174434945,
0.5108855963,
0.0906023756,
0.0278526209,
0.2118859589,
0.0001371205,
-0.0055029206,
0.0644410029,
-0.0107164085,
-0.2585108876,
0.0617625266,
0.0170501098,
-0.234093979,
-0.3129956722,
0.0051869825,
-0.1482111067,
0.2156675458,
0.0613821521,
0.0937307179,
-0.5858943462,
-0.1134343594,
0.30568102,
0.4081916511,
-0.1027644873,
0.1559306979,
0.2447595298,
-0.084071815,
-0.3423584402,
-0.1207065359,
-0.2220968455,
0.1091591269,
0.0774842426,
0.10686104,
-0.4060517251,
0.1789984852,
0.3230236471,
0.1436012536,
0.5515429974,
0.1673412919,
0.1025035679,
0.1422674805,
0.0629679486,
0.1254567504,
0.5182180405,
-0.2743420303,
-0.4875462055,
-0.1123324409,
0.0527322963,
0.355232507,
0.1335098147,
0.2686712146,
-0.2644350231,
-0.2075332105,
-0.3050480783,
-0.2465967238,
0.2815006077,
-0.0214469768,
-0.0089542158,
-0.4367785752,
-1.0036554337,
0.1773267537,
0.2341754735,
-0.0221638381,
0.1960069835,
0.0442959219,
-0.0561627671,
0.0839707255,
0.148215875,
0.8185904026,
-0.2342248857,
0.2623118162,
0.2913030982,
0.2999872267,
0.6729304194,
-0.1592323184,
-0.2336210608,
-0.3155063689,
0.0776638314,
0.0124219656,
-0.0548908748,
0.4027068615,
0.262036711,
-0.177049011,
0.3238630891,
0.2328757346,
0.4149171114,
0.0472155511,
0.2062346339,
-0.4215629399,
-0.2640071511,
0.0007398576,
-0.0266651139,
-0.3107626438,
-0.0222588293,
-0.2223698646,
0.131906718,
0.1768972874,
0.1092704237,
-0.2893408239,
-0.0679771081,
-0.2111095935,
0.0153958052,
-0.1433982104,
-0.4598443508,
0.4378585815,
0.4143339694,
0.2606969774,
0.2978546619,
-0.1250860393,
0.0351940356,
-0.1367511153,
-0.0574594438,
-0.2723388076,
0.0598763525,
0.2151692063,
0.11797636,
-0.0462158248,
0.1231957078,
0.3675066233,
0.1501080096,
-0.1939932853,
-0.2078894973,
0.3192487061,
-0.3471473455,
-0.2080494314,
0.1136156321,
0.0116934031,
-0.0000474229,
-0.0354512855,
0.2170710862,
-0.0585960187,
0.0365926698,
-0.0799798816,
0.0506315678,
-0.0118120033,
-0.2164823115,
0.2862478197,
-0.2448284924,
0.3801534176,
0.0534388125,
0.0960258991,
-0.1239763424,
0.1542888582,
0.2004525214,
-0.3535532355,
-0.0472874902,
0.0481463261,
-0.2010809332,
0.1257610023,
0.2455194294,
-0.1104495674,
0.0416256413,
0.1067188233,
-0.2709897459,
-0.062190637,
0.2552556098,
0.0847931653,
0.3913349509,
0.0335181355,
-0.0114195682,
-0.2339341342,
-0.0763874501,
-0.1716610789,
0.2520008385,
0.2532118261,
0.2020983696,
-0.0755686611,
0.0658908859,
-0.087356396,
-0.0437433049,
-0.0359814279,
0.1191643476,
-0.1045864373,
-0.0319880024,
-0.5068330765,
0.2202413678,
-0.0208259448,
-0.1808736026,
-0.0664784759,
-0.3200272322,
0.074832648,
-0.4403784871,
0.1769108176,
0.0493833125,
-0.0720402151,
0.2194671482,
0.5647693276,
0.057019487,
-0.2097334564,
0.0016650781,
0.1266693175,
0.410019666,
0.3731330633,
0.0852252394,
-0.1460329592,
-0.1167682335,
0.0035768859,
0.2336938828,
0.8808067441,
-0.0425562523,
0.2894622087,
0.1379087865,
0.0667545646,
0.1670599282,
0.3605262339,
0.4735856652,
-0.0906055421,
0.2389071286,
0.3097981215,
0.002391851,
-0.082783483,
0.0948005095,
0.1694339663,
-0.0890065432,
-0.1327606291,
0.3536595702,
0.1840624064,
0.2066233903,
-0.1526350677,
-0.3317942619,
0.1710802168,
0.0503298007,
0.4426065385,
0.2776347697,
0.0129948109,
-0.3771146536,
-0.0332406685,
0.3894670606,
0.2786748409,
-0.4481982291,
0.2374074161,
0.2064730227,
0.0597753003,
0.2543243766,
0.3961918056,
-0.5807138085,
-0.0108076511,
0.3840744197,
0.2369927317,
0.3525375426,
-0.098266229,
0.2982100844,
0.1065692231,
0.028806366,
-0.0740946531,
0.1353553683,
-0.0243052095,
-0.188504979,
-0.2255792469,
-0.3066187501,
-0.2714520097,
0.0051427782,
-0.2844659686,
-0.0392602906,
-0.2430738807,
-0.0055702366,
0.0913799778,
-0.4289429784,
0.0885234475,
0.1282108724,
0.1109814346,
-0.027295813,
0.1762389839,
0.264339745,
-0.2772352993,
0.3040178418,
0.346922636,
0.157438308,
0.0013453662,
-0.0784208328,
0.2037948072,
-0.204415217,
0.1393670738,
-0.171998769,
0.0842119902,
0.1782957464,
-0.34583655,
0.2469346821,
-0.0179183651,
0.0593671724,
-0.0808812231,
-0.0942527503,
-0.2252892256,
-0.5750337839,
0.4838291407,
0.246794194,
-0.1766693294,
0.1953531206,
0.136672318,
-0.2376324981,
-0.4150588214,
0.3314508498,
0.3181430995,
-0.012796618,
-0.1789317131,
-0.0029141605,
0.1667661518,
0.2657191753,
0.1069095582,
-0.103322804,
-0.0076272562,
-0.3208793402,
-0.7505282164,
0.2008834183,
-0.1550965756,
-0.5894001126,
0.2148179114,
-0.1606933177,
0.2775505483,
0.160159573,
-0.2683607936,
-0.0050948113,
0.1115248129,
-0.1754324734,
-0.1335077584,
-0.5121634007,
-0.0151766948,
-0.036365591,
-0.1568968296,
-0.3666357696,
-0.0744642094,
0.0146499127,
-0.139238894,
-0.0253693014,
-0.1672612131,
0.1073859036,
-0.4111956954,
0.0796098113,
0.0811214074,
0.3132668138,
0.2124058306,
-0.1055363119,
-0.2097656876,
0.0714216456,
0.020107381,
0.3408665061,
-0.1046824083,
0.0942914337,
-0.565849483,
-0.059827324,
-0.2669114769,
-0.1238189191,
0.0861121342,
0.1740021408,
-0.1259277761,
-0.0274491869,
-0.3547938168,
-0.1046494544,
0.3244488835,
0.6672959924,
-0.2203665227,
0.0389134064,
-0.0882799178,
0.2342379093,
0.366111964,
-0.2147354931,
-0.3655218482,
-0.1902381778,
0.0704676881,
-0.27079916,
0.0472456142,
-0.3562132716,
0.122297287,
0.2829150856,
-0.0311342664,
-0.1060798466,
-0.0718568116,
0.1953955442,
-0.1844020784,
-0.1983389854,
0.4595992267,
0.1070045829,
-0.1265895367,
-0.0130091086,
-0.13453044
] |
https://github.com/huggingface/datasets/issues/433 | How to reuse functionality of a (generic) dataset? | > Maybe your brat loading script could be shared in a similar fashion?
@thomwolf that was also my first idea and I think I will tackle that in the next days. I separated the code and created a real abstract class `AbstractBrat` to allow to inherit from that (I've just seen that the dataset_loader loads the first non abstract class), now `Brat` is very similar in its functionality to https://github.com/huggingface/nlp/tree/master/datasets/text but inherits from `AbstractBrat`.
However, it is still not clear to me how to add a specific dataset (as explained in https://huggingface.co/nlp/add_dataset.html) to your repo that uses this format/abstract class, i.e. re-using the `features` entry of the `DatasetInfo` object and `_generate_examples()`. Again, by doing so, the only remaining entries/functions to define would be `_DESCRIPTION`, `_CITATION`, `homepage` and `_URL` (which is all copy-paste stuff) and `_split_generators()`.
In a lack of better ideas, I tried sth like below, but of course it does not work outside `nlp` (`AbstractBrat` is currently defined in [datasets/brat.py](https://github.com/ArneBinder/nlp/blob/5e81fb8710546ee7be3353a7f02a3045e9a8351e/datasets/brat/brat.py)):
```python
from __future__ import absolute_import, division, print_function
import os
import nlp
from datasets.brat.brat import AbstractBrat
_CITATION = """
@inproceedings{lauscher2018b,
title = {An argument-annotated corpus of scientific publications},
booktitle = {Proceedings of the 5th Workshop on Mining Argumentation},
publisher = {Association for Computational Linguistics},
author = {Lauscher, Anne and Glava\v{s}, Goran and Ponzetto, Simone Paolo},
address = {Brussels, Belgium},
year = {2018},
pages = {40–46}
}
"""
_DESCRIPTION = """\
This dataset is an extension of the Dr. Inventor corpus (Fisas et al., 2015, 2016) with an annotation layer containing
fine-grained argumentative components and relations. It is the first argument-annotated corpus of scientific
publications (in English), which allows for joint analyses of argumentation and other rhetorical dimensions of
scientific writing.
"""
_URL = "http://data.dws.informatik.uni-mannheim.de/sci-arg/compiled_corpus.zip"
class Sciarg(AbstractBrat):
VERSION = nlp.Version("1.0.0")
def _info(self):
brat_features = super()._info().features
return nlp.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# nlp.features.FeatureConnectors
features=brat_features,
# If there's a common (input, target) tuple from the features,
# specify them here. They'll be used if as_supervised=True in
# builder.as_dataset.
#supervised_keys=None,
# Homepage of the dataset for documentation
homepage="https://github.com/anlausch/ArguminSci",
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
# TODO: Downloads the data and defines the splits
# dl_manager is a nlp.download.DownloadManager that can be used to
# download and extract URLs
dl_dir = dl_manager.download_and_extract(_URL)
data_dir = os.path.join(dl_dir, "compiled_corpus")
print(f'data_dir: {data_dir}')
return [
nlp.SplitGenerator(
name=nlp.Split.TRAIN,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"directory": data_dir,
},
),
]
```
Nevertheless, many thanks for tackling the dataset accessibility problem with this great library! | I have written a generic dataset for corpora created with the Brat annotation tool ([specification](https://brat.nlplab.org/standoff.html), [dataset code](https://github.com/ArneBinder/nlp/blob/brat/datasets/brat/brat.py)). Now I wonder how to use that to create specific dataset instances. What's the recommended way to reuse formats and loading functionality for datasets with a common format?
In my case, it took a bit of time to create the Brat dataset and I think others would appreciate to not have to think about that again. Also, I assume there are other formats (e.g. conll) that are widely used, so having this would really ease dataset onboarding and adoption of the library. | 416 | How to reuse functionality of a (generic) dataset?
I have written a generic dataset for corpora created with the Brat annotation tool ([specification](https://brat.nlplab.org/standoff.html), [dataset code](https://github.com/ArneBinder/nlp/blob/brat/datasets/brat/brat.py)). Now I wonder how to use that to create specific dataset instances. What's the recommended way to reuse formats and loading functionality for datasets with a common format?
In my case, it took a bit of time to create the Brat dataset and I think others would appreciate to not have to think about that again. Also, I assume there are other formats (e.g. conll) that are widely used, so having this would really ease dataset onboarding and adoption of the library.
> Maybe your brat loading script could be shared in a similar fashion?
@thomwolf that was also my first idea and I think I will tackle that in the next days. I separated the code and created a real abstract class `AbstractBrat` to allow to inherit from that (I've just seen that the dataset_loader loads the first non abstract class), now `Brat` is very similar in its functionality to https://github.com/huggingface/nlp/tree/master/datasets/text but inherits from `AbstractBrat`.
However, it is still not clear to me how to add a specific dataset (as explained in https://huggingface.co/nlp/add_dataset.html) to your repo that uses this format/abstract class, i.e. re-using the `features` entry of the `DatasetInfo` object and `_generate_examples()`. Again, by doing so, the only remaining entries/functions to define would be `_DESCRIPTION`, `_CITATION`, `homepage` and `_URL` (which is all copy-paste stuff) and `_split_generators()`.
In a lack of better ideas, I tried sth like below, but of course it does not work outside `nlp` (`AbstractBrat` is currently defined in [datasets/brat.py](https://github.com/ArneBinder/nlp/blob/5e81fb8710546ee7be3353a7f02a3045e9a8351e/datasets/brat/brat.py)):
```python
from __future__ import absolute_import, division, print_function
import os
import nlp
from datasets.brat.brat import AbstractBrat
_CITATION = """
@inproceedings{lauscher2018b,
title = {An argument-annotated corpus of scientific publications},
booktitle = {Proceedings of the 5th Workshop on Mining Argumentation},
publisher = {Association for Computational Linguistics},
author = {Lauscher, Anne and Glava\v{s}, Goran and Ponzetto, Simone Paolo},
address = {Brussels, Belgium},
year = {2018},
pages = {40–46}
}
"""
_DESCRIPTION = """\
This dataset is an extension of the Dr. Inventor corpus (Fisas et al., 2015, 2016) with an annotation layer containing
fine-grained argumentative components and relations. It is the first argument-annotated corpus of scientific
publications (in English), which allows for joint analyses of argumentation and other rhetorical dimensions of
scientific writing.
"""
_URL = "http://data.dws.informatik.uni-mannheim.de/sci-arg/compiled_corpus.zip"
class Sciarg(AbstractBrat):
VERSION = nlp.Version("1.0.0")
def _info(self):
brat_features = super()._info().features
return nlp.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# nlp.features.FeatureConnectors
features=brat_features,
# If there's a common (input, target) tuple from the features,
# specify them here. They'll be used if as_supervised=True in
# builder.as_dataset.
#supervised_keys=None,
# Homepage of the dataset for documentation
homepage="https://github.com/anlausch/ArguminSci",
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
# TODO: Downloads the data and defines the splits
# dl_manager is a nlp.download.DownloadManager that can be used to
# download and extract URLs
dl_dir = dl_manager.download_and_extract(_URL)
data_dir = os.path.join(dl_dir, "compiled_corpus")
print(f'data_dir: {data_dir}')
return [
nlp.SplitGenerator(
name=nlp.Split.TRAIN,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"directory": data_dir,
},
),
]
```
Nevertheless, many thanks for tackling the dataset accessibility problem with this great library! | [
-0.0527758896,
-0.0183874071,
0.1475319564,
0.404240191,
0.2143374532,
-0.037316002,
0.1315056384,
0.107147716,
-0.2023021728,
-0.2372691929,
-0.1918665767,
0.4055895507,
-0.0635215044,
0.5268569589,
0.4249492884,
-0.2587216794,
-0.1975937486,
0.1804038882,
0.0004198402,
-0.0935178772,
-0.002107881,
-0.137459591,
0.1369738728,
-0.0939147249,
-0.2226286232,
0.1669849157,
-0.287478745,
-0.0323907174,
0.1107130796,
-0.2528284788,
0.5313694477,
0.3521877229,
0.468342036,
0.2782880068,
-0.0001250765,
0.0179279596,
-0.083346352,
-0.1071613729,
-0.271519959,
-0.1662044972,
-0.2018948197,
-0.2514974773,
0.0697829872,
-0.2622407377,
-0.333868891,
-0.2891654074,
0.0832435191,
-0.4201815724,
0.4280590415,
0.0142239109,
0.0128908344,
-0.1331838369,
-0.1333253235,
-0.128409341,
0.028225122,
0.4498726726,
-0.1006872356,
0.345685631,
0.5528988242,
0.2936875224,
0.1292900294,
0.0283972323,
0.1609412134,
0.1065396518,
0.3837426603,
-0.058412604,
-0.0705621392,
-0.0389488041,
0.0189953838,
0.2638922036,
0.8025805354,
-0.4108226001,
-0.0872109383,
-0.1729801297,
0.024767492,
-0.4295548797,
-0.2573294342,
0.0599818453,
0.1624983251,
0.0851935744,
-0.3099953532,
-0.3607079387,
-0.3834713697,
0.2709828615,
0.3352556229,
0.0396564566,
-0.0566546358,
0.2215607166,
-0.1515270323,
-0.0298043713,
-0.0301853716,
-0.1971119791,
-0.1586643308,
0.1109790504,
0.1712027043,
-0.1918718964,
-0.3047831655,
0.023015067,
0.4192997813,
0.4918844402,
0.1451486051,
0.208177954,
-0.3522257805,
-0.0213299077,
0.4007339478,
0.1259270012,
0.2779956162,
0.3652257323,
0.0427369922,
0.1957385838,
-0.3644950688,
-0.170382455,
-0.4490542412,
0.5557593107,
0.2351503074,
-0.1451734602,
0.06880714,
-0.2394081056,
0.1407319605,
-0.105501011,
-0.3880718648,
-0.1388138831,
0.2200805098,
0.0473228507,
0.0224381797,
0.0921760723,
0.0555785075,
0.2978413999,
-0.0114643686,
-0.2726378441,
-0.0049479287,
0.0923363119,
-0.4189290404,
0.2664703429,
0.3285481036,
-0.3103048801,
0.1651708931,
0.3441129029,
-0.0810416639,
-0.1708165109,
0.362007916,
0.1349383146,
-0.3155713379,
-0.4831867218,
-0.2336717546,
0.2006834745,
0.2484116554,
0.203109622,
-0.2982756495,
-0.043786224,
-0.0155713372,
-0.3951826692,
-0.1822107881,
0.0121252565,
-0.3710012734,
-0.0800737143,
-0.2152227014,
0.4285042882,
-0.004348021,
-0.3384582698,
-0.1976391226,
-0.0232478082,
-0.328401804,
-0.0783782899,
0.1933830678,
0.2733844519,
-0.3810254335,
-0.1718322188,
-0.2532714903,
0.0059722643,
0.4354266226,
0.1614464521,
-0.4003018439,
0.2875463068,
-0.1048992276,
-0.1292134225,
0.498452872,
-0.0334247462,
-0.0209877677,
-0.05893372,
0.1858075112,
0.1797674,
0.0416483954,
0.0760742575,
0.2536150813,
-0.1743210703,
-0.3745345175,
0.514162302,
0.0862222612,
-0.2672066689,
-0.0373786986,
-0.1952516437,
0.1279140711,
0.0897821337,
-0.170214057,
0.1609876454,
-0.0314323232,
0.2894901931,
-0.0177521072,
-0.2148412764,
0.1200028285,
-0.1749355197,
0.1473773271,
0.3941194117,
0.1085902527,
-0.3249784112,
-0.4225760102,
0.1913676262,
-0.2947514057,
-0.0480473228,
0.4472073913,
-0.4088852406,
-0.4264883101,
-0.1843519807,
-0.1645274609,
-0.1849025786,
0.0076963268,
0.5292384028,
0.0993566066,
-0.1695846319,
-0.1643252075,
0.1189450473,
-0.1181552708,
-0.0168600343,
-0.1055912375,
0.2538265586,
0.064354524,
0.0435819626,
0.014084816,
0.5441201925,
0.1163569316,
-0.0754589438,
0.1564705819,
0.120688349,
0.0370997488,
0.0826744586,
0.14556548,
0.1017805263,
0.1178468466,
0.1147302985,
0.4078249633,
0.008895196,
0.3467356563,
-0.1688860804,
-0.464425087,
0.1340488046,
0.2337527573,
0.0326771252,
0.0612456203,
-0.1139331982,
0.1701094657,
-0.1843963563,
-0.061234381,
-0.1180030406,
-0.0761754811,
0.2510492206,
-0.0876886919,
0.3345283866,
-0.2914965749,
0.1417696476,
0.1410660595,
-0.2346034646,
0.1524758637,
0.0045162784,
-0.2224814445,
-0.17693609,
0.383233875,
0.0758579224,
0.1644231677,
0.0378480814,
0.2431351244,
0.069482021,
-0.1100003719,
0.0444387384,
0.2112406492,
-0.1673856229,
0.1849936843,
-0.2379214317,
0.1198143959,
0.1696000993,
0.0800332278,
-0.0412706584,
0.3497787118,
0.1414012313,
-0.1712509096,
0.2018587887,
-0.6481918097,
-0.3009236753,
-0.3514766991,
-0.0437036753,
0.0139787868,
0.0545267761,
-0.1946783066,
0.0467867255,
0.130718708,
0.1342970878,
0.113112554,
0.4815164804,
-0.3766595125,
-0.1216211393,
0.0801851749,
-0.2995166779,
-0.3330664933,
0.0063180886,
0.4122456014,
0.3769205213,
0.5545408726,
0.0870393142,
0.029055059,
-0.4986228943,
-0.2839491963,
0.2014665753,
0.0905629843,
-0.0397653133,
0.1327045262,
-0.0485134423,
-0.3301450908,
-0.3042163551,
0.1590518057,
0.0961805657,
0.180940181,
-0.0600806549,
-0.4992725849,
0.121142894,
-0.1876280606,
-0.1224419773,
-0.1508997083,
-0.199262321,
0.2833753824,
0.0598631501,
0.0701043531,
0.3311742842,
-0.3769753277,
0.2394529283,
-0.0450570919,
0.2134191394,
-0.3368492723,
-0.1046837866,
0.2901272774,
-0.146779716,
-0.1852173805,
-0.0646871999,
-0.332832098,
0.1002843827,
0.5816041231,
-0.1899225712,
-0.4333085418,
-0.0709261596,
-0.1931771934,
0.3352114558,
0.202374801,
0.1774220318,
-0.0302753262,
0.1482479274,
-0.0246566758,
-0.2292748541,
0.3347112238,
-0.0698230639,
0.2151487321,
0.3179879189,
0.1364473403,
0.1477782428,
0.4958407283,
0.1994638294,
-0.3975557983,
0.441898644,
-0.0755605921,
0.2939328551,
0.0919932574,
-0.0275794342,
0.248929739,
-0.1203065962,
0.0949378312,
0.1931628138,
0.0448029153,
0.0250678957,
-0.0283335261,
0.0092362538,
-0.0035297275,
-0.436378032,
0.1996436566,
-0.1517348289,
0.5237365961,
0.1381770968,
-0.2355798632,
-0.3791063428,
0.049613934,
0.1934671849,
0.1337406635,
0.0738772005,
0.1643584967,
-0.4970509112,
0.0758114904,
0.1406280398,
0.4142271876,
0.0856037661,
-0.0225953609,
0.1782037318,
0.0315717533,
0.091483742,
0.0926711112,
-0.0481353253,
-0.2960973382,
0.0075229304,
0.1244783401,
-0.3474840224,
-0.2607434094,
0.0564995408,
-0.1145009995,
0.1813017279,
0.1208534837,
-0.0085929856,
-0.6265864372,
-0.0859769732,
0.4911959171,
0.3378354013,
-0.1173983738,
0.022537481,
0.3983533382,
-0.1619604081,
-0.4426511526,
-0.1478759348,
-0.1674223095,
0.0900758505,
0.1807972789,
0.120010823,
-0.3284373879,
0.2297535986,
0.3346862793,
0.1229011267,
0.4285554886,
0.2178947031,
0.0859569758,
0.0995592177,
0.0065952414,
0.0419077948,
0.4521703124,
-0.2863285244,
-0.464758873,
-0.1230602264,
0.0439877771,
0.2652988434,
0.1608946174,
0.3431628942,
-0.0893259868,
-0.2227251381,
-0.501960814,
-0.2145174742,
0.2109343112,
-0.0418745279,
-0.054985784,
-0.3572918177,
-1.0777642727,
0.335691601,
0.1809642762,
-0.0971047655,
0.1761042774,
0.1328935027,
-0.134957552,
0.1247948408,
0.0295264814,
0.9321956038,
-0.1772609949,
0.2380487025,
0.3661991954,
0.2965845466,
0.713519454,
-0.1419454813,
-0.2076853216,
-0.3434433341,
0.2142758071,
0.0496632233,
-0.0595827512,
0.2961930633,
0.2053504437,
-0.1560036391,
0.2518340051,
0.203656137,
0.4291244447,
0.1284232438,
0.2230035067,
-0.2504242957,
-0.311547786,
-0.1322669387,
0.0115681924,
-0.3206799328,
0.0376146697,
-0.1738489568,
-0.0039351843,
0.0170449391,
0.1563147604,
-0.4413564801,
0.0136806145,
-0.2030917704,
0.0191739984,
-0.0973054618,
-0.4997600317,
0.4716840684,
0.1864799261,
0.3057289422,
0.2079541385,
-0.1851717979,
0.0395432599,
-0.2062277198,
-0.0801258832,
-0.2003693283,
0.000740964,
0.2439536303,
0.0106171519,
-0.0298103988,
0.098159112,
0.3809087873,
-0.0212844163,
-0.1528527737,
-0.2496741712,
0.3948429525,
-0.3585499227,
-0.2738020718,
0.2733775377,
0.0186457783,
-0.0811741427,
-0.0242216215,
0.3156313598,
-0.178357169,
-0.0747331977,
-0.1993063986,
0.1323683858,
-0.0118839266,
-0.3328547478,
0.3187775612,
-0.2915685475,
0.3401270211,
0.1281151921,
0.1122779995,
-0.0593239069,
0.0284578055,
0.2757192552,
-0.4038215578,
-0.1267395616,
0.108663708,
-0.236401543,
0.0819723979,
0.1765655279,
-0.101578705,
0.084026821,
0.0360073969,
-0.2625139952,
-0.1277980059,
0.155367732,
0.0030013286,
0.3532755077,
0.0457552224,
-0.010078676,
-0.1774008572,
0.0435955897,
-0.1735629886,
0.176726535,
0.1601533592,
0.1843807399,
0.2037207335,
0.0576778837,
-0.1015833318,
-0.1093997285,
-0.0787588507,
0.0701256543,
-0.1479986906,
-0.0097600967,
-0.5596264005,
0.2132184803,
0.0571900085,
-0.1296143532,
-0.0371960402,
-0.2645623386,
0.1283726692,
-0.3482795656,
0.2246415764,
-0.0293611288,
-0.0460957251,
0.1597708762,
0.5605435371,
-0.0127614066,
-0.2915020585,
0.009755386,
0.1320856214,
0.4077633917,
0.4412094653,
0.0612205826,
-0.1038740277,
-0.1245040223,
-0.0271418262,
0.2084718347,
0.7593998313,
0.0702519119,
0.3213882744,
0.1391650289,
0.1181173846,
0.2112986445,
0.1848992705,
0.455793798,
-0.0918230712,
0.2779635191,
0.2086736262,
-0.0071701221,
-0.0895722657,
0.1609562635,
0.2544288635,
-0.1813841462,
-0.1500153244,
0.3750499487,
0.1749407053,
0.2845789194,
-0.1489906609,
-0.2645766437,
0.209746182,
0.02748698,
0.3904093504,
0.1939254105,
-0.0120405406,
-0.282576859,
-0.041224204,
0.4000234604,
0.288056463,
-0.4512825906,
0.2234055251,
0.2511088252,
0.1872943342,
0.1809877306,
0.5107918978,
-0.4333376288,
-0.0405470468,
0.4104089141,
0.3606261909,
0.2895863652,
-0.0849081874,
0.2871319056,
0.1232731044,
0.0652574375,
0.0793492794,
0.2252429575,
0.0982774198,
-0.070217438,
-0.2390368283,
-0.2490401864,
-0.3212152719,
-0.0558159873,
-0.3482565284,
-0.1666559875,
-0.1457803994,
-0.0525199957,
-0.034150321,
-0.4228684306,
0.0582166538,
0.1503520906,
-0.0318880975,
-0.03373513,
0.1851819009,
0.1267451495,
-0.3633870482,
0.2255136222,
0.3972005248,
0.1097612083,
0.015224969,
-0.0066319369,
0.2950594425,
-0.1489104927,
0.1632116884,
-0.1375659108,
0.0216872059,
0.1722302139,
-0.2595813274,
0.135803625,
-0.0716033131,
0.0557164401,
-0.1894648969,
-0.012652291,
-0.185428381,
-0.4377538562,
0.6592113972,
0.234205693,
-0.2106862962,
0.1065579131,
0.2138048261,
-0.1598929763,
-0.3499536812,
0.4518507123,
0.3653376997,
-0.0347412899,
-0.2207176089,
-0.0010922886,
0.190440923,
0.2138689458,
0.0775153935,
-0.1051170379,
-0.0865746737,
-0.2625458241,
-0.7192500234,
0.2276404053,
-0.1733569354,
-0.6922214031,
0.2622717619,
-0.1413422525,
0.3419551551,
0.1014135256,
-0.2939867079,
-0.0348928496,
0.0552139655,
-0.2313892543,
-0.1737842411,
-0.4438751638,
0.0258591864,
0.0515155941,
-0.1029372662,
-0.2471004874,
-0.0737908632,
0.0714302137,
-0.1363354027,
0.035309419,
-0.1981964558,
0.1184597462,
-0.4753552973,
0.1128876656,
0.133209914,
0.2694589198,
0.1883931905,
-0.0659006238,
-0.2441360801,
0.055375427,
-0.1352279931,
0.2859680951,
-0.1012535095,
0.0479673296,
-0.5305736065,
0.0068745594,
-0.2922243774,
-0.1701009572,
-0.0079450905,
0.0704060197,
-0.1326501518,
0.1036821082,
-0.3454537988,
-0.0599827431,
0.3603956103,
0.5799030066,
-0.2321648598,
0.0223561898,
-0.15164873,
0.1939750016,
0.3261490464,
-0.23401694,
-0.4163009524,
-0.0622062162,
0.0432806946,
-0.2508486807,
0.0315812901,
-0.5333890915,
0.0338167995,
0.2631513476,
-0.0209532585,
-0.1001887843,
-0.0299173649,
0.2262379974,
-0.2082659304,
-0.1614112556,
0.4423396587,
0.0793698505,
-0.0737436265,
0.0107916966,
-0.165982753
] |
https://github.com/huggingface/datasets/issues/426 | [FEATURE REQUEST] Multiprocessing with for dataset.map, dataset.filter | Yes, that would be nice. We could take a look at what tensorflow `tf.data` does under the hood for instance. | It would be nice to be able to speed up `dataset.map` or `dataset.filter`. Perhaps this is as easy as sharding the dataset sending each shard to a process/thread/dask pool and using the new `nlp.concatenate_dataset()` function to join them all together? | 20 | [FEATURE REQUEST] Multiprocessing with for dataset.map, dataset.filter
It would be nice to be able to speed up `dataset.map` or `dataset.filter`. Perhaps this is as easy as sharding the dataset sending each shard to a process/thread/dask pool and using the new `nlp.concatenate_dataset()` function to join them all together?
Yes, that would be nice. We could take a look at what tensorflow `tf.data` does under the hood for instance. | [
-0.2759444118,
-0.2842456996,
-0.2022300512,
-0.1166619137,
-0.2691849768,
0.1010129303,
0.2325941026,
0.3550627828,
-0.0165038109,
0.061669454,
-0.1445137262,
0.3324525356,
-0.135350585,
0.4115582108,
0.0130814873,
-0.2661806345,
0.0175813176,
0.1032481194,
-0.1281684339,
0.1098898798,
0.0762666017,
-0.065546073,
-0.1153074279,
-0.0926846415,
-0.1322975159,
-0.1024550945,
-0.0975713283,
-0.2020663321,
0.182531178,
-0.0591970123,
0.0819191039,
0.4362559617,
-0.1955319494,
0.3209600151,
-0.0001035185,
-0.0330525041,
0.0230350457,
0.1411820203,
0.0554770492,
0.1950992495,
-0.2407263964,
-0.3496338129,
0.0154761896,
-0.2446850538,
0.1141091362,
0.1449298263,
0.229679808,
-0.2520438135,
0.1510988474,
-0.1482694298,
0.1650047153,
0.3244563937,
-0.1013420969,
0.3549084067,
-0.1160896197,
0.2881197631,
-0.1332560778,
-0.2739551961,
0.4300306439,
-0.1658626795,
-0.1933050752,
0.4834126234,
-0.2048955262,
0.1841050684,
0.1868388802,
-0.0659239739,
0.0773281008,
-0.4097803235,
-0.1818063855,
0.4087256193,
-0.0675884113,
-0.2307182848,
-0.4504496157,
-0.2789040506,
-0.1264072359,
-0.4070108533,
-0.2271303236,
0.085873574,
-0.209923923,
-0.0233105104,
-0.4120796323,
-0.3114102185,
0.1997829825,
-0.0812531859,
0.1616559625,
0.3613922,
0.2724671364,
0.1311333179,
0.19193694,
-0.1969309151,
-0.056466721,
-0.2537741363,
0.3110476136,
0.0066751428,
-0.6924257278,
-0.1842934787,
0.0167129189,
-0.2867712677,
-0.0392807275,
-0.0706893951,
0.1534598172,
0.3635830581,
0.0018450357,
0.2756716907,
0.0096386112,
-0.3759274185,
0.0630589947,
-0.0125336051,
0.1332938373,
-0.4187012017,
-0.2308542728,
0.2932198644,
0.1267775893,
-0.0834779367,
-0.2717577219,
0.0474014319,
-0.0980956405,
0.2626236081,
0.0492143705,
-0.400042206,
0.0890798271,
-0.1915699989,
0.1827958524,
-0.0364472903,
-0.0701017901,
0.3581654429,
-0.1625255644,
-0.248362571,
-0.1925838888,
-0.1561348885,
-0.0763625801,
-0.0069034044,
0.0626299754,
0.1361532807,
0.1571869105,
0.1219407842,
-0.1967086792,
0.0479606725,
0.1393322647,
0.3047913611,
0.3225725293,
-0.1254656017,
0.0392492488,
0.1707832515,
-0.1373326927,
-0.1019915342,
-0.1454036534,
0.0859716386,
-0.3219797909,
-0.0447812751,
-0.3592560291,
-0.2022032738,
-0.0783004463,
0.1522819847,
0.1580557376,
-0.0834569484,
-0.2392239869,
0.7270875573,
0.1221742034,
-0.0139260665,
-0.3829065561,
-0.1173570007,
-0.5056689382,
-0.2212937176,
0.340301156,
-0.0071710125,
-0.0925391391,
-0.024439171,
-0.2103014588,
-0.0364559963,
0.2022959739,
0.3431306481,
-0.1650478989,
0.2029750347,
-0.0161113292,
0.4196079969,
0.5856341124,
-0.1346533,
0.1360904872,
0.3772719502,
-0.175332889,
0.051907979,
0.2391437143,
0.1840675622,
0.1506539285,
-0.1263086498,
0.160159722,
0.4892571867,
-0.3131013513,
0.2583974004,
0.0568524748,
-0.2214287966,
0.1675418913,
0.163732335,
0.0658372641,
0.0036606789,
-0.1034321487,
-0.3204090297,
0.3190236986,
-0.3128894269,
0.0569214672,
0.0483362786,
-0.1053902358,
-0.0348552987,
-0.1259043813,
-0.3479109406,
-0.3173055947,
0.1093392819,
0.0865776166,
-0.0670085251,
0.1533924043,
-0.3714464307,
0.4874787331,
0.122194007,
0.1755735278,
0.23964338,
0.180189386,
0.2371765375,
0.0878022313,
-0.2353840321,
-0.2851776481,
0.1088109165,
-0.1383734941,
-0.1427968442,
-0.1061130315,
0.2467591316,
0.2857473195,
-0.1014981344,
-0.0214308426,
0.1331703365,
-0.1547444314,
-0.1268596351,
0.157813102,
-0.0227403548,
-0.0729568452,
0.366910398,
0.4954012632,
0.5253914595,
0.1801846772,
0.108361721,
-0.1301071793,
-0.20871979,
-0.1430883557,
-0.2054133713,
-0.1446279585,
0.4666018486,
-0.0668564737,
0.3619406223,
0.1625888646,
-0.0146637037,
0.2380343825,
0.0549201369,
-0.0770052224,
0.2333347201,
0.0734027177,
-0.1057647914,
-0.0397084914,
0.1877191663,
-0.4425651431,
0.3263513446,
0.5805602074,
0.1085754782,
-0.0362412781,
0.1326858997,
0.2328304499,
-0.0102917962,
0.1181016937,
0.1348211467,
0.1647722125,
0.1919316202,
0.1233763993,
-0.0926788971,
-0.0140285287,
0.0075353384,
0.1509768218,
0.2267986685,
0.2975915074,
0.07327687,
0.0710346326,
-0.1913866997,
-0.1167143434,
-0.3844876885,
0.2422836721,
0.0336244479,
0.0222347602,
-0.0753337592,
-0.2187240273,
-0.0839652568,
0.0200217552,
0.1564752162,
-0.1084875613,
-0.2796203494,
0.0375792831,
0.2110372931,
-0.1723949313,
0.1639954448,
0.1517236084,
0.1216601133,
-0.0795259103,
-0.0444304124,
-0.1731158495,
-0.1128003448,
0.1154028326,
0.0780870616,
0.360466063,
0.2093339264,
0.4150378704,
0.2297142744,
0.1016193926,
-0.3085977733,
-0.3013165593,
-0.0605727285,
-0.2326070368,
0.0706917569,
-0.0197265185,
0.0140116774,
-0.2078687549,
-0.4240691066,
0.134975642,
0.1233984903,
-0.1107929945,
-0.149463594,
0.0558030494,
0.0630633533,
-0.0742373317,
-0.205320999,
-0.5143823624,
-0.4376355708,
0.366953671,
-0.3244444728,
0.349766463,
-0.1991967708,
0.0240949057,
-0.0096492916,
-0.1741125733,
0.0837805942,
0.1551624537,
-0.417840302,
0.1165353954,
-0.0766959041,
-0.1169134676,
-0.3409129381,
-0.0333880931,
0.0715974718,
0.4641481042,
-0.2137116194,
-0.0585737973,
-0.2273502201,
0.1493423581,
0.1650559306,
-0.0818077475,
0.1073484272,
-0.0158899501,
-0.1121383756,
0.0774198547,
-0.1644621789,
0.0516894944,
-0.0614814423,
-0.295973897,
0.2579021454,
0.3612658381,
0.1235007197,
0.7081285715,
0.1143638492,
-0.2318827957,
-0.0408288725,
0.0727379546,
-0.268843174,
0.2038412392,
-0.494833976,
-0.0708800405,
-0.168832466,
0.1085113138,
0.0931627974,
-0.1084738821,
-0.4197060466,
-0.0343335234,
0.2127263248,
-0.1820170581,
-0.1730898917,
0.2890791893,
-0.301625073,
0.3059795499,
0.040446572,
-0.2821751833,
-0.4290570915,
0.0758813918,
-0.1535701752,
0.0001311041,
0.2750859857,
-0.182677418,
-0.3942542672,
-0.2149475813,
-0.4903289974,
0.3338409364,
0.1873452961,
0.1052180454,
-0.0175466314,
0.0272646844,
-0.0534178577,
-0.1533872336,
0.579554677,
-0.3685052097,
-0.2850635052,
0.2537961006,
-0.4896866679,
-0.0196862631,
0.2228054404,
-0.0259727091,
0.4166379571,
0.3337047994,
0.4109070599,
-0.2376562059,
-0.4871215224,
0.1558930874,
0.0219497047,
-0.0720129907,
0.0266816206,
-0.0253534913,
-0.0449185334,
-0.1176824644,
-0.0097693168,
-0.0659001544,
-0.028059667,
-0.0187597331,
-0.1868542284,
-0.164632827,
0.0536769331,
0.3366570473,
0.0215825588,
-0.1456777155,
0.3455346227,
0.2921149135,
-0.2915526927,
0.1141732931,
-0.0874809027,
-0.1014223695,
-0.1853515953,
-0.1297590137,
-0.0313218981,
-0.0368647203,
0.5222082734,
0.0930932388,
0.1535841525,
0.3920101225,
-0.1096462607,
0.4256864786,
-0.2488381714,
0.1663352549,
0.3916359842,
0.2579735816,
-0.2799403667,
-0.3690028191,
0.2246362865,
0.278781265,
0.0205801725,
0.5443370342,
-0.2962471843,
-0.0203336067,
0.2075717449,
0.0824858397,
0.5658173561,
-0.3810485899,
0.0208451953,
-0.2761299312,
0.1997946948,
0.4320566952,
-0.4796613455,
0.1967350543,
0.0666370541,
-0.3153507113,
0.0637308881,
-0.0058262795,
0.1173131242,
0.42645365,
-0.1951822937,
0.0736684054,
0.3178195357,
-0.036403887,
-0.0825515091,
0.462234199,
0.2771169245,
-0.3780424893,
-0.091999732,
0.1073802486,
-0.0745103732,
-0.3487042189,
0.0642071813,
-0.275018692,
0.160348773,
0.3369330764,
-0.3123570383,
-0.1006101668,
-0.0329275504,
0.4128575623,
-0.2716252506,
-0.0356820226,
-0.0980785042,
0.1445012987,
-0.0621919967,
-0.0515225939,
-0.0887066796,
0.0366988666,
-0.1406469941,
0.3195924759,
-0.2093699425,
-0.3096981049,
0.2303261757,
-0.1214028299,
-0.1893571764,
0.0026276922,
0.1380226463,
-0.5908477306,
-0.1397262663,
0.0934136063,
0.0945590883,
0.4548110962,
0.112234883,
0.375834167,
-0.3117889762,
-0.0755105466,
0.141802296,
0.2096752077,
-0.1527107209,
0.5664057136,
0.0669877082,
-0.1376766115,
0.0543281026,
0.0388535783,
0.3187229931,
0.0386625603,
0.2706731856,
0.1541329473,
-0.1378088742,
-0.2728897631,
-0.1065817624,
-0.2155000269,
0.0848813057,
0.2780232131,
-0.1531939954,
-0.1919223666,
0.1020031869,
-0.1520501226,
-0.1595102102,
0.1164393872,
-0.2900214791,
-0.1523670107,
-0.1031882167,
0.0998690203,
-0.118806079,
0.2155808657,
-0.0794777125,
0.1791786999,
-0.0537462011,
0.5050320625,
-0.3481153846,
-0.1349555105,
-0.1647225469,
0.1981510222,
0.3397384286,
0.022118926,
-0.0613248609,
0.2210672796,
0.1781975925,
0.1315311044,
-0.1826761663,
-0.3112728894,
0.1795539856,
0.0597393438,
-0.1320132613,
0.0578907579,
0.1754208952,
0.1522130221,
-0.3791616261,
-0.3611778617,
0.0145176202,
-0.0904417783,
-0.0286884755,
0.0797054917,
0.1471131146,
-0.211282447,
0.2349594235,
-0.0554063991,
0.1310700029,
-0.0193428732,
-0.1385554671,
0.3766925335,
0.1650497317,
-0.151466608,
0.1522015631,
-0.0971620828,
0.1188127697,
-0.174206838,
0.2069417238,
0.0635361969,
-0.2430642992,
-0.0912080258,
0.2783664763,
0.3514907956,
0.1390744746,
0.2302769125,
0.0571814179,
0.1735038161,
-0.1607595086,
-0.1503106952,
0.5617011189,
0.000252381,
0.3441426158,
-0.0869363844,
0.111255452,
0.4852905571,
0.1047265753,
-0.0686947182,
-0.1232322603,
-0.3425776064,
0.0975729376,
0.0001644278,
0.2361602783,
-0.03996934,
-0.1033605412,
0.0276410244,
0.1377210915,
0.1111190021,
0.0776179507,
0.7436552644,
-0.1332690567,
0.1466139853,
0.2358624935,
-0.2185105532,
0.1554219425,
0.1508919001,
0.0706596076,
0.2849659622,
0.1042456627,
0.0836237669,
0.1157595068,
-0.5258510113,
-0.1622167826,
0.6554816961,
-0.0517867431,
-0.335093081,
-0.0595481768,
-0.0637187138,
-0.0553976595,
0.0772389248,
0.1890804619,
0.1039633602,
0.5785465837,
0.0631638169,
0.4233323932,
0.0217110347,
0.1380327493,
-0.1756116599,
0.3721527755,
-0.0519327745,
-0.1600179821,
0.1439990103,
-0.2131198347,
-0.2313866466,
0.3223556578,
0.118281804,
0.2578307688,
-0.0606111586,
0.3421158791,
-0.2579095364,
-0.0363843665,
-0.2379799634,
0.2340899557,
-0.0216610357,
0.0199267566,
0.4125624299,
0.1230833009,
-0.1453165114,
-0.2635042369,
-0.0451857671,
0.0962261334,
-0.4112078249,
0.0877638608,
0.1337746978,
-0.1602259278,
0.013999654,
0.0020580105,
-0.3977246583,
-0.2798145413,
0.7091531754,
-0.5511264801,
-0.0335204899,
0.0124386363,
0.1236992329,
-0.2153753042,
0.6456468701,
0.082754299,
0.3928980231,
0.0056270398,
-0.1644990891,
-0.4179259539,
-0.2629400492,
-0.0663555413,
0.1159653738,
0.1231000349,
0.4917400479,
0.2183327228,
0.3176271915,
0.0032260939,
-0.4619165659,
0.0243650153,
0.0811447799,
-0.4527284503,
0.1186485142,
-0.3704133332,
-0.0622871518,
0.175267458,
-0.3342033625,
0.2675737441,
0.1106445342,
0.1272594929,
-0.2127430439,
0.1328651011,
0.493816793,
0.1521320939,
0.0125985648,
0.0098244753,
0.3086355329,
-0.306248039,
0.0071035251,
-0.1148120761,
0.0962170959,
-0.1907645315,
0.0032969937,
-0.0433019809,
0.3226052523,
-0.2178194821,
0.0597902648,
-0.0545969419,
0.1038939059,
-0.1082258373,
-0.1784218699,
0.1569593251,
0.0113973022,
0.166601643,
0.1770834774,
-0.0151793882,
0.348741293,
-0.0062885638,
0.0953626335,
-0.1045327634,
-0.0823694915,
0.2420101911,
-0.4555223584,
-0.2231687605,
-0.2831243277,
0.0669720247,
-0.0349164531,
0.4219537973,
-0.3687779903,
-0.3382130563,
0.2574602365,
-0.0874077082,
-0.0455557816,
0.5557898879,
0.0016171262,
-0.2452807724,
-0.1554077268,
-0.2612407804,
-0.0094330031,
-0.3534404039,
-0.1483712196,
-0.2303107977
] |
https://github.com/huggingface/datasets/issues/426 | [FEATURE REQUEST] Multiprocessing with for dataset.map, dataset.filter | So `tf.data.Dataset.map()` returns a `ParallelMapDataset` if `num_parallel_calls is not None` [link](https://github.com/tensorflow/tensorflow/blob/2b96f3662bd776e277f86997659e61046b56c315/tensorflow/python/data/ops/dataset_ops.py#L1623).
There, `num_parallel_calls` is turned into a tensor and and fed to `gen_dataset_ops.parallel_map_dataset` where it looks like tensorflow takes over.
We could start with something simple like a thread or process pool that `imap`s over some shards.
| It would be nice to be able to speed up `dataset.map` or `dataset.filter`. Perhaps this is as easy as sharding the dataset sending each shard to a process/thread/dask pool and using the new `nlp.concatenate_dataset()` function to join them all together? | 47 | [FEATURE REQUEST] Multiprocessing with for dataset.map, dataset.filter
It would be nice to be able to speed up `dataset.map` or `dataset.filter`. Perhaps this is as easy as sharding the dataset sending each shard to a process/thread/dask pool and using the new `nlp.concatenate_dataset()` function to join them all together?
So `tf.data.Dataset.map()` returns a `ParallelMapDataset` if `num_parallel_calls is not None` [link](https://github.com/tensorflow/tensorflow/blob/2b96f3662bd776e277f86997659e61046b56c315/tensorflow/python/data/ops/dataset_ops.py#L1623).
There, `num_parallel_calls` is turned into a tensor and and fed to `gen_dataset_ops.parallel_map_dataset` where it looks like tensorflow takes over.
We could start with something simple like a thread or process pool that `imap`s over some shards.
| [
-0.3959473968,
-0.3589051366,
-0.163328141,
-0.104320094,
-0.280354619,
0.1315263212,
0.2860784829,
0.2982305884,
0.0233872384,
0.0550607145,
-0.1639014184,
0.3279609978,
-0.0940095559,
0.3442826867,
-0.1141018718,
-0.1108684614,
-0.050692372,
0.0559120402,
-0.0223452859,
0.0690450892,
-0.0700982809,
-0.0351479985,
-0.1102685705,
-0.2142753005,
-0.1099675,
-0.1081891283,
-0.0303027928,
-0.1212912872,
0.2324785888,
-0.0245666765,
0.1026777327,
0.4613175094,
-0.2688799798,
0.3424682021,
-0.0001032941,
0.0418285877,
-0.030008249,
0.0868737549,
0.0992645919,
0.161169216,
-0.2120830864,
-0.2810767293,
-0.0511215776,
-0.297596097,
0.0698215216,
0.1315263808,
0.2037038505,
-0.2799983621,
0.2039441168,
-0.1203095838,
0.1440794468,
0.4225910604,
-0.0239603892,
0.2986963987,
-0.235648483,
0.1569112986,
-0.1393170357,
-0.1624262929,
0.3427736163,
-0.2062583566,
-0.126812309,
0.4884386063,
-0.2593209743,
0.2763179839,
0.123053357,
-0.0430890433,
0.0226264168,
-0.4618027806,
-0.1920104921,
0.3221644759,
-0.1607875824,
-0.1975751221,
-0.4645854831,
-0.3551501334,
-0.1647727489,
-0.3611132503,
-0.1993352622,
0.0582984835,
-0.21818313,
-0.016747633,
-0.3532603681,
-0.2185588777,
0.1069770008,
-0.1390843987,
0.0176805556,
0.3166690469,
0.3593292534,
0.1542652994,
0.2229835987,
-0.1610964537,
-0.1056812406,
-0.1764618903,
0.3239942789,
0.1019215509,
-0.7124089003,
-0.2153794914,
0.0315666273,
-0.3484632671,
-0.0871076286,
-0.0917284191,
0.0713715479,
0.3659608066,
0.0206586495,
0.2957696617,
-0.0312646329,
-0.4160401225,
0.0468210578,
0.0443537273,
0.1093430817,
-0.4134153724,
-0.1735180616,
0.2978516817,
0.0914849639,
-0.0863814801,
-0.2096258998,
0.0468084514,
-0.0589463823,
0.2689779401,
-0.0146425813,
-0.345823884,
0.0569181293,
-0.1112900376,
0.1320360154,
-0.0379309654,
-0.0666666999,
0.2931644022,
-0.073102437,
-0.2985048592,
-0.3626375794,
-0.0711502135,
-0.121841386,
-0.0188442953,
-0.006802015,
0.1827820241,
0.1765122265,
0.1731301993,
-0.2708666027,
0.0147010125,
0.1303199977,
0.3093441725,
0.343028605,
-0.1882894486,
-0.0362690017,
0.2379077226,
-0.1522755921,
-0.1348413527,
-0.0187119935,
0.101222299,
-0.2487322688,
-0.0216224343,
-0.3682626784,
-0.2509815991,
0.0032871403,
0.1618474126,
0.0316621289,
-0.1213389784,
-0.24772273,
0.635150075,
0.1733302176,
0.0539813265,
-0.4437559843,
-0.1052968055,
-0.62141186,
-0.2067534328,
0.3430373669,
0.0838772953,
-0.1477430016,
0.0057000071,
-0.1197176576,
-0.0573703945,
0.1628469676,
0.3418937922,
-0.0894843191,
0.0796350241,
0.0038425326,
0.4780186415,
0.3685805798,
-0.1520618498,
0.0209941454,
0.307754755,
-0.2115901411,
0.0637930259,
0.2098008096,
0.1910682321,
0.2824668288,
-0.2052375674,
0.1804118454,
0.5076909661,
-0.253885448,
0.2780779898,
-0.0517068952,
-0.2002610117,
-0.0244694874,
0.3239072561,
0.1461584866,
-0.0261237174,
-0.1242436841,
-0.3164180815,
0.3325299919,
-0.1800850034,
0.0445957705,
0.0815768093,
0.0334729925,
0.0663521513,
-0.095474273,
-0.3216047287,
-0.3459465206,
0.242272675,
0.1438238472,
0.082545504,
0.0948248506,
-0.3457757533,
0.4237267971,
0.1098074391,
0.1453584731,
0.2596765459,
0.2118769288,
0.1120649129,
-0.0073614269,
-0.2629689574,
-0.2826952338,
0.2408763766,
-0.2067615688,
-0.1024321988,
-0.1578766555,
0.3324166834,
0.252299726,
-0.1547694057,
-0.1125104427,
0.1080854982,
-0.0961471871,
-0.1481081843,
0.1552660316,
0.0421345159,
0.007130038,
0.4032178819,
0.3985295892,
0.5866162777,
0.2142302543,
0.1764784306,
-0.1187569723,
-0.2487887591,
-0.1447885185,
-0.1825560927,
-0.080652222,
0.4537776709,
0.0177680384,
0.4275167882,
0.1542966366,
0.0031853616,
0.1733980477,
0.0105933771,
-0.0276000351,
0.2379274964,
0.1078169569,
-0.1230464354,
-0.0627014339,
0.1927460134,
-0.286826849,
0.3883140087,
0.5061122179,
0.1174508929,
-0.1138853058,
0.0805555731,
0.2276953608,
0.0240805075,
0.0678066388,
0.2511110306,
0.2452669293,
0.1791778505,
0.1480737031,
-0.0011042785,
-0.0717212707,
0.0195031203,
0.128964901,
0.2748679519,
0.3190975487,
-0.0208061524,
0.0697429776,
-0.1868712306,
-0.1235900521,
-0.4200429916,
0.2997807562,
0.1124175414,
0.0483125895,
-0.0575499088,
-0.1074939072,
0.1269656718,
0.0162725188,
0.1375827193,
-0.0727736205,
-0.3041386902,
0.0181804523,
0.3667221069,
-0.0663114935,
0.1369045824,
0.1925068498,
0.04637748,
-0.0803007931,
-0.1121403426,
-0.1769389212,
-0.2440681159,
0.2080887705,
0.0885314941,
0.3739578724,
0.1900400817,
0.4317303896,
0.1747727543,
-0.0021736026,
-0.1536819935,
-0.2592745125,
-0.0543097928,
-0.2863564491,
-0.0191693474,
-0.0316723026,
0.114108175,
-0.2228765041,
-0.3058830202,
0.1724511087,
0.0046105385,
-0.0688405558,
-0.1139104068,
-0.0127071291,
0.0893529877,
-0.047735475,
-0.2503355742,
-0.5684006214,
-0.4092234969,
0.3266503811,
-0.232437402,
0.3775833249,
-0.0547007173,
0.0361392125,
-0.0018447042,
-0.1080201268,
-0.0059896857,
0.0841722041,
-0.2796821296,
0.108138606,
-0.0342620425,
-0.1321192682,
-0.2544579506,
-0.0246624425,
0.0796696618,
0.5135452747,
-0.1619198918,
-0.1321913749,
-0.2244547457,
0.1193797141,
0.127467081,
-0.0757751912,
0.1937648058,
0.0238468125,
-0.1134343445,
0.0619438216,
-0.0049562305,
0.1277591437,
-0.079896301,
-0.3843893111,
0.2287479341,
0.3610135019,
0.1952297986,
0.7414990067,
0.1890397221,
-0.3178261518,
-0.0958651528,
0.0290845055,
-0.2857876122,
0.1605233252,
-0.432831347,
-0.0814658999,
-0.0768272728,
0.0475000665,
0.0460654907,
-0.1417330652,
-0.4039618373,
-0.0671355054,
0.1964143068,
-0.216160804,
-0.2535504699,
0.2536224425,
-0.1575149894,
0.2934396565,
0.0309128091,
-0.245630458,
-0.4624834657,
0.0370784923,
-0.1610600352,
0.0008598343,
0.3101627529,
-0.2374072671,
-0.303688854,
-0.1044953987,
-0.5077469349,
0.3355196118,
0.0779225826,
0.1264088303,
0.0412267596,
-0.021640107,
0.0204039067,
-0.1583376378,
0.6184369922,
-0.3220216334,
-0.2553034723,
0.2162011862,
-0.4241091907,
-0.1754305363,
0.1810814887,
-0.0449716672,
0.348090142,
0.3188769519,
0.4349923134,
-0.3314711452,
-0.4567178488,
0.125540182,
-0.0280901156,
-0.0977560505,
-0.0610612966,
-0.1144473702,
-0.074311927,
-0.197604537,
0.048701562,
-0.0044868216,
-0.0453450233,
-0.0092506632,
-0.1380378008,
-0.1529382467,
0.0189392939,
0.2857366502,
0.1053524017,
-0.1077662557,
0.2979784906,
0.3880721033,
-0.1602467448,
-0.0859045014,
0.0324027836,
-0.0230682511,
-0.0851467401,
-0.1626369953,
-0.0577274635,
0.0524090305,
0.4032558203,
0.0532748215,
0.1544160992,
0.2574467063,
-0.1386052072,
0.4407038391,
-0.246518597,
0.1414551139,
0.2674776018,
0.2806441486,
-0.2167596817,
-0.4176125526,
0.2283666879,
0.2824580967,
0.0356750637,
0.5328615904,
-0.2536228895,
0.0068782568,
0.3022965193,
0.1098843068,
0.5154483318,
-0.4857497811,
-0.0372981541,
-0.2026859075,
0.3226898909,
0.3930727839,
-0.558809042,
0.2324300408,
-0.0293802917,
-0.367680341,
0.0822342336,
-0.0416125692,
0.1130400747,
0.4261131287,
-0.1032335386,
0.0577920116,
0.3466852307,
-0.0036738601,
-0.0781664848,
0.3455249071,
0.2027906626,
-0.3903526664,
-0.0352289043,
0.1311016381,
-0.0206056852,
-0.2782935798,
0.0426180251,
-0.1541854739,
0.1644088477,
0.3133021593,
-0.3648082018,
-0.1199439317,
-0.1013829708,
0.3564147949,
-0.2605821192,
0.0154458433,
-0.119308196,
0.1340243369,
-0.0776552856,
-0.0452139899,
-0.068260476,
0.0828442127,
-0.0709706843,
0.2556940913,
-0.0639364868,
-0.3214077055,
0.2498637885,
-0.1251497269,
-0.2517110407,
-0.0653512478,
0.1504545063,
-0.4629351497,
-0.1572734714,
0.0920550525,
0.1018480062,
0.4866553843,
0.1113804877,
0.4011411369,
-0.3141962886,
-0.0329847373,
0.1462135017,
0.1290739775,
-0.1824345142,
0.6450841427,
-0.1432971209,
-0.1451509297,
0.0570270196,
0.116440028,
0.3842926025,
-0.0462187305,
0.2132509351,
0.1516082585,
-0.1438690126,
-0.2672669888,
-0.1400872767,
-0.1376984417,
0.07166031,
0.2139725238,
-0.1158777326,
-0.1828245223,
0.1562100649,
-0.2269119769,
-0.1832347959,
0.1615785956,
-0.3105662763,
-0.2790352702,
-0.1183368191,
0.1062589884,
-0.0522754863,
0.2375907898,
-0.0872710645,
0.1804926544,
-0.0868486241,
0.426100105,
-0.3705819845,
-0.0214440841,
-0.1634512544,
0.165109396,
0.3253673315,
-0.0246272478,
0.0152843259,
0.1470459998,
0.1758813858,
0.1975679845,
-0.1980699301,
-0.3065065742,
0.1562503427,
0.0477567911,
-0.1228806898,
0.0148316398,
0.1809358597,
0.0875283629,
-0.442279309,
-0.3774243593,
0.101563707,
-0.008637242,
-0.0991131738,
0.003800977,
0.362770617,
-0.033400435,
0.1455199122,
-0.0058684186,
0.0634085983,
-0.0765855089,
-0.1244179159,
0.3410062492,
0.1938907057,
-0.1176000759,
0.1448976249,
-0.1172137707,
0.1600016952,
-0.1159836352,
0.2434906363,
0.0448683649,
-0.2600500286,
-0.0980295464,
0.4227249324,
0.3529418409,
0.2267609239,
0.0967407972,
0.0720930696,
0.2289397418,
-0.1738942862,
-0.116384387,
0.6512266994,
0.0166977234,
0.4703914225,
-0.0157639906,
0.0851167813,
0.51252985,
-0.0365242995,
0.0038919933,
0.0008236431,
-0.3297488391,
0.0768740922,
-0.0688797832,
0.2154851556,
-0.1073746085,
-0.0540694296,
-0.0920072347,
0.1457469761,
0.1421989501,
-0.0178028271,
0.8452953696,
-0.1318360418,
0.0542046167,
0.1747167856,
-0.2661345303,
0.104522258,
0.1242594346,
0.0783947259,
0.3264679611,
0.0545978919,
0.0771177113,
0.0885589719,
-0.4675467908,
-0.1652885377,
0.6315923333,
-0.0764265954,
-0.2411170751,
-0.0466092415,
-0.0262711495,
-0.0856416076,
-0.010362789,
0.2047717273,
0.0620876923,
0.5979960561,
0.0851117447,
0.4313572049,
0.0676748157,
-0.0179101881,
-0.0940606445,
0.3815838099,
-0.0917869881,
-0.1464930475,
0.18080917,
-0.2079188973,
-0.2164741755,
0.2328566164,
0.1020293236,
0.1816221476,
-0.0667533576,
0.4536271393,
-0.2325475514,
-0.0095976293,
-0.2429830134,
0.240132004,
-0.1555421799,
0.1196111292,
0.3448846042,
0.1126714125,
-0.182877928,
-0.3477288783,
-0.0873993784,
0.0183533728,
-0.2619006932,
0.159679994,
0.0909978896,
-0.2678849697,
0.0224006437,
0.0659283474,
-0.3229218125,
-0.2946971655,
0.599860549,
-0.5497960448,
-0.0602738336,
0.0782750249,
0.1313942671,
-0.2361159772,
0.6309198141,
0.0459252596,
0.3957274556,
-0.032509122,
-0.0984345526,
-0.4964115024,
-0.1413850784,
-0.1641001105,
0.0614774972,
0.0978119224,
0.4516782165,
0.2257589996,
0.3760368824,
0.0037350059,
-0.3737080991,
0.0093108676,
0.1776872575,
-0.4579309225,
0.1084485203,
-0.4192533195,
-0.2052965015,
0.1998192519,
-0.3315634727,
0.2484561503,
0.067199707,
0.1189688519,
-0.1650650352,
0.1183109209,
0.5072966814,
0.0071781268,
0.0685007721,
0.006912265,
0.3343526125,
-0.2495893836,
0.0270455331,
-0.1677878499,
0.1200655997,
-0.2708983123,
0.0119972834,
-0.035705097,
0.3253621757,
-0.1558245569,
-0.1059396863,
-0.0696619079,
-0.0041539483,
-0.1198498979,
-0.2138365954,
0.0823439807,
0.0179491118,
0.1702772975,
0.2766762674,
-0.1018978506,
0.4429574907,
0.0640806854,
0.1211883053,
-0.1146945953,
-0.1287370622,
0.3002873659,
-0.4690982103,
-0.2409884781,
-0.3412494063,
0.0718250349,
-0.1741068959,
0.3793014288,
-0.3779061437,
-0.2622277141,
0.2299674898,
-0.0829022601,
-0.0809899643,
0.5007374287,
0.1311318278,
-0.3234911561,
-0.137752682,
-0.2630754411,
-0.0466940738,
-0.3111960292,
-0.0874405876,
-0.1657186449
] |
https://github.com/huggingface/datasets/issues/426 | [FEATURE REQUEST] Multiprocessing with for dataset.map, dataset.filter | Multiprocessing was added in #552 . You can set the number of processes with `.map(..., num_proc=...)`. It also works for `filter`
Closing this one, but feel free to reo-open if you have other questions | It would be nice to be able to speed up `dataset.map` or `dataset.filter`. Perhaps this is as easy as sharding the dataset sending each shard to a process/thread/dask pool and using the new `nlp.concatenate_dataset()` function to join them all together? | 34 | [FEATURE REQUEST] Multiprocessing with for dataset.map, dataset.filter
It would be nice to be able to speed up `dataset.map` or `dataset.filter`. Perhaps this is as easy as sharding the dataset sending each shard to a process/thread/dask pool and using the new `nlp.concatenate_dataset()` function to join them all together?
Multiprocessing was added in #552 . You can set the number of processes with `.map(..., num_proc=...)`. It also works for `filter`
Closing this one, but feel free to reo-open if you have other questions | [
-0.3118089437,
-0.2080800682,
-0.1779322922,
-0.1730469167,
-0.3436496258,
-0.1113174707,
0.1971546859,
0.2835274339,
0.0392577425,
0.0792981014,
-0.0767448395,
0.3925558925,
-0.0509049073,
0.3508173227,
-0.0408178046,
-0.1657484472,
0.0791809335,
0.1307997108,
-0.1149897873,
0.0648016036,
-0.0683186725,
0.0558375344,
-0.1673119664,
-0.0710986108,
-0.1849100292,
-0.1321130097,
-0.1406540573,
-0.0166992731,
0.0662524998,
-0.2419359386,
0.0318653062,
0.4328875542,
-0.1755043119,
0.0703962073,
-0.0000980988,
-0.201336205,
0.2006985843,
0.1778136194,
-0.1014168561,
0.3299802542,
-0.2782135606,
-0.4332957864,
0.0383696258,
-0.2476124167,
0.1491229236,
0.2048671246,
0.2674978077,
-0.2454675287,
0.1922703832,
-0.1812829077,
0.2317159474,
0.2043158859,
-0.1151810139,
0.2320505828,
-0.1050487831,
0.1807964444,
-0.0922974944,
-0.2746461928,
0.3728885949,
-0.1693910062,
-0.3322258592,
0.542042017,
-0.2429716885,
0.1591802388,
0.1380310655,
-0.0897842646,
0.1310693175,
-0.3727107644,
-0.1179905236,
0.2599783838,
-0.0539139993,
-0.135391742,
-0.3391516209,
-0.2734781206,
-0.205640614,
-0.4567806721,
-0.2121408731,
0.0896804705,
-0.2025434077,
-0.1186681092,
-0.3784819245,
-0.2798646092,
0.2643014193,
-0.1941070855,
0.2318015695,
0.3839835227,
0.2291879803,
0.068847023,
0.1787991524,
-0.2928030789,
-0.1345087588,
-0.2245153487,
0.0903646797,
0.0094028637,
-0.5751144886,
-0.1305836737,
0.0920880586,
0.0742388442,
0.0772548914,
0.0394543223,
0.0862808675,
0.3419404924,
0.1756998003,
0.2525441647,
0.0341193303,
-0.3420073986,
0.2699642181,
-0.0482739061,
0.0975597426,
-0.2677496076,
-0.2028666586,
0.3006491661,
0.1756909937,
-0.116688177,
-0.1895584166,
0.0690389797,
-0.081772998,
0.1161871254,
0.0531155467,
-0.3807048798,
0.1933646351,
-0.1785686165,
0.1173209921,
0.1244460791,
0.0175261647,
0.2864508331,
-0.2257845998,
-0.212116763,
-0.2677026391,
-0.2029420435,
-0.1525215954,
0.00745642,
-0.0609153174,
0.0846334025,
0.1458336115,
0.2318816334,
-0.0329228267,
0.0872343928,
0.0680530369,
0.3604521155,
0.2550829947,
-0.0851560235,
0.0856150687,
0.1747233868,
-0.0497541316,
-0.1048840806,
-0.1860295683,
0.0050042346,
-0.3372871876,
-0.0475950912,
-0.2184205353,
-0.0954536572,
-0.0260656066,
0.2172268331,
0.129077509,
-0.0312365834,
-0.176754117,
0.5951275826,
0.0113262944,
-0.1451157331,
-0.3826849759,
-0.0607044287,
-0.3916879296,
-0.233874023,
0.2800221741,
0.108184807,
0.0472642705,
0.0406410992,
-0.2878505886,
-0.0283803102,
0.3236937523,
0.2599789798,
-0.143195197,
-0.0149889924,
-0.0436382592,
0.5232228637,
0.5169823766,
-0.0268269479,
0.0530009717,
0.4043426514,
-0.1324664354,
-0.0553307682,
0.286244601,
0.2277932316,
0.2258704305,
-0.0635011643,
0.0482455343,
0.5034410954,
-0.2482092381,
0.2910604179,
-0.0909455344,
-0.1039723605,
0.0981241465,
0.1033189595,
0.0272241365,
0.0312675349,
0.0279793385,
-0.2089793384,
0.4157719314,
-0.2304133177,
0.1709155291,
0.0214935578,
-0.0577125661,
-0.1529521644,
-0.1221989393,
-0.3011994958,
-0.2843007445,
0.0986699164,
-0.1794971228,
-0.0079390639,
0.1824818552,
-0.3726186156,
0.3392179906,
0.1165095568,
0.0980501622,
0.1306408048,
0.2733264267,
0.327275008,
0.0731171519,
-0.3091554642,
-0.1573939323,
0.1696812212,
0.0174952298,
-0.1916558146,
-0.1207503676,
0.2065019459,
0.0937878862,
-0.1517457515,
0.1674117446,
0.1059084237,
0.0496887751,
-0.0346127525,
0.1924587935,
0.0169883259,
-0.0459611192,
0.3286039233,
0.6206992865,
0.2523434162,
0.105092749,
0.1744486094,
-0.0091990242,
-0.1313979924,
-0.0103492737,
-0.1294963807,
-0.1501308084,
0.4955800474,
0.0422685146,
0.3763102591,
0.2261743397,
0.0779600292,
0.2708154917,
-0.0474648327,
-0.0896144062,
0.1630669534,
0.1636177748,
-0.0212114416,
-0.1145578846,
0.2652323544,
-0.4278351665,
0.3981334567,
0.4963063598,
0.1293103248,
-0.0425887704,
0.0880843773,
0.2510958016,
-0.1494488269,
0.1889102012,
0.1442231834,
0.2122189999,
0.2962417603,
0.1868578196,
-0.14146927,
-0.1081624404,
-0.0351195671,
0.1874665171,
0.1344645172,
0.2369904816,
0.074693121,
0.1096183881,
-0.2849854231,
-0.2190053165,
-0.3890275359,
0.1656530797,
-0.0617084205,
0.081539236,
-0.0809905827,
-0.2183190882,
-0.1557606757,
-0.0316577889,
0.2191959918,
-0.2191597074,
-0.3372046053,
0.1016317755,
0.1640123874,
-0.2236173153,
0.1987195015,
0.1181522906,
0.162324056,
-0.1838797033,
0.1328253448,
-0.1803712398,
-0.1176697388,
-0.0076290411,
0.136131689,
0.3037858307,
0.378546834,
0.4664989412,
0.1868596375,
0.0707410574,
-0.3563059866,
-0.1830934137,
-0.0595963784,
-0.1524495035,
0.092187278,
-0.0250979625,
-0.03866129,
-0.2330757678,
-0.3906511068,
0.1592655182,
0.0492818728,
-0.1521446705,
-0.1326257288,
0.0165965557,
-0.035267435,
-0.0512723736,
-0.2436921895,
-0.4269722402,
-0.4275344312,
0.3586696684,
-0.1808321774,
0.3601449132,
-0.3318044841,
-0.074372761,
-0.0303602368,
-0.2477468848,
0.0795426518,
0.0881256238,
-0.2829637527,
0.0857496709,
-0.0766464919,
-0.1964257061,
-0.2926121354,
-0.0988131166,
0.0426921435,
0.3463366032,
-0.084776476,
-0.0028075054,
-0.2195990831,
0.153880313,
0.2612428963,
-0.0588144138,
0.1657883525,
0.0510349125,
-0.2215292454,
0.1123749167,
-0.2412109375,
0.1503894329,
-0.1320765615,
-0.1409627497,
0.144039169,
0.3033940792,
-0.0152789876,
0.5315759778,
0.1151200831,
-0.1121072471,
0.0215540584,
0.1098573282,
-0.1857663095,
0.1743285358,
-0.4403366446,
0.0002033897,
-0.1181216314,
0.0327632725,
0.1311004311,
-0.1172968596,
-0.5028036833,
-0.0272685811,
0.0582265705,
-0.1981554776,
-0.1705223918,
0.2018122524,
-0.1989320517,
0.2783459127,
0.0801803768,
-0.3016012609,
-0.3575438857,
0.0743292272,
-0.2680960596,
-0.0270332098,
0.213992998,
-0.1887503415,
-0.4772759676,
-0.1842847466,
-0.5468435884,
0.3180506825,
0.1374522001,
0.1132429168,
-0.0543638282,
-0.0037845522,
-0.0591740422,
-0.1751535088,
0.473683089,
-0.3019973636,
-0.1694516242,
0.2956011295,
-0.3368089199,
0.0315157473,
0.2125361711,
-0.0706276074,
0.4595473409,
0.4683872461,
0.2617393434,
-0.3323930204,
-0.3635450602,
0.1668349206,
0.0684036613,
-0.0942510068,
0.0202643871,
-0.1293437928,
-0.0694133639,
-0.2078355849,
0.1128196865,
-0.0865995437,
0.133302331,
-0.036421176,
-0.1267882884,
-0.1307303011,
0.0079301298,
0.3029815257,
0.0826521367,
-0.0328119397,
0.2658082247,
0.2377579808,
-0.348839581,
0.2270437628,
-0.1522959322,
-0.019971434,
-0.1843563765,
0.1344466954,
-0.0626536161,
-0.0692752004,
0.5562532544,
0.2502164245,
0.1834810674,
0.3105379641,
-0.0753911585,
0.4139230549,
-0.1532604992,
0.0114478357,
0.3346476555,
0.1599073261,
-0.2039085627,
-0.2229419053,
0.2769014239,
0.2694516778,
-0.125366509,
0.3823759556,
-0.2421089262,
-0.0711112767,
0.2561420798,
0.1250009239,
0.6941615343,
-0.2547994852,
0.045146618,
-0.2514949143,
0.1451066881,
0.3248782158,
-0.2804259658,
0.2194975615,
-0.0586192012,
-0.1863627434,
0.1432299316,
0.0192234814,
0.190998584,
0.468585223,
-0.2656117082,
0.1729700416,
0.283929348,
-0.1742919385,
-0.0782825202,
0.4526754618,
0.1473707706,
-0.4094931781,
-0.1683620363,
0.1609101295,
-0.0478141718,
-0.3570652902,
0.0380353443,
-0.2977584898,
0.1869591624,
0.1704109311,
-0.3053098321,
-0.0162862241,
0.1349388063,
0.3702847958,
-0.2635105848,
-0.0103286505,
-0.228240937,
0.0804494247,
-0.1640238762,
0.0282277856,
0.0138417836,
0.1121845096,
-0.1329815388,
0.248346746,
-0.1728421897,
-0.2532655895,
0.195827648,
-0.253275454,
-0.1808156818,
-0.0334778093,
0.0669209957,
-0.5287498236,
-0.1446631551,
0.1538774967,
0.0937529206,
0.3899872303,
0.0303079151,
0.3620775938,
-0.4090335071,
-0.1828260124,
0.1932816207,
0.2313534021,
-0.2200435996,
0.5411826968,
0.1586216092,
-0.1013459861,
-0.0034011719,
0.0832249224,
0.2891548574,
0.0061693862,
0.2480872124,
0.0655293316,
-0.2069127858,
-0.3257485926,
-0.2069139183,
-0.2269087136,
0.0533732325,
0.3017609417,
-0.137885049,
-0.2142484784,
0.0612092204,
-0.1285808384,
-0.1259344518,
0.1365890801,
-0.2172748446,
-0.1887903214,
-0.1422334313,
0.0968127102,
-0.2331412435,
0.1975517273,
-0.0019941255,
0.0519077256,
0.0366591811,
0.4807837605,
-0.43443349,
-0.1275336742,
-0.3187758327,
0.2330364585,
0.2737514079,
-0.0472059324,
-0.1861442924,
0.2489390373,
0.2355583608,
0.1225073338,
-0.1975661367,
-0.3529150486,
0.2140961885,
0.0386997908,
-0.152249366,
0.0688362196,
0.0761160851,
0.1387803257,
-0.3181968331,
-0.3029014468,
-0.1315647364,
-0.1898019314,
-0.0796306357,
0.0764666796,
0.2217511237,
-0.259308219,
0.3350775242,
0.0214415677,
0.0840646178,
-0.1367717236,
-0.2212946266,
0.34796381,
0.1634102762,
-0.2223724425,
0.2342487872,
-0.087186344,
0.0017209239,
-0.1312721223,
0.2663231194,
0.040794082,
-0.2608650327,
-0.0193501897,
0.3714660406,
0.3568588495,
0.2390728593,
0.1567323506,
0.0942209512,
0.2489315718,
-0.3249038458,
-0.1693693697,
0.5596205592,
-0.0339077823,
0.3383583724,
-0.1567269266,
0.218914628,
0.2402930558,
0.0832250342,
0.0472286791,
-0.0850990862,
-0.3423674107,
-0.0223669484,
-0.0906853378,
0.3015964329,
-0.0777261555,
0.1149753407,
0.1227802783,
0.1877334714,
0.1768875271,
-0.0169623345,
0.7731490135,
-0.0536657833,
0.2881840765,
0.1529934704,
-0.1293534338,
0.1669362783,
0.1924277544,
0.0711641982,
0.1993345916,
0.1327952594,
0.1543235183,
0.0372757651,
-0.4504742622,
-0.2149818689,
0.6825031638,
-0.150543645,
-0.3235414922,
-0.0915461704,
-0.1169139296,
-0.1602392197,
0.0944651514,
0.1278131604,
0.1765399426,
0.6568732858,
0.0150626125,
0.3660638034,
-0.0714493096,
0.1660769582,
-0.157821238,
0.3040830195,
-0.2052638382,
-0.2164436281,
0.1420260817,
-0.1892104596,
-0.065516308,
0.3563248217,
0.2488279343,
0.284822315,
-0.1441097111,
0.2726023197,
-0.2956686616,
-0.0594364144,
-0.3789013624,
0.248613745,
0.0145973265,
0.0457057953,
0.4520921409,
0.1537104845,
-0.2073940933,
-0.2555699944,
0.0529308319,
0.0108491816,
-0.2308032513,
0.1999273002,
0.1541863978,
-0.1907088757,
-0.0611729957,
0.0579443574,
-0.4901556969,
-0.2592764497,
0.54909271,
-0.4322650433,
-0.0196174532,
-0.1755622327,
0.1528597176,
-0.2001217008,
0.6736975908,
0.0027888967,
0.3433561623,
-0.0264597386,
-0.2550085485,
-0.571937561,
-0.3019398451,
-0.0900587887,
-0.0563816279,
0.1824565232,
0.5611234307,
0.1624626517,
0.2724915743,
-0.1371915042,
-0.2531248331,
-0.0721483827,
0.0583385117,
-0.4192561507,
0.2377561629,
-0.1238056868,
-0.0789517537,
0.1540432423,
-0.3220898509,
0.3157336712,
0.0160883181,
0.2028990984,
-0.0945667773,
0.0261443779,
0.4906809926,
0.1940529495,
-0.1569815576,
0.1460261643,
0.3112101555,
-0.3373525143,
-0.0026026294,
-0.1494636238,
0.1065342277,
-0.166221261,
-0.0949638933,
0.0439928621,
0.3311821818,
-0.1619596183,
0.2568046749,
-0.0441047251,
0.216463089,
-0.2096708119,
-0.0430672504,
0.1807118952,
0.0299118608,
0.1488727182,
0.2463069856,
-0.1401853561,
0.2737381458,
-0.0078091361,
0.0337413624,
-0.1430571824,
-0.2125969529,
0.2409760654,
-0.3951693475,
-0.2428908646,
-0.3473038375,
0.2190293521,
0.0408534408,
0.3273251653,
-0.2465286255,
-0.3446035981,
0.2122889906,
-0.034866631,
-0.0191138722,
0.4801187813,
-0.1346850097,
-0.2861376405,
-0.1634637713,
-0.2962387204,
0.0462738238,
-0.2897838056,
-0.1670207083,
-0.2816143036
] |
https://github.com/huggingface/datasets/issues/426 | [FEATURE REQUEST] Multiprocessing with for dataset.map, dataset.filter | @lhoestq Great feature implemented! Do you have plans to add it to official tutorials [Processing data in a Dataset](https://huggingface.co/docs/datasets/processing.html?highlight=save#augmenting-the-dataset)? It took me sometime to find this parallel processing api. | It would be nice to be able to speed up `dataset.map` or `dataset.filter`. Perhaps this is as easy as sharding the dataset sending each shard to a process/thread/dask pool and using the new `nlp.concatenate_dataset()` function to join them all together? | 29 | [FEATURE REQUEST] Multiprocessing with for dataset.map, dataset.filter
It would be nice to be able to speed up `dataset.map` or `dataset.filter`. Perhaps this is as easy as sharding the dataset sending each shard to a process/thread/dask pool and using the new `nlp.concatenate_dataset()` function to join them all together?
@lhoestq Great feature implemented! Do you have plans to add it to official tutorials [Processing data in a Dataset](https://huggingface.co/docs/datasets/processing.html?highlight=save#augmenting-the-dataset)? It took me sometime to find this parallel processing api. | [
-0.2608760595,
-0.4052207768,
-0.1671193838,
0.0242639482,
-0.347699374,
0.1083791554,
0.0958694071,
0.1001093686,
0.0097758994,
0.0779819936,
-0.1297876835,
0.268784821,
0.0288043283,
0.567956686,
0.0352189839,
-0.3084890246,
0.0757970661,
0.1260469109,
-0.0477582887,
0.1972435117,
0.019763276,
0.1598394662,
-0.2788162529,
-0.1252326369,
-0.2452910691,
-0.1634083837,
-0.1911031753,
-0.0196521897,
-0.059498176,
-0.1503465623,
0.0461668894,
0.4871737957,
-0.2316054702,
0.2361284196,
-0.0001079078,
-0.2029748857,
0.1503317654,
0.229871586,
-0.0537672155,
0.2007021606,
-0.1934655905,
-0.4777647555,
-0.0147056691,
-0.0763371438,
0.0592209548,
0.1195816696,
0.1778102368,
-0.2691313028,
0.1904291958,
-0.3726128638,
0.1244619787,
0.3582190275,
-0.0545267351,
0.2704074383,
-0.2098022252,
0.4645997584,
-0.0739303753,
-0.1920114756,
0.4698046446,
-0.1441966593,
-0.1906626076,
0.5513612032,
-0.2167664766,
0.146721378,
0.2011540085,
-0.0467661656,
-0.182413429,
-0.4495765567,
-0.1506307423,
0.3538201451,
-0.0240537077,
-0.1382971406,
-0.5037171245,
-0.4508946836,
-0.1339044869,
-0.4086398184,
-0.1706856489,
0.1109530628,
-0.1954037696,
0.0309990868,
-0.4884884059,
-0.3645781875,
0.279568404,
-0.1878641397,
0.2982876003,
0.2111873627,
0.0041945502,
0.0964184999,
0.2584789991,
-0.1932649016,
-0.2565283775,
-0.2772125006,
0.119425483,
0.0337728485,
-0.6784652472,
-0.0603900738,
-0.006560456,
0.1300594658,
0.1923826039,
0.1290127337,
0.1012566537,
0.3147670031,
-0.0229621865,
0.2253416777,
0.1074026078,
-0.3512949944,
0.1750337481,
-0.1152896434,
0.131100595,
-0.1904404908,
-0.029814098,
0.2025752515,
0.2138281018,
-0.0518173873,
-0.413562417,
0.0292815156,
0.0277362913,
0.1004152447,
0.0746325403,
-0.3755649626,
0.1856490821,
-0.2991419137,
0.1410411298,
0.0419948548,
-0.0095862374,
0.3397319615,
-0.1418084502,
-0.1332838982,
-0.2340058088,
-0.2382113934,
-0.0971703976,
-0.0516247153,
-0.0331979468,
0.2781025767,
0.1204998344,
0.044282265,
-0.0506827496,
0.1477281749,
0.1439825892,
0.2672168314,
0.2075040638,
-0.124254927,
0.069526732,
0.1833893508,
-0.0726914704,
-0.0383961126,
-0.1169662848,
0.2222467065,
-0.2571869493,
-0.0959706604,
-0.2205811739,
-0.2075156868,
-0.1869580746,
0.0773484334,
0.1048261076,
-0.1092597544,
-0.4787704945,
0.7779140472,
0.071308583,
-0.011500746,
-0.2945773304,
0.0227482468,
-0.5353245139,
-0.1817251742,
0.3416638672,
0.1284204423,
-0.0485662036,
-0.036540173,
-0.2228350937,
-0.1078436747,
0.2403538823,
0.4414244294,
-0.2017017752,
0.1292135119,
-0.1785438359,
0.4836606383,
0.5142177343,
-0.1295249164,
0.0830005929,
0.3742535412,
-0.1477962136,
0.0708048716,
0.3142759502,
0.1900286525,
0.2082635164,
0.0276135467,
0.1444729269,
0.540150106,
-0.1980234385,
0.2230969369,
0.0059554726,
-0.1897817701,
0.2261705548,
0.1622997522,
-0.1524646282,
0.0858477801,
-0.0761104152,
-0.5189331174,
0.4866412282,
-0.2974569798,
0.1562602818,
0.0589022078,
-0.1313954294,
0.0926600695,
-0.06697537,
-0.3271734715,
-0.3598518372,
0.068854399,
-0.0417772941,
-0.0491079614,
0.0830473602,
-0.3939556181,
0.4155666232,
0.0981718749,
0.0268567838,
0.0086585004,
0.106958434,
0.1812458634,
0.1519798487,
-0.2360936254,
-0.3061078787,
0.3358492255,
-0.0799675137,
-0.0123663172,
-0.3526889682,
0.2138337493,
0.2508552969,
-0.0553253666,
0.0419050604,
0.1212068349,
-0.0514610186,
-0.1264779568,
0.1427653283,
-0.0031845374,
-0.0493052304,
0.2550181448,
0.6550816298,
0.2654034495,
0.2627616227,
0.0785561204,
0.0230957437,
-0.2753278017,
0.0382470973,
-0.2153047323,
-0.1683977395,
0.5540854931,
-0.0410236828,
0.4023039341,
0.0917556882,
-0.0131626874,
0.2349597663,
0.073300764,
-0.0701760203,
0.2105982453,
0.1526685804,
-0.0811325833,
0.0270825326,
0.1431890875,
-0.4629766345,
0.341527611,
0.4402228892,
0.0058711395,
-0.2078662962,
0.084037587,
0.1872193664,
-0.1110779569,
0.196787864,
0.0238210335,
0.1881487668,
0.1884749532,
0.0503347628,
-0.0454427451,
0.1028477177,
-0.0663723946,
0.1176735759,
0.3205146492,
0.2168476284,
-0.0265255868,
0.1670741141,
-0.2363259494,
-0.2827823758,
-0.2901489735,
0.1736857593,
-0.1077101231,
0.0196602494,
-0.0615282096,
-0.1852203608,
-0.1912412345,
-0.0461944118,
0.047887437,
-0.3056803942,
-0.304177165,
-0.0812804028,
0.3092376292,
-0.0518718362,
0.0761980042,
0.2212892473,
0.2130071819,
-0.1976544559,
-0.0081332494,
-0.281801343,
0.012489453,
0.1285528392,
0.0313924327,
0.3022119701,
0.3320902586,
0.4555432796,
0.1232955009,
0.0910331234,
-0.4455692172,
-0.2040767223,
-0.0179643203,
-0.2767624557,
0.1366855353,
0.1226215959,
0.1201797277,
-0.1607809812,
-0.2790879905,
0.1972415745,
0.1088808849,
-0.2122081071,
-0.2680937648,
0.060880065,
-0.0249815229,
-0.0241123848,
-0.149021253,
-0.4795728922,
-0.3343916833,
0.5942110419,
-0.2876603603,
0.2276881486,
-0.3308072388,
-0.1193305403,
-0.002746433,
-0.3504945934,
0.0665276125,
0.0190509371,
-0.4718954265,
0.0208825096,
0.0118573941,
-0.1137489676,
-0.2490850389,
-0.0198604539,
-0.0645403862,
0.2378327549,
-0.0836326033,
-0.1006001905,
-0.358882457,
0.2384420186,
0.2121085674,
0.0981798396,
0.2778331637,
-0.0796126425,
-0.070558086,
0.1338597536,
-0.4800582528,
0.0397937931,
-0.0009142924,
-0.1605331749,
0.2632176876,
0.3609154224,
0.0008578449,
0.7097069621,
0.2304417938,
-0.0474032238,
0.1350750029,
0.1280044913,
-0.1666099727,
0.0568137392,
-0.551041007,
-0.0351176113,
-0.1622916758,
0.070306018,
0.0248753466,
-0.0346968919,
-0.2492030859,
-0.0900884941,
0.0162702203,
-0.3376846015,
-0.091086641,
0.0867470652,
-0.0471547581,
0.2308438569,
0.0760261267,
-0.310087651,
-0.2607222199,
0.0541558824,
-0.2018707395,
0.1385469884,
0.34857288,
-0.1705935001,
-0.5018060207,
-0.1323041171,
-0.6374371052,
0.4433449507,
0.248060599,
0.0398770459,
0.0086302236,
0.0663433149,
0.1311944127,
-0.1964474022,
0.7243826985,
-0.2557788491,
-0.3600913882,
0.2271154225,
-0.5849373341,
0.0872303843,
0.1974902749,
0.0706142932,
0.4089244604,
0.4323522449,
0.4398611188,
-0.3128742576,
-0.4502790272,
0.2078811079,
0.1022499725,
-0.0641268045,
-0.0108841658,
-0.1586313546,
-0.0743901432,
-0.2673547268,
0.1051842421,
-0.0429941714,
0.0770491734,
0.0950399488,
-0.0455875657,
-0.070723787,
0.0183445364,
0.1913143992,
-0.0161740705,
-0.0698358193,
0.2421740294,
0.2998711467,
-0.0922840759,
0.0946191251,
-0.0691813454,
0.1599669307,
-0.1237231046,
-0.1960045993,
-0.0725321397,
-0.033815138,
0.6675155759,
0.2453347892,
0.2298672795,
0.367038548,
0.0978971869,
0.3856648207,
-0.4025582075,
0.0253542475,
0.4367716908,
0.2292355001,
-0.3920321465,
-0.3054983616,
0.3532455564,
0.3055293262,
-0.0169571191,
0.5018378496,
-0.0144234598,
0.0041288994,
0.1329773962,
-0.0142764412,
0.7471274734,
-0.3258099556,
0.1332370639,
-0.3017097414,
0.0463989228,
0.3842148185,
-0.3119766712,
0.2014098167,
-0.1073826775,
-0.2371868789,
0.0442393795,
0.0127994269,
0.3001089096,
0.2647275627,
-0.126151979,
0.3128537238,
0.2669263482,
-0.0907427296,
-0.1210805401,
0.4641553164,
0.1661955416,
-0.4408358335,
-0.245345816,
0.0730638355,
-0.0293261707,
-0.1736719012,
0.0485471562,
-0.2938821614,
0.2022456527,
0.1478761137,
-0.3816893101,
-0.0909404382,
-0.0811211318,
0.2681491375,
-0.1340634227,
-0.124227047,
-0.0441482626,
0.0612482689,
-0.0484499596,
-0.0556650795,
-0.0568908677,
0.0340334922,
-0.247451663,
0.2347684354,
-0.2475907207,
-0.2561884224,
0.1087357476,
-0.1369173825,
-0.1850031465,
-0.1227846071,
0.1235468835,
-0.5898903012,
-0.2854607701,
0.205953747,
0.0049392218,
0.2578456402,
-0.0189393014,
0.3219514787,
-0.1504007876,
-0.1649794877,
0.0669942573,
0.3953620493,
-0.1820901781,
0.4212401211,
0.1083269417,
-0.1037898958,
-0.0464998744,
0.1154733449,
0.1658523977,
-0.1708623767,
0.1820627302,
0.1965955347,
-0.1834614277,
-0.200971663,
-0.1537407637,
-0.1337402761,
0.0466588587,
0.2491378337,
-0.0046177655,
-0.0908900723,
0.0093671903,
0.0312435385,
-0.1258033216,
-0.064591065,
-0.1487535387,
-0.3159016669,
-0.1274638027,
0.1000359058,
-0.2690617144,
0.1380460709,
0.0921472311,
0.087102145,
0.0886878371,
0.5282362103,
-0.2911815643,
0.0323013514,
-0.0600156561,
0.1311888099,
0.4815719724,
-0.0207301956,
-0.0286111273,
0.2252859473,
0.1107014269,
0.1718192548,
-0.2150518,
-0.2530894578,
0.2104922682,
0.0922303945,
-0.0867485702,
0.0380464345,
0.0912617594,
0.1559923589,
-0.2978251874,
-0.3565598726,
0.0225431547,
-0.0821360797,
0.0193820875,
0.0203434937,
0.1683953106,
-0.2722153366,
0.1822594553,
0.0320928618,
0.1487874687,
-0.0859448761,
-0.1620504558,
0.2506087124,
0.0997243971,
-0.1601606607,
0.1833007634,
-0.0429133587,
0.3144587278,
-0.2085176408,
0.2027052939,
-0.0107514467,
-0.2946519256,
-0.0723330379,
0.462597847,
0.3377595842,
0.2870200872,
0.2620432377,
0.0770763531,
0.1131526977,
-0.2261069417,
-0.1419247985,
0.698528409,
0.0277234539,
0.2345365882,
-0.0287051126,
0.2569656372,
0.5741373301,
0.0210930519,
-0.0488774404,
-0.0279534645,
-0.2640931606,
0.0817645788,
-0.2153847814,
0.2547772229,
-0.020600196,
0.2107734084,
0.2571158409,
0.1407173574,
0.1333986521,
-0.0400631577,
0.7664585114,
-0.1230494678,
0.2914152443,
0.1756437421,
-0.337715745,
0.238244921,
0.1596975327,
0.1308977306,
0.1412187219,
0.0603821501,
0.3576043844,
-0.0241963733,
-0.5762877464,
-0.2208378911,
0.7770312428,
-0.0992094353,
-0.2864766419,
0.1479822695,
-0.0764129311,
-0.0093329027,
0.1394117624,
0.1587349623,
0.0367024317,
0.8322872519,
-0.142462045,
0.3206213117,
-0.1860070825,
0.0500836335,
-0.0696892962,
0.3375323415,
-0.0912109911,
-0.1996356994,
0.0603372566,
-0.1561437696,
-0.1357198805,
0.4773378968,
0.24782148,
0.1339819133,
-0.093402043,
0.2575246096,
-0.4307613969,
0.0304968953,
-0.1887447238,
0.3448913395,
-0.1604805291,
0.0238781162,
0.4507908225,
0.0561622605,
-0.1108666807,
-0.2868132889,
-0.0931767374,
0.1409198195,
-0.450979054,
0.1636555493,
-0.1376703233,
-0.106495738,
-0.1212151945,
0.0233023912,
-0.4255393744,
-0.1750424504,
0.6109224558,
-0.5048500299,
-0.117958203,
-0.0576431751,
0.0909234285,
-0.1598989069,
0.5806363225,
0.3098265529,
0.2996734679,
-0.0502880849,
-0.1927748621,
-0.5379378796,
-0.4539735317,
-0.0166787878,
0.0847623721,
0.1283782423,
0.4404752553,
0.236476928,
0.3570866883,
0.0451307893,
-0.3217493296,
0.0870714709,
0.0873016864,
-0.3887605667,
0.2369841784,
-0.174533546,
-0.1542671025,
0.1626609266,
-0.2101678252,
0.3319186568,
0.0708289742,
0.0122050419,
-0.1752080768,
0.2532281876,
0.2549226284,
-0.0906015411,
-0.1170515642,
0.2109992355,
0.3175001442,
-0.2899768353,
-0.0238902494,
-0.0814290941,
0.0624874681,
-0.1937704235,
0.0704769939,
-0.0215173792,
0.4209700227,
-0.2175205052,
0.1094513834,
-0.0596671402,
0.2623102367,
-0.1140566096,
-0.0923535526,
0.0659224093,
0.1022790447,
0.0451199561,
0.1289892793,
-0.0045116358,
0.3254566193,
0.0358526781,
0.0831917673,
-0.1544277519,
-0.0935173035,
0.2818125486,
-0.4838241935,
-0.262305975,
-0.3023207188,
0.080922313,
0.1815188825,
0.2234053761,
-0.5047799945,
-0.2906191349,
0.1853739321,
0.0037675295,
-0.0025369897,
0.6374949813,
-0.1342755109,
-0.3422389627,
-0.171922639,
-0.1800534427,
0.0303831547,
-0.3091046512,
-0.0335456952,
-0.1872969866
] |
https://github.com/huggingface/datasets/issues/425 | Correct data structure for PAN-X task in XTREME dataset? | Hi @lhoestq
I made the proposed changes to the `xtreme.py` script. I noticed that I also need to change the schema in the `dataset_infos.json` file. More specifically the `"features"` part of the PAN-X.LANG dataset:
```json
"features":{
"word":{
"dtype":"string",
"id":null,
"_type":"Value"
},
"ner_tag":{
"dtype":"string",
"id":null,
"_type":"Value"
},
"lang":{
"dtype":"string",
"id":null,
"_type":"Value"
}
}
```
To fit the code above the fields `"word"`, `"ner_tag"`, and `"lang"` would become `"words"`, `ner_tags"` and `"langs"`. In addition the `dtype` should be changed from `"string"` to `"list"`.
I made this changes but when trying to test this locally with `dataset = load_dataset("xtreme", "PAN-X.en", data_dir='./data')` I face the issue that the `dataset_info.json` file is always overwritten by a downloaded version with the old settings, which then throws an error because the schema does not match. This makes it hard to test the changes locally. Do you have any suggestions on how to deal with that?
| Hi 🤗 team!
## Description of the problem
Thanks to the fix from #416 I am now able to load the NER task in the XTREME dataset as follows:
```python
from nlp import load_dataset
# AmazonPhotos.zip is located in data/
dataset = load_dataset("xtreme", "PAN-X.en", data_dir='./data')
dataset_train = dataset['train']
```
However, I am not sure that `load_dataset()` is returning the correct data structure for NER.
Currently, every row in `dataset_train` is of the form
```python
{'word': str, 'ner_tag': str, 'lang': str}
```
but I think we actually want something like
```python
{'words': List[str], 'ner_tags': List[str], 'langs': List[str]}
```
so that each row corresponds to a _sequence_ of words associated with each example. With the current data structure I do not think it is possible to transform `dataset_train` into a form suitable for training because we do not know the boundaries between examples.
Indeed, [this line](https://github.com/google-research/xtreme/blob/522434d1aece34131d997a97ce7e9242a51a688a/third_party/utils_tag.py#L58) in the XTREME repo, processes the texts as lists of sentences, tags, and languages.
## Proposed solution
Replace
```python
with open(filepath) as f:
data = csv.reader(f, delimiter="\t", quoting=csv.QUOTE_NONE)
for id_, row in enumerate(data):
if row:
lang, word = row[0].split(":")[0], row[0].split(":")[1]
tag = row[1]
yield id_, {"word": word, "ner_tag": tag, "lang": lang}
```
from [these lines](https://github.com/huggingface/nlp/blob/ce7d3a1d630b78fe27188d1706f3ea980e8eec43/datasets/xtreme/xtreme.py#L881-L887) of the `_generate_examples()` function with something like
```python
guid_index = 1
with open(filepath, encoding="utf-8") as f:
words = []
ner_tags = []
langs = []
for line in f:
if line.startswith("-DOCSTART-") or line == "" or line == "\n":
if words:
yield guid_index, {"words": words, "ner_tags": ner_tags, "langs": langs}
guid_index += 1
words = []
ner_tags = []
else:
# pan-x data is tab separated
splits = line.split("\t")
# strip out en: prefix
langs.append(splits[0][:2])
words.append(splits[0][3:])
if len(splits) > 1:
labels.append(splits[-1].replace("\n", ""))
else:
# examples have no label in test set
labels.append("O")
```
If you agree, me or @lvwerra would be happy to implement this and create a PR. | 148 | Correct data structure for PAN-X task in XTREME dataset?
Hi 🤗 team!
## Description of the problem
Thanks to the fix from #416 I am now able to load the NER task in the XTREME dataset as follows:
```python
from nlp import load_dataset
# AmazonPhotos.zip is located in data/
dataset = load_dataset("xtreme", "PAN-X.en", data_dir='./data')
dataset_train = dataset['train']
```
However, I am not sure that `load_dataset()` is returning the correct data structure for NER.
Currently, every row in `dataset_train` is of the form
```python
{'word': str, 'ner_tag': str, 'lang': str}
```
but I think we actually want something like
```python
{'words': List[str], 'ner_tags': List[str], 'langs': List[str]}
```
so that each row corresponds to a _sequence_ of words associated with each example. With the current data structure I do not think it is possible to transform `dataset_train` into a form suitable for training because we do not know the boundaries between examples.
Indeed, [this line](https://github.com/google-research/xtreme/blob/522434d1aece34131d997a97ce7e9242a51a688a/third_party/utils_tag.py#L58) in the XTREME repo, processes the texts as lists of sentences, tags, and languages.
## Proposed solution
Replace
```python
with open(filepath) as f:
data = csv.reader(f, delimiter="\t", quoting=csv.QUOTE_NONE)
for id_, row in enumerate(data):
if row:
lang, word = row[0].split(":")[0], row[0].split(":")[1]
tag = row[1]
yield id_, {"word": word, "ner_tag": tag, "lang": lang}
```
from [these lines](https://github.com/huggingface/nlp/blob/ce7d3a1d630b78fe27188d1706f3ea980e8eec43/datasets/xtreme/xtreme.py#L881-L887) of the `_generate_examples()` function with something like
```python
guid_index = 1
with open(filepath, encoding="utf-8") as f:
words = []
ner_tags = []
langs = []
for line in f:
if line.startswith("-DOCSTART-") or line == "" or line == "\n":
if words:
yield guid_index, {"words": words, "ner_tags": ner_tags, "langs": langs}
guid_index += 1
words = []
ner_tags = []
else:
# pan-x data is tab separated
splits = line.split("\t")
# strip out en: prefix
langs.append(splits[0][:2])
words.append(splits[0][3:])
if len(splits) > 1:
labels.append(splits[-1].replace("\n", ""))
else:
# examples have no label in test set
labels.append("O")
```
If you agree, me or @lvwerra would be happy to implement this and create a PR.
Hi @lhoestq
I made the proposed changes to the `xtreme.py` script. I noticed that I also need to change the schema in the `dataset_infos.json` file. More specifically the `"features"` part of the PAN-X.LANG dataset:
```json
"features":{
"word":{
"dtype":"string",
"id":null,
"_type":"Value"
},
"ner_tag":{
"dtype":"string",
"id":null,
"_type":"Value"
},
"lang":{
"dtype":"string",
"id":null,
"_type":"Value"
}
}
```
To fit the code above the fields `"word"`, `"ner_tag"`, and `"lang"` would become `"words"`, `ner_tags"` and `"langs"`. In addition the `dtype` should be changed from `"string"` to `"list"`.
I made this changes but when trying to test this locally with `dataset = load_dataset("xtreme", "PAN-X.en", data_dir='./data')` I face the issue that the `dataset_info.json` file is always overwritten by a downloaded version with the old settings, which then throws an error because the schema does not match. This makes it hard to test the changes locally. Do you have any suggestions on how to deal with that?
| [
-0.0446428098,
-0.1960521042,
-0.0213918313,
0.3716608286,
0.0390404277,
-0.2763311565,
-0.0206366386,
0.1579517275,
-0.0717807785,
-0.066242367,
-0.1613531411,
0.2627061903,
0.0014280193,
0.1680826545,
0.4264346361,
-0.1467024535,
0.0484420843,
-0.0699056983,
0.2786862552,
-0.0526144691,
-0.109093219,
0.1506102532,
-0.3253746629,
0.0544694439,
-0.3497878611,
0.0837276801,
-0.0678212941,
0.3462398648,
-0.2758392692,
-0.4933686256,
0.5901550055,
0.0610431992,
0.3375478983,
0.3253479004,
-0.0001185823,
0.0073940903,
0.0491499715,
-0.2976794243,
0.0629999414,
-0.5153078437,
-0.2116061151,
-0.6882323027,
-0.0707504153,
-0.1863513738,
-0.2494241148,
-0.0691496879,
0.2359094471,
0.1613159925,
0.32868734,
0.4041298926,
0.0667555034,
0.1186722964,
-0.011228703,
0.1646234542,
0.4069046974,
0.3912607133,
-0.2984111309,
-0.0554719269,
0.5836415291,
0.150093317,
-0.2007243335,
0.2261365652,
0.0665779412,
-0.0957406461,
0.2168317288,
0.3117487133,
0.11062181,
-0.4583890438,
-0.2030346096,
0.282891959,
0.2304354906,
-0.2553841472,
-0.2035077214,
-0.277931571,
-0.0572837591,
-0.2900472879,
-0.0280276313,
0.3609626889,
-0.0808846653,
-0.0090990681,
0.2543646097,
-0.0029823929,
-0.1114808917,
0.2031375319,
-0.0105205998,
0.4096217453,
-0.0134636965,
-0.1075183377,
-0.139606908,
-0.1162081361,
0.701856792,
-0.0104257343,
0.157686621,
0.1197109222,
-0.6041294932,
0.08037965,
-0.1363219917,
-0.2818925381,
0.1663053632,
-0.0484366342,
0.2098659277,
0.1589152962,
0.1485240012,
0.0145869805,
0.3213757277,
0.2003955394,
0.2381375134,
0.0310105607,
-0.1307128221,
0.0734809712,
0.0858035833,
-0.0963583142,
-0.3183752,
0.0653052777,
0.2368327677,
-0.0228068251,
0.2889070809,
-0.1962375343,
-0.3680239618,
-0.0199918635,
-0.128430441,
0.072580345,
0.141478762,
0.061180111,
0.0080605596,
0.5874379873,
-0.0742888823,
0.1787088513,
-0.253834337,
0.0291407518,
-0.1472997367,
0.169410035,
-0.6243599653,
-0.1061868519,
0.2582581639,
0.0919621885,
0.1970393062,
-0.0064034052,
0.1218201518,
-0.3322490156,
0.1758816242,
-0.2791435719,
0.2651098669,
-0.0158673115,
0.2457386255,
-0.1295719892,
-0.3093241453,
-0.0095195696,
-0.1647402495,
0.2194370031,
-0.7123692632,
-0.0245733038,
0.0450959653,
0.0754593611,
-0.2141940743,
0.1435736567,
-0.50432235,
0.0322593786,
0.0630442128,
0.2181686759,
0.1069045216,
-0.3306137621,
-0.2142900825,
-0.0720486492,
0.0830699354,
0.1326567829,
-0.1291508228,
0.0973815694,
0.06309928,
0.0002564043,
0.1041971445,
0.2162792832,
-0.0109666586,
0.2841816545,
-0.1886346191,
0.5723385811,
0.4195817411,
-0.8037276268,
-0.3378546536,
0.0875087753,
-0.1656144708,
0.0018322244,
-0.0777148455,
0.2999708056,
0.2168301046,
-0.1097088605,
0.2860382199,
0.4717788398,
-0.0601553619,
0.1129642129,
-0.105582729,
0.2662772536,
-0.1180937216,
0.3215997815,
0.0420981646,
-0.2685290873,
-0.1594628096,
0.0751414001,
0.1948613375,
-0.1158283651,
0.0870856494,
0.4314536154,
0.0892730579,
-0.0513844229,
-0.0506238006,
0.0383255258,
-0.7624902725,
0.1141012013,
-0.4289600849,
0.3793446422,
0.0106570572,
-0.0671953931,
-0.1728423834,
-0.0510761812,
-0.2962620258,
-0.1906545311,
0.1071610451,
-0.1209995598,
-0.1237812191,
-0.3034519553,
-0.0762853324,
0.3974153399,
-0.2260981798,
0.0737625957,
-0.5780187845,
0.3407831788,
0.1180048138,
-0.0664847568,
-0.0123105869,
0.4472561777,
0.1922498941,
-0.0482965782,
0.1684598178,
0.2209220529,
0.2148894966,
-0.1571743041,
-0.0612340569,
-0.0020258874,
0.1334932595,
-0.5777857304,
0.0659276843,
0.2230994105,
-0.001422774,
-0.2143050432,
-0.1243548989,
0.5517564416,
0.1847709864,
0.2072842568,
0.0289729908,
0.0707501695,
0.212223351,
-0.1713615954,
-0.2344335318,
-0.1039044261,
0.1545491368,
0.1233170778,
0.0305477902,
0.0995657444,
-0.5023412108,
0.0200129505,
0.3077194691,
0.0274304152,
0.1898183078,
0.2047273517,
-0.1531090289,
-0.0791653842,
0.0374576896,
0.3701196015,
0.3590862751,
0.0914273113,
0.1098855585,
0.1304073483,
-0.0329410806,
0.0724885389,
-0.0358845443,
0.0617543198,
0.1510173976,
0.2119648457,
0.1785159707,
-0.0841948986,
-0.0858963504,
-0.2191506028,
0.032177642,
0.1521633118,
-0.329500109,
0.0780691803,
0.0368219838,
-0.450265646,
-0.1473739743,
0.0441722497,
-0.1361572891,
-0.3193361163,
-0.0379219502,
-0.057156112,
0.2387745678,
0.0840668902,
-0.4746880829,
-0.2150861621,
-0.1986020505,
-0.3406287432,
-0.0583147444,
0.0742934346,
-0.1382386088,
-0.0267541297,
0.2119734436,
0.5459077358,
-0.0312718302,
-0.4353147149,
0.3901607096,
-0.3872417808,
-0.2023120373,
0.3016566038,
-0.2638221979,
0.3121579885,
0.2171546668,
-0.1040858775,
-0.4046021402,
0.1959169805,
0.1874919832,
-0.321480006,
-0.3141257167,
0.3168616891,
-0.1772632152,
-0.0916747227,
-0.026443962,
-0.4063455462,
-0.5237719417,
-0.2054873556,
0.0119939055,
0.2230313271,
0.3162435591,
0.2151378542,
-0.2596665919,
-0.1451507509,
-0.1321806163,
-0.195511654,
0.0069593973,
-0.5726139545,
0.4568422437,
-0.2441942096,
-0.2051522732,
-0.0859806761,
-0.2658789158,
0.4713200331,
0.3780291378,
-0.0684932321,
-0.0375405774,
0.1413384825,
0.0351823121,
0.1777091622,
-0.0622193068,
0.2964116931,
-0.214135617,
0.0457051024,
-0.0277899578,
-0.0081237704,
0.0785254538,
0.3201448023,
0.2304377258,
-0.0265189037,
-0.2571680844,
0.1103469133,
0.0635770112,
0.1552900672,
0.0463343933,
0.4367932081,
0.0053785853,
0.1145689264,
0.0847836286,
0.022408694,
-0.1640304029,
0.0601459518,
0.2332693636,
-0.0009898134,
0.2357877791,
-0.1547729969,
-0.0720980763,
0.1263711452,
-0.132999137,
-0.2151206285,
0.5398618579,
-0.1397543401,
0.4105231762,
-0.1709614247,
0.0268173218,
-0.0614330247,
-0.4580694437,
-0.257129848,
0.0861497372,
0.1797155589,
0.1554046422,
-0.6861751676,
0.3985432386,
-0.3888288736,
-0.0206329897,
0.1728509068,
0.5378319025,
0.212025553,
0.0804056823,
0.1571727097,
-0.0373993255,
0.3112252355,
-0.2897291481,
-0.146242708,
0.109261103,
0.1001145691,
-0.3250236809,
-0.0430729613,
-0.250880897,
0.0265305936,
0.4807164073,
0.4030665755,
-0.3020350337,
-0.4488571882,
-0.0142153557,
0.0474347435,
-0.2095987052,
-0.1977829039,
-0.2662701905,
-0.450519681,
-0.0922011733,
-0.0910781994,
0.554091692,
-0.0119680874,
0.2859897912,
0.0289199203,
-0.235748589,
0.2654160857,
0.3301909864,
-0.0371142924,
0.5644024014,
-0.2395818532,
0.0057379529,
-0.0657552928,
-0.0843307525,
0.2901477218,
0.4803261161,
-0.185940519,
-0.1504533887,
0.1800045222,
-0.2238449305,
0.4223893881,
0.1663810313,
0.1885035634,
0.0188955925,
-0.2950088978,
-0.0011858791,
-0.13589257,
0.1362023801,
0.3885794282,
-0.1082976609,
-0.4188085198,
-0.3653252125,
0.1768364459,
0.3088771701,
0.105598107,
-0.231043756,
-0.1721606553,
-0.2617760301,
-0.1415579915,
0.4663682878,
1.0166807175,
0.0301852878,
0.4335707426,
0.1726905555,
0.0897265598,
0.060726922,
-0.4444868863,
0.2049942315,
-0.3482039571,
-0.3285877407,
-0.2036455125,
-0.2574141026,
-0.0620910116,
0.2026154101,
0.0319124907,
0.6626026034,
0.2256907076,
-0.0447899736,
0.0229517631,
0.2159695029,
0.0093679111,
-0.3867398798,
-0.3745243549,
0.004031606,
-0.2863347232,
0.0149862021,
-0.1535773575,
-0.2083833814,
-0.0591487512,
0.1994757354,
0.1399666518,
0.2819467783,
0.0934470743,
-0.1829061806,
0.4239276648,
-0.560593605,
-0.0533474907,
0.2428726852,
0.0773037374,
-0.3221908212,
0.0031522159,
0.2361230701,
0.4050421417,
0.1009969264,
0.3913244009,
-0.3321994543,
0.2601028383,
0.0498280823,
0.1221910864,
-0.2428601086,
0.1581604183,
-0.037262544,
-0.4174329042,
0.0479723215,
-0.1750264317,
-0.2749733329,
-0.208798945,
0.0269382987,
-0.1443696618,
-0.0497385226,
0.0549408533,
0.2594361901,
-0.0902870744,
0.1481017023,
0.1132919341,
-0.2592059076,
0.1990919262,
0.0831909552,
0.2976745367,
-0.3125316501,
0.0376101546,
0.24821271,
0.0151349679,
-0.0992358327,
0.180581376,
0.4821509421,
-0.6173616052,
0.0337479897,
-0.243450284,
-0.0137988329,
-0.0163004808,
0.1851164997,
0.0020546177,
-0.2625000477,
0.162774995,
-0.2828572094,
-0.3409923613,
0.3751992583,
0.1163778752,
0.2782916427,
-0.197985366,
0.009825889,
0.1509936303,
-0.2200443745,
-0.2390499264,
0.1753159165,
-0.1794704795,
0.1961242557,
-0.115764752,
-0.0962911993,
0.0804041326,
-0.0942012966,
-0.0249695927,
0.2664700449,
-0.1458447874,
-0.0578538105,
0.0179342553,
0.1243914813,
0.1327524334,
-0.1157703251,
0.1248915493,
0.1200048476,
-0.051540859,
-0.1373376399,
-0.1135678142,
0.1800018847,
0.022834029,
0.2303535044,
-0.2976279259,
0.0392742828,
-0.1231655627,
0.2310592532,
0.1895386428,
0.1202054769,
0.0657505691,
0.2072515339,
-0.0511194207,
0.0248659998,
-0.5182056427,
0.2064266056,
0.1967262775,
0.3688434362,
0.215200305,
-0.1553564221,
0.1056381315,
-0.0322783887,
0.1498687565,
0.3083645105,
-0.269972086,
-0.0058442429,
0.2419039607,
0.1483673006,
-0.1588442028,
-0.0049721338,
0.367105484,
0.0078908689,
0.0080684274,
0.4790734053,
0.3525028229,
0.1368156374,
-0.1463457942,
0.0633271635,
0.2355749458,
-0.2535271347,
0.0676124617,
0.4052126408,
-0.0051036403,
0.139457047,
0.5995876193,
0.0332879797,
-0.1143290401,
0.6000962853,
0.3011855483,
0.7809868455,
0.1995596439,
0.1787552387,
-0.0658112615,
-0.1044647694,
-0.4129892886,
0.2548287511,
0.1273963898,
0.1769532859,
0.0383529253,
0.143287167,
0.1453570426,
-0.1860472113,
-0.0964768678,
0.1134997308,
-0.340492636,
0.0229303427,
-0.331787169,
-0.2342438996,
-0.1217744276,
-0.1177004054,
-0.172274068,
0.036737971,
0.0614893623,
0.1339385211,
-0.0074615367,
-0.0612120256,
0.0823541507,
0.2852352858,
0.0478244275,
-0.1977075338,
0.5288454294,
0.0339012146,
-0.0469574332,
-0.1587117612,
0.2742471099,
0.2531483769,
0.2315029651,
-0.0519731641,
-0.1070037037,
0.3387273848,
-0.1102280393,
-0.02969357,
0.1004740447,
0.2005061805,
0.2549166381,
0.1804336905,
0.0651820302,
-0.0043523535,
0.3010008037,
0.0695357248,
-0.1928664744,
0.2435858548,
0.2801604271,
0.1861453503,
-0.2890455723,
-0.1294617057,
-0.2241024077,
-0.3388958573,
-0.1642104387,
0.3142123818,
-0.1428407729,
0.2404808551,
-0.1308151782,
0.0508457609,
0.0420494452,
0.1968674809,
0.1187228113,
0.1140158325,
-0.4945983887,
-0.0885232538,
-0.7457130551,
0.2005534321,
-0.3096916974,
-0.2826575041,
0.2355702519,
0.0266045332,
-0.0474612564,
0.3023000062,
-0.2346744835,
0.2289669067,
0.0685478672,
0.3347983062,
-0.6064158082,
0.0685796961,
0.2317822874,
0.3589982092,
0.0531917065,
-0.1249814034,
-0.2764686346,
0.2186532021,
-0.0702891797,
-0.0727588385,
-0.0685446858,
-0.1896736473,
-0.0558265671,
0.2673413754,
-0.2124230266,
0.156776458,
-0.0746062547,
-0.1744632125,
-0.2747463286,
-0.0597105622,
-0.164485544,
0.0210560467,
0.1005385444,
0.3167756796,
0.0033470802,
0.1547870636,
-0.3915068805,
-0.2984788418,
0.0132770315,
0.0827493072,
-0.36418432,
0.432810545,
-0.2321623862,
0.1437949985,
0.0377224907,
0.2259720564,
0.0746322125,
-0.0033203736,
-0.15939188,
-0.4455852211,
0.261302948,
0.2699013948,
-0.1986566633,
-0.1195020527,
0.0043350533,
0.1073930711,
0.1258694977,
-0.4479658604,
0.1364090443,
0.179970637,
-0.0451216549,
-0.0945751071,
0.0839962661,
-0.0237167813,
-0.0781786367,
-0.1301059276,
0.1238041222,
-0.0262833945,
-0.114584893,
-0.2040123641,
-0.1585311294
] |
https://github.com/huggingface/datasets/issues/425 | Correct data structure for PAN-X task in XTREME dataset? | Hi !
You have to point to your local script.
First clone the repo and then:
```python
dataset = load_dataset("./datasets/xtreme", "PAN-X.en")
```
The "xtreme" directory contains "xtreme.py".
You also have to change the features definition in the `_info` method. You could use:
```python
features = nlp.Features({
"words": [nlp.Value("string")],
"ner_tags": [nlp.Value("string")],
"langs": [nlp.Value("string")],
})
```
Hope this helps !
Let me know if you have other questions. | Hi 🤗 team!
## Description of the problem
Thanks to the fix from #416 I am now able to load the NER task in the XTREME dataset as follows:
```python
from nlp import load_dataset
# AmazonPhotos.zip is located in data/
dataset = load_dataset("xtreme", "PAN-X.en", data_dir='./data')
dataset_train = dataset['train']
```
However, I am not sure that `load_dataset()` is returning the correct data structure for NER.
Currently, every row in `dataset_train` is of the form
```python
{'word': str, 'ner_tag': str, 'lang': str}
```
but I think we actually want something like
```python
{'words': List[str], 'ner_tags': List[str], 'langs': List[str]}
```
so that each row corresponds to a _sequence_ of words associated with each example. With the current data structure I do not think it is possible to transform `dataset_train` into a form suitable for training because we do not know the boundaries between examples.
Indeed, [this line](https://github.com/google-research/xtreme/blob/522434d1aece34131d997a97ce7e9242a51a688a/third_party/utils_tag.py#L58) in the XTREME repo, processes the texts as lists of sentences, tags, and languages.
## Proposed solution
Replace
```python
with open(filepath) as f:
data = csv.reader(f, delimiter="\t", quoting=csv.QUOTE_NONE)
for id_, row in enumerate(data):
if row:
lang, word = row[0].split(":")[0], row[0].split(":")[1]
tag = row[1]
yield id_, {"word": word, "ner_tag": tag, "lang": lang}
```
from [these lines](https://github.com/huggingface/nlp/blob/ce7d3a1d630b78fe27188d1706f3ea980e8eec43/datasets/xtreme/xtreme.py#L881-L887) of the `_generate_examples()` function with something like
```python
guid_index = 1
with open(filepath, encoding="utf-8") as f:
words = []
ner_tags = []
langs = []
for line in f:
if line.startswith("-DOCSTART-") or line == "" or line == "\n":
if words:
yield guid_index, {"words": words, "ner_tags": ner_tags, "langs": langs}
guid_index += 1
words = []
ner_tags = []
else:
# pan-x data is tab separated
splits = line.split("\t")
# strip out en: prefix
langs.append(splits[0][:2])
words.append(splits[0][3:])
if len(splits) > 1:
labels.append(splits[-1].replace("\n", ""))
else:
# examples have no label in test set
labels.append("O")
```
If you agree, me or @lvwerra would be happy to implement this and create a PR. | 66 | Correct data structure for PAN-X task in XTREME dataset?
Hi 🤗 team!
## Description of the problem
Thanks to the fix from #416 I am now able to load the NER task in the XTREME dataset as follows:
```python
from nlp import load_dataset
# AmazonPhotos.zip is located in data/
dataset = load_dataset("xtreme", "PAN-X.en", data_dir='./data')
dataset_train = dataset['train']
```
However, I am not sure that `load_dataset()` is returning the correct data structure for NER.
Currently, every row in `dataset_train` is of the form
```python
{'word': str, 'ner_tag': str, 'lang': str}
```
but I think we actually want something like
```python
{'words': List[str], 'ner_tags': List[str], 'langs': List[str]}
```
so that each row corresponds to a _sequence_ of words associated with each example. With the current data structure I do not think it is possible to transform `dataset_train` into a form suitable for training because we do not know the boundaries between examples.
Indeed, [this line](https://github.com/google-research/xtreme/blob/522434d1aece34131d997a97ce7e9242a51a688a/third_party/utils_tag.py#L58) in the XTREME repo, processes the texts as lists of sentences, tags, and languages.
## Proposed solution
Replace
```python
with open(filepath) as f:
data = csv.reader(f, delimiter="\t", quoting=csv.QUOTE_NONE)
for id_, row in enumerate(data):
if row:
lang, word = row[0].split(":")[0], row[0].split(":")[1]
tag = row[1]
yield id_, {"word": word, "ner_tag": tag, "lang": lang}
```
from [these lines](https://github.com/huggingface/nlp/blob/ce7d3a1d630b78fe27188d1706f3ea980e8eec43/datasets/xtreme/xtreme.py#L881-L887) of the `_generate_examples()` function with something like
```python
guid_index = 1
with open(filepath, encoding="utf-8") as f:
words = []
ner_tags = []
langs = []
for line in f:
if line.startswith("-DOCSTART-") or line == "" or line == "\n":
if words:
yield guid_index, {"words": words, "ner_tags": ner_tags, "langs": langs}
guid_index += 1
words = []
ner_tags = []
else:
# pan-x data is tab separated
splits = line.split("\t")
# strip out en: prefix
langs.append(splits[0][:2])
words.append(splits[0][3:])
if len(splits) > 1:
labels.append(splits[-1].replace("\n", ""))
else:
# examples have no label in test set
labels.append("O")
```
If you agree, me or @lvwerra would be happy to implement this and create a PR.
Hi !
You have to point to your local script.
First clone the repo and then:
```python
dataset = load_dataset("./datasets/xtreme", "PAN-X.en")
```
The "xtreme" directory contains "xtreme.py".
You also have to change the features definition in the `_info` method. You could use:
```python
features = nlp.Features({
"words": [nlp.Value("string")],
"ner_tags": [nlp.Value("string")],
"langs": [nlp.Value("string")],
})
```
Hope this helps !
Let me know if you have other questions. | [
-0.0446428098,
-0.1960521042,
-0.0213918313,
0.3716608286,
0.0390404277,
-0.2763311565,
-0.0206366386,
0.1579517275,
-0.0717807785,
-0.066242367,
-0.1613531411,
0.2627061903,
0.0014280193,
0.1680826545,
0.4264346361,
-0.1467024535,
0.0484420843,
-0.0699056983,
0.2786862552,
-0.0526144691,
-0.109093219,
0.1506102532,
-0.3253746629,
0.0544694439,
-0.3497878611,
0.0837276801,
-0.0678212941,
0.3462398648,
-0.2758392692,
-0.4933686256,
0.5901550055,
0.0610431992,
0.3375478983,
0.3253479004,
-0.0001185823,
0.0073940903,
0.0491499715,
-0.2976794243,
0.0629999414,
-0.5153078437,
-0.2116061151,
-0.6882323027,
-0.0707504153,
-0.1863513738,
-0.2494241148,
-0.0691496879,
0.2359094471,
0.1613159925,
0.32868734,
0.4041298926,
0.0667555034,
0.1186722964,
-0.011228703,
0.1646234542,
0.4069046974,
0.3912607133,
-0.2984111309,
-0.0554719269,
0.5836415291,
0.150093317,
-0.2007243335,
0.2261365652,
0.0665779412,
-0.0957406461,
0.2168317288,
0.3117487133,
0.11062181,
-0.4583890438,
-0.2030346096,
0.282891959,
0.2304354906,
-0.2553841472,
-0.2035077214,
-0.277931571,
-0.0572837591,
-0.2900472879,
-0.0280276313,
0.3609626889,
-0.0808846653,
-0.0090990681,
0.2543646097,
-0.0029823929,
-0.1114808917,
0.2031375319,
-0.0105205998,
0.4096217453,
-0.0134636965,
-0.1075183377,
-0.139606908,
-0.1162081361,
0.701856792,
-0.0104257343,
0.157686621,
0.1197109222,
-0.6041294932,
0.08037965,
-0.1363219917,
-0.2818925381,
0.1663053632,
-0.0484366342,
0.2098659277,
0.1589152962,
0.1485240012,
0.0145869805,
0.3213757277,
0.2003955394,
0.2381375134,
0.0310105607,
-0.1307128221,
0.0734809712,
0.0858035833,
-0.0963583142,
-0.3183752,
0.0653052777,
0.2368327677,
-0.0228068251,
0.2889070809,
-0.1962375343,
-0.3680239618,
-0.0199918635,
-0.128430441,
0.072580345,
0.141478762,
0.061180111,
0.0080605596,
0.5874379873,
-0.0742888823,
0.1787088513,
-0.253834337,
0.0291407518,
-0.1472997367,
0.169410035,
-0.6243599653,
-0.1061868519,
0.2582581639,
0.0919621885,
0.1970393062,
-0.0064034052,
0.1218201518,
-0.3322490156,
0.1758816242,
-0.2791435719,
0.2651098669,
-0.0158673115,
0.2457386255,
-0.1295719892,
-0.3093241453,
-0.0095195696,
-0.1647402495,
0.2194370031,
-0.7123692632,
-0.0245733038,
0.0450959653,
0.0754593611,
-0.2141940743,
0.1435736567,
-0.50432235,
0.0322593786,
0.0630442128,
0.2181686759,
0.1069045216,
-0.3306137621,
-0.2142900825,
-0.0720486492,
0.0830699354,
0.1326567829,
-0.1291508228,
0.0973815694,
0.06309928,
0.0002564043,
0.1041971445,
0.2162792832,
-0.0109666586,
0.2841816545,
-0.1886346191,
0.5723385811,
0.4195817411,
-0.8037276268,
-0.3378546536,
0.0875087753,
-0.1656144708,
0.0018322244,
-0.0777148455,
0.2999708056,
0.2168301046,
-0.1097088605,
0.2860382199,
0.4717788398,
-0.0601553619,
0.1129642129,
-0.105582729,
0.2662772536,
-0.1180937216,
0.3215997815,
0.0420981646,
-0.2685290873,
-0.1594628096,
0.0751414001,
0.1948613375,
-0.1158283651,
0.0870856494,
0.4314536154,
0.0892730579,
-0.0513844229,
-0.0506238006,
0.0383255258,
-0.7624902725,
0.1141012013,
-0.4289600849,
0.3793446422,
0.0106570572,
-0.0671953931,
-0.1728423834,
-0.0510761812,
-0.2962620258,
-0.1906545311,
0.1071610451,
-0.1209995598,
-0.1237812191,
-0.3034519553,
-0.0762853324,
0.3974153399,
-0.2260981798,
0.0737625957,
-0.5780187845,
0.3407831788,
0.1180048138,
-0.0664847568,
-0.0123105869,
0.4472561777,
0.1922498941,
-0.0482965782,
0.1684598178,
0.2209220529,
0.2148894966,
-0.1571743041,
-0.0612340569,
-0.0020258874,
0.1334932595,
-0.5777857304,
0.0659276843,
0.2230994105,
-0.001422774,
-0.2143050432,
-0.1243548989,
0.5517564416,
0.1847709864,
0.2072842568,
0.0289729908,
0.0707501695,
0.212223351,
-0.1713615954,
-0.2344335318,
-0.1039044261,
0.1545491368,
0.1233170778,
0.0305477902,
0.0995657444,
-0.5023412108,
0.0200129505,
0.3077194691,
0.0274304152,
0.1898183078,
0.2047273517,
-0.1531090289,
-0.0791653842,
0.0374576896,
0.3701196015,
0.3590862751,
0.0914273113,
0.1098855585,
0.1304073483,
-0.0329410806,
0.0724885389,
-0.0358845443,
0.0617543198,
0.1510173976,
0.2119648457,
0.1785159707,
-0.0841948986,
-0.0858963504,
-0.2191506028,
0.032177642,
0.1521633118,
-0.329500109,
0.0780691803,
0.0368219838,
-0.450265646,
-0.1473739743,
0.0441722497,
-0.1361572891,
-0.3193361163,
-0.0379219502,
-0.057156112,
0.2387745678,
0.0840668902,
-0.4746880829,
-0.2150861621,
-0.1986020505,
-0.3406287432,
-0.0583147444,
0.0742934346,
-0.1382386088,
-0.0267541297,
0.2119734436,
0.5459077358,
-0.0312718302,
-0.4353147149,
0.3901607096,
-0.3872417808,
-0.2023120373,
0.3016566038,
-0.2638221979,
0.3121579885,
0.2171546668,
-0.1040858775,
-0.4046021402,
0.1959169805,
0.1874919832,
-0.321480006,
-0.3141257167,
0.3168616891,
-0.1772632152,
-0.0916747227,
-0.026443962,
-0.4063455462,
-0.5237719417,
-0.2054873556,
0.0119939055,
0.2230313271,
0.3162435591,
0.2151378542,
-0.2596665919,
-0.1451507509,
-0.1321806163,
-0.195511654,
0.0069593973,
-0.5726139545,
0.4568422437,
-0.2441942096,
-0.2051522732,
-0.0859806761,
-0.2658789158,
0.4713200331,
0.3780291378,
-0.0684932321,
-0.0375405774,
0.1413384825,
0.0351823121,
0.1777091622,
-0.0622193068,
0.2964116931,
-0.214135617,
0.0457051024,
-0.0277899578,
-0.0081237704,
0.0785254538,
0.3201448023,
0.2304377258,
-0.0265189037,
-0.2571680844,
0.1103469133,
0.0635770112,
0.1552900672,
0.0463343933,
0.4367932081,
0.0053785853,
0.1145689264,
0.0847836286,
0.022408694,
-0.1640304029,
0.0601459518,
0.2332693636,
-0.0009898134,
0.2357877791,
-0.1547729969,
-0.0720980763,
0.1263711452,
-0.132999137,
-0.2151206285,
0.5398618579,
-0.1397543401,
0.4105231762,
-0.1709614247,
0.0268173218,
-0.0614330247,
-0.4580694437,
-0.257129848,
0.0861497372,
0.1797155589,
0.1554046422,
-0.6861751676,
0.3985432386,
-0.3888288736,
-0.0206329897,
0.1728509068,
0.5378319025,
0.212025553,
0.0804056823,
0.1571727097,
-0.0373993255,
0.3112252355,
-0.2897291481,
-0.146242708,
0.109261103,
0.1001145691,
-0.3250236809,
-0.0430729613,
-0.250880897,
0.0265305936,
0.4807164073,
0.4030665755,
-0.3020350337,
-0.4488571882,
-0.0142153557,
0.0474347435,
-0.2095987052,
-0.1977829039,
-0.2662701905,
-0.450519681,
-0.0922011733,
-0.0910781994,
0.554091692,
-0.0119680874,
0.2859897912,
0.0289199203,
-0.235748589,
0.2654160857,
0.3301909864,
-0.0371142924,
0.5644024014,
-0.2395818532,
0.0057379529,
-0.0657552928,
-0.0843307525,
0.2901477218,
0.4803261161,
-0.185940519,
-0.1504533887,
0.1800045222,
-0.2238449305,
0.4223893881,
0.1663810313,
0.1885035634,
0.0188955925,
-0.2950088978,
-0.0011858791,
-0.13589257,
0.1362023801,
0.3885794282,
-0.1082976609,
-0.4188085198,
-0.3653252125,
0.1768364459,
0.3088771701,
0.105598107,
-0.231043756,
-0.1721606553,
-0.2617760301,
-0.1415579915,
0.4663682878,
1.0166807175,
0.0301852878,
0.4335707426,
0.1726905555,
0.0897265598,
0.060726922,
-0.4444868863,
0.2049942315,
-0.3482039571,
-0.3285877407,
-0.2036455125,
-0.2574141026,
-0.0620910116,
0.2026154101,
0.0319124907,
0.6626026034,
0.2256907076,
-0.0447899736,
0.0229517631,
0.2159695029,
0.0093679111,
-0.3867398798,
-0.3745243549,
0.004031606,
-0.2863347232,
0.0149862021,
-0.1535773575,
-0.2083833814,
-0.0591487512,
0.1994757354,
0.1399666518,
0.2819467783,
0.0934470743,
-0.1829061806,
0.4239276648,
-0.560593605,
-0.0533474907,
0.2428726852,
0.0773037374,
-0.3221908212,
0.0031522159,
0.2361230701,
0.4050421417,
0.1009969264,
0.3913244009,
-0.3321994543,
0.2601028383,
0.0498280823,
0.1221910864,
-0.2428601086,
0.1581604183,
-0.037262544,
-0.4174329042,
0.0479723215,
-0.1750264317,
-0.2749733329,
-0.208798945,
0.0269382987,
-0.1443696618,
-0.0497385226,
0.0549408533,
0.2594361901,
-0.0902870744,
0.1481017023,
0.1132919341,
-0.2592059076,
0.1990919262,
0.0831909552,
0.2976745367,
-0.3125316501,
0.0376101546,
0.24821271,
0.0151349679,
-0.0992358327,
0.180581376,
0.4821509421,
-0.6173616052,
0.0337479897,
-0.243450284,
-0.0137988329,
-0.0163004808,
0.1851164997,
0.0020546177,
-0.2625000477,
0.162774995,
-0.2828572094,
-0.3409923613,
0.3751992583,
0.1163778752,
0.2782916427,
-0.197985366,
0.009825889,
0.1509936303,
-0.2200443745,
-0.2390499264,
0.1753159165,
-0.1794704795,
0.1961242557,
-0.115764752,
-0.0962911993,
0.0804041326,
-0.0942012966,
-0.0249695927,
0.2664700449,
-0.1458447874,
-0.0578538105,
0.0179342553,
0.1243914813,
0.1327524334,
-0.1157703251,
0.1248915493,
0.1200048476,
-0.051540859,
-0.1373376399,
-0.1135678142,
0.1800018847,
0.022834029,
0.2303535044,
-0.2976279259,
0.0392742828,
-0.1231655627,
0.2310592532,
0.1895386428,
0.1202054769,
0.0657505691,
0.2072515339,
-0.0511194207,
0.0248659998,
-0.5182056427,
0.2064266056,
0.1967262775,
0.3688434362,
0.215200305,
-0.1553564221,
0.1056381315,
-0.0322783887,
0.1498687565,
0.3083645105,
-0.269972086,
-0.0058442429,
0.2419039607,
0.1483673006,
-0.1588442028,
-0.0049721338,
0.367105484,
0.0078908689,
0.0080684274,
0.4790734053,
0.3525028229,
0.1368156374,
-0.1463457942,
0.0633271635,
0.2355749458,
-0.2535271347,
0.0676124617,
0.4052126408,
-0.0051036403,
0.139457047,
0.5995876193,
0.0332879797,
-0.1143290401,
0.6000962853,
0.3011855483,
0.7809868455,
0.1995596439,
0.1787552387,
-0.0658112615,
-0.1044647694,
-0.4129892886,
0.2548287511,
0.1273963898,
0.1769532859,
0.0383529253,
0.143287167,
0.1453570426,
-0.1860472113,
-0.0964768678,
0.1134997308,
-0.340492636,
0.0229303427,
-0.331787169,
-0.2342438996,
-0.1217744276,
-0.1177004054,
-0.172274068,
0.036737971,
0.0614893623,
0.1339385211,
-0.0074615367,
-0.0612120256,
0.0823541507,
0.2852352858,
0.0478244275,
-0.1977075338,
0.5288454294,
0.0339012146,
-0.0469574332,
-0.1587117612,
0.2742471099,
0.2531483769,
0.2315029651,
-0.0519731641,
-0.1070037037,
0.3387273848,
-0.1102280393,
-0.02969357,
0.1004740447,
0.2005061805,
0.2549166381,
0.1804336905,
0.0651820302,
-0.0043523535,
0.3010008037,
0.0695357248,
-0.1928664744,
0.2435858548,
0.2801604271,
0.1861453503,
-0.2890455723,
-0.1294617057,
-0.2241024077,
-0.3388958573,
-0.1642104387,
0.3142123818,
-0.1428407729,
0.2404808551,
-0.1308151782,
0.0508457609,
0.0420494452,
0.1968674809,
0.1187228113,
0.1140158325,
-0.4945983887,
-0.0885232538,
-0.7457130551,
0.2005534321,
-0.3096916974,
-0.2826575041,
0.2355702519,
0.0266045332,
-0.0474612564,
0.3023000062,
-0.2346744835,
0.2289669067,
0.0685478672,
0.3347983062,
-0.6064158082,
0.0685796961,
0.2317822874,
0.3589982092,
0.0531917065,
-0.1249814034,
-0.2764686346,
0.2186532021,
-0.0702891797,
-0.0727588385,
-0.0685446858,
-0.1896736473,
-0.0558265671,
0.2673413754,
-0.2124230266,
0.156776458,
-0.0746062547,
-0.1744632125,
-0.2747463286,
-0.0597105622,
-0.164485544,
0.0210560467,
0.1005385444,
0.3167756796,
0.0033470802,
0.1547870636,
-0.3915068805,
-0.2984788418,
0.0132770315,
0.0827493072,
-0.36418432,
0.432810545,
-0.2321623862,
0.1437949985,
0.0377224907,
0.2259720564,
0.0746322125,
-0.0033203736,
-0.15939188,
-0.4455852211,
0.261302948,
0.2699013948,
-0.1986566633,
-0.1195020527,
0.0043350533,
0.1073930711,
0.1258694977,
-0.4479658604,
0.1364090443,
0.179970637,
-0.0451216549,
-0.0945751071,
0.0839962661,
-0.0237167813,
-0.0781786367,
-0.1301059276,
0.1238041222,
-0.0262833945,
-0.114584893,
-0.2040123641,
-0.1585311294
] |
https://github.com/huggingface/datasets/issues/425 | Correct data structure for PAN-X task in XTREME dataset? | Thanks, I am making progress. I got a new error `NonMatchingSplitsSizesError ` (see traceback below), which I suspect is due to the fact that number of rows in the dataset changed (one row per word --> one row per sentence) as well as the number of bytes due to the slightly updated data structure.
```python
NonMatchingSplitsSizesError: [{'expected': SplitInfo(name='validation', num_bytes=1756492, num_examples=80536, dataset_name='xtreme'), 'recorded': SplitInfo(name='validation', num_bytes=1837109, num_examples=10000, dataset_name='xtreme')}, {'expected': SplitInfo(name='test', num_bytes=1752572, num_examples=80326, dataset_name='xtreme'), 'recorded': SplitInfo(name='test', num_bytes=1833214, num_examples=10000, dataset_name='xtreme')}, {'expected': SplitInfo(name='train', num_bytes=3496832, num_examples=160394, dataset_name='xtreme'), 'recorded': SplitInfo(name='train', num_bytes=3658428, num_examples=20000, dataset_name='xtreme')}]
```
I can fix the error by replacing the values in the `datasets_infos.json` file, which I tested for English. However, to update this for all 40 datasets manually is slightly painful. Is there a better way to update the expected values for all datasets? | Hi 🤗 team!
## Description of the problem
Thanks to the fix from #416 I am now able to load the NER task in the XTREME dataset as follows:
```python
from nlp import load_dataset
# AmazonPhotos.zip is located in data/
dataset = load_dataset("xtreme", "PAN-X.en", data_dir='./data')
dataset_train = dataset['train']
```
However, I am not sure that `load_dataset()` is returning the correct data structure for NER.
Currently, every row in `dataset_train` is of the form
```python
{'word': str, 'ner_tag': str, 'lang': str}
```
but I think we actually want something like
```python
{'words': List[str], 'ner_tags': List[str], 'langs': List[str]}
```
so that each row corresponds to a _sequence_ of words associated with each example. With the current data structure I do not think it is possible to transform `dataset_train` into a form suitable for training because we do not know the boundaries between examples.
Indeed, [this line](https://github.com/google-research/xtreme/blob/522434d1aece34131d997a97ce7e9242a51a688a/third_party/utils_tag.py#L58) in the XTREME repo, processes the texts as lists of sentences, tags, and languages.
## Proposed solution
Replace
```python
with open(filepath) as f:
data = csv.reader(f, delimiter="\t", quoting=csv.QUOTE_NONE)
for id_, row in enumerate(data):
if row:
lang, word = row[0].split(":")[0], row[0].split(":")[1]
tag = row[1]
yield id_, {"word": word, "ner_tag": tag, "lang": lang}
```
from [these lines](https://github.com/huggingface/nlp/blob/ce7d3a1d630b78fe27188d1706f3ea980e8eec43/datasets/xtreme/xtreme.py#L881-L887) of the `_generate_examples()` function with something like
```python
guid_index = 1
with open(filepath, encoding="utf-8") as f:
words = []
ner_tags = []
langs = []
for line in f:
if line.startswith("-DOCSTART-") or line == "" or line == "\n":
if words:
yield guid_index, {"words": words, "ner_tags": ner_tags, "langs": langs}
guid_index += 1
words = []
ner_tags = []
else:
# pan-x data is tab separated
splits = line.split("\t")
# strip out en: prefix
langs.append(splits[0][:2])
words.append(splits[0][3:])
if len(splits) > 1:
labels.append(splits[-1].replace("\n", ""))
else:
# examples have no label in test set
labels.append("O")
```
If you agree, me or @lvwerra would be happy to implement this and create a PR. | 130 | Correct data structure for PAN-X task in XTREME dataset?
Hi 🤗 team!
## Description of the problem
Thanks to the fix from #416 I am now able to load the NER task in the XTREME dataset as follows:
```python
from nlp import load_dataset
# AmazonPhotos.zip is located in data/
dataset = load_dataset("xtreme", "PAN-X.en", data_dir='./data')
dataset_train = dataset['train']
```
However, I am not sure that `load_dataset()` is returning the correct data structure for NER.
Currently, every row in `dataset_train` is of the form
```python
{'word': str, 'ner_tag': str, 'lang': str}
```
but I think we actually want something like
```python
{'words': List[str], 'ner_tags': List[str], 'langs': List[str]}
```
so that each row corresponds to a _sequence_ of words associated with each example. With the current data structure I do not think it is possible to transform `dataset_train` into a form suitable for training because we do not know the boundaries between examples.
Indeed, [this line](https://github.com/google-research/xtreme/blob/522434d1aece34131d997a97ce7e9242a51a688a/third_party/utils_tag.py#L58) in the XTREME repo, processes the texts as lists of sentences, tags, and languages.
## Proposed solution
Replace
```python
with open(filepath) as f:
data = csv.reader(f, delimiter="\t", quoting=csv.QUOTE_NONE)
for id_, row in enumerate(data):
if row:
lang, word = row[0].split(":")[0], row[0].split(":")[1]
tag = row[1]
yield id_, {"word": word, "ner_tag": tag, "lang": lang}
```
from [these lines](https://github.com/huggingface/nlp/blob/ce7d3a1d630b78fe27188d1706f3ea980e8eec43/datasets/xtreme/xtreme.py#L881-L887) of the `_generate_examples()` function with something like
```python
guid_index = 1
with open(filepath, encoding="utf-8") as f:
words = []
ner_tags = []
langs = []
for line in f:
if line.startswith("-DOCSTART-") or line == "" or line == "\n":
if words:
yield guid_index, {"words": words, "ner_tags": ner_tags, "langs": langs}
guid_index += 1
words = []
ner_tags = []
else:
# pan-x data is tab separated
splits = line.split("\t")
# strip out en: prefix
langs.append(splits[0][:2])
words.append(splits[0][3:])
if len(splits) > 1:
labels.append(splits[-1].replace("\n", ""))
else:
# examples have no label in test set
labels.append("O")
```
If you agree, me or @lvwerra would be happy to implement this and create a PR.
Thanks, I am making progress. I got a new error `NonMatchingSplitsSizesError ` (see traceback below), which I suspect is due to the fact that number of rows in the dataset changed (one row per word --> one row per sentence) as well as the number of bytes due to the slightly updated data structure.
```python
NonMatchingSplitsSizesError: [{'expected': SplitInfo(name='validation', num_bytes=1756492, num_examples=80536, dataset_name='xtreme'), 'recorded': SplitInfo(name='validation', num_bytes=1837109, num_examples=10000, dataset_name='xtreme')}, {'expected': SplitInfo(name='test', num_bytes=1752572, num_examples=80326, dataset_name='xtreme'), 'recorded': SplitInfo(name='test', num_bytes=1833214, num_examples=10000, dataset_name='xtreme')}, {'expected': SplitInfo(name='train', num_bytes=3496832, num_examples=160394, dataset_name='xtreme'), 'recorded': SplitInfo(name='train', num_bytes=3658428, num_examples=20000, dataset_name='xtreme')}]
```
I can fix the error by replacing the values in the `datasets_infos.json` file, which I tested for English. However, to update this for all 40 datasets manually is slightly painful. Is there a better way to update the expected values for all datasets? | [
-0.0446428098,
-0.1960521042,
-0.0213918313,
0.3716608286,
0.0390404277,
-0.2763311565,
-0.0206366386,
0.1579517275,
-0.0717807785,
-0.066242367,
-0.1613531411,
0.2627061903,
0.0014280193,
0.1680826545,
0.4264346361,
-0.1467024535,
0.0484420843,
-0.0699056983,
0.2786862552,
-0.0526144691,
-0.109093219,
0.1506102532,
-0.3253746629,
0.0544694439,
-0.3497878611,
0.0837276801,
-0.0678212941,
0.3462398648,
-0.2758392692,
-0.4933686256,
0.5901550055,
0.0610431992,
0.3375478983,
0.3253479004,
-0.0001185823,
0.0073940903,
0.0491499715,
-0.2976794243,
0.0629999414,
-0.5153078437,
-0.2116061151,
-0.6882323027,
-0.0707504153,
-0.1863513738,
-0.2494241148,
-0.0691496879,
0.2359094471,
0.1613159925,
0.32868734,
0.4041298926,
0.0667555034,
0.1186722964,
-0.011228703,
0.1646234542,
0.4069046974,
0.3912607133,
-0.2984111309,
-0.0554719269,
0.5836415291,
0.150093317,
-0.2007243335,
0.2261365652,
0.0665779412,
-0.0957406461,
0.2168317288,
0.3117487133,
0.11062181,
-0.4583890438,
-0.2030346096,
0.282891959,
0.2304354906,
-0.2553841472,
-0.2035077214,
-0.277931571,
-0.0572837591,
-0.2900472879,
-0.0280276313,
0.3609626889,
-0.0808846653,
-0.0090990681,
0.2543646097,
-0.0029823929,
-0.1114808917,
0.2031375319,
-0.0105205998,
0.4096217453,
-0.0134636965,
-0.1075183377,
-0.139606908,
-0.1162081361,
0.701856792,
-0.0104257343,
0.157686621,
0.1197109222,
-0.6041294932,
0.08037965,
-0.1363219917,
-0.2818925381,
0.1663053632,
-0.0484366342,
0.2098659277,
0.1589152962,
0.1485240012,
0.0145869805,
0.3213757277,
0.2003955394,
0.2381375134,
0.0310105607,
-0.1307128221,
0.0734809712,
0.0858035833,
-0.0963583142,
-0.3183752,
0.0653052777,
0.2368327677,
-0.0228068251,
0.2889070809,
-0.1962375343,
-0.3680239618,
-0.0199918635,
-0.128430441,
0.072580345,
0.141478762,
0.061180111,
0.0080605596,
0.5874379873,
-0.0742888823,
0.1787088513,
-0.253834337,
0.0291407518,
-0.1472997367,
0.169410035,
-0.6243599653,
-0.1061868519,
0.2582581639,
0.0919621885,
0.1970393062,
-0.0064034052,
0.1218201518,
-0.3322490156,
0.1758816242,
-0.2791435719,
0.2651098669,
-0.0158673115,
0.2457386255,
-0.1295719892,
-0.3093241453,
-0.0095195696,
-0.1647402495,
0.2194370031,
-0.7123692632,
-0.0245733038,
0.0450959653,
0.0754593611,
-0.2141940743,
0.1435736567,
-0.50432235,
0.0322593786,
0.0630442128,
0.2181686759,
0.1069045216,
-0.3306137621,
-0.2142900825,
-0.0720486492,
0.0830699354,
0.1326567829,
-0.1291508228,
0.0973815694,
0.06309928,
0.0002564043,
0.1041971445,
0.2162792832,
-0.0109666586,
0.2841816545,
-0.1886346191,
0.5723385811,
0.4195817411,
-0.8037276268,
-0.3378546536,
0.0875087753,
-0.1656144708,
0.0018322244,
-0.0777148455,
0.2999708056,
0.2168301046,
-0.1097088605,
0.2860382199,
0.4717788398,
-0.0601553619,
0.1129642129,
-0.105582729,
0.2662772536,
-0.1180937216,
0.3215997815,
0.0420981646,
-0.2685290873,
-0.1594628096,
0.0751414001,
0.1948613375,
-0.1158283651,
0.0870856494,
0.4314536154,
0.0892730579,
-0.0513844229,
-0.0506238006,
0.0383255258,
-0.7624902725,
0.1141012013,
-0.4289600849,
0.3793446422,
0.0106570572,
-0.0671953931,
-0.1728423834,
-0.0510761812,
-0.2962620258,
-0.1906545311,
0.1071610451,
-0.1209995598,
-0.1237812191,
-0.3034519553,
-0.0762853324,
0.3974153399,
-0.2260981798,
0.0737625957,
-0.5780187845,
0.3407831788,
0.1180048138,
-0.0664847568,
-0.0123105869,
0.4472561777,
0.1922498941,
-0.0482965782,
0.1684598178,
0.2209220529,
0.2148894966,
-0.1571743041,
-0.0612340569,
-0.0020258874,
0.1334932595,
-0.5777857304,
0.0659276843,
0.2230994105,
-0.001422774,
-0.2143050432,
-0.1243548989,
0.5517564416,
0.1847709864,
0.2072842568,
0.0289729908,
0.0707501695,
0.212223351,
-0.1713615954,
-0.2344335318,
-0.1039044261,
0.1545491368,
0.1233170778,
0.0305477902,
0.0995657444,
-0.5023412108,
0.0200129505,
0.3077194691,
0.0274304152,
0.1898183078,
0.2047273517,
-0.1531090289,
-0.0791653842,
0.0374576896,
0.3701196015,
0.3590862751,
0.0914273113,
0.1098855585,
0.1304073483,
-0.0329410806,
0.0724885389,
-0.0358845443,
0.0617543198,
0.1510173976,
0.2119648457,
0.1785159707,
-0.0841948986,
-0.0858963504,
-0.2191506028,
0.032177642,
0.1521633118,
-0.329500109,
0.0780691803,
0.0368219838,
-0.450265646,
-0.1473739743,
0.0441722497,
-0.1361572891,
-0.3193361163,
-0.0379219502,
-0.057156112,
0.2387745678,
0.0840668902,
-0.4746880829,
-0.2150861621,
-0.1986020505,
-0.3406287432,
-0.0583147444,
0.0742934346,
-0.1382386088,
-0.0267541297,
0.2119734436,
0.5459077358,
-0.0312718302,
-0.4353147149,
0.3901607096,
-0.3872417808,
-0.2023120373,
0.3016566038,
-0.2638221979,
0.3121579885,
0.2171546668,
-0.1040858775,
-0.4046021402,
0.1959169805,
0.1874919832,
-0.321480006,
-0.3141257167,
0.3168616891,
-0.1772632152,
-0.0916747227,
-0.026443962,
-0.4063455462,
-0.5237719417,
-0.2054873556,
0.0119939055,
0.2230313271,
0.3162435591,
0.2151378542,
-0.2596665919,
-0.1451507509,
-0.1321806163,
-0.195511654,
0.0069593973,
-0.5726139545,
0.4568422437,
-0.2441942096,
-0.2051522732,
-0.0859806761,
-0.2658789158,
0.4713200331,
0.3780291378,
-0.0684932321,
-0.0375405774,
0.1413384825,
0.0351823121,
0.1777091622,
-0.0622193068,
0.2964116931,
-0.214135617,
0.0457051024,
-0.0277899578,
-0.0081237704,
0.0785254538,
0.3201448023,
0.2304377258,
-0.0265189037,
-0.2571680844,
0.1103469133,
0.0635770112,
0.1552900672,
0.0463343933,
0.4367932081,
0.0053785853,
0.1145689264,
0.0847836286,
0.022408694,
-0.1640304029,
0.0601459518,
0.2332693636,
-0.0009898134,
0.2357877791,
-0.1547729969,
-0.0720980763,
0.1263711452,
-0.132999137,
-0.2151206285,
0.5398618579,
-0.1397543401,
0.4105231762,
-0.1709614247,
0.0268173218,
-0.0614330247,
-0.4580694437,
-0.257129848,
0.0861497372,
0.1797155589,
0.1554046422,
-0.6861751676,
0.3985432386,
-0.3888288736,
-0.0206329897,
0.1728509068,
0.5378319025,
0.212025553,
0.0804056823,
0.1571727097,
-0.0373993255,
0.3112252355,
-0.2897291481,
-0.146242708,
0.109261103,
0.1001145691,
-0.3250236809,
-0.0430729613,
-0.250880897,
0.0265305936,
0.4807164073,
0.4030665755,
-0.3020350337,
-0.4488571882,
-0.0142153557,
0.0474347435,
-0.2095987052,
-0.1977829039,
-0.2662701905,
-0.450519681,
-0.0922011733,
-0.0910781994,
0.554091692,
-0.0119680874,
0.2859897912,
0.0289199203,
-0.235748589,
0.2654160857,
0.3301909864,
-0.0371142924,
0.5644024014,
-0.2395818532,
0.0057379529,
-0.0657552928,
-0.0843307525,
0.2901477218,
0.4803261161,
-0.185940519,
-0.1504533887,
0.1800045222,
-0.2238449305,
0.4223893881,
0.1663810313,
0.1885035634,
0.0188955925,
-0.2950088978,
-0.0011858791,
-0.13589257,
0.1362023801,
0.3885794282,
-0.1082976609,
-0.4188085198,
-0.3653252125,
0.1768364459,
0.3088771701,
0.105598107,
-0.231043756,
-0.1721606553,
-0.2617760301,
-0.1415579915,
0.4663682878,
1.0166807175,
0.0301852878,
0.4335707426,
0.1726905555,
0.0897265598,
0.060726922,
-0.4444868863,
0.2049942315,
-0.3482039571,
-0.3285877407,
-0.2036455125,
-0.2574141026,
-0.0620910116,
0.2026154101,
0.0319124907,
0.6626026034,
0.2256907076,
-0.0447899736,
0.0229517631,
0.2159695029,
0.0093679111,
-0.3867398798,
-0.3745243549,
0.004031606,
-0.2863347232,
0.0149862021,
-0.1535773575,
-0.2083833814,
-0.0591487512,
0.1994757354,
0.1399666518,
0.2819467783,
0.0934470743,
-0.1829061806,
0.4239276648,
-0.560593605,
-0.0533474907,
0.2428726852,
0.0773037374,
-0.3221908212,
0.0031522159,
0.2361230701,
0.4050421417,
0.1009969264,
0.3913244009,
-0.3321994543,
0.2601028383,
0.0498280823,
0.1221910864,
-0.2428601086,
0.1581604183,
-0.037262544,
-0.4174329042,
0.0479723215,
-0.1750264317,
-0.2749733329,
-0.208798945,
0.0269382987,
-0.1443696618,
-0.0497385226,
0.0549408533,
0.2594361901,
-0.0902870744,
0.1481017023,
0.1132919341,
-0.2592059076,
0.1990919262,
0.0831909552,
0.2976745367,
-0.3125316501,
0.0376101546,
0.24821271,
0.0151349679,
-0.0992358327,
0.180581376,
0.4821509421,
-0.6173616052,
0.0337479897,
-0.243450284,
-0.0137988329,
-0.0163004808,
0.1851164997,
0.0020546177,
-0.2625000477,
0.162774995,
-0.2828572094,
-0.3409923613,
0.3751992583,
0.1163778752,
0.2782916427,
-0.197985366,
0.009825889,
0.1509936303,
-0.2200443745,
-0.2390499264,
0.1753159165,
-0.1794704795,
0.1961242557,
-0.115764752,
-0.0962911993,
0.0804041326,
-0.0942012966,
-0.0249695927,
0.2664700449,
-0.1458447874,
-0.0578538105,
0.0179342553,
0.1243914813,
0.1327524334,
-0.1157703251,
0.1248915493,
0.1200048476,
-0.051540859,
-0.1373376399,
-0.1135678142,
0.1800018847,
0.022834029,
0.2303535044,
-0.2976279259,
0.0392742828,
-0.1231655627,
0.2310592532,
0.1895386428,
0.1202054769,
0.0657505691,
0.2072515339,
-0.0511194207,
0.0248659998,
-0.5182056427,
0.2064266056,
0.1967262775,
0.3688434362,
0.215200305,
-0.1553564221,
0.1056381315,
-0.0322783887,
0.1498687565,
0.3083645105,
-0.269972086,
-0.0058442429,
0.2419039607,
0.1483673006,
-0.1588442028,
-0.0049721338,
0.367105484,
0.0078908689,
0.0080684274,
0.4790734053,
0.3525028229,
0.1368156374,
-0.1463457942,
0.0633271635,
0.2355749458,
-0.2535271347,
0.0676124617,
0.4052126408,
-0.0051036403,
0.139457047,
0.5995876193,
0.0332879797,
-0.1143290401,
0.6000962853,
0.3011855483,
0.7809868455,
0.1995596439,
0.1787552387,
-0.0658112615,
-0.1044647694,
-0.4129892886,
0.2548287511,
0.1273963898,
0.1769532859,
0.0383529253,
0.143287167,
0.1453570426,
-0.1860472113,
-0.0964768678,
0.1134997308,
-0.340492636,
0.0229303427,
-0.331787169,
-0.2342438996,
-0.1217744276,
-0.1177004054,
-0.172274068,
0.036737971,
0.0614893623,
0.1339385211,
-0.0074615367,
-0.0612120256,
0.0823541507,
0.2852352858,
0.0478244275,
-0.1977075338,
0.5288454294,
0.0339012146,
-0.0469574332,
-0.1587117612,
0.2742471099,
0.2531483769,
0.2315029651,
-0.0519731641,
-0.1070037037,
0.3387273848,
-0.1102280393,
-0.02969357,
0.1004740447,
0.2005061805,
0.2549166381,
0.1804336905,
0.0651820302,
-0.0043523535,
0.3010008037,
0.0695357248,
-0.1928664744,
0.2435858548,
0.2801604271,
0.1861453503,
-0.2890455723,
-0.1294617057,
-0.2241024077,
-0.3388958573,
-0.1642104387,
0.3142123818,
-0.1428407729,
0.2404808551,
-0.1308151782,
0.0508457609,
0.0420494452,
0.1968674809,
0.1187228113,
0.1140158325,
-0.4945983887,
-0.0885232538,
-0.7457130551,
0.2005534321,
-0.3096916974,
-0.2826575041,
0.2355702519,
0.0266045332,
-0.0474612564,
0.3023000062,
-0.2346744835,
0.2289669067,
0.0685478672,
0.3347983062,
-0.6064158082,
0.0685796961,
0.2317822874,
0.3589982092,
0.0531917065,
-0.1249814034,
-0.2764686346,
0.2186532021,
-0.0702891797,
-0.0727588385,
-0.0685446858,
-0.1896736473,
-0.0558265671,
0.2673413754,
-0.2124230266,
0.156776458,
-0.0746062547,
-0.1744632125,
-0.2747463286,
-0.0597105622,
-0.164485544,
0.0210560467,
0.1005385444,
0.3167756796,
0.0033470802,
0.1547870636,
-0.3915068805,
-0.2984788418,
0.0132770315,
0.0827493072,
-0.36418432,
0.432810545,
-0.2321623862,
0.1437949985,
0.0377224907,
0.2259720564,
0.0746322125,
-0.0033203736,
-0.15939188,
-0.4455852211,
0.261302948,
0.2699013948,
-0.1986566633,
-0.1195020527,
0.0043350533,
0.1073930711,
0.1258694977,
-0.4479658604,
0.1364090443,
0.179970637,
-0.0451216549,
-0.0945751071,
0.0839962661,
-0.0237167813,
-0.0781786367,
-0.1301059276,
0.1238041222,
-0.0262833945,
-0.114584893,
-0.2040123641,
-0.1585311294
] |
https://github.com/huggingface/datasets/issues/425 | Correct data structure for PAN-X task in XTREME dataset? | One more thing about features. I mentioned
```python
features = nlp.Features({
"words": [nlp.Value("string")],
"ner_tags": [nlp.Value("string")],
"langs": [nlp.Value("string")],
})
```
but it's actually not consistent with the way we write datasets. Something like this is simpler to read and more consistent with the way we define datasets:
```python
features = nlp.Features({
"words": nlp.Sequence(nlp.Value("string")),
"ner_tags": nlp.Sequence(nlp.Value("string")),
"langs": nlp.Sequence(nlp.Value("string")),
})
```
Sorry about that | Hi 🤗 team!
## Description of the problem
Thanks to the fix from #416 I am now able to load the NER task in the XTREME dataset as follows:
```python
from nlp import load_dataset
# AmazonPhotos.zip is located in data/
dataset = load_dataset("xtreme", "PAN-X.en", data_dir='./data')
dataset_train = dataset['train']
```
However, I am not sure that `load_dataset()` is returning the correct data structure for NER.
Currently, every row in `dataset_train` is of the form
```python
{'word': str, 'ner_tag': str, 'lang': str}
```
but I think we actually want something like
```python
{'words': List[str], 'ner_tags': List[str], 'langs': List[str]}
```
so that each row corresponds to a _sequence_ of words associated with each example. With the current data structure I do not think it is possible to transform `dataset_train` into a form suitable for training because we do not know the boundaries between examples.
Indeed, [this line](https://github.com/google-research/xtreme/blob/522434d1aece34131d997a97ce7e9242a51a688a/third_party/utils_tag.py#L58) in the XTREME repo, processes the texts as lists of sentences, tags, and languages.
## Proposed solution
Replace
```python
with open(filepath) as f:
data = csv.reader(f, delimiter="\t", quoting=csv.QUOTE_NONE)
for id_, row in enumerate(data):
if row:
lang, word = row[0].split(":")[0], row[0].split(":")[1]
tag = row[1]
yield id_, {"word": word, "ner_tag": tag, "lang": lang}
```
from [these lines](https://github.com/huggingface/nlp/blob/ce7d3a1d630b78fe27188d1706f3ea980e8eec43/datasets/xtreme/xtreme.py#L881-L887) of the `_generate_examples()` function with something like
```python
guid_index = 1
with open(filepath, encoding="utf-8") as f:
words = []
ner_tags = []
langs = []
for line in f:
if line.startswith("-DOCSTART-") or line == "" or line == "\n":
if words:
yield guid_index, {"words": words, "ner_tags": ner_tags, "langs": langs}
guid_index += 1
words = []
ner_tags = []
else:
# pan-x data is tab separated
splits = line.split("\t")
# strip out en: prefix
langs.append(splits[0][:2])
words.append(splits[0][3:])
if len(splits) > 1:
labels.append(splits[-1].replace("\n", ""))
else:
# examples have no label in test set
labels.append("O")
```
If you agree, me or @lvwerra would be happy to implement this and create a PR. | 61 | Correct data structure for PAN-X task in XTREME dataset?
Hi 🤗 team!
## Description of the problem
Thanks to the fix from #416 I am now able to load the NER task in the XTREME dataset as follows:
```python
from nlp import load_dataset
# AmazonPhotos.zip is located in data/
dataset = load_dataset("xtreme", "PAN-X.en", data_dir='./data')
dataset_train = dataset['train']
```
However, I am not sure that `load_dataset()` is returning the correct data structure for NER.
Currently, every row in `dataset_train` is of the form
```python
{'word': str, 'ner_tag': str, 'lang': str}
```
but I think we actually want something like
```python
{'words': List[str], 'ner_tags': List[str], 'langs': List[str]}
```
so that each row corresponds to a _sequence_ of words associated with each example. With the current data structure I do not think it is possible to transform `dataset_train` into a form suitable for training because we do not know the boundaries between examples.
Indeed, [this line](https://github.com/google-research/xtreme/blob/522434d1aece34131d997a97ce7e9242a51a688a/third_party/utils_tag.py#L58) in the XTREME repo, processes the texts as lists of sentences, tags, and languages.
## Proposed solution
Replace
```python
with open(filepath) as f:
data = csv.reader(f, delimiter="\t", quoting=csv.QUOTE_NONE)
for id_, row in enumerate(data):
if row:
lang, word = row[0].split(":")[0], row[0].split(":")[1]
tag = row[1]
yield id_, {"word": word, "ner_tag": tag, "lang": lang}
```
from [these lines](https://github.com/huggingface/nlp/blob/ce7d3a1d630b78fe27188d1706f3ea980e8eec43/datasets/xtreme/xtreme.py#L881-L887) of the `_generate_examples()` function with something like
```python
guid_index = 1
with open(filepath, encoding="utf-8") as f:
words = []
ner_tags = []
langs = []
for line in f:
if line.startswith("-DOCSTART-") or line == "" or line == "\n":
if words:
yield guid_index, {"words": words, "ner_tags": ner_tags, "langs": langs}
guid_index += 1
words = []
ner_tags = []
else:
# pan-x data is tab separated
splits = line.split("\t")
# strip out en: prefix
langs.append(splits[0][:2])
words.append(splits[0][3:])
if len(splits) > 1:
labels.append(splits[-1].replace("\n", ""))
else:
# examples have no label in test set
labels.append("O")
```
If you agree, me or @lvwerra would be happy to implement this and create a PR.
One more thing about features. I mentioned
```python
features = nlp.Features({
"words": [nlp.Value("string")],
"ner_tags": [nlp.Value("string")],
"langs": [nlp.Value("string")],
})
```
but it's actually not consistent with the way we write datasets. Something like this is simpler to read and more consistent with the way we define datasets:
```python
features = nlp.Features({
"words": nlp.Sequence(nlp.Value("string")),
"ner_tags": nlp.Sequence(nlp.Value("string")),
"langs": nlp.Sequence(nlp.Value("string")),
})
```
Sorry about that | [
-0.0446428098,
-0.1960521042,
-0.0213918313,
0.3716608286,
0.0390404277,
-0.2763311565,
-0.0206366386,
0.1579517275,
-0.0717807785,
-0.066242367,
-0.1613531411,
0.2627061903,
0.0014280193,
0.1680826545,
0.4264346361,
-0.1467024535,
0.0484420843,
-0.0699056983,
0.2786862552,
-0.0526144691,
-0.109093219,
0.1506102532,
-0.3253746629,
0.0544694439,
-0.3497878611,
0.0837276801,
-0.0678212941,
0.3462398648,
-0.2758392692,
-0.4933686256,
0.5901550055,
0.0610431992,
0.3375478983,
0.3253479004,
-0.0001185823,
0.0073940903,
0.0491499715,
-0.2976794243,
0.0629999414,
-0.5153078437,
-0.2116061151,
-0.6882323027,
-0.0707504153,
-0.1863513738,
-0.2494241148,
-0.0691496879,
0.2359094471,
0.1613159925,
0.32868734,
0.4041298926,
0.0667555034,
0.1186722964,
-0.011228703,
0.1646234542,
0.4069046974,
0.3912607133,
-0.2984111309,
-0.0554719269,
0.5836415291,
0.150093317,
-0.2007243335,
0.2261365652,
0.0665779412,
-0.0957406461,
0.2168317288,
0.3117487133,
0.11062181,
-0.4583890438,
-0.2030346096,
0.282891959,
0.2304354906,
-0.2553841472,
-0.2035077214,
-0.277931571,
-0.0572837591,
-0.2900472879,
-0.0280276313,
0.3609626889,
-0.0808846653,
-0.0090990681,
0.2543646097,
-0.0029823929,
-0.1114808917,
0.2031375319,
-0.0105205998,
0.4096217453,
-0.0134636965,
-0.1075183377,
-0.139606908,
-0.1162081361,
0.701856792,
-0.0104257343,
0.157686621,
0.1197109222,
-0.6041294932,
0.08037965,
-0.1363219917,
-0.2818925381,
0.1663053632,
-0.0484366342,
0.2098659277,
0.1589152962,
0.1485240012,
0.0145869805,
0.3213757277,
0.2003955394,
0.2381375134,
0.0310105607,
-0.1307128221,
0.0734809712,
0.0858035833,
-0.0963583142,
-0.3183752,
0.0653052777,
0.2368327677,
-0.0228068251,
0.2889070809,
-0.1962375343,
-0.3680239618,
-0.0199918635,
-0.128430441,
0.072580345,
0.141478762,
0.061180111,
0.0080605596,
0.5874379873,
-0.0742888823,
0.1787088513,
-0.253834337,
0.0291407518,
-0.1472997367,
0.169410035,
-0.6243599653,
-0.1061868519,
0.2582581639,
0.0919621885,
0.1970393062,
-0.0064034052,
0.1218201518,
-0.3322490156,
0.1758816242,
-0.2791435719,
0.2651098669,
-0.0158673115,
0.2457386255,
-0.1295719892,
-0.3093241453,
-0.0095195696,
-0.1647402495,
0.2194370031,
-0.7123692632,
-0.0245733038,
0.0450959653,
0.0754593611,
-0.2141940743,
0.1435736567,
-0.50432235,
0.0322593786,
0.0630442128,
0.2181686759,
0.1069045216,
-0.3306137621,
-0.2142900825,
-0.0720486492,
0.0830699354,
0.1326567829,
-0.1291508228,
0.0973815694,
0.06309928,
0.0002564043,
0.1041971445,
0.2162792832,
-0.0109666586,
0.2841816545,
-0.1886346191,
0.5723385811,
0.4195817411,
-0.8037276268,
-0.3378546536,
0.0875087753,
-0.1656144708,
0.0018322244,
-0.0777148455,
0.2999708056,
0.2168301046,
-0.1097088605,
0.2860382199,
0.4717788398,
-0.0601553619,
0.1129642129,
-0.105582729,
0.2662772536,
-0.1180937216,
0.3215997815,
0.0420981646,
-0.2685290873,
-0.1594628096,
0.0751414001,
0.1948613375,
-0.1158283651,
0.0870856494,
0.4314536154,
0.0892730579,
-0.0513844229,
-0.0506238006,
0.0383255258,
-0.7624902725,
0.1141012013,
-0.4289600849,
0.3793446422,
0.0106570572,
-0.0671953931,
-0.1728423834,
-0.0510761812,
-0.2962620258,
-0.1906545311,
0.1071610451,
-0.1209995598,
-0.1237812191,
-0.3034519553,
-0.0762853324,
0.3974153399,
-0.2260981798,
0.0737625957,
-0.5780187845,
0.3407831788,
0.1180048138,
-0.0664847568,
-0.0123105869,
0.4472561777,
0.1922498941,
-0.0482965782,
0.1684598178,
0.2209220529,
0.2148894966,
-0.1571743041,
-0.0612340569,
-0.0020258874,
0.1334932595,
-0.5777857304,
0.0659276843,
0.2230994105,
-0.001422774,
-0.2143050432,
-0.1243548989,
0.5517564416,
0.1847709864,
0.2072842568,
0.0289729908,
0.0707501695,
0.212223351,
-0.1713615954,
-0.2344335318,
-0.1039044261,
0.1545491368,
0.1233170778,
0.0305477902,
0.0995657444,
-0.5023412108,
0.0200129505,
0.3077194691,
0.0274304152,
0.1898183078,
0.2047273517,
-0.1531090289,
-0.0791653842,
0.0374576896,
0.3701196015,
0.3590862751,
0.0914273113,
0.1098855585,
0.1304073483,
-0.0329410806,
0.0724885389,
-0.0358845443,
0.0617543198,
0.1510173976,
0.2119648457,
0.1785159707,
-0.0841948986,
-0.0858963504,
-0.2191506028,
0.032177642,
0.1521633118,
-0.329500109,
0.0780691803,
0.0368219838,
-0.450265646,
-0.1473739743,
0.0441722497,
-0.1361572891,
-0.3193361163,
-0.0379219502,
-0.057156112,
0.2387745678,
0.0840668902,
-0.4746880829,
-0.2150861621,
-0.1986020505,
-0.3406287432,
-0.0583147444,
0.0742934346,
-0.1382386088,
-0.0267541297,
0.2119734436,
0.5459077358,
-0.0312718302,
-0.4353147149,
0.3901607096,
-0.3872417808,
-0.2023120373,
0.3016566038,
-0.2638221979,
0.3121579885,
0.2171546668,
-0.1040858775,
-0.4046021402,
0.1959169805,
0.1874919832,
-0.321480006,
-0.3141257167,
0.3168616891,
-0.1772632152,
-0.0916747227,
-0.026443962,
-0.4063455462,
-0.5237719417,
-0.2054873556,
0.0119939055,
0.2230313271,
0.3162435591,
0.2151378542,
-0.2596665919,
-0.1451507509,
-0.1321806163,
-0.195511654,
0.0069593973,
-0.5726139545,
0.4568422437,
-0.2441942096,
-0.2051522732,
-0.0859806761,
-0.2658789158,
0.4713200331,
0.3780291378,
-0.0684932321,
-0.0375405774,
0.1413384825,
0.0351823121,
0.1777091622,
-0.0622193068,
0.2964116931,
-0.214135617,
0.0457051024,
-0.0277899578,
-0.0081237704,
0.0785254538,
0.3201448023,
0.2304377258,
-0.0265189037,
-0.2571680844,
0.1103469133,
0.0635770112,
0.1552900672,
0.0463343933,
0.4367932081,
0.0053785853,
0.1145689264,
0.0847836286,
0.022408694,
-0.1640304029,
0.0601459518,
0.2332693636,
-0.0009898134,
0.2357877791,
-0.1547729969,
-0.0720980763,
0.1263711452,
-0.132999137,
-0.2151206285,
0.5398618579,
-0.1397543401,
0.4105231762,
-0.1709614247,
0.0268173218,
-0.0614330247,
-0.4580694437,
-0.257129848,
0.0861497372,
0.1797155589,
0.1554046422,
-0.6861751676,
0.3985432386,
-0.3888288736,
-0.0206329897,
0.1728509068,
0.5378319025,
0.212025553,
0.0804056823,
0.1571727097,
-0.0373993255,
0.3112252355,
-0.2897291481,
-0.146242708,
0.109261103,
0.1001145691,
-0.3250236809,
-0.0430729613,
-0.250880897,
0.0265305936,
0.4807164073,
0.4030665755,
-0.3020350337,
-0.4488571882,
-0.0142153557,
0.0474347435,
-0.2095987052,
-0.1977829039,
-0.2662701905,
-0.450519681,
-0.0922011733,
-0.0910781994,
0.554091692,
-0.0119680874,
0.2859897912,
0.0289199203,
-0.235748589,
0.2654160857,
0.3301909864,
-0.0371142924,
0.5644024014,
-0.2395818532,
0.0057379529,
-0.0657552928,
-0.0843307525,
0.2901477218,
0.4803261161,
-0.185940519,
-0.1504533887,
0.1800045222,
-0.2238449305,
0.4223893881,
0.1663810313,
0.1885035634,
0.0188955925,
-0.2950088978,
-0.0011858791,
-0.13589257,
0.1362023801,
0.3885794282,
-0.1082976609,
-0.4188085198,
-0.3653252125,
0.1768364459,
0.3088771701,
0.105598107,
-0.231043756,
-0.1721606553,
-0.2617760301,
-0.1415579915,
0.4663682878,
1.0166807175,
0.0301852878,
0.4335707426,
0.1726905555,
0.0897265598,
0.060726922,
-0.4444868863,
0.2049942315,
-0.3482039571,
-0.3285877407,
-0.2036455125,
-0.2574141026,
-0.0620910116,
0.2026154101,
0.0319124907,
0.6626026034,
0.2256907076,
-0.0447899736,
0.0229517631,
0.2159695029,
0.0093679111,
-0.3867398798,
-0.3745243549,
0.004031606,
-0.2863347232,
0.0149862021,
-0.1535773575,
-0.2083833814,
-0.0591487512,
0.1994757354,
0.1399666518,
0.2819467783,
0.0934470743,
-0.1829061806,
0.4239276648,
-0.560593605,
-0.0533474907,
0.2428726852,
0.0773037374,
-0.3221908212,
0.0031522159,
0.2361230701,
0.4050421417,
0.1009969264,
0.3913244009,
-0.3321994543,
0.2601028383,
0.0498280823,
0.1221910864,
-0.2428601086,
0.1581604183,
-0.037262544,
-0.4174329042,
0.0479723215,
-0.1750264317,
-0.2749733329,
-0.208798945,
0.0269382987,
-0.1443696618,
-0.0497385226,
0.0549408533,
0.2594361901,
-0.0902870744,
0.1481017023,
0.1132919341,
-0.2592059076,
0.1990919262,
0.0831909552,
0.2976745367,
-0.3125316501,
0.0376101546,
0.24821271,
0.0151349679,
-0.0992358327,
0.180581376,
0.4821509421,
-0.6173616052,
0.0337479897,
-0.243450284,
-0.0137988329,
-0.0163004808,
0.1851164997,
0.0020546177,
-0.2625000477,
0.162774995,
-0.2828572094,
-0.3409923613,
0.3751992583,
0.1163778752,
0.2782916427,
-0.197985366,
0.009825889,
0.1509936303,
-0.2200443745,
-0.2390499264,
0.1753159165,
-0.1794704795,
0.1961242557,
-0.115764752,
-0.0962911993,
0.0804041326,
-0.0942012966,
-0.0249695927,
0.2664700449,
-0.1458447874,
-0.0578538105,
0.0179342553,
0.1243914813,
0.1327524334,
-0.1157703251,
0.1248915493,
0.1200048476,
-0.051540859,
-0.1373376399,
-0.1135678142,
0.1800018847,
0.022834029,
0.2303535044,
-0.2976279259,
0.0392742828,
-0.1231655627,
0.2310592532,
0.1895386428,
0.1202054769,
0.0657505691,
0.2072515339,
-0.0511194207,
0.0248659998,
-0.5182056427,
0.2064266056,
0.1967262775,
0.3688434362,
0.215200305,
-0.1553564221,
0.1056381315,
-0.0322783887,
0.1498687565,
0.3083645105,
-0.269972086,
-0.0058442429,
0.2419039607,
0.1483673006,
-0.1588442028,
-0.0049721338,
0.367105484,
0.0078908689,
0.0080684274,
0.4790734053,
0.3525028229,
0.1368156374,
-0.1463457942,
0.0633271635,
0.2355749458,
-0.2535271347,
0.0676124617,
0.4052126408,
-0.0051036403,
0.139457047,
0.5995876193,
0.0332879797,
-0.1143290401,
0.6000962853,
0.3011855483,
0.7809868455,
0.1995596439,
0.1787552387,
-0.0658112615,
-0.1044647694,
-0.4129892886,
0.2548287511,
0.1273963898,
0.1769532859,
0.0383529253,
0.143287167,
0.1453570426,
-0.1860472113,
-0.0964768678,
0.1134997308,
-0.340492636,
0.0229303427,
-0.331787169,
-0.2342438996,
-0.1217744276,
-0.1177004054,
-0.172274068,
0.036737971,
0.0614893623,
0.1339385211,
-0.0074615367,
-0.0612120256,
0.0823541507,
0.2852352858,
0.0478244275,
-0.1977075338,
0.5288454294,
0.0339012146,
-0.0469574332,
-0.1587117612,
0.2742471099,
0.2531483769,
0.2315029651,
-0.0519731641,
-0.1070037037,
0.3387273848,
-0.1102280393,
-0.02969357,
0.1004740447,
0.2005061805,
0.2549166381,
0.1804336905,
0.0651820302,
-0.0043523535,
0.3010008037,
0.0695357248,
-0.1928664744,
0.2435858548,
0.2801604271,
0.1861453503,
-0.2890455723,
-0.1294617057,
-0.2241024077,
-0.3388958573,
-0.1642104387,
0.3142123818,
-0.1428407729,
0.2404808551,
-0.1308151782,
0.0508457609,
0.0420494452,
0.1968674809,
0.1187228113,
0.1140158325,
-0.4945983887,
-0.0885232538,
-0.7457130551,
0.2005534321,
-0.3096916974,
-0.2826575041,
0.2355702519,
0.0266045332,
-0.0474612564,
0.3023000062,
-0.2346744835,
0.2289669067,
0.0685478672,
0.3347983062,
-0.6064158082,
0.0685796961,
0.2317822874,
0.3589982092,
0.0531917065,
-0.1249814034,
-0.2764686346,
0.2186532021,
-0.0702891797,
-0.0727588385,
-0.0685446858,
-0.1896736473,
-0.0558265671,
0.2673413754,
-0.2124230266,
0.156776458,
-0.0746062547,
-0.1744632125,
-0.2747463286,
-0.0597105622,
-0.164485544,
0.0210560467,
0.1005385444,
0.3167756796,
0.0033470802,
0.1547870636,
-0.3915068805,
-0.2984788418,
0.0132770315,
0.0827493072,
-0.36418432,
0.432810545,
-0.2321623862,
0.1437949985,
0.0377224907,
0.2259720564,
0.0746322125,
-0.0033203736,
-0.15939188,
-0.4455852211,
0.261302948,
0.2699013948,
-0.1986566633,
-0.1195020527,
0.0043350533,
0.1073930711,
0.1258694977,
-0.4479658604,
0.1364090443,
0.179970637,
-0.0451216549,
-0.0945751071,
0.0839962661,
-0.0237167813,
-0.0781786367,
-0.1301059276,
0.1238041222,
-0.0262833945,
-0.114584893,
-0.2040123641,
-0.1585311294
] |
https://github.com/huggingface/datasets/issues/418 | Addition of google drive links to dl_manager | I think the problem is the way you wrote your urls. Try the following structure to see `https://drive.google.com/uc?export=download&id=your_file_id` .
@lhoestq | Hello there, I followed the template to create a download script of my own, which works fine for me, although I had to shun the dl_manager because it was downloading nothing from the drive links and instead use gdown.
This is the script for me:
```python
class EmoConfig(nlp.BuilderConfig):
"""BuilderConfig for SQUAD."""
def __init__(self, **kwargs):
"""BuilderConfig for EmoContext.
Args:
**kwargs: keyword arguments forwarded to super.
"""
super(EmoConfig, self).__init__(**kwargs)
_TEST_URL = "https://drive.google.com/file/d/1Hn5ytHSSoGOC4sjm3wYy0Dh0oY_oXBbb/view?usp=sharing"
_TRAIN_URL = "https://drive.google.com/file/d/12Uz59TYg_NtxOy7SXraYeXPMRT7oaO7X/view?usp=sharing"
class EmoDataset(nlp.GeneratorBasedBuilder):
""" SemEval-2019 Task 3: EmoContext Contextual Emotion Detection in Text. Version 1.0.0 """
VERSION = nlp.Version("1.0.0")
force = False
def _info(self):
return nlp.DatasetInfo(
description=_DESCRIPTION,
features=nlp.Features(
{
"text": nlp.Value("string"),
"label": nlp.features.ClassLabel(names=["others", "happy", "sad", "angry"]),
}
),
supervised_keys=None,
homepage="https://www.aclweb.org/anthology/S19-2005/",
citation=_CITATION,
)
def _get_drive_url(self, url):
base_url = 'https://drive.google.com/uc?id='
split_url = url.split('/')
return base_url + split_url[5]
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
if(not os.path.exists("emo-train.json") or self.force):
gdown.download(self._get_drive_url(_TRAIN_URL), "emo-train.json", quiet = True)
if(not os.path.exists("emo-test.json") or self.force):
gdown.download(self._get_drive_url(_TEST_URL), "emo-test.json", quiet = True)
return [
nlp.SplitGenerator(
name=nlp.Split.TRAIN,
gen_kwargs={
"filepath": "emo-train.json",
"split": "train",
},
),
nlp.SplitGenerator(
name=nlp.Split.TEST,
gen_kwargs={"filepath": "emo-test.json", "split": "test"},
),
]
def _generate_examples(self, filepath, split):
""" Yields examples. """
with open(filepath, 'rb') as f:
data = json.load(f)
for id_, text, label in zip(data["text"].keys(), data["text"].values(), data["Label"].values()):
yield id_, {
"text": text,
"label": label,
}
```
Can someone help me in adding gdrive links to be used with default dl_manager or adding gdown as another dl_manager, because I'd like to add this dataset to nlp's official database. | 20 | Addition of google drive links to dl_manager
Hello there, I followed the template to create a download script of my own, which works fine for me, although I had to shun the dl_manager because it was downloading nothing from the drive links and instead use gdown.
This is the script for me:
```python
class EmoConfig(nlp.BuilderConfig):
"""BuilderConfig for SQUAD."""
def __init__(self, **kwargs):
"""BuilderConfig for EmoContext.
Args:
**kwargs: keyword arguments forwarded to super.
"""
super(EmoConfig, self).__init__(**kwargs)
_TEST_URL = "https://drive.google.com/file/d/1Hn5ytHSSoGOC4sjm3wYy0Dh0oY_oXBbb/view?usp=sharing"
_TRAIN_URL = "https://drive.google.com/file/d/12Uz59TYg_NtxOy7SXraYeXPMRT7oaO7X/view?usp=sharing"
class EmoDataset(nlp.GeneratorBasedBuilder):
""" SemEval-2019 Task 3: EmoContext Contextual Emotion Detection in Text. Version 1.0.0 """
VERSION = nlp.Version("1.0.0")
force = False
def _info(self):
return nlp.DatasetInfo(
description=_DESCRIPTION,
features=nlp.Features(
{
"text": nlp.Value("string"),
"label": nlp.features.ClassLabel(names=["others", "happy", "sad", "angry"]),
}
),
supervised_keys=None,
homepage="https://www.aclweb.org/anthology/S19-2005/",
citation=_CITATION,
)
def _get_drive_url(self, url):
base_url = 'https://drive.google.com/uc?id='
split_url = url.split('/')
return base_url + split_url[5]
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
if(not os.path.exists("emo-train.json") or self.force):
gdown.download(self._get_drive_url(_TRAIN_URL), "emo-train.json", quiet = True)
if(not os.path.exists("emo-test.json") or self.force):
gdown.download(self._get_drive_url(_TEST_URL), "emo-test.json", quiet = True)
return [
nlp.SplitGenerator(
name=nlp.Split.TRAIN,
gen_kwargs={
"filepath": "emo-train.json",
"split": "train",
},
),
nlp.SplitGenerator(
name=nlp.Split.TEST,
gen_kwargs={"filepath": "emo-test.json", "split": "test"},
),
]
def _generate_examples(self, filepath, split):
""" Yields examples. """
with open(filepath, 'rb') as f:
data = json.load(f)
for id_, text, label in zip(data["text"].keys(), data["text"].values(), data["Label"].values()):
yield id_, {
"text": text,
"label": label,
}
```
Can someone help me in adding gdrive links to be used with default dl_manager or adding gdown as another dl_manager, because I'd like to add this dataset to nlp's official database.
I think the problem is the way you wrote your urls. Try the following structure to see `https://drive.google.com/uc?export=download&id=your_file_id` .
@lhoestq | [
-0.0986939147,
0.0516563952,
-0.1309202909,
-0.05589642,
0.0639404207,
-0.0953548402,
0.3679334521,
0.2208106965,
0.2062919587,
0.2249778062,
-0.075064376,
0.3655762076,
-0.2819620371,
0.1416775137,
0.1477241665,
0.1173322424,
-0.2243514061,
0.2025328577,
0.275634706,
-0.1639437526,
-0.2751328051,
0.3278069794,
-0.0318779945,
-0.0081284828,
0.0502307452,
0.050559245,
-0.1391221583,
0.1980684549,
-0.1188958958,
-0.2999536693,
-0.4197378755,
0.1671040952,
0.160240069,
-0.0974567682,
-0.0001042657,
-0.1480786651,
0.2225693017,
-0.2084540427,
-0.4087231457,
-0.2936668396,
0.2981950939,
-0.1724279523,
0.1073079184,
-0.2651379108,
-0.004575938,
-0.0983252823,
0.2041180432,
0.1354036629,
0.2655148506,
0.3032343984,
0.2717004418,
0.0790489241,
0.1134708524,
0.0298927948,
0.3312545717,
-0.0354889855,
-0.0682809353,
0.3527144492,
0.3344671726,
-0.3054538965,
-0.1618670374,
0.2883866131,
-0.0054731444,
-0.0109912315,
0.2195133269,
0.1113406569,
0.5780610442,
-0.3311680257,
0.1066152006,
0.0327495299,
0.0236193389,
-0.0413234048,
-0.0850506946,
-0.2842149734,
0.0838138759,
-0.2874572873,
0.276653409,
0.1495651007,
-0.233484,
-0.0543574058,
-0.129478693,
-0.0255045388,
-0.0154688656,
0.0540595204,
-0.0889275968,
0.4138539135,
-0.0389395952,
-0.2830848992,
0.3861260712,
-0.0381517783,
-0.0971576497,
-0.1532619894,
-0.039470043,
0.0766008794,
-0.0374771245,
-0.288777411,
0.1567477435,
0.0466396213,
0.093797408,
0.2489913702,
0.0460644662,
0.0328913257,
0.2356236726,
0.0752922744,
0.1630281508,
0.4459602535,
-0.0003143586,
0.0400673375,
0.3538966179,
0.4176519811,
0.1609001458,
0.1501172632,
-0.1202336848,
-0.1861607134,
-0.1416518092,
0.1408615857,
-0.1575792283,
0.0906009823,
-0.4310441315,
-0.133097291,
-0.3732343912,
0.0073384233,
-0.0343622975,
0.4378283918,
-0.0487495102,
-0.1396606714,
0.2441133559,
0.2374017239,
-0.0423723385,
0.0900179595,
-0.1254784465,
0.2556158304,
-0.2168088853,
-0.05202315,
0.3310390413,
0.0770797431,
0.4212233424,
-0.2571607828,
-0.1213399768,
-0.2241325229,
0.1388939321,
0.085996598,
-0.0139239468,
-0.0641110688,
0.4167028964,
0.0155229643,
-0.1533246934,
-0.4158215523,
-0.0712254643,
0.0388115942,
0.0347074904,
-0.0371070281,
-0.1740764827,
0.335526824,
-0.086228922,
-0.0942457169,
-0.0037771463,
0.2271475047,
-0.150215894,
0.0436015278,
0.0858768821,
0.3182858825,
-0.0827774629,
-0.0009883605,
0.1685231924,
0.2986231446,
-0.0949457288,
-0.2877131104,
-0.1839942336,
0.1673679054,
-0.1132548302,
-0.0632706359,
-0.0449298322,
0.2455674708,
-0.3794006705,
0.2419204414,
0.3043462634,
-0.2896391153,
-0.2050283849,
0.2148448527,
-0.3752191961,
-0.1749028862,
0.0302697048,
0.0142995045,
0.4108041525,
-0.004255116,
-0.1432296634,
0.4827904701,
0.0771706551,
0.2428655028,
-0.3040137291,
-0.4660175145,
-0.182913959,
0.2075027227,
0.1516648978,
-0.1184459329,
0.1088402495,
-0.0877450481,
0.3002712131,
-0.1562740803,
0.186559692,
0.1028919443,
0.0824309736,
0.0962023884,
0.0902653635,
0.1277571619,
-0.455306232,
-0.0245841853,
-0.1491096318,
0.2400397062,
-0.3181630373,
-0.1654347628,
-0.2285121232,
-0.1823611706,
-0.2087037265,
-0.3032359481,
0.2976225317,
0.2181789577,
0.0589154959,
0.248914212,
0.0791669339,
-0.0783367231,
0.166293174,
0.1352359504,
0.0483055934,
0.3308407366,
-0.3822059631,
-0.1154454201,
0.1777766794,
0.0533851385,
0.1627701074,
-0.0097970646,
0.0177794769,
0.2022308111,
-0.2338355035,
0.4560255408,
0.034299165,
-0.0184881091,
0.2643815577,
-0.0018946156,
0.328604579,
0.3785974681,
0.1253684461,
-0.0423221961,
-0.1335390806,
0.3993209004,
0.2978738248,
0.1315349638,
0.1984391809,
0.1492631286,
-0.0345826596,
-0.3092210293,
-0.0366153121,
-0.17500332,
0.1060321629,
0.4917028248,
0.3812164664,
-0.1171898171,
-0.1798557043,
0.2268594205,
0.3522840142,
-0.0431044772,
0.2884166241,
0.0797794089,
-0.3493873775,
-0.1552883238,
-0.1172491461,
0.3525726795,
0.1629648209,
0.2543206811,
0.1712717414,
0.0493352488,
-0.0080082174,
-0.3064469993,
0.3992122412,
0.0655616,
0.106225729,
0.3554278314,
0.1122548357,
-0.1241622865,
-0.3668965101,
-0.0078181177,
-0.0030910596,
-0.0519341379,
-0.2809716165,
-0.0359768011,
-0.2021116912,
-0.1673543155,
-0.0404170156,
0.1189081222,
-0.0453865081,
-0.1994875818,
0.2415717989,
0.285110414,
-0.2777340412,
0.1271889061,
0.1675790101,
0.3435670137,
-0.0704194531,
-0.0517404526,
-0.1093213931,
0.0156288929,
-0.3313970864,
0.1907474697,
0.279206425,
0.0847771764,
0.1668628305,
0.035354428,
0.0824102014,
-0.421225965,
-0.1966778636,
0.2405080348,
-0.1467300653,
0.0396607593,
0.1082566679,
-0.0911809653,
-0.0478256047,
-0.3472117186,
0.0503746495,
-0.2066104412,
-0.20288378,
-0.3251749575,
0.1594580114,
0.0629495159,
-0.4881837964,
-0.3987683654,
-0.2369148284,
-0.3800843358,
0.1677402556,
0.1598064452,
0.1822992563,
0.1246554554,
-0.0548265725,
0.1800566763,
0.223140806,
-0.1606071293,
-0.1476715505,
0.2775507569,
0.4198613167,
-0.4095942974,
-0.3190639019,
0.0439114645,
-0.3232086897,
0.0133838411,
-0.2990261614,
-0.2501087189,
-0.4383622706,
0.1537316144,
-0.1778000891,
-0.0845339447,
-0.0026809396,
0.2986176014,
0.1873590648,
-0.2003105432,
0.0265888795,
-0.1110699922,
0.2070548236,
0.0882988423,
0.3847720027,
-0.1615373939,
0.4067231417,
0.1174865142,
0.2566290498,
-0.2691879272,
0.033536613,
0.361918807,
-0.0506727174,
0.1701950729,
0.1592023969,
-0.086352177,
0.1363564134,
0.0409468189,
-0.0944346339,
0.5336621404,
-0.0854697376,
-0.4864981771,
-0.1826670915,
0.0532186851,
-0.273686558,
-0.2679209113,
-0.1089558229,
0.2660419941,
-0.1956838816,
0.0115900859,
0.214955464,
0.0052230321,
-0.0608395413,
0.205917865,
0.2196901143,
-0.0772171766,
-0.1206154078,
0.1185848564,
0.1042682528,
-0.3951481283,
0.1117489189,
0.1043820903,
-0.4041225016,
0.1074391454,
-0.225613907,
0.2036413401,
-0.3195443153,
0.3587411344,
-0.1209611967,
0.2662652433,
-0.0143703483,
0.2164378911,
0.109302111,
-0.0993382558,
-0.2988064289,
-0.3211824596,
0.4507474303,
-0.0478755981,
-0.265604496,
-0.1441641152,
0.3384918571,
-0.2589462399,
0.0323875099,
-0.0962959528,
-0.0191142485,
-0.5297089219,
-0.5422526002,
0.0772399753,
0.1260938942,
0.0979748368,
-0.1870063096,
-0.1639552414,
0.2704376876,
-0.2099725902,
-0.1122276783,
0.0596685819,
0.1827884316,
0.1411257833,
-0.0469049588,
0.2014991045,
0.4859796166,
-0.0863519907,
0.0502428301,
0.0887132436,
0.1350986063,
0.3584620953,
-0.291549325,
-0.0120513812,
0.4303931892,
0.0423833206,
-0.1449915916,
-0.3378112614,
0.1311999559,
-0.0050208308,
0.0262090936,
0.3523302078,
-0.0076961033,
0.3189739287,
-0.1285668314,
0.3718145192,
-0.1149386168,
-0.1495705396,
-0.1133222133,
0.1379417181,
-0.489155978,
0.2023625821,
0.249479413,
1.0095970631,
0.1828905195,
0.1841591597,
0.3770165443,
-0.1828772724,
0.2244256586,
-0.2048056275,
0.2420450747,
-0.2759124041,
0.25940153,
0.0270559639,
0.1235550344,
-0.2554801106,
0.2857080996,
-0.3485203385,
0.2226646543,
0.1918341219,
-0.0550933704,
0.0397405028,
0.5254421234,
-0.4147656262,
-0.3550726175,
-0.0840059593,
0.2253389359,
0.2074781358,
0.3336939812,
-0.022404721,
-0.3262493908,
0.02302517,
-0.3689986467,
-0.1200435907,
0.2228102386,
-0.6562030911,
0.0811416507,
-0.4205800891,
-0.205465883,
0.0714981258,
0.121638976,
0.1825933307,
0.1002613232,
-0.064058058,
0.2806991637,
0.0451347679,
-0.046438057,
-0.0050443262,
-0.1170369238,
0.2287956923,
-0.2543816566,
-0.2008149028,
-0.0529556498,
0.1507782936,
-0.2844575644,
0.0494138747,
-0.025313504,
-0.2893362343,
0.1632661521,
0.0008363426,
0.088802129,
-0.4070388377,
-0.1701178849,
0.2157661319,
-0.2228648514,
-0.0063025914,
-0.0420261212,
0.07535588,
-0.1657582521,
-0.171754539,
0.4114315212,
-0.1920540333,
-0.3257523179,
0.5842943192,
0.0643738359,
-0.1504259408,
-0.3654355705,
-0.2140044123,
0.0150125846,
-0.1508518606,
0.1102014259,
-0.112866886,
-0.2562165856,
-0.0146316178,
0.5000476837,
-0.0012303411,
0.2679022849,
0.0265189186,
-0.0871420428,
-0.0991813466,
0.2623232603,
-0.1346045136,
0.2985245585,
-0.0751185641,
0.0820534527,
0.1869877428,
-0.1457145214,
-0.4634032249,
0.0790765584,
-0.1712539941,
-0.1405718178,
0.1250740886,
-0.2987321913,
0.3095212579,
0.1704259515,
0.2733668089,
0.2205573022,
-0.0772566944,
-0.266361624,
-0.030433394,
0.0700642392,
0.0473005138,
-0.1006334946,
0.0123664327,
-0.1115101427,
-0.2185092866,
0.1263174117,
0.2010792196,
-0.18316257,
0.0833370313,
-0.1032222062,
-0.2481859028,
0.0976706371,
0.2554213703,
-0.1850830764,
-0.0976007134,
0.4207088053,
0.0166870728,
0.1075948328,
0.0078060217,
0.0033927932,
0.0431225672,
0.1411652714,
0.0564507246,
0.3387713134,
0.2962431312,
0.0672248751,
-0.5515543222,
0.0619443171,
0.2637965679,
0.0785368979,
-0.2515684664,
-0.1156089902,
0.222831592,
0.3556101024,
-0.2594172359,
0.1732179821,
-0.1623111963,
-0.4482297897,
0.3617485166,
0.299628675,
0.1987313479,
0.0672523379,
0.0475776121,
0.1538341492,
0.4046255052,
-0.0747885108,
-0.0928393155,
-0.0525273345,
-0.1224942952,
0.1339279264,
0.1850813627,
0.067402713,
0.3257807493,
-0.1616303921,
-0.1871490628,
0.0087997038,
0.023579251,
0.2640463412,
0.216627121,
0.051934205,
0.0383680798,
0.0814642236,
-0.2451710403,
0.0961869061,
-0.0673367083,
0.2200668454,
-0.323500216,
0.0240177438,
-0.3409784138,
0.4161138237,
-0.0618107468,
-0.0085471645,
-0.251665771,
-0.326046139,
-0.669303894,
0.1929432154,
0.0450476333,
-0.1420245767,
-0.4067171812,
0.1091224253,
-0.0436601304,
0.0488748327,
-0.235443905,
-0.0959133804,
0.3324649334,
-0.412745893,
0.148672536,
0.0149963945,
0.1223973483,
-0.1983052492,
0.3227462471,
0.2554572821,
0.2159599513,
-0.3102446795,
-0.203547895,
-0.0794242918,
-0.0601552203,
-0.1442168057,
0.0371101573,
0.3265764713,
-0.1694570333,
0.1500537694,
0.2160783708,
-0.3853531778,
-0.0577884987,
0.2834988832,
-0.2225657552,
0.2526809275,
0.1624026,
0.2718724012,
0.0135588422,
-0.3872143626,
-0.3066833019,
-0.5732128024,
-0.1348947138,
-0.2507287562,
-0.1008889377,
0.2407355607,
-0.3101224303,
0.1533886194,
0.1174055189,
0.1802915931,
0.3067573011,
-0.0013959762,
-0.1100462675,
-0.2357509285,
-0.4394381046,
0.0553813763,
0.2680013776,
-0.1324959993,
-0.2193133086,
0.4046546221,
-0.0119785629,
-0.0210187882,
0.0093865171,
0.5449492335,
0.2535095811,
0.071076557,
-0.1868592203,
0.1759402752,
0.1250488907,
0.1145301685,
0.0818910077,
-0.1827895939,
-0.1159718931,
-0.2869515121,
0.2148595899,
-0.1342399269,
0.1613273472,
-0.3132974207,
0.0037508998,
0.4126845002,
-0.2459644973,
0.2662290037,
-0.2862211466,
-0.1534484923,
-0.1860761493,
0.2085225731,
-0.2952424586,
-0.3550869524,
0.2407323569,
0.1949660033,
0.0700788796,
0.0669668838,
-0.2691871524,
0.2615860403,
0.0445118546,
0.0049228147,
-0.191126734,
0.1149070635,
-0.0623384081,
0.0978203714,
0.0315190293,
0.2053173482,
-0.1249730587,
0.0482873917,
-0.4952873886,
-0.5152050853,
0.1610215604,
-0.0524533018,
-0.086881943,
-0.0676093996,
0.3968174458,
0.2529717684,
0.1593209356,
-0.2931995392,
0.1256082803,
-0.0083495043,
0.1823006868,
-0.1703490317,
0.137327075,
0.1382035315,
-0.1351919919,
-0.0715939403,
-0.2012001127,
0.3138323426,
0.0080848113,
-0.2065824568,
-0.348061204
] |
https://github.com/huggingface/datasets/issues/418 | Addition of google drive links to dl_manager | Oh sorry, I think `_get_drive_url` is doing that.
Have you tried to use `dl_manager.download_and_extract(_get_drive_url(_TRAIN_URL)`? it should work with google drive links.
| Hello there, I followed the template to create a download script of my own, which works fine for me, although I had to shun the dl_manager because it was downloading nothing from the drive links and instead use gdown.
This is the script for me:
```python
class EmoConfig(nlp.BuilderConfig):
"""BuilderConfig for SQUAD."""
def __init__(self, **kwargs):
"""BuilderConfig for EmoContext.
Args:
**kwargs: keyword arguments forwarded to super.
"""
super(EmoConfig, self).__init__(**kwargs)
_TEST_URL = "https://drive.google.com/file/d/1Hn5ytHSSoGOC4sjm3wYy0Dh0oY_oXBbb/view?usp=sharing"
_TRAIN_URL = "https://drive.google.com/file/d/12Uz59TYg_NtxOy7SXraYeXPMRT7oaO7X/view?usp=sharing"
class EmoDataset(nlp.GeneratorBasedBuilder):
""" SemEval-2019 Task 3: EmoContext Contextual Emotion Detection in Text. Version 1.0.0 """
VERSION = nlp.Version("1.0.0")
force = False
def _info(self):
return nlp.DatasetInfo(
description=_DESCRIPTION,
features=nlp.Features(
{
"text": nlp.Value("string"),
"label": nlp.features.ClassLabel(names=["others", "happy", "sad", "angry"]),
}
),
supervised_keys=None,
homepage="https://www.aclweb.org/anthology/S19-2005/",
citation=_CITATION,
)
def _get_drive_url(self, url):
base_url = 'https://drive.google.com/uc?id='
split_url = url.split('/')
return base_url + split_url[5]
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
if(not os.path.exists("emo-train.json") or self.force):
gdown.download(self._get_drive_url(_TRAIN_URL), "emo-train.json", quiet = True)
if(not os.path.exists("emo-test.json") or self.force):
gdown.download(self._get_drive_url(_TEST_URL), "emo-test.json", quiet = True)
return [
nlp.SplitGenerator(
name=nlp.Split.TRAIN,
gen_kwargs={
"filepath": "emo-train.json",
"split": "train",
},
),
nlp.SplitGenerator(
name=nlp.Split.TEST,
gen_kwargs={"filepath": "emo-test.json", "split": "test"},
),
]
def _generate_examples(self, filepath, split):
""" Yields examples. """
with open(filepath, 'rb') as f:
data = json.load(f)
for id_, text, label in zip(data["text"].keys(), data["text"].values(), data["Label"].values()):
yield id_, {
"text": text,
"label": label,
}
```
Can someone help me in adding gdrive links to be used with default dl_manager or adding gdown as another dl_manager, because I'd like to add this dataset to nlp's official database. | 21 | Addition of google drive links to dl_manager
Hello there, I followed the template to create a download script of my own, which works fine for me, although I had to shun the dl_manager because it was downloading nothing from the drive links and instead use gdown.
This is the script for me:
```python
class EmoConfig(nlp.BuilderConfig):
"""BuilderConfig for SQUAD."""
def __init__(self, **kwargs):
"""BuilderConfig for EmoContext.
Args:
**kwargs: keyword arguments forwarded to super.
"""
super(EmoConfig, self).__init__(**kwargs)
_TEST_URL = "https://drive.google.com/file/d/1Hn5ytHSSoGOC4sjm3wYy0Dh0oY_oXBbb/view?usp=sharing"
_TRAIN_URL = "https://drive.google.com/file/d/12Uz59TYg_NtxOy7SXraYeXPMRT7oaO7X/view?usp=sharing"
class EmoDataset(nlp.GeneratorBasedBuilder):
""" SemEval-2019 Task 3: EmoContext Contextual Emotion Detection in Text. Version 1.0.0 """
VERSION = nlp.Version("1.0.0")
force = False
def _info(self):
return nlp.DatasetInfo(
description=_DESCRIPTION,
features=nlp.Features(
{
"text": nlp.Value("string"),
"label": nlp.features.ClassLabel(names=["others", "happy", "sad", "angry"]),
}
),
supervised_keys=None,
homepage="https://www.aclweb.org/anthology/S19-2005/",
citation=_CITATION,
)
def _get_drive_url(self, url):
base_url = 'https://drive.google.com/uc?id='
split_url = url.split('/')
return base_url + split_url[5]
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
if(not os.path.exists("emo-train.json") or self.force):
gdown.download(self._get_drive_url(_TRAIN_URL), "emo-train.json", quiet = True)
if(not os.path.exists("emo-test.json") or self.force):
gdown.download(self._get_drive_url(_TEST_URL), "emo-test.json", quiet = True)
return [
nlp.SplitGenerator(
name=nlp.Split.TRAIN,
gen_kwargs={
"filepath": "emo-train.json",
"split": "train",
},
),
nlp.SplitGenerator(
name=nlp.Split.TEST,
gen_kwargs={"filepath": "emo-test.json", "split": "test"},
),
]
def _generate_examples(self, filepath, split):
""" Yields examples. """
with open(filepath, 'rb') as f:
data = json.load(f)
for id_, text, label in zip(data["text"].keys(), data["text"].values(), data["Label"].values()):
yield id_, {
"text": text,
"label": label,
}
```
Can someone help me in adding gdrive links to be used with default dl_manager or adding gdown as another dl_manager, because I'd like to add this dataset to nlp's official database.
Oh sorry, I think `_get_drive_url` is doing that.
Have you tried to use `dl_manager.download_and_extract(_get_drive_url(_TRAIN_URL)`? it should work with google drive links.
| [
-0.0986939147,
0.0516563952,
-0.1309202909,
-0.05589642,
0.0639404207,
-0.0953548402,
0.3679334521,
0.2208106965,
0.2062919587,
0.2249778062,
-0.075064376,
0.3655762076,
-0.2819620371,
0.1416775137,
0.1477241665,
0.1173322424,
-0.2243514061,
0.2025328577,
0.275634706,
-0.1639437526,
-0.2751328051,
0.3278069794,
-0.0318779945,
-0.0081284828,
0.0502307452,
0.050559245,
-0.1391221583,
0.1980684549,
-0.1188958958,
-0.2999536693,
-0.4197378755,
0.1671040952,
0.160240069,
-0.0974567682,
-0.0001042657,
-0.1480786651,
0.2225693017,
-0.2084540427,
-0.4087231457,
-0.2936668396,
0.2981950939,
-0.1724279523,
0.1073079184,
-0.2651379108,
-0.004575938,
-0.0983252823,
0.2041180432,
0.1354036629,
0.2655148506,
0.3032343984,
0.2717004418,
0.0790489241,
0.1134708524,
0.0298927948,
0.3312545717,
-0.0354889855,
-0.0682809353,
0.3527144492,
0.3344671726,
-0.3054538965,
-0.1618670374,
0.2883866131,
-0.0054731444,
-0.0109912315,
0.2195133269,
0.1113406569,
0.5780610442,
-0.3311680257,
0.1066152006,
0.0327495299,
0.0236193389,
-0.0413234048,
-0.0850506946,
-0.2842149734,
0.0838138759,
-0.2874572873,
0.276653409,
0.1495651007,
-0.233484,
-0.0543574058,
-0.129478693,
-0.0255045388,
-0.0154688656,
0.0540595204,
-0.0889275968,
0.4138539135,
-0.0389395952,
-0.2830848992,
0.3861260712,
-0.0381517783,
-0.0971576497,
-0.1532619894,
-0.039470043,
0.0766008794,
-0.0374771245,
-0.288777411,
0.1567477435,
0.0466396213,
0.093797408,
0.2489913702,
0.0460644662,
0.0328913257,
0.2356236726,
0.0752922744,
0.1630281508,
0.4459602535,
-0.0003143586,
0.0400673375,
0.3538966179,
0.4176519811,
0.1609001458,
0.1501172632,
-0.1202336848,
-0.1861607134,
-0.1416518092,
0.1408615857,
-0.1575792283,
0.0906009823,
-0.4310441315,
-0.133097291,
-0.3732343912,
0.0073384233,
-0.0343622975,
0.4378283918,
-0.0487495102,
-0.1396606714,
0.2441133559,
0.2374017239,
-0.0423723385,
0.0900179595,
-0.1254784465,
0.2556158304,
-0.2168088853,
-0.05202315,
0.3310390413,
0.0770797431,
0.4212233424,
-0.2571607828,
-0.1213399768,
-0.2241325229,
0.1388939321,
0.085996598,
-0.0139239468,
-0.0641110688,
0.4167028964,
0.0155229643,
-0.1533246934,
-0.4158215523,
-0.0712254643,
0.0388115942,
0.0347074904,
-0.0371070281,
-0.1740764827,
0.335526824,
-0.086228922,
-0.0942457169,
-0.0037771463,
0.2271475047,
-0.150215894,
0.0436015278,
0.0858768821,
0.3182858825,
-0.0827774629,
-0.0009883605,
0.1685231924,
0.2986231446,
-0.0949457288,
-0.2877131104,
-0.1839942336,
0.1673679054,
-0.1132548302,
-0.0632706359,
-0.0449298322,
0.2455674708,
-0.3794006705,
0.2419204414,
0.3043462634,
-0.2896391153,
-0.2050283849,
0.2148448527,
-0.3752191961,
-0.1749028862,
0.0302697048,
0.0142995045,
0.4108041525,
-0.004255116,
-0.1432296634,
0.4827904701,
0.0771706551,
0.2428655028,
-0.3040137291,
-0.4660175145,
-0.182913959,
0.2075027227,
0.1516648978,
-0.1184459329,
0.1088402495,
-0.0877450481,
0.3002712131,
-0.1562740803,
0.186559692,
0.1028919443,
0.0824309736,
0.0962023884,
0.0902653635,
0.1277571619,
-0.455306232,
-0.0245841853,
-0.1491096318,
0.2400397062,
-0.3181630373,
-0.1654347628,
-0.2285121232,
-0.1823611706,
-0.2087037265,
-0.3032359481,
0.2976225317,
0.2181789577,
0.0589154959,
0.248914212,
0.0791669339,
-0.0783367231,
0.166293174,
0.1352359504,
0.0483055934,
0.3308407366,
-0.3822059631,
-0.1154454201,
0.1777766794,
0.0533851385,
0.1627701074,
-0.0097970646,
0.0177794769,
0.2022308111,
-0.2338355035,
0.4560255408,
0.034299165,
-0.0184881091,
0.2643815577,
-0.0018946156,
0.328604579,
0.3785974681,
0.1253684461,
-0.0423221961,
-0.1335390806,
0.3993209004,
0.2978738248,
0.1315349638,
0.1984391809,
0.1492631286,
-0.0345826596,
-0.3092210293,
-0.0366153121,
-0.17500332,
0.1060321629,
0.4917028248,
0.3812164664,
-0.1171898171,
-0.1798557043,
0.2268594205,
0.3522840142,
-0.0431044772,
0.2884166241,
0.0797794089,
-0.3493873775,
-0.1552883238,
-0.1172491461,
0.3525726795,
0.1629648209,
0.2543206811,
0.1712717414,
0.0493352488,
-0.0080082174,
-0.3064469993,
0.3992122412,
0.0655616,
0.106225729,
0.3554278314,
0.1122548357,
-0.1241622865,
-0.3668965101,
-0.0078181177,
-0.0030910596,
-0.0519341379,
-0.2809716165,
-0.0359768011,
-0.2021116912,
-0.1673543155,
-0.0404170156,
0.1189081222,
-0.0453865081,
-0.1994875818,
0.2415717989,
0.285110414,
-0.2777340412,
0.1271889061,
0.1675790101,
0.3435670137,
-0.0704194531,
-0.0517404526,
-0.1093213931,
0.0156288929,
-0.3313970864,
0.1907474697,
0.279206425,
0.0847771764,
0.1668628305,
0.035354428,
0.0824102014,
-0.421225965,
-0.1966778636,
0.2405080348,
-0.1467300653,
0.0396607593,
0.1082566679,
-0.0911809653,
-0.0478256047,
-0.3472117186,
0.0503746495,
-0.2066104412,
-0.20288378,
-0.3251749575,
0.1594580114,
0.0629495159,
-0.4881837964,
-0.3987683654,
-0.2369148284,
-0.3800843358,
0.1677402556,
0.1598064452,
0.1822992563,
0.1246554554,
-0.0548265725,
0.1800566763,
0.223140806,
-0.1606071293,
-0.1476715505,
0.2775507569,
0.4198613167,
-0.4095942974,
-0.3190639019,
0.0439114645,
-0.3232086897,
0.0133838411,
-0.2990261614,
-0.2501087189,
-0.4383622706,
0.1537316144,
-0.1778000891,
-0.0845339447,
-0.0026809396,
0.2986176014,
0.1873590648,
-0.2003105432,
0.0265888795,
-0.1110699922,
0.2070548236,
0.0882988423,
0.3847720027,
-0.1615373939,
0.4067231417,
0.1174865142,
0.2566290498,
-0.2691879272,
0.033536613,
0.361918807,
-0.0506727174,
0.1701950729,
0.1592023969,
-0.086352177,
0.1363564134,
0.0409468189,
-0.0944346339,
0.5336621404,
-0.0854697376,
-0.4864981771,
-0.1826670915,
0.0532186851,
-0.273686558,
-0.2679209113,
-0.1089558229,
0.2660419941,
-0.1956838816,
0.0115900859,
0.214955464,
0.0052230321,
-0.0608395413,
0.205917865,
0.2196901143,
-0.0772171766,
-0.1206154078,
0.1185848564,
0.1042682528,
-0.3951481283,
0.1117489189,
0.1043820903,
-0.4041225016,
0.1074391454,
-0.225613907,
0.2036413401,
-0.3195443153,
0.3587411344,
-0.1209611967,
0.2662652433,
-0.0143703483,
0.2164378911,
0.109302111,
-0.0993382558,
-0.2988064289,
-0.3211824596,
0.4507474303,
-0.0478755981,
-0.265604496,
-0.1441641152,
0.3384918571,
-0.2589462399,
0.0323875099,
-0.0962959528,
-0.0191142485,
-0.5297089219,
-0.5422526002,
0.0772399753,
0.1260938942,
0.0979748368,
-0.1870063096,
-0.1639552414,
0.2704376876,
-0.2099725902,
-0.1122276783,
0.0596685819,
0.1827884316,
0.1411257833,
-0.0469049588,
0.2014991045,
0.4859796166,
-0.0863519907,
0.0502428301,
0.0887132436,
0.1350986063,
0.3584620953,
-0.291549325,
-0.0120513812,
0.4303931892,
0.0423833206,
-0.1449915916,
-0.3378112614,
0.1311999559,
-0.0050208308,
0.0262090936,
0.3523302078,
-0.0076961033,
0.3189739287,
-0.1285668314,
0.3718145192,
-0.1149386168,
-0.1495705396,
-0.1133222133,
0.1379417181,
-0.489155978,
0.2023625821,
0.249479413,
1.0095970631,
0.1828905195,
0.1841591597,
0.3770165443,
-0.1828772724,
0.2244256586,
-0.2048056275,
0.2420450747,
-0.2759124041,
0.25940153,
0.0270559639,
0.1235550344,
-0.2554801106,
0.2857080996,
-0.3485203385,
0.2226646543,
0.1918341219,
-0.0550933704,
0.0397405028,
0.5254421234,
-0.4147656262,
-0.3550726175,
-0.0840059593,
0.2253389359,
0.2074781358,
0.3336939812,
-0.022404721,
-0.3262493908,
0.02302517,
-0.3689986467,
-0.1200435907,
0.2228102386,
-0.6562030911,
0.0811416507,
-0.4205800891,
-0.205465883,
0.0714981258,
0.121638976,
0.1825933307,
0.1002613232,
-0.064058058,
0.2806991637,
0.0451347679,
-0.046438057,
-0.0050443262,
-0.1170369238,
0.2287956923,
-0.2543816566,
-0.2008149028,
-0.0529556498,
0.1507782936,
-0.2844575644,
0.0494138747,
-0.025313504,
-0.2893362343,
0.1632661521,
0.0008363426,
0.088802129,
-0.4070388377,
-0.1701178849,
0.2157661319,
-0.2228648514,
-0.0063025914,
-0.0420261212,
0.07535588,
-0.1657582521,
-0.171754539,
0.4114315212,
-0.1920540333,
-0.3257523179,
0.5842943192,
0.0643738359,
-0.1504259408,
-0.3654355705,
-0.2140044123,
0.0150125846,
-0.1508518606,
0.1102014259,
-0.112866886,
-0.2562165856,
-0.0146316178,
0.5000476837,
-0.0012303411,
0.2679022849,
0.0265189186,
-0.0871420428,
-0.0991813466,
0.2623232603,
-0.1346045136,
0.2985245585,
-0.0751185641,
0.0820534527,
0.1869877428,
-0.1457145214,
-0.4634032249,
0.0790765584,
-0.1712539941,
-0.1405718178,
0.1250740886,
-0.2987321913,
0.3095212579,
0.1704259515,
0.2733668089,
0.2205573022,
-0.0772566944,
-0.266361624,
-0.030433394,
0.0700642392,
0.0473005138,
-0.1006334946,
0.0123664327,
-0.1115101427,
-0.2185092866,
0.1263174117,
0.2010792196,
-0.18316257,
0.0833370313,
-0.1032222062,
-0.2481859028,
0.0976706371,
0.2554213703,
-0.1850830764,
-0.0976007134,
0.4207088053,
0.0166870728,
0.1075948328,
0.0078060217,
0.0033927932,
0.0431225672,
0.1411652714,
0.0564507246,
0.3387713134,
0.2962431312,
0.0672248751,
-0.5515543222,
0.0619443171,
0.2637965679,
0.0785368979,
-0.2515684664,
-0.1156089902,
0.222831592,
0.3556101024,
-0.2594172359,
0.1732179821,
-0.1623111963,
-0.4482297897,
0.3617485166,
0.299628675,
0.1987313479,
0.0672523379,
0.0475776121,
0.1538341492,
0.4046255052,
-0.0747885108,
-0.0928393155,
-0.0525273345,
-0.1224942952,
0.1339279264,
0.1850813627,
0.067402713,
0.3257807493,
-0.1616303921,
-0.1871490628,
0.0087997038,
0.023579251,
0.2640463412,
0.216627121,
0.051934205,
0.0383680798,
0.0814642236,
-0.2451710403,
0.0961869061,
-0.0673367083,
0.2200668454,
-0.323500216,
0.0240177438,
-0.3409784138,
0.4161138237,
-0.0618107468,
-0.0085471645,
-0.251665771,
-0.326046139,
-0.669303894,
0.1929432154,
0.0450476333,
-0.1420245767,
-0.4067171812,
0.1091224253,
-0.0436601304,
0.0488748327,
-0.235443905,
-0.0959133804,
0.3324649334,
-0.412745893,
0.148672536,
0.0149963945,
0.1223973483,
-0.1983052492,
0.3227462471,
0.2554572821,
0.2159599513,
-0.3102446795,
-0.203547895,
-0.0794242918,
-0.0601552203,
-0.1442168057,
0.0371101573,
0.3265764713,
-0.1694570333,
0.1500537694,
0.2160783708,
-0.3853531778,
-0.0577884987,
0.2834988832,
-0.2225657552,
0.2526809275,
0.1624026,
0.2718724012,
0.0135588422,
-0.3872143626,
-0.3066833019,
-0.5732128024,
-0.1348947138,
-0.2507287562,
-0.1008889377,
0.2407355607,
-0.3101224303,
0.1533886194,
0.1174055189,
0.1802915931,
0.3067573011,
-0.0013959762,
-0.1100462675,
-0.2357509285,
-0.4394381046,
0.0553813763,
0.2680013776,
-0.1324959993,
-0.2193133086,
0.4046546221,
-0.0119785629,
-0.0210187882,
0.0093865171,
0.5449492335,
0.2535095811,
0.071076557,
-0.1868592203,
0.1759402752,
0.1250488907,
0.1145301685,
0.0818910077,
-0.1827895939,
-0.1159718931,
-0.2869515121,
0.2148595899,
-0.1342399269,
0.1613273472,
-0.3132974207,
0.0037508998,
0.4126845002,
-0.2459644973,
0.2662290037,
-0.2862211466,
-0.1534484923,
-0.1860761493,
0.2085225731,
-0.2952424586,
-0.3550869524,
0.2407323569,
0.1949660033,
0.0700788796,
0.0669668838,
-0.2691871524,
0.2615860403,
0.0445118546,
0.0049228147,
-0.191126734,
0.1149070635,
-0.0623384081,
0.0978203714,
0.0315190293,
0.2053173482,
-0.1249730587,
0.0482873917,
-0.4952873886,
-0.5152050853,
0.1610215604,
-0.0524533018,
-0.086881943,
-0.0676093996,
0.3968174458,
0.2529717684,
0.1593209356,
-0.2931995392,
0.1256082803,
-0.0083495043,
0.1823006868,
-0.1703490317,
0.137327075,
0.1382035315,
-0.1351919919,
-0.0715939403,
-0.2012001127,
0.3138323426,
0.0080848113,
-0.2065824568,
-0.348061204
] |
https://github.com/huggingface/datasets/issues/414 | from_dict delete? | `from_dict` was added in #350 that was unfortunately not included in the 0.3.0 release. It's going to be included in the next release that will be out pretty soon though.
Right now if you want to use `from_dict` you have to install the package from the master branch
```
pip install git+https://github.com/huggingface/nlp.git
``` | AttributeError: type object 'Dataset' has no attribute 'from_dict' | 53 | from_dict delete?
AttributeError: type object 'Dataset' has no attribute 'from_dict'
`from_dict` was added in #350 that was unfortunately not included in the 0.3.0 release. It's going to be included in the next release that will be out pretty soon though.
Right now if you want to use `from_dict` you have to install the package from the master branch
```
pip install git+https://github.com/huggingface/nlp.git
``` | [
-0.1168897524,
-0.2096910328,
-0.1167026162,
0.0465559363,
0.1620278955,
-0.1888364255,
0.0943570584,
0.3141217828,
0.0377568156,
0.1403822452,
0.053977631,
0.5944421887,
-0.1069425344,
0.2920180857,
-0.0426581763,
-0.1649782509,
-0.0688438565,
0.3200041354,
-0.3128440678,
-0.0461873487,
0.0110783949,
0.3731954694,
-0.1320796013,
0.2549414337,
0.1205589697,
-0.1711763889,
0.030364573,
0.1430949122,
-0.141849041,
-0.3311378658,
0.2542815804,
0.0454767123,
-0.1363682002,
0.1577938646,
-0.000099203,
-0.0431269035,
0.3241805136,
-0.0708884895,
-0.2661368251,
-0.3808974028,
-0.1292473078,
-0.1784548908,
0.3302336335,
-0.105715543,
-0.2622191906,
0.1483007222,
0.0286048036,
-0.0083774179,
0.3838492036,
0.3884245753,
0.3685187995,
0.1577927321,
0.1676735431,
-0.1256329417,
0.1861926615,
0.1869293898,
-0.0660707802,
-0.0968854576,
0.0539166182,
-0.1805333793,
0.3063400686,
0.2829712927,
-0.1644662023,
-0.0961183906,
0.1874163002,
-0.024361277,
0.0242317747,
-0.1416927576,
0.0300108194,
0.1506771445,
0.2641409934,
-0.3806946278,
-0.1140293032,
-0.3015459776,
-0.0242865812,
-0.3830111921,
0.0237072352,
-0.0531723723,
-0.1575686485,
0.1301052868,
-0.0527611859,
-0.4518620372,
-0.1853362918,
0.3525791168,
0.1932297647,
0.0689729303,
-0.112705715,
0.0655097887,
0.2613549531,
-0.0540378131,
-0.3767984509,
0.2988928854,
-0.1951346993,
0.1416614503,
-0.0280430689,
-0.2018373311,
0.3356459737,
-0.0524853282,
-0.0726942047,
0.1180983484,
-0.0129491203,
-0.0188896973,
-0.0099216588,
0.2746319175,
0.4173330069,
0.1929972172,
0.3750912249,
0.2258400619,
0.1976596266,
0.0005200915,
-0.0670650154,
-0.0705472231,
0.1084685177,
0.0079595447,
-0.1542844027,
-0.0837846473,
0.2740111351,
-0.1018361449,
-0.2801435292,
-0.253667891,
0.1547211409,
0.1114789993,
0.0496227816,
0.3161877692,
0.0285119191,
0.2045547962,
0.0234101862,
0.1625919789,
-0.355941534,
-0.0318719596,
-0.2442646325,
0.3273056149,
-0.1398753822,
-0.4790830612,
0.0662475228,
0.1737170368,
0.3600255251,
-0.1125762835,
0.0398117453,
0.2609202564,
0.0090483576,
0.0365595147,
0.0756465942,
0.2162596434,
-0.0976462439,
-0.1582453102,
0.2198808789,
-0.5354822278,
-0.2740393877,
0.1050396562,
-0.2255007625,
-0.2852150798,
-0.4506228864,
0.3046715856,
0.0804246962,
-0.2931635678,
-0.3293564916,
0.1842861921,
0.1359825581,
-0.2164479494,
-0.1059304997,
-0.1513112932,
-0.0192242786,
-0.1611666381,
-0.0074458644,
0.115719676,
-0.2353725582,
-0.2091398537,
-0.2025374919,
-0.30655393,
0.2619757056,
0.3139546812,
-0.2446837574,
0.2455071956,
-0.1226881891,
0.105792135,
0.5160626173,
-0.572424531,
-0.2312459946,
0.2054410279,
-0.0490394831,
-0.1142271459,
-0.1684028655,
-0.0179515947,
0.1819061339,
-0.0890893564,
-0.0099351071,
0.3474218249,
0.1860729307,
0.143189013,
-0.1495319307,
-0.1222074628,
-0.0283662677,
-0.0966633484,
-0.0759286657,
0.0703811198,
0.1684973389,
0.1468974948,
0.202540338,
-0.0945227146,
0.0093127564,
0.1962147653,
0.5006924272,
0.055617556,
-0.0935516953,
-0.4382083714,
-0.0323106386,
-0.1394479275,
-0.1978676021,
0.3533264399,
-0.3188270032,
-0.1176967025,
-0.2525278032,
0.099780716,
-0.2223487645,
-0.1572246552,
0.3052579761,
0.0586953983,
0.1432731003,
0.075901553,
-0.3448253274,
0.1163837612,
0.0605935901,
0.0451131947,
-0.2440584451,
-0.0218843333,
-0.3494740129,
-0.244022727,
0.0595743358,
0.4624375701,
0.0109010711,
-0.0529732965,
0.0195063427,
0.3652352393,
-0.0927100182,
0.0546631031,
0.1078714281,
-0.1840559691,
0.0560944676,
-0.2318472117,
-0.0272625312,
0.0637399182,
0.0834897906,
0.1336136907,
-0.1064658314,
0.1729999185,
0.2040766329,
-0.0279307887,
0.2542048097,
0.1592371315,
0.3644242883,
-0.2514119148,
0.1046667546,
-0.3587050438,
0.2191610634,
-0.0493638441,
-0.0715416372,
-0.1774631739,
-0.4236363173,
0.045217298,
0.6067507267,
0.1550346315,
0.2132898569,
0.0952787697,
-0.0068473592,
-0.1788431108,
-0.0514611974,
0.0949730054,
0.1725857258,
0.2499798387,
-0.1400130093,
0.0440864265,
-0.0233690199,
-0.0711451843,
0.3133590221,
-0.1102238968,
0.1291941702,
0.1159423143,
0.1464601457,
-0.1220926866,
-0.4732966125,
-0.0990836248,
-0.2719186246,
0.3124083281,
-0.1202230752,
0.2324867547,
-0.3833062649,
-0.5119467378,
0.0298312008,
-0.2020336092,
-0.3217608929,
-0.3416157365,
0.2300842404,
0.1038932651,
-0.0862874687,
0.1916826367,
0.174633503,
0.0412036777,
0.0341079682,
-0.1091082841,
-0.0448257998,
-0.3886271715,
-0.2937381566,
0.2078531832,
-0.0464739911,
0.1856127232,
0.3453905284,
-0.092794314,
-0.1346259713,
-0.0653234348,
-0.4512674212,
0.1339701712,
-0.1982104182,
0.4171155095,
0.4988258481,
0.0458739027,
-0.1586198509,
-0.1184889898,
0.285527885,
-0.5542434454,
-0.2418098897,
0.1625318676,
-0.0430537648,
0.0001883917,
-0.2799881101,
-0.2784691453,
-0.2698889375,
-0.4429296553,
0.3062043488,
0.2609968185,
0.2338288724,
0.3336769342,
-0.0887840241,
0.1830666959,
-0.1976730675,
0.3888369203,
-0.1767813563,
-0.1744705141,
-0.0336388834,
-0.2309449017,
-0.433750689,
0.0063296556,
0.1090220585,
0.3247974217,
-0.2439878881,
-0.3170568645,
-0.2650544047,
0.0487910733,
0.1092736199,
0.0224365368,
0.1758804321,
0.2571716905,
0.1897464395,
-0.2251133323,
-0.2148872912,
-0.0785522759,
0.2249791622,
0.2017376125,
0.1111918464,
-0.0416104794,
0.2193102539,
0.1520113796,
0.3629112244,
-0.0490333103,
0.1733386815,
0.3288864195,
-0.1233882308,
0.4986997247,
-0.1633698344,
-0.3937040567,
-0.0244877692,
0.2137500942,
0.1091390848,
0.1704996377,
-0.0209091622,
-0.2336780876,
-0.2458533794,
0.0355986208,
-0.2109139711,
-0.2162305862,
-0.0307533816,
-0.2094968855,
-0.00898901,
0.0670687705,
-0.086947009,
-0.2360556275,
-0.1214589626,
-0.0317260176,
-0.0994312391,
-0.1177404821,
-0.1608857214,
-0.5274444222,
-0.379838258,
-0.4278237522,
0.2465218157,
-0.0692680329,
0.1195459217,
-0.1371685416,
-0.1768675447,
0.0999170467,
-0.1288683861,
0.3627331257,
-0.0043361224,
-0.1355551183,
0.1412731856,
0.0477270484,
-0.3704727888,
0.2148819268,
-0.2964706421,
0.2145403922,
0.4119860232,
0.0834663063,
-0.4349454045,
-0.2798310518,
0.3200954497,
-0.0390960835,
-0.1202358603,
0.1618258953,
-0.2939396501,
-0.363619864,
-0.5449575782,
-0.1299730092,
0.0731192678,
0.3367329836,
0.1882373393,
0.1335386932,
0.0055836104,
-0.1185668856,
0.0229384601,
0.0187422708,
0.2522699833,
-0.2153329849,
-0.369797349,
-0.2291403413,
0.2577164769,
0.0217592362,
0.4180098474,
-0.1041848809,
-0.2362631112,
-0.2990652919,
-0.0036222897,
0.4200934768,
-0.0112963691,
0.0881402642,
0.2431386262,
-0.1229885444,
0.2615294755,
0.173433885,
0.0778044686,
0.2646637857,
-0.03000433,
0.0469722301,
-0.2418214977,
0.1561151743,
-0.0562053099,
0.006501615,
0.0302877929,
0.0922401398,
-0.2980343103,
0.362490952,
-0.1737011373,
0.827671349,
0.1541238129,
0.149521172,
0.1627133787,
0.0200279355,
0.6298738718,
0.1459991187,
0.3014277816,
-0.2305776179,
0.2545522749,
0.0371038467,
-0.0480946973,
0.233782649,
0.0967631266,
-0.2803466618,
0.3622636795,
0.0007978231,
0.0417942703,
-0.1365338117,
0.1986441463,
0.0912433416,
-0.0252852365,
-0.3467202485,
0.2415170074,
-0.1234221756,
0.1706299484,
-0.0352699608,
-0.1865019798,
0.1307333559,
-0.2843436897,
-0.1883138716,
0.1650153548,
0.0355019942,
0.3320156932,
0.2341721952,
-0.3574247658,
-0.1196798906,
0.2072729766,
0.1231374741,
0.0464343578,
-0.1416503042,
0.1934481263,
-0.1504729688,
-0.1314359754,
0.0581151061,
0.3791009188,
0.4059227109,
-0.3037534952,
-0.3127823472,
0.1355921924,
0.0106381848,
-0.4071268141,
0.2054922879,
0.0124372579,
-0.0358398296,
0.0005651005,
-0.0626731589,
0.1061066836,
0.0027788877,
-0.2611282468,
0.2479955256,
0.2681896985,
-0.2971421182,
0.1301721632,
0.0277889948,
-0.1332818717,
-0.0597796142,
-0.0008435845,
0.1286651939,
0.0012185201,
0.4648872018,
0.1023398638,
-0.176746279,
-0.4118674994,
-0.2713214755,
-0.1673768759,
-0.226326406,
0.3819690347,
0.2274307907,
-0.1809468269,
0.1564968079,
0.4324982166,
-0.151945129,
0.0465013981,
-0.2163885385,
-0.24704732,
-0.1826237142,
0.1593075097,
-0.0476217642,
0.0862606466,
0.1756965816,
0.1856441796,
0.1167446896,
0.0309038069,
-0.457441926,
0.0554916337,
-0.3008746505,
0.175425753,
0.4310328364,
-0.2218662053,
0.1155422479,
-0.0534148738,
0.2771425843,
-0.1712549478,
-0.1608266085,
-0.3855386972,
-0.0767778531,
0.0738791004,
-0.0763096362,
-0.0384727083,
0.0168641619,
-0.065505527,
-0.1414908916,
-0.0536487401,
0.1224132478,
-0.0986467972,
-0.0447295681,
0.5866773129,
0.0955245048,
-0.0281798542,
0.3729471862,
-0.0531999692,
0.0246789902,
0.1688960791,
-0.1014153287,
0.1502836645,
-0.0921992064,
-0.1458045244,
-0.0007064044,
0.046167586,
0.0317951925,
0.1970806271,
0.2288701981,
-0.2906328142,
-0.0921968371,
0.0392900333,
0.4682258368,
-0.0393220969,
-0.0785332024,
0.0475334674,
0.3697398305,
0.3186564445,
-0.4926090539,
0.0549896508,
0.2415746152,
-0.0794776976,
0.0962623283,
0.1426691115,
0.0707419962,
0.0915965438,
0.0073607154,
0.1195814759,
0.2814492881,
-0.3491175473,
0.0857385173,
0.2375694513,
-0.2161263227,
-0.1672635078,
0.1247374937,
0.2451853305,
0.3118289709,
0.6150825024,
-0.0412337892,
0.1317593455,
0.1235016361,
0.0718664676,
0.1753038764,
-0.0961656868,
0.2723701894,
0.1497651339,
0.1668110192,
0.052675873,
0.1435914189,
0.3294472396,
-0.2138652503,
-0.0179158021,
-0.0795616359,
0.6706979275,
-0.1344928741,
-0.1535614133,
-0.2235078663,
0.0610390604,
0.1749209315,
-0.1438236088,
0.1336371601,
-0.0305899493,
0.0905559286,
0.1358241141,
0.0513513312,
-0.4324581921,
0.3161315322,
-0.1809592396,
0.1757671833,
-0.0775606707,
0.043639414,
-0.0343453214,
-0.0201536864,
-0.1533802152,
0.3481294215,
0.4525029659,
0.153719604,
-0.2976201475,
-0.0402157009,
-0.1711035073,
-0.2158662677,
-0.1685933471,
0.3800276816,
0.1822300851,
0.48046121,
0.116407454,
0.2183572501,
-0.2005443126,
-0.1231265366,
0.1783151329,
0.0904934257,
-0.1555395871,
0.575304687,
0.0531929694,
-0.3424185812,
-0.1728660911,
0.038335558,
-0.4150213003,
0.0661639124,
0.2942950428,
0.0953265727,
0.1888166368,
-0.3335589767,
0.1745781004,
0.1563625038,
0.3946988881,
0.3342246711,
0.238294065,
0.1870158315,
-0.1841729283,
-0.457291007,
0.0788849741,
-0.0789053738,
-0.2765891552,
-0.0074920729,
0.3077088594,
-0.0091802515,
0.2107319385,
-0.0831292793,
-0.0004255697,
-0.0617791526,
-0.4295383096,
-0.2338011116,
0.036269065,
-0.1000897586,
-0.0556549281,
0.1671199948,
-0.2100695372,
-0.1162020415,
0.0270131007,
0.1769954562,
-0.1185849607,
0.1766654551,
-0.0098192766,
-0.0512387455,
-0.1382741928,
0.2984740734,
0.1597548574,
-0.1168613583,
-0.1258471608,
0.1876399666,
-0.3609206378,
-0.3744493425,
0.1019271016,
-0.0730050802,
0.3420498967,
-0.1621477455,
0.1303641349,
-0.1603462547,
0.1503834575,
0.0480319858,
0.0211188756,
-0.2224085033,
0.139975518,
0.1745990366,
-0.131418705,
-0.1432364881,
0.1130634397,
-0.1071954072,
0.0569357276,
-0.2670480013,
-0.3180975616,
0.4615893662,
-0.3228896856,
-0.4482117891,
-0.0576569699,
0.1911205947,
-0.0651579946,
-0.3452367783,
-0.4551793337,
0.1387111694,
0.2597665191,
0.0705320165,
-0.0792653784,
0.4142343104,
-0.2969503403,
0.036684528,
0.1778425723,
0.4717923999,
0.2032425702,
-0.1371375918,
0.0796470568,
-0.160191834
] |
https://github.com/huggingface/datasets/issues/414 | from_dict delete? | > `from_dict` was added in #350 that was unfortunately not included in the 0.3.0 release. It's going to be included in the next release that will be out pretty soon though.
> Right now if you want to use `from_dict` you have to install the package from the master branch
>
> ```
> pip install git+https://github.com/huggingface/nlp.git
> ```
OK, thank you.
| AttributeError: type object 'Dataset' has no attribute 'from_dict' | 62 | from_dict delete?
AttributeError: type object 'Dataset' has no attribute 'from_dict'
> `from_dict` was added in #350 that was unfortunately not included in the 0.3.0 release. It's going to be included in the next release that will be out pretty soon though.
> Right now if you want to use `from_dict` you have to install the package from the master branch
>
> ```
> pip install git+https://github.com/huggingface/nlp.git
> ```
OK, thank you.
| [
-0.0747188851,
-0.2516206503,
-0.1155342981,
0.0879220814,
0.1837774217,
-0.1787121892,
0.0908715054,
0.2998164594,
0.031605728,
0.1319087744,
0.0510095209,
0.5649476647,
-0.1044337749,
0.2966353893,
-0.047176823,
-0.2244532108,
-0.042633839,
0.2933094203,
-0.330452919,
-0.051725179,
0.0404682532,
0.3629769683,
-0.1296857297,
0.2741338313,
0.1252754927,
-0.1901749372,
0.0015235767,
0.1526876688,
-0.1340597272,
-0.3176124096,
0.279769361,
0.0268053487,
-0.1014018953,
0.1761728227,
-0.0000985522,
-0.0737008601,
0.3171123862,
-0.0745513886,
-0.2624136508,
-0.3476294577,
-0.1504910439,
-0.158950761,
0.2975648046,
-0.1199097931,
-0.2388193905,
0.1387143433,
0.0045639649,
0.0186313838,
0.3920909762,
0.3837105334,
0.3749192655,
0.1249377877,
0.1929478794,
-0.1214171052,
0.1639736295,
0.1866832823,
-0.0807384476,
-0.0862306058,
0.0554483011,
-0.1901001036,
0.3049733341,
0.2913116217,
-0.1488623023,
-0.1117044389,
0.1986548454,
-0.0462511592,
0.022408288,
-0.1591615081,
0.0389378816,
0.1428239495,
0.3123071492,
-0.3866829872,
-0.1058307812,
-0.2720893621,
-0.0205368306,
-0.3580046296,
0.0111034196,
-0.0354101956,
-0.1274461448,
0.1445010602,
-0.0395702422,
-0.4792863727,
-0.2171791047,
0.3515557647,
0.2264171988,
0.0382251106,
-0.1236402839,
0.05323679,
0.230484724,
-0.0637612045,
-0.3869409859,
0.295168519,
-0.1951297671,
0.1586610377,
-0.0446746796,
-0.2178730965,
0.32639274,
-0.0638523996,
-0.0525569059,
0.0825080574,
0.004648935,
-0.0221264474,
-0.028121762,
0.2544951737,
0.4578910768,
0.2475713789,
0.3936288357,
0.2212027311,
0.1548516005,
0.025081303,
-0.0860895216,
-0.0489334129,
0.0843024552,
0.0313625075,
-0.131833896,
-0.0685863942,
0.2815738618,
-0.1133548021,
-0.276869297,
-0.2064283639,
0.1209663004,
0.1106284186,
0.0282633267,
0.3377594948,
0.0086515844,
0.2231970578,
0.036062561,
0.1516712159,
-0.3684815168,
-0.0670757741,
-0.234834075,
0.3588406444,
-0.1695244014,
-0.4798003435,
0.0434888825,
0.175327152,
0.3514819741,
-0.107045427,
0.0640288517,
0.2143964618,
-0.0057426095,
0.0531013869,
0.0964143574,
0.1829385608,
-0.0929337144,
-0.1560870856,
0.2100337297,
-0.5214316249,
-0.2521963716,
0.1298751384,
-0.2238718867,
-0.2987518609,
-0.4562393129,
0.2990597188,
0.0899032801,
-0.2795069516,
-0.3280282319,
0.1972243488,
0.1388175488,
-0.1668095887,
-0.0827484429,
-0.1410975456,
-0.0044680759,
-0.1480266303,
-0.0243401714,
0.1140936166,
-0.2422047555,
-0.1710826904,
-0.1728950888,
-0.3147649467,
0.2596482635,
0.3290223479,
-0.262842983,
0.2250308692,
-0.1182505041,
0.1163869202,
0.4797015786,
-0.5727299452,
-0.1921098232,
0.2145445496,
-0.0597662814,
-0.1025578529,
-0.1759751141,
-0.0275618061,
0.1942093819,
-0.1094258055,
-0.0382938311,
0.3194500804,
0.1817688495,
0.1489364654,
-0.2012802362,
-0.0979349986,
-0.0093583521,
-0.1098807901,
-0.0755403191,
0.0522702709,
0.1559682637,
0.1709437072,
0.2374142408,
-0.0858647376,
0.0225110948,
0.2546882629,
0.4777032137,
0.0747557953,
-0.0862904415,
-0.4368612766,
-0.0294939727,
-0.1539907455,
-0.1910115927,
0.3839289546,
-0.2584603429,
-0.1255776584,
-0.2810028493,
0.1069898754,
-0.1987516135,
-0.1712756604,
0.3102853,
0.036437016,
0.1287694275,
0.0446914062,
-0.3484449983,
0.1158474907,
0.0292403027,
0.0292405039,
-0.2396177649,
-0.0224092081,
-0.366972357,
-0.2318976372,
0.1010944098,
0.4514654875,
0.0169413276,
-0.0570091344,
0.0298731439,
0.3622141182,
-0.107614994,
0.0602521449,
0.1294948906,
-0.1758581251,
0.061226137,
-0.253098309,
-0.0331599005,
0.0573223568,
0.0873134583,
0.1328566372,
-0.0833989158,
0.1473477632,
0.1943661124,
-0.0475815907,
0.2373599857,
0.1458622813,
0.3561367989,
-0.2580803037,
0.0934286341,
-0.3171677589,
0.2263147831,
-0.0559445173,
-0.1203269213,
-0.1707588285,
-0.4570822716,
0.0728361309,
0.6142225266,
0.1181453019,
0.2027910054,
0.1100262478,
-0.010490492,
-0.2033448666,
-0.0465197116,
0.1275083125,
0.1598939896,
0.2393363863,
-0.1442098469,
0.040249005,
-0.0160734169,
-0.0424354151,
0.3344414234,
-0.0953001976,
0.1490649283,
0.0981975794,
0.1295662075,
-0.1051476747,
-0.4526613951,
-0.1029858142,
-0.2659780681,
0.3086746335,
-0.130000934,
0.2137012482,
-0.3413688242,
-0.5405298471,
0.0080293119,
-0.2147606462,
-0.3553179204,
-0.319139421,
0.2329051495,
0.079475008,
-0.1158468425,
0.1832074821,
0.155733645,
0.0698952675,
0.0368976071,
-0.0881303102,
-0.0506450944,
-0.3942843676,
-0.3033126295,
0.2088560164,
-0.0302761421,
0.2184649259,
0.3349040151,
-0.0923141539,
-0.1171322614,
-0.0730038956,
-0.4271928072,
0.1169195175,
-0.2132864445,
0.4308359921,
0.4775035083,
0.1004523486,
-0.1677220464,
-0.1249688268,
0.2748677731,
-0.5327470303,
-0.2540539205,
0.1580509543,
-0.015488673,
-0.0048850365,
-0.275903523,
-0.2948981225,
-0.244499743,
-0.4642464519,
0.3006659746,
0.2462500632,
0.223949492,
0.3138278425,
-0.0987153202,
0.1614603102,
-0.1947258562,
0.4215769768,
-0.1935762763,
-0.1916533411,
-0.0404679738,
-0.2186049819,
-0.4552695751,
0.0204545408,
0.1377619505,
0.3500979245,
-0.2896837294,
-0.3144922853,
-0.2251935303,
0.0580293834,
0.0870285183,
-0.0012444606,
0.1882111132,
0.2421655655,
0.220617637,
-0.2163993716,
-0.2033874691,
-0.1030127108,
0.2228532434,
0.201910615,
0.1072849333,
-0.0429827794,
0.2035515159,
0.1423747241,
0.3852212429,
-0.0343022421,
0.1985270679,
0.3196971714,
-0.0675484315,
0.4661508799,
-0.1550481468,
-0.4070016444,
-0.0091275759,
0.1755030155,
0.1023461968,
0.191630289,
-0.0077867098,
-0.2419214845,
-0.2517976761,
-0.0047007278,
-0.2284078896,
-0.2309151292,
0.0008259565,
-0.2384740263,
0.0005097222,
0.0652893186,
-0.1143398955,
-0.2259873599,
-0.1049544066,
-0.0050721988,
-0.1000625491,
-0.0912701786,
-0.1490987539,
-0.5165438056,
-0.3555940688,
-0.4211890996,
0.2103483081,
-0.0652922243,
0.1419130266,
-0.1439504623,
-0.1787517965,
0.1019726992,
-0.1125373542,
0.3513402045,
0.0308231208,
-0.1319412142,
0.151049003,
0.0532498509,
-0.3147058487,
0.2232513726,
-0.297668457,
0.1993822753,
0.3850402832,
0.0479146689,
-0.4532950521,
-0.2799514532,
0.285756886,
-0.028509602,
-0.1267178804,
0.1414326578,
-0.2920063436,
-0.3294554651,
-0.5601935387,
-0.1146840155,
0.1040031537,
0.3459016681,
0.1609198451,
0.1414268017,
0.0273947325,
-0.1401555538,
0.0379167423,
-0.0090293959,
0.2666153312,
-0.2080399841,
-0.374833703,
-0.2492124736,
0.2636887431,
0.0184718985,
0.4048208892,
-0.1258102506,
-0.2229821384,
-0.3117395341,
-0.0307579394,
0.4273922145,
-0.0128268152,
0.1002396941,
0.2510437667,
-0.1236005127,
0.2783618569,
0.1314157844,
0.0324287117,
0.2652901113,
-0.018458806,
0.0434189551,
-0.2153188884,
0.1376201808,
-0.0795845315,
0.0065778047,
0.0342804901,
0.1068122014,
-0.307543695,
0.344707787,
-0.1606529504,
0.87578547,
0.1566375494,
0.148219645,
0.1443019509,
0.0060097501,
0.6237418056,
0.1574922204,
0.3093411028,
-0.2359821945,
0.2198897004,
0.0453436822,
-0.0233530402,
0.2113473415,
0.0939024389,
-0.2781502008,
0.3415942788,
-0.0110555142,
0.0125486394,
-0.1442007273,
0.2061148286,
0.0848259255,
-0.0195673071,
-0.4315617979,
0.2368654013,
-0.1003961638,
0.1428439021,
-0.0665389597,
-0.2186394036,
0.1212838292,
-0.2725220323,
-0.1870216727,
0.1411040872,
0.047734689,
0.2928521931,
0.2638774514,
-0.3232085109,
-0.1018037573,
0.2294434309,
0.132208541,
0.0215001442,
-0.1622179896,
0.1684939265,
-0.1676189303,
-0.1405908167,
0.063855201,
0.3672297895,
0.4578963518,
-0.3215274513,
-0.3099902272,
0.1329866648,
-0.0128234439,
-0.3776731491,
0.1706558764,
0.0170448869,
-0.047989212,
-0.0179227069,
-0.0911342651,
0.102787368,
-0.0172751918,
-0.2291880846,
0.2480985373,
0.2937903404,
-0.3036977053,
0.119464837,
0.0586560108,
-0.1238425151,
-0.043916326,
-0.0098207369,
0.1302971095,
0.0020781085,
0.4763107598,
0.1353935897,
-0.2008343339,
-0.4135895967,
-0.2553914785,
-0.1405194849,
-0.2420745045,
0.3765790462,
0.2040146887,
-0.1696829349,
0.1431550831,
0.4442285001,
-0.1112203747,
0.0574419796,
-0.1993823797,
-0.2484333813,
-0.2025045455,
0.189282611,
-0.0655535758,
0.0782248229,
0.1425438523,
0.1986282319,
0.1594914645,
0.0600585043,
-0.4667701423,
0.0484203398,
-0.3432679772,
0.1815657616,
0.4437234104,
-0.2099003941,
0.1012222469,
-0.0235767681,
0.2671226263,
-0.1746082008,
-0.1538973302,
-0.3755474389,
-0.0732358918,
0.0731340274,
-0.0796448141,
-0.0282619111,
0.0293461122,
-0.0664706528,
-0.1379359961,
-0.0232475642,
0.0933145136,
-0.1077138409,
-0.0335226655,
0.5934746861,
0.0909655318,
-0.0071242973,
0.3224606812,
-0.0606761836,
0.0415878147,
0.2016905248,
-0.0930851847,
0.1157102883,
-0.0881643221,
-0.1559309363,
-0.0023576505,
0.0622476637,
0.0199800543,
0.1833563149,
0.238344565,
-0.2874486148,
-0.0894554853,
0.0469667614,
0.4964929223,
-0.0594528988,
-0.1009848192,
0.0709989443,
0.382643193,
0.3303328454,
-0.5057237744,
0.0831438452,
0.251508981,
-0.1181499958,
0.058917895,
0.1303806007,
0.0547283292,
0.0908326209,
0.0286451951,
0.1321125329,
0.2479613274,
-0.3675571084,
0.0719399452,
0.2021695971,
-0.2696197629,
-0.1480325609,
0.1263960898,
0.2348932326,
0.307280302,
0.6015737653,
-0.0306528099,
0.1460762173,
0.1362861544,
0.0902564079,
0.1895991713,
-0.0361279212,
0.2644061744,
0.1784325838,
0.1773345917,
0.0430849791,
0.1173863858,
0.3615164161,
-0.1947196126,
-0.0503714643,
-0.0662264377,
0.6730318666,
-0.1513730437,
-0.1384247541,
-0.2244412303,
0.0297665522,
0.1638581157,
-0.16665636,
0.1155288815,
-0.0265720785,
0.1167304888,
0.1477523744,
0.0404452123,
-0.4394564331,
0.287722826,
-0.1617630273,
0.1960938424,
-0.0942889377,
0.0443683639,
-0.0271909349,
-0.0181133971,
-0.1653066427,
0.3592184484,
0.4551661313,
0.1674998105,
-0.2915838957,
-0.0534515418,
-0.1397532076,
-0.2116467357,
-0.1342043728,
0.4058213234,
0.2126342654,
0.4610164762,
0.1347284913,
0.2065757066,
-0.1926114559,
-0.1079934984,
0.1983432472,
0.085329473,
-0.1661790162,
0.5535993576,
0.0306689292,
-0.3605207801,
-0.2123487741,
0.0388970189,
-0.4257965684,
0.0837271735,
0.2968184948,
0.0673174709,
0.2045308203,
-0.35678038,
0.1773059368,
0.1780988127,
0.4015874267,
0.3509916663,
0.2550213635,
0.1661327332,
-0.1810493767,
-0.4496582747,
0.0841705278,
-0.0507888347,
-0.2418991029,
-0.0206428636,
0.3006990254,
0.0002590641,
0.2212196589,
-0.086542584,
-0.0084870383,
-0.0446577892,
-0.3914657831,
-0.2486385554,
0.0468299687,
-0.0883680135,
-0.0308394954,
0.1717141271,
-0.1824658215,
-0.1235305369,
0.0278110728,
0.1662775129,
-0.1078461036,
0.1905746013,
-0.0070868433,
-0.032207828,
-0.1730866879,
0.2991684377,
0.1324916333,
-0.1177580431,
-0.1633813381,
0.1962732226,
-0.3696711063,
-0.3476009071,
0.1061208397,
-0.0462088622,
0.3358203173,
-0.1556406617,
0.1364305615,
-0.1630212069,
0.1335616857,
0.0356467515,
0.0332456604,
-0.2534840703,
0.1212153658,
0.1745646447,
-0.1633088887,
-0.1208328828,
0.1273241043,
-0.1131865308,
0.0501783863,
-0.2902612686,
-0.3075344563,
0.4495240748,
-0.3335692286,
-0.4592612684,
-0.0600973815,
0.2076722085,
-0.0630889386,
-0.3752246797,
-0.485355109,
0.1419934034,
0.2410848737,
0.0844375119,
-0.0768748894,
0.4214229584,
-0.3127443492,
0.0632281452,
0.1830019802,
0.4975370467,
0.2221594155,
-0.0971203372,
0.0885694548,
-0.1633362323
] |
https://github.com/huggingface/datasets/issues/413 | Is there a way to download only NQ dev? | Unfortunately it's not possible to download only the dev set of NQ.
I think we could add a way to download only the test set by adding a custom configuration to the processing script though. | Maybe I missed that in the docs, but is there a way to only download the dev set of natural questions (~1 GB)?
As we want to benchmark QA models on different datasets, I would like to avoid downloading the 41GB of training data.
I tried
```
dataset = nlp.load_dataset('natural_questions', split="validation", beam_runner="DirectRunner")
```
But this still triggered a big download of presumably the whole dataset. Is there any way of doing this or are splits / slicing options only available after downloading?
Thanks! | 35 | Is there a way to download only NQ dev?
Maybe I missed that in the docs, but is there a way to only download the dev set of natural questions (~1 GB)?
As we want to benchmark QA models on different datasets, I would like to avoid downloading the 41GB of training data.
I tried
```
dataset = nlp.load_dataset('natural_questions', split="validation", beam_runner="DirectRunner")
```
But this still triggered a big download of presumably the whole dataset. Is there any way of doing this or are splits / slicing options only available after downloading?
Thanks!
Unfortunately it's not possible to download only the dev set of NQ.
I think we could add a way to download only the test set by adding a custom configuration to the processing script though. | [
-0.4314168096,
0.1772086918,
-0.112972036,
0.1146225259,
-0.1070226133,
-0.0347267911,
-0.257638514,
0.7160260677,
-0.0329576135,
0.3145225048,
-0.2831303179,
0.0151573829,
-0.220563978,
0.6092378497,
0.474493295,
-0.0987761617,
-0.1157777831,
0.4419941902,
-0.0799669102,
0.0518985838,
-0.1738967001,
0.2375749201,
-0.0511896312,
0.1008467227,
0.3044533134,
-0.287717849,
0.1591366231,
-0.0306120254,
-0.3407659531,
-0.2889766395,
0.0223002508,
0.2152756304,
0.174672693,
-0.3234873414,
-0.0001247323,
-0.0638321191,
-0.0178550277,
-0.1316623241,
-0.131819427,
0.1239354163,
-0.1069384366,
-0.1338655353,
0.0931724161,
0.0113324076,
-0.0697070584,
-0.2781603634,
0.2135229111,
-0.0861074477,
0.358204335,
0.4454737902,
0.0204185937,
0.1405423731,
-0.252948761,
0.1526878923,
-0.0644538403,
-0.282286942,
-0.0892289504,
0.0156452842,
0.1498264968,
0.135431394,
0.1219890118,
0.1407383084,
0.2157315016,
0.2066382915,
0.0054100831,
-0.0171899721,
0.3492208421,
-0.7237772346,
-0.0792934448,
0.7125211358,
0.1285495013,
0.1623678803,
-0.1726224124,
-0.1767227054,
0.1247086823,
-0.4916468561,
-0.0423817188,
0.5084103346,
-0.5656154752,
-0.0027758984,
-0.6391010284,
-0.5820972323,
-0.1727648228,
0.1160465255,
-0.0537560023,
-0.0337664671,
0.0801804066,
0.0538339987,
0.2881831527,
0.1955107003,
0.0965851992,
0.1249823123,
-0.1501688063,
0.1346161664,
-0.2485606968,
-0.4248794913,
-0.2950525582,
-0.1588330269,
0.2999625504,
0.0453286879,
-0.071031183,
0.0286632292,
0.0723700672,
-0.1054557264,
0.4089222252,
0.1076541096,
0.2841552794,
0.2317727506,
0.0504683107,
0.0211562738,
0.080284372,
0.1652100384,
-0.0076860711,
-0.0758911297,
-0.6195677519,
0.0124151073,
-0.0180409513,
-0.4316452742,
0.004517816,
-0.1753552258,
-0.1591520905,
-0.111860469,
-0.1868518144,
0.1990063787,
0.0409796014,
0.0766244531,
-0.297126025,
0.2975178361,
-0.2782458663,
-0.8463841677,
-0.1588613689,
0.0120069273,
0.0453221351,
0.1391308606,
0.3189244866,
0.1616567969,
0.2113090307,
-0.2638457417,
0.0016600676,
-0.0189121291,
0.3986709714,
-0.0074118078,
0.0302930642,
0.396428287,
0.0998833105,
0.1514960378,
-0.1389225572,
0.3128339648,
-0.4387756884,
0.2237684429,
-0.0319209956,
-0.3537499309,
0.2378725559,
0.0444739498,
-0.0815991163,
0.0902850777,
-0.0688420832,
0.2779452503,
-0.0511245467,
-0.1465740651,
-0.0953017026,
-0.1845464557,
-0.2540002465,
-0.0510649309,
0.3700125515,
-0.0547666922,
-0.3172946572,
-0.2180194557,
-0.0503769442,
-0.1873555779,
0.2057101429,
0.3892885745,
-0.1953088939,
0.2749291658,
-0.1282556653,
0.0419047475,
0.6039460897,
0.0634196699,
-0.1607680321,
0.4452085197,
-0.0958242491,
-0.3545051813,
-0.0886769146,
0.2540342808,
0.198244229,
-0.0106192827,
-0.3353326321,
0.7256407142,
-0.1832428873,
-0.2423433661,
-0.0794682503,
-0.567293644,
0.2943887413,
0.1072141677,
0.2334668636,
0.1547669023,
-0.1318541318,
-0.1644455791,
0.228008911,
0.0481450185,
-0.0218949802,
0.0195626132,
-0.0771090239,
-0.4434766173,
-0.1948782802,
-0.1264063269,
-0.4273958206,
0.2192075402,
-0.6686816216,
-0.2727110982,
0.4337012768,
-0.0741638839,
-0.0856535733,
-0.2160952091,
0.2276453674,
-0.3765790761,
-0.0897454247,
-0.089761883,
0.2328124642,
0.1345525086,
-0.3531808853,
-0.0775735304,
-0.0844800025,
0.12008968,
-0.1485578418,
-0.1885526329,
0.1947611272,
0.1635546833,
0.3136906028,
-0.0682019293,
-0.142262131,
0.0293512233,
0.1174353212,
0.1840600967,
-0.0653511584,
0.0679307953,
0.1901082993,
-0.0035387725,
0.0261999797,
-0.0636295006,
-0.0851446316,
0.0705614388,
-0.2034727037,
0.0601700023,
-0.1732619703,
0.4890035093,
-0.2501837611,
0.2387620658,
-0.0243578255,
0.0712088048,
0.1150855273,
-0.1953157485,
0.042203337,
-0.1012479514,
0.2621365488,
0.0794929266,
0.0874668136,
-0.0781056583,
-0.1392304003,
0.059679009,
0.3397411406,
-0.1995898038,
-0.1290844232,
-0.0971145332,
-0.0654710084,
-0.1062466279,
0.207357198,
0.3562304974,
0.295376718,
0.1393586695,
0.5149040818,
0.0771054178,
0.1494971514,
-0.2519967556,
0.1438817531,
0.0286946408,
-0.2033510804,
-0.0611339957,
-0.0969166309,
-0.1329971999,
-0.2284998149,
0.5298205614,
0.1884368062,
-0.043783918,
-0.072128132,
-0.1056224555,
-0.4070439935,
-0.1369891912,
-0.0033692606,
-0.02155957,
-0.1591155976,
-0.1997402012,
0.390065223,
-0.1750447452,
-0.2246314287,
0.171715945,
0.1362395138,
0.4625750184,
-0.1568746269,
-0.2329502255,
0.163921088,
0.0432778522,
-0.090283215,
0.0886401981,
0.0859902203,
0.3979048431,
0.4500081241,
-0.100372985,
-0.1956561506,
0.0405310094,
0.0862391591,
0.065063715,
0.2300625294,
0.4814372957,
-0.0224952511,
0.4113827944,
-0.0127602518,
0.1447868496,
-0.3928005397,
-0.1107227355,
-0.2695804238,
-0.1097873449,
0.2999340892,
0.3856031597,
-0.2025090158,
-0.7505494356,
-0.2044204026,
-0.2655573487,
0.1911295652,
0.0078093112,
0.2178951204,
-0.1302039772,
-0.2237564027,
-0.072375387,
-0.4191213846,
-0.0299890749,
-0.0546578653,
-0.0272559077,
0.2050246894,
-0.1796645224,
-0.1089261323,
0.1190534532,
-0.0054979101,
0.3167390823,
0.223402977,
-0.6580188274,
0.3405666947,
-0.041154813,
0.1739111692,
-0.0416291542,
-0.1339776963,
0.4145452678,
-0.4879589081,
0.0344204977,
0.2119375169,
0.2159922421,
0.089398697,
0.0918628871,
0.1538550258,
-0.0929385573,
0.3225347102,
0.0503838509,
0.9196424484,
0.0844695866,
0.2862995863,
-0.0774070024,
0.0287651401,
0.2585727572,
-0.1073840261,
0.3119178116,
0.2791592777,
0.1978382617,
-0.2146597207,
0.2588630319,
0.0241554938,
-0.1635828465,
-0.1606380641,
-0.0481731296,
-0.0850328505,
-0.1581909657,
0.1432486922,
-0.0431427732,
0.1371500045,
0.2363634855,
0.1082576662,
0.2843376994,
-0.1966167241,
-0.0721736699,
-0.0845045149,
0.2468002886,
0.0981271937,
-0.5428898931,
-0.0851750821,
-0.2477722913,
0.0057320297,
-0.1068633348,
0.1800317466,
-0.1453000605,
-0.0585733242,
0.178581506,
0.1014823318,
0.6295843124,
0.0048302058,
-0.1356538534,
-0.0292934254,
-0.3415820599,
-0.1198016331,
-0.0477265716,
-0.0507907607,
-0.2233606279,
0.1544108987,
-0.1649307162,
-0.2447299063,
0.0283705369,
0.0734495148,
0.4258045852,
-0.2620768547,
0.1635084003,
0.0626247823,
0.07560049,
-0.1320584565,
0.3050743639,
-0.0568812378,
-0.015106298,
-0.2590179443,
-0.1273940951,
-0.2318467796,
-0.1011640653,
0.2034734488,
0.1448338181,
0.1429017633,
0.0512658842,
0.2887452841,
0.0686542615,
-0.2530815303,
-0.3048671186,
0.14920187,
0.0673598871,
0.0474090576,
-0.1193515807,
0.0078321099,
0.2520500124,
0.3751185536,
-0.1827657372,
-0.2367280424,
0.0274221003,
0.055052422,
-0.0090604872,
0.4180618525,
-0.0186041333,
-0.3834148645,
-0.1481359899,
-0.1736947894,
0.37043944,
0.2203923613,
-0.2018372715,
0.2406020761,
0.02643626,
0.0278727487,
-0.1864355057,
0.2639498413,
0.8607463837,
-0.2654822469,
0.2149348855,
0.1646298766,
-0.3632868528,
0.8256191015,
-0.3349282146,
0.1162397116,
-0.1972404122,
-0.1531569064,
-0.1065633893,
-0.20513767,
-0.11022266,
0.2792853713,
0.0164200589,
0.4865503609,
0.1176096201,
-0.071860902,
0.0547381267,
0.045239009,
0.1444043368,
0.0758990645,
0.0172455162,
-0.0416716561,
-0.3121593297,
0.1052948162,
-0.0429834016,
-0.030220231,
0.1688418984,
0.0086278096,
-0.0195341036,
0.0852715969,
-0.1231603324,
-0.2328205407,
-0.1784797311,
-0.1600669175,
-0.0935574919,
0.6345366836,
0.1503611803,
0.2026651502,
-0.3431531191,
0.2239539325,
-0.1167134494,
0.0065892003,
0.1394176781,
0.1315447688,
-0.1487891525,
-0.2536192238,
0.0774621964,
0.1407611221,
-0.1852730811,
0.1381833553,
-0.3526149392,
0.244580254,
0.1456680149,
-0.1788821816,
-0.1581050456,
-0.050004527,
0.2716680765,
-0.011950627,
0.0293890163,
0.1175778955,
-0.263638556,
0.0658609495,
0.1705256402,
-0.3241087198,
-0.1111445874,
0.1945010424,
0.4288096428,
-0.1700001508,
0.3327627778,
-0.1409085989,
0.0136464462,
-0.3063538074,
-0.0172154829,
0.0022657737,
-0.3533315361,
0.2071450055,
-0.1468132436,
-0.1726896614,
-0.079562448,
0.2791499794,
-0.0207248684,
-0.1307429075,
0.0704071373,
-0.1994917691,
-0.0329441912,
0.216363132,
-0.3628816903,
0.378832072,
0.1354703158,
-0.2997674942,
-0.163466692,
0.6286052465,
-0.1036684215,
0.0322007835,
-0.0944362059,
0.2511244118,
-0.3191689253,
0.2514468133,
0.0328676738,
0.107887648,
-0.1501197219,
-0.0540231988,
-0.3074721694,
-0.0736826658,
-0.0204960741,
0.1999011487,
-0.0562040694,
0.1895475388,
0.3652930856,
0.0124284849,
-0.1579034328,
0.0946145803,
0.082990706,
-0.4526725411,
0.2468920052,
0.2111493051,
0.5735401511,
0.1258860677,
-0.538315177,
0.4397482872,
-0.1780578047,
0.4297508001,
-0.0310196541,
0.2363821119,
0.071154356,
-0.2082405388,
-0.4042151868,
-0.1488281339,
0.2778961658,
-0.0559303649,
-0.1306244433,
0.1122293025,
-0.0010715798,
-0.3463712037,
0.1391670108,
0.7270389795,
-0.1468431354,
0.0861140192,
0.3228087425,
0.0782291368,
-0.0484983474,
-0.0131458268,
0.2004359663,
-0.0356870294,
-0.2499094158,
0.3352947831,
0.0642415285,
-0.2685919404,
0.4162907004,
-0.0460428372,
-0.1537012309,
-0.1983645558,
0.0161413997,
0.5277788639,
-0.2210380286,
-0.2766154408,
-0.1627861708,
0.1033721417,
0.0404639207,
0.2024608701,
-0.2855543792,
0.2845877409,
0.4057116508,
0.1913777888,
0.0336735062,
-0.1473399997,
-0.3288441002,
0.4491598308,
0.1161429882,
0.0889778286,
-0.0207237676,
0.2700837255,
0.1414736062,
-0.2981548607,
-0.3012729287,
0.2144737244,
0.2034720182,
-0.0285608787,
-0.255772233,
-0.0071108267,
-0.1221088246,
0.3441334963,
-0.0058769379,
-0.4594331384,
-0.0845606625,
0.2982453108,
-0.1821533144,
-0.0693451464,
0.3256308138,
-0.0325852036,
-0.1284438372,
-0.2529568672,
0.1698724627,
-0.1750001311,
0.1404654086,
0.4270241559,
0.0154750105,
-0.2307579517,
-0.120671615,
-0.4186615348,
-0.1668030769,
0.3144167364,
0.1680991948,
-0.1549812406,
0.1549419165,
0.2139954716,
0.5466294885,
0.404859215,
-0.0147504192,
0.0428884663,
0.1710375547,
0.0891624987,
0.1824760884,
-0.4049276412,
0.4496498108,
0.2269561291,
0.2072746307,
-0.121086061,
-0.0541494563,
-0.2880185246,
0.0611567684,
-0.3377891183,
-0.2357200831,
0.0404668227,
0.1949315667,
-0.0027503725,
-0.5021932125,
0.5036773086,
0.0489066616,
0.2614567578,
-0.312384069,
-0.1567742676,
-0.2423513532,
-0.0338425338,
-0.0923617035,
0.1479972452,
0.0521388911,
0.2573347092,
0.0968045145,
0.5066361427,
-0.4359940886,
0.2668403983,
-0.3112773597,
0.2950913906,
-0.2862003446,
-0.1277656853,
-0.3360530138,
0.4263560474,
0.0000960156,
-0.217602402,
0.413200736,
-0.3228464425,
-0.2708883286,
0.6675412059,
-0.1453435719,
0.3749167919,
0.2538488805,
0.2959194481,
0.2553876638,
0.1831923276,
0.049368605,
-0.1062304378,
-0.0990049988,
0.0672196299,
-0.3648920655,
-0.0909854546,
-0.0493930951,
0.1306521595,
-0.2727122903,
0.5207657218,
0.0134380907,
0.1782702059,
-0.069467105,
0.3151215017,
0.121339418,
-0.2395364046,
0.0684813634,
0.3522232175,
0.4145166874,
0.3370567262,
-0.2478994131,
-0.2640331686,
-0.2773193717,
0.0865657777,
0.4922345877,
-0.052893959,
0.080480054,
0.0453801528,
0.2191267312,
0.3004134297,
-0.1477042139,
-0.3465877473,
-0.0207599774,
0.270082593,
-0.3474004567,
0.0100163743,
0.329218328,
0.1928597987,
-0.2000581622,
-0.1234651506,
0.2232591659,
0.2461211234,
-0.2174125612,
-0.2893904746,
-0.3939066827
] |
https://github.com/huggingface/datasets/issues/413 | Is there a way to download only NQ dev? | Ok, got it. I think this could be a valuable feature - especially for large datasets like NQ, but potentially also others.
For us, it will in this case make the difference of using the library or keeping the old downloads of the raw dev datasets.
However, I don't know if that fits into your plans with the library and can also understand if you don't want to support this. | Maybe I missed that in the docs, but is there a way to only download the dev set of natural questions (~1 GB)?
As we want to benchmark QA models on different datasets, I would like to avoid downloading the 41GB of training data.
I tried
```
dataset = nlp.load_dataset('natural_questions', split="validation", beam_runner="DirectRunner")
```
But this still triggered a big download of presumably the whole dataset. Is there any way of doing this or are splits / slicing options only available after downloading?
Thanks! | 70 | Is there a way to download only NQ dev?
Maybe I missed that in the docs, but is there a way to only download the dev set of natural questions (~1 GB)?
As we want to benchmark QA models on different datasets, I would like to avoid downloading the 41GB of training data.
I tried
```
dataset = nlp.load_dataset('natural_questions', split="validation", beam_runner="DirectRunner")
```
But this still triggered a big download of presumably the whole dataset. Is there any way of doing this or are splits / slicing options only available after downloading?
Thanks!
Ok, got it. I think this could be a valuable feature - especially for large datasets like NQ, but potentially also others.
For us, it will in this case make the difference of using the library or keeping the old downloads of the raw dev datasets.
However, I don't know if that fits into your plans with the library and can also understand if you don't want to support this. | [
-0.3837676644,
0.2108082771,
-0.0951717794,
0.1044237167,
-0.0920640156,
-0.0907708257,
-0.2257676721,
0.6605113149,
-0.0418679863,
0.279556185,
-0.3325554132,
0.0646843761,
-0.2607531846,
0.5805526972,
0.4200989604,
-0.1612844467,
-0.1143592447,
0.4430701137,
-0.0725363642,
0.0320939422,
-0.1458450258,
0.235546127,
-0.0852555409,
0.0845532715,
0.3158822954,
-0.2681671381,
0.1613005698,
0.0003768783,
-0.413005054,
-0.2256502062,
0.104648754,
0.2318767756,
0.2737072706,
-0.315141499,
-0.0001247978,
-0.1767544448,
-0.0492416881,
-0.1076972485,
-0.1048338264,
0.0290611982,
-0.0316624828,
-0.1345097423,
0.1448413432,
-0.0146082044,
-0.0661741793,
-0.2787027359,
0.1802222729,
-0.0877979472,
0.2828413546,
0.3137018681,
0.0347504839,
0.057581,
-0.1785817444,
0.1744212806,
0.0454846695,
-0.1572279483,
-0.1496082395,
0.071052365,
0.240963459,
0.1739737988,
0.137146011,
0.1628848612,
0.1711562723,
0.1461560875,
0.1041327938,
-0.008415889,
0.2902478874,
-0.6779155135,
-0.1346672773,
0.7349888086,
0.2752512395,
0.1195652038,
-0.1453245878,
-0.1751476973,
0.1211699694,
-0.4858598113,
-0.1015630811,
0.5020632744,
-0.5056433678,
0.0058690384,
-0.5925877094,
-0.5954383016,
-0.2289484888,
0.1964997202,
-0.015454106,
-0.0786423311,
0.0763816386,
0.0808048993,
0.3439536095,
0.1932836622,
0.1554153264,
0.126860261,
-0.1199788153,
0.1305152178,
-0.2635020614,
-0.4542860985,
-0.3151842058,
-0.1078781635,
0.2948120534,
0.1053656042,
-0.13060534,
0.0311696865,
0.0303932987,
-0.106359385,
0.5197606087,
0.0478784554,
0.2457876652,
0.2374640703,
0.1265534014,
0.0372284874,
0.0975350812,
0.1258986592,
-0.0222975686,
-0.0219956283,
-0.6431499124,
-0.061106652,
-0.056139186,
-0.4703984261,
0.1024762765,
-0.2125986367,
-0.1848110706,
-0.0741304755,
-0.0765819326,
0.2119109631,
0.0375512652,
0.0674564391,
-0.2454404533,
0.2834028304,
-0.2661136091,
-0.7744129896,
-0.1252468228,
-0.0079064909,
-0.0679523796,
0.0619686842,
0.337536186,
0.0844025984,
0.1490254104,
-0.1850015968,
0.0073811412,
0.0263684392,
0.3335585594,
-0.0166187622,
-0.009726312,
0.3612702489,
0.0033701956,
0.1638416648,
-0.1632594168,
0.2585627437,
-0.4758756459,
0.2490355372,
-0.0942887068,
-0.3748086095,
0.0877636373,
0.0242967382,
-0.0430560932,
0.0558961108,
-0.0828237087,
0.2786797285,
-0.0765086263,
-0.2345644832,
-0.044473432,
-0.1747216582,
-0.2233387977,
-0.0668757111,
0.285582304,
-0.0780793726,
-0.2522705197,
-0.1871511042,
-0.0746147335,
-0.1785928756,
0.2108699828,
0.3680126369,
-0.25297153,
0.1583965719,
-0.1155181825,
0.0218368769,
0.6580266356,
0.0789996386,
-0.2337392867,
0.4908336699,
-0.0526505187,
-0.3138023019,
-0.1015424654,
0.3563973308,
0.1839401573,
-0.0589391738,
-0.3391218781,
0.7834394574,
-0.1379804164,
-0.2503327727,
-0.0784130096,
-0.5916568041,
0.3074538708,
0.1783097982,
0.2205726504,
0.1342014372,
-0.0495588481,
-0.120278582,
0.2245159298,
0.0300305635,
0.011263594,
-0.0088109598,
0.0123794638,
-0.3818090856,
-0.171174705,
-0.1530352235,
-0.4459684193,
0.1846541911,
-0.6536501646,
-0.1945618689,
0.4189757407,
-0.086571157,
0.0073983967,
-0.2341002822,
0.2203123719,
-0.4121867716,
-0.1198646426,
-0.1790971309,
0.1835344732,
0.1684640646,
-0.3527589738,
-0.1195263788,
-0.1414872706,
0.1672488153,
-0.1817327738,
-0.1216654181,
0.1836248785,
0.210125193,
0.222920388,
-0.0013607349,
-0.1546613872,
0.0601966456,
0.1264696568,
0.1464356631,
-0.1569618434,
0.0748495087,
0.1380547285,
0.0602235347,
0.1468371451,
-0.0621343181,
-0.0106382454,
0.0278233998,
-0.159422636,
0.0359753817,
-0.1841622889,
0.4670121372,
-0.2941006422,
0.2273012996,
-0.0432110429,
0.0427764133,
0.0677793026,
-0.1987797022,
0.070211716,
-0.0314570218,
0.299366802,
0.0751122683,
0.0893671215,
-0.0684217736,
-0.1516070068,
0.0916005671,
0.3092692494,
-0.1839172542,
-0.177381739,
-0.0365723483,
-0.0742201433,
-0.0707323179,
0.2380767167,
0.4090537429,
0.3239271641,
0.1457186341,
0.5053700805,
0.0464158505,
0.15501149,
-0.2461325526,
0.1222540587,
-0.0016354248,
-0.2593738735,
-0.0784983188,
-0.1056859419,
-0.0683617294,
-0.2644270658,
0.4836116433,
0.1211465746,
-0.0516694486,
-0.010891661,
-0.0918669328,
-0.4039869308,
-0.1954007298,
-0.0059840772,
-0.066818282,
-0.2175915986,
-0.1385280639,
0.3773466051,
-0.1401189417,
-0.1859867722,
0.1419492215,
0.2079998553,
0.4611384869,
-0.228557691,
-0.3333143294,
0.1294852942,
0.0648881644,
-0.0823555514,
0.0876158327,
0.1210081801,
0.3232126832,
0.4368118048,
-0.0148640908,
-0.1111296564,
-0.0220283177,
-0.0312481076,
0.0310646892,
0.2105916589,
0.4511548281,
0.0031832457,
0.357437551,
-0.0207836777,
0.1039652973,
-0.3731693327,
-0.2048398256,
-0.2044686079,
-0.1332651973,
0.3195648789,
0.3701704443,
-0.2776896954,
-0.7098511457,
-0.2263507247,
-0.2926571965,
0.209216997,
0.0054044724,
0.1874391139,
-0.0258355439,
-0.2257736474,
-0.0712635815,
-0.3463263214,
-0.0302544609,
-0.053827554,
-0.0661431849,
0.2306488305,
-0.1736420989,
-0.0774057955,
0.1423440725,
0.0093302429,
0.2786388099,
0.2440708429,
-0.731284976,
0.3878256679,
-0.0149217481,
0.1793179363,
0.0124042444,
-0.0316706561,
0.3906844258,
-0.4956599474,
0.0461907238,
0.2226555943,
0.1801546067,
0.0473612323,
0.1463138908,
0.2642139792,
-0.0505626798,
0.2984305024,
0.0042142197,
0.9026045203,
-0.021901723,
0.2770245075,
-0.0279034562,
0.1159625947,
0.3132759035,
-0.1179409325,
0.295850724,
0.3645722568,
0.1598805785,
-0.2335769087,
0.2932391167,
0.1239422262,
-0.2589547038,
-0.2144535184,
-0.0696258768,
-0.0567030795,
-0.1273166537,
0.1541204005,
-0.0097608659,
0.0421915911,
0.218497932,
0.0720131546,
0.3293574452,
-0.1914976835,
-0.0961921364,
0.0322569273,
0.2623872459,
0.09221524,
-0.5549852848,
-0.0691492707,
-0.2553255856,
-0.0045987293,
-0.0989546329,
0.0317618214,
-0.1204399243,
-0.0082693547,
0.2318599969,
0.1683475673,
0.5909478664,
0.0614550337,
-0.2426666319,
-0.0883284658,
-0.3295906186,
-0.0227917619,
-0.0294512063,
0.052441135,
-0.1857879013,
0.0847245455,
-0.1625151485,
-0.2776076198,
-0.0038194023,
0.1067298949,
0.3743974864,
-0.1717573106,
0.0683403015,
0.1319338083,
0.0820222795,
-0.1553018689,
0.2775470912,
-0.0711866543,
0.0161295794,
-0.2766103745,
-0.1321994662,
-0.190885365,
-0.0520376787,
0.2010483742,
0.0611882284,
0.1420812011,
0.0450425409,
0.2517429292,
0.0456530116,
-0.1850001663,
-0.2596506476,
0.2126799822,
0.0181566589,
0.0519398302,
-0.0969627202,
0.0326503664,
0.2234617323,
0.3854715228,
-0.1590268612,
-0.1818449497,
-0.0089870635,
0.0372516885,
-0.0170684475,
0.3170140982,
-0.0053071324,
-0.3997892737,
-0.2267181277,
-0.226994887,
0.4494838715,
0.1634718776,
-0.1413421333,
0.3220739365,
0.0655717999,
0.0499739423,
-0.2421557605,
0.2685818076,
0.9881722331,
-0.2815467119,
0.2548357844,
0.1280249059,
-0.4641486406,
0.9363811612,
-0.3721267283,
0.0934716016,
-0.2408130467,
-0.1261505783,
-0.1237550229,
-0.1851519644,
-0.0779527873,
0.2559377849,
0.0302197933,
0.442648977,
0.1611510515,
-0.0513371043,
0.0561251864,
0.05603306,
0.1520569026,
0.0439573936,
-0.028106289,
-0.044349432,
-0.2746133208,
0.1111413315,
-0.0541204363,
-0.1022003517,
0.1529756784,
-0.0006277263,
-0.0187223032,
0.0444303975,
-0.0127263516,
-0.2662274837,
-0.0623794273,
-0.218597278,
0.0143783912,
0.6153012514,
0.1269198805,
0.1762398779,
-0.3800660968,
0.2230013311,
-0.1217522547,
0.0153689049,
0.1590143442,
0.1044135839,
-0.1401652545,
-0.2097869217,
0.1296270788,
0.0871398374,
-0.2226065397,
0.0513728559,
-0.3873912692,
0.2717069387,
0.2484140694,
-0.165322274,
-0.1095159575,
-0.0347576253,
0.280754447,
-0.0071192682,
0.0276636295,
0.1707445979,
-0.2003898323,
0.0062112547,
0.1212961748,
-0.2966048121,
-0.1784131974,
0.2170598805,
0.4410696626,
-0.2956873477,
0.2311336994,
-0.1447517872,
-0.0406470895,
-0.2397845387,
0.010482952,
-0.0299259052,
-0.4008366466,
0.1358231008,
-0.1106700376,
-0.183023423,
-0.0245854855,
0.2750991285,
-0.0994584858,
-0.0941783041,
0.0773349851,
-0.2116998732,
-0.0717719719,
0.2115343958,
-0.4958397448,
0.3922189176,
0.1611788571,
-0.344065398,
-0.0800408721,
0.5380373597,
-0.0875144377,
0.1143824235,
-0.0327160023,
0.2392186224,
-0.3301363289,
0.2376053035,
-0.0335435532,
0.0713955536,
-0.1780045182,
-0.0215452556,
-0.3189704716,
-0.044727765,
-0.0830527991,
0.220854491,
-0.0200913996,
0.1732336581,
0.2979394495,
-0.0526751988,
-0.1839697659,
0.1012203246,
0.1039199159,
-0.388925463,
0.2401883006,
0.1574957073,
0.5783492327,
0.1097847372,
-0.591311276,
0.5144999623,
-0.1677046716,
0.4666443765,
0.0472619198,
0.151261121,
-0.0127695873,
-0.213986516,
-0.4592821002,
-0.1276160926,
0.2890670002,
-0.0764441788,
-0.0014028167,
0.1141812205,
0.0653456822,
-0.2780646682,
0.2255567014,
0.7534223199,
-0.1339776665,
0.0620856732,
0.3673751056,
0.0649304986,
-0.0093419105,
-0.0571751148,
0.0890804753,
-0.0138783306,
-0.2894068956,
0.3129281402,
0.0575324297,
-0.3034369946,
0.4116077423,
-0.1116233245,
-0.0943762511,
-0.1530003846,
0.0425379798,
0.5735348463,
-0.2732245922,
-0.3262374997,
-0.1394722015,
0.1508859396,
0.0221971832,
0.2271663994,
-0.3691074252,
0.2177568972,
0.4459453225,
0.237032786,
0.0058742594,
-0.1344823688,
-0.3252524734,
0.5055999756,
0.2182753235,
0.0406727046,
-0.0696751773,
0.3011367619,
0.1572867483,
-0.2912783027,
-0.1980875582,
0.2419240028,
0.1974517107,
0.0166681036,
-0.2028535604,
-0.0496811718,
-0.1826837361,
0.3123767078,
-0.1010724455,
-0.457467407,
-0.139130488,
0.3240169883,
-0.1236162186,
-0.1569908559,
0.3307217062,
-0.0419629924,
-0.102129072,
-0.2556850314,
0.179562822,
-0.1770019233,
0.0958303362,
0.4640854895,
-0.045936022,
-0.2596223056,
-0.0257899929,
-0.365351975,
-0.2095393538,
0.2498316914,
0.2034851015,
-0.109615609,
0.1557312906,
0.2807763517,
0.5663049221,
0.3942399025,
-0.0472349748,
0.0324700885,
0.288122654,
0.0807330608,
0.2034659386,
-0.4621669948,
0.4283206463,
0.2240884751,
0.2149141431,
-0.0970672667,
-0.0631546676,
-0.2014006674,
-0.0163574293,
-0.3748481572,
-0.2838505208,
0.0123094991,
0.1459269822,
-0.0112008527,
-0.4772576392,
0.5015833378,
0.101259008,
0.2848774791,
-0.3360570967,
-0.1893149614,
-0.2721226215,
-0.0261169598,
-0.067844063,
0.2251155823,
0.0602588728,
0.2284603268,
0.1323886812,
0.5546501875,
-0.4826951623,
0.241187498,
-0.2426613271,
0.2789438069,
-0.2555555701,
-0.1002761051,
-0.3028168082,
0.4092623889,
-0.0069010593,
-0.1917093396,
0.3745422363,
-0.3308824003,
-0.2955682278,
0.6019468904,
-0.1075991318,
0.3654637039,
0.2640300095,
0.3025877774,
0.2152696699,
0.1133117974,
0.1121462435,
-0.1622616053,
-0.0897890925,
0.0291141905,
-0.3479006588,
-0.1157474965,
-0.0441380553,
0.1511315554,
-0.2918077111,
0.562322557,
-0.0307911523,
0.1898497045,
-0.0388918668,
0.3846499026,
0.0302895904,
-0.2880809903,
0.048830837,
0.3543291092,
0.3404439688,
0.3559586108,
-0.2089966387,
-0.2918729484,
-0.2775608897,
0.1047596782,
0.4886986613,
-0.0419332534,
0.1118401513,
0.1454212666,
0.1829405129,
0.3227471709,
-0.1110477224,
-0.4189258814,
-0.0283913389,
0.2660477161,
-0.3359090984,
0.0608075783,
0.328450501,
0.1726683378,
-0.2116778195,
-0.1320114732,
0.1879139096,
0.263976872,
-0.1589771211,
-0.1981959343,
-0.4046052098
] |
https://github.com/huggingface/datasets/issues/413 | Is there a way to download only NQ dev? | I don't think we could force this behavior generally since the dataset script authors are free to organize the file download as they want (sometimes the mapping between split and files can be very much nontrivial) but we can add an additional configuration for Natural Question indeed as @lhoestq indicate. | Maybe I missed that in the docs, but is there a way to only download the dev set of natural questions (~1 GB)?
As we want to benchmark QA models on different datasets, I would like to avoid downloading the 41GB of training data.
I tried
```
dataset = nlp.load_dataset('natural_questions', split="validation", beam_runner="DirectRunner")
```
But this still triggered a big download of presumably the whole dataset. Is there any way of doing this or are splits / slicing options only available after downloading?
Thanks! | 50 | Is there a way to download only NQ dev?
Maybe I missed that in the docs, but is there a way to only download the dev set of natural questions (~1 GB)?
As we want to benchmark QA models on different datasets, I would like to avoid downloading the 41GB of training data.
I tried
```
dataset = nlp.load_dataset('natural_questions', split="validation", beam_runner="DirectRunner")
```
But this still triggered a big download of presumably the whole dataset. Is there any way of doing this or are splits / slicing options only available after downloading?
Thanks!
I don't think we could force this behavior generally since the dataset script authors are free to organize the file download as they want (sometimes the mapping between split and files can be very much nontrivial) but we can add an additional configuration for Natural Question indeed as @lhoestq indicate. | [
-0.4887263477,
0.2052322924,
-0.0939360708,
0.1260940582,
-0.0418884605,
-0.1087562293,
-0.2285949886,
0.6617494822,
0.0076493397,
0.2669903338,
-0.2714674771,
0.0445386283,
-0.2082807571,
0.5945589542,
0.444468379,
-0.0646662265,
-0.1271421164,
0.4709185958,
-0.1361076534,
-0.0069544986,
-0.1744410694,
0.1564282328,
-0.0427492782,
0.0399174616,
0.2861561179,
-0.2435351163,
0.1814635098,
0.0041284068,
-0.356736809,
-0.2835047841,
0.0866328031,
0.2757030129,
0.2166977823,
-0.3432939053,
-0.0001268621,
-0.1054656357,
0.000429295,
-0.1328521073,
-0.2147212178,
0.0927826986,
-0.0724056363,
-0.1583822072,
0.1609331518,
0.0109024793,
-0.0843142569,
-0.334884882,
0.2662498057,
-0.1632025242,
0.3774254024,
0.4012565613,
-0.0041165613,
0.054843612,
-0.2272784859,
0.1745744944,
0.0175520554,
-0.1025492847,
-0.1552436054,
0.0558354035,
0.1900911927,
0.0763690323,
0.0393829346,
0.096323669,
0.2445639074,
0.2181497514,
0.1171692759,
-0.0001178719,
0.3439487815,
-0.7146775126,
-0.1467896849,
0.7247012258,
0.2575412095,
0.0835117251,
-0.1220390946,
-0.2418496907,
0.138084352,
-0.4262853861,
-0.0425273366,
0.4883487523,
-0.6017987728,
0.0279398784,
-0.5949161053,
-0.5436313748,
-0.192121923,
0.2189567834,
-0.0272635818,
-0.0606629215,
0.0457841791,
0.0554197952,
0.2680761218,
0.1433385909,
0.1559553146,
0.0705499798,
-0.0610100105,
0.1489268839,
-0.1999877393,
-0.4450475276,
-0.2982936502,
-0.09948311,
0.3308859169,
0.1128260046,
-0.0295022428,
0.0462545678,
0.0011222363,
-0.0876056328,
0.4969103336,
0.0745899677,
0.2353423238,
0.2745425105,
0.1146286428,
0.1112656519,
0.0898414701,
0.1389095932,
0.0243525021,
-0.0688007921,
-0.6210038066,
0.0036771651,
0.0770883486,
-0.35948053,
-0.030611828,
-0.2182728946,
-0.0773648024,
-0.1010042578,
-0.1445729434,
0.1883690804,
0.0624618456,
0.079657957,
-0.3489792049,
0.3237818182,
-0.2918670177,
-0.7594260573,
-0.1419376731,
-0.0309813544,
-0.0322257318,
0.1305490434,
0.4035457671,
0.1777428836,
0.1623428464,
-0.1546227038,
-0.0081777163,
0.0228777006,
0.3501368761,
-0.0447862223,
0.052162759,
0.3954904377,
0.0708259493,
0.1198438555,
-0.0991973281,
0.2762242854,
-0.4767386019,
0.2121436298,
-0.0814638585,
-0.3039789498,
0.2000149935,
0.0312733874,
-0.0611731932,
0.0619083829,
-0.0824499726,
0.2958791554,
-0.0218026228,
-0.2617387772,
-0.0780140683,
-0.1849834472,
-0.2660310864,
-0.0194638111,
0.2815346122,
0.0521521308,
-0.2876963615,
-0.1943801939,
-0.0426557586,
-0.1953802556,
0.2409431636,
0.3353288174,
-0.2221539319,
0.2208236903,
-0.1777198464,
0.0727051198,
0.6215859056,
0.0408349633,
-0.2153273523,
0.5189725161,
-0.125259012,
-0.2580468059,
0.0099433511,
0.2915626168,
0.201553762,
-0.0975812152,
-0.3081538677,
0.7577162981,
-0.1381885707,
-0.2085580081,
-0.0468734354,
-0.5798709393,
0.2178358287,
0.1311503202,
0.1677618623,
0.1886197478,
-0.0218460187,
-0.1770365536,
0.2302628458,
0.076040633,
0.0210762024,
-0.0027040113,
-0.0927264243,
-0.4067582488,
-0.2314433753,
-0.1624526531,
-0.5866485834,
0.1941297054,
-0.5578174591,
-0.2835439444,
0.384806782,
-0.1371848285,
-0.0203149244,
-0.2599236369,
0.1540473402,
-0.3446826339,
-0.1026778966,
-0.0458076186,
0.1526648849,
0.1315484196,
-0.3660291433,
-0.0622352287,
-0.0604103506,
0.2207048684,
-0.1313730925,
-0.1769897044,
0.2260777503,
0.1880297214,
0.2558656931,
-0.0725522637,
-0.1099502891,
0.0467789657,
0.1513631344,
0.1734096408,
-0.0262588989,
0.0936713815,
0.2082291394,
-0.0001846403,
0.0592572019,
-0.0196037963,
-0.02991594,
0.0918958262,
-0.2208604515,
0.004964672,
-0.2566194236,
0.4621085823,
-0.2703950703,
0.2382686436,
-0.0310357586,
0.0220024288,
0.1374268532,
-0.2340874374,
0.0234775841,
-0.1472929716,
0.2413586676,
0.1238057911,
0.1553202569,
-0.0022999924,
-0.1333713233,
0.0855034888,
0.4147884846,
-0.211136654,
-0.1127046049,
-0.0137236482,
-0.0557621531,
-0.0984780341,
0.1594364047,
0.4292445779,
0.3710593283,
0.1735155135,
0.5662349463,
0.0483269021,
0.1430452615,
-0.3168495595,
0.1112158448,
-0.0117879435,
-0.2532927394,
0.0380240679,
-0.118815437,
-0.1213262752,
-0.2932130694,
0.4736102223,
0.152905792,
-0.0682680458,
-0.0972217694,
-0.1410441697,
-0.4016956687,
-0.1507289559,
-0.0715242773,
0.0242199413,
-0.1566218287,
-0.2005379498,
0.369140327,
-0.1295190752,
-0.2382727563,
0.1708693653,
0.1290090829,
0.4911543429,
-0.2071627825,
-0.3213887513,
0.1032970399,
0.0876337439,
-0.0775728971,
0.0606638789,
0.1547179669,
0.3283343017,
0.4007338285,
-0.1120109707,
-0.1641484201,
0.0141160935,
0.1065447927,
0.0587566569,
0.2443140149,
0.4849345684,
-0.0601027794,
0.4556983113,
0.0552122146,
0.1288233995,
-0.4062312245,
-0.0473391786,
-0.242815882,
-0.1148088723,
0.2974047661,
0.397950232,
-0.2779555321,
-0.727937758,
-0.192511946,
-0.3107813895,
0.1971548051,
0.0362023339,
0.1660706401,
-0.0209893491,
-0.1801547855,
-0.1689497828,
-0.4117172956,
0.030272156,
-0.042468138,
-0.0558416098,
0.2495706975,
-0.1656601727,
-0.0818884522,
0.0985908732,
-0.0002210513,
0.1828833073,
0.3064817786,
-0.7142481804,
0.3078975379,
-0.0837085471,
0.1705637276,
-0.0621974058,
-0.0692708865,
0.4284794629,
-0.4704176486,
0.0272307172,
0.2099203318,
0.2742370963,
0.1153620183,
0.0321400799,
0.1345499307,
-0.0440303981,
0.3096982241,
0.0385461673,
0.8778755069,
0.0845522881,
0.2853833735,
0.0053808736,
0.0823159963,
0.370172292,
-0.1114832014,
0.344776243,
0.3482342958,
0.1952169091,
-0.1944240928,
0.3263474405,
0.0774825066,
-0.1878177524,
-0.1526004523,
-0.0101807937,
-0.0675127581,
-0.1857349128,
0.198567614,
-0.0588746145,
0.0681097806,
0.2273649573,
0.1045216098,
0.2960301638,
-0.1768454462,
-0.1366894841,
0.0278593879,
0.2456603497,
0.1218131408,
-0.5731312037,
-0.0082167499,
-0.2568286061,
-0.023164466,
-0.1184411272,
0.0914422572,
-0.2068181932,
-0.0856496766,
0.2234111726,
0.2078451514,
0.6067393422,
0.0300899576,
-0.1100325584,
-0.1166498661,
-0.2653929293,
-0.0457315259,
-0.044713527,
0.0103013963,
-0.1716825813,
0.1064628959,
-0.0470432565,
-0.2884469628,
-0.0024441704,
0.0786772817,
0.3771258891,
-0.1641007662,
0.0801432133,
0.1451833695,
0.0664270222,
-0.1432051063,
0.274382621,
0.0222199708,
-0.0582527816,
-0.2841442227,
-0.1746896207,
-0.2178648561,
-0.0764280185,
0.1868626326,
0.0768216997,
0.0833543092,
0.0766529292,
0.2259188294,
0.0786206871,
-0.2055822164,
-0.2046729028,
0.2767519355,
-0.001792727,
-0.0984975994,
-0.139534533,
-0.0281249732,
0.1536061317,
0.4546095729,
-0.1922067553,
-0.2828114629,
-0.016730994,
0.0893431455,
-0.0223376937,
0.4292795956,
0.0398143604,
-0.4462183118,
-0.2101212591,
-0.2589497566,
0.3732423782,
0.1945980191,
-0.2055404782,
0.2144984603,
0.0013383441,
-0.0282609537,
-0.247287631,
0.2591444254,
0.9118406177,
-0.2326830477,
0.2671704292,
0.1472864598,
-0.3779020607,
0.8221441507,
-0.4244489968,
0.0780252963,
-0.1748119593,
-0.1513871849,
-0.1384529173,
-0.2045548409,
-0.1035985202,
0.3686383963,
0.0392805114,
0.4770531952,
0.0891523659,
-0.0144780129,
0.072081171,
0.0688484609,
0.0940319002,
0.033112064,
0.0610826015,
-0.0643872917,
-0.3221386671,
0.10720101,
-0.0213541724,
-0.0748223513,
0.1851851642,
-0.0554804355,
-0.0290843099,
0.057459712,
-0.1575433314,
-0.2827275991,
-0.2014379799,
-0.2388133407,
-0.0415565372,
0.7085370421,
0.1310726702,
0.14032197,
-0.3597535491,
0.2176437229,
-0.1332636327,
0.0653968751,
0.0704184026,
0.0525596738,
-0.1054471806,
-0.1683652103,
0.1406695396,
0.0120316576,
-0.1634980142,
0.1378879845,
-0.3886714578,
0.2521444559,
0.1531344056,
-0.2198173404,
-0.1275339723,
-0.1229001954,
0.3295391202,
-0.0046904758,
0.0095538404,
0.0961324573,
-0.1693180203,
0.0130124073,
0.1482699513,
-0.3236745596,
-0.1380088329,
0.2522517741,
0.3861665428,
-0.2282226384,
0.3095295429,
-0.1906156689,
-0.0504055656,
-0.2935267687,
0.0322295725,
-0.0071936324,
-0.3725099862,
0.148524791,
-0.0461405888,
-0.1984895319,
-0.0560621321,
0.2099429518,
-0.0773584917,
-0.121321559,
0.0820887387,
-0.1997180134,
-0.0244309232,
0.1956808418,
-0.4095667303,
0.4032942653,
0.1959792078,
-0.323058486,
-0.114584364,
0.5872228742,
-0.085321188,
0.0332799777,
0.0169558898,
0.220461309,
-0.2670645416,
0.2823041677,
0.0293558128,
0.1078802198,
-0.1735432297,
-0.0970691144,
-0.2927987576,
-0.0551038645,
-0.0235796161,
0.2111918628,
-0.0421672016,
0.1556612104,
0.2824376225,
-0.0781595036,
-0.1579772532,
0.0044937581,
0.1034576073,
-0.4241892099,
0.2448601425,
0.1957987994,
0.5968703628,
0.2148345709,
-0.4498146176,
0.4909949005,
-0.2002983987,
0.4467797875,
-0.0122620501,
0.1721562296,
0.0115223601,
-0.1901783943,
-0.4182382822,
-0.1043045521,
0.3986248374,
0.0369056724,
-0.1261123866,
0.0897480473,
0.0416334793,
-0.3117082715,
0.1528308839,
0.7208676934,
-0.1670781374,
0.0277367309,
0.3030208349,
0.0733282417,
-0.0116286688,
-0.0867305547,
0.2075522542,
-0.0328284577,
-0.2175637782,
0.3294561505,
-0.0068041086,
-0.2957660556,
0.4166151583,
-0.0636667982,
-0.0969539359,
-0.1166889891,
0.0263308883,
0.5689670444,
-0.2224675566,
-0.280253619,
-0.1525285393,
0.1486291885,
0.0431914851,
0.3451728821,
-0.3122253418,
0.2479105443,
0.4005115628,
0.2087186277,
-0.0269348659,
-0.2441417873,
-0.2748732269,
0.5230001211,
0.1104308218,
0.033666458,
-0.0003103279,
0.2438366115,
0.1401623636,
-0.2416857928,
-0.3140127659,
0.138470009,
0.1926989704,
0.002546709,
-0.2052243054,
-0.0280450135,
-0.0956043378,
0.3212980032,
-0.1187282503,
-0.4251151979,
-0.1308764219,
0.3025723994,
-0.1611566842,
-0.0812010318,
0.373944521,
-0.0712849647,
-0.1348884106,
-0.2602089942,
0.1898047477,
-0.184838742,
0.1720394194,
0.4114938676,
-0.0462579727,
-0.2266836762,
-0.0455705598,
-0.3624218106,
-0.2169679254,
0.284859091,
0.1728209555,
-0.2372647673,
0.1584549099,
0.207238704,
0.5742635727,
0.4248834252,
-0.0192973055,
0.0464587957,
0.2571294904,
0.1105089784,
0.1029169485,
-0.4459003806,
0.4196879268,
0.2157384157,
0.2236370742,
-0.0775017887,
-0.0779943615,
-0.2616135478,
-0.0133581553,
-0.3012204766,
-0.2348338068,
0.0605699793,
0.1134693921,
-0.0178121068,
-0.4746327698,
0.4637054503,
0.0473076738,
0.1785972118,
-0.3177027106,
-0.1525581926,
-0.2793527842,
-0.0210684612,
-0.1326094717,
0.1412641704,
-0.0114480909,
0.2095392644,
0.1240263954,
0.5167967677,
-0.4997380078,
0.2142000496,
-0.2274484634,
0.3636533916,
-0.2333956957,
-0.1672560126,
-0.3186062276,
0.4481706917,
0.0079244226,
-0.2858369648,
0.3640494049,
-0.2809880972,
-0.2817652524,
0.6151067615,
-0.0763221607,
0.3583171368,
0.2011262625,
0.2634150088,
0.2481329739,
0.1929302812,
0.067207858,
-0.1127576903,
-0.0985038206,
0.1025805622,
-0.4266872406,
-0.1189945191,
-0.0869916826,
0.1052412465,
-0.3675813973,
0.5479367375,
0.0155671984,
0.1099907383,
-0.0931463987,
0.402074039,
0.0751658157,
-0.2500083745,
0.0830965787,
0.3318134844,
0.3681011796,
0.3339720666,
-0.1986512542,
-0.3193084002,
-0.2046660185,
0.0301670954,
0.4539540112,
0.0250944681,
0.0854398087,
0.069846876,
0.2511936724,
0.2723047733,
-0.0705249533,
-0.2877126336,
0.0154354572,
0.2493830621,
-0.380371958,
0.0441296399,
0.3894335628,
0.1632055342,
-0.2141719759,
-0.1160927713,
0.2265221179,
0.312798351,
-0.2167776823,
-0.2701513767,
-0.4153766632
] |
https://github.com/huggingface/datasets/issues/412 | Unable to load XTREME dataset from disk | Hi @lewtun, you have to provide the full path to the downloaded file for example `/home/lewtum/..` | Hi 🤗 team!
## Description of the problem
Following the [docs](https://huggingface.co/nlp/loading_datasets.html?highlight=xtreme#manually-downloading-files) I'm trying to load the `PAN-X.fr` dataset from the [XTREME](https://github.com/google-research/xtreme) benchmark.
I have manually downloaded the `AmazonPhotos.zip` file from [here](https://www.amazon.com/clouddrive/share/d3KGCRCIYwhKJF0H3eWA26hjg2ZCRhjpEQtDL70FSBN?_encoding=UTF8&%2AVersion%2A=1&%2Aentries%2A=0&mgh=1) and am running into a `FileNotFoundError` when I point to the location of the dataset.
As far as I can tell, the problem is that `AmazonPhotos.zip` decompresses to `panx_dataset` and `load_dataset()` is not looking in the correct path:
```
# path where load_dataset is looking for fr.tar.gz
/root/.cache/huggingface/datasets/9b8c4f1578e45cb2539332c79738beb3b54afbcd842b079cabfd79e3ed6704f6/
# path where it actually exists
/root/.cache/huggingface/datasets/9b8c4f1578e45cb2539332c79738beb3b54afbcd842b079cabfd79e3ed6704f6/panx_dataset/
```
## Steps to reproduce the problem
1. Manually download the XTREME benchmark from [here](https://www.amazon.com/clouddrive/share/d3KGCRCIYwhKJF0H3eWA26hjg2ZCRhjpEQtDL70FSBN?_encoding=UTF8&%2AVersion%2A=1&%2Aentries%2A=0&mgh=1)
2. Run the following code snippet
```python
from nlp import load_dataset
# AmazonPhotos.zip is in the root of the folder
dataset = load_dataset("xtreme", "PAN-X.fr", data_dir='./')
```
3. Here is the stack trace
```
---------------------------------------------------------------------------
FileNotFoundError Traceback (most recent call last)
<ipython-input-4-26786bb5fa93> in <module>
----> 1 dataset = load_dataset("xtreme", "PAN-X.fr", data_dir='./')
/usr/local/lib/python3.6/dist-packages/nlp/load.py in load_dataset(path, name, version, data_dir, data_files, split, cache_dir, download_config, download_mode, ignore_verifications, save_infos, **config_kwargs)
522 download_mode=download_mode,
523 ignore_verifications=ignore_verifications,
--> 524 save_infos=save_infos,
525 )
526
/usr/local/lib/python3.6/dist-packages/nlp/builder.py in download_and_prepare(self, download_config, download_mode, ignore_verifications, save_infos, try_from_hf_gcs, dl_manager, **download_and_prepare_kwargs)
430 verify_infos = not save_infos and not ignore_verifications
431 self._download_and_prepare(
--> 432 dl_manager=dl_manager, verify_infos=verify_infos, **download_and_prepare_kwargs
433 )
434 # Sync info
/usr/local/lib/python3.6/dist-packages/nlp/builder.py in _download_and_prepare(self, dl_manager, verify_infos, **prepare_split_kwargs)
464 split_dict = SplitDict(dataset_name=self.name)
465 split_generators_kwargs = self._make_split_generators_kwargs(prepare_split_kwargs)
--> 466 split_generators = self._split_generators(dl_manager, **split_generators_kwargs)
467 # Checksums verification
468 if verify_infos:
/usr/local/lib/python3.6/dist-packages/nlp/datasets/xtreme/b8c2ed3583a7a7ac60b503576dfed3271ac86757628897e945bd329c43b8a746/xtreme.py in _split_generators(self, dl_manager)
725 panx_dl_dir = dl_manager.extract(panx_path)
726 lang = self.config.name.split(".")[1]
--> 727 lang_folder = dl_manager.extract(os.path.join(panx_dl_dir, lang + ".tar.gz"))
728 return [
729 nlp.SplitGenerator(
/usr/local/lib/python3.6/dist-packages/nlp/utils/download_manager.py in extract(self, path_or_paths)
196 """
197 return map_nested(
--> 198 lambda path: cached_path(path, extract_compressed_file=True, force_extract=False), path_or_paths,
199 )
200
/usr/local/lib/python3.6/dist-packages/nlp/utils/py_utils.py in map_nested(function, data_struct, dict_only, map_tuple)
170 return tuple(mapped)
171 # Singleton
--> 172 return function(data_struct)
173
174
/usr/local/lib/python3.6/dist-packages/nlp/utils/download_manager.py in <lambda>(path)
196 """
197 return map_nested(
--> 198 lambda path: cached_path(path, extract_compressed_file=True, force_extract=False), path_or_paths,
199 )
200
/usr/local/lib/python3.6/dist-packages/nlp/utils/file_utils.py in cached_path(url_or_filename, download_config, **download_kwargs)
203 elif urlparse(url_or_filename).scheme == "":
204 # File, but it doesn't exist.
--> 205 raise FileNotFoundError("Local file {} doesn't exist".format(url_or_filename))
206 else:
207 # Something unknown
FileNotFoundError: Local file /root/.cache/huggingface/datasets/9b8c4f1578e45cb2539332c79738beb3b54afbcd842b079cabfd79e3ed6704f6/fr.tar.gz doesn't exist
```
## OS and hardware
```
- `nlp` version: 0.3.0
- Platform: Linux-4.15.0-72-generic-x86_64-with-Ubuntu-18.04-bionic
- Python version: 3.6.9
- PyTorch version (GPU?): 1.4.0 (True)
- Tensorflow version (GPU?): 2.1.0 (True)
- Using GPU in script?: <fill in>
- Using distributed or parallel set-up in script?: <fill in>
``` | 16 | Unable to load XTREME dataset from disk
Hi 🤗 team!
## Description of the problem
Following the [docs](https://huggingface.co/nlp/loading_datasets.html?highlight=xtreme#manually-downloading-files) I'm trying to load the `PAN-X.fr` dataset from the [XTREME](https://github.com/google-research/xtreme) benchmark.
I have manually downloaded the `AmazonPhotos.zip` file from [here](https://www.amazon.com/clouddrive/share/d3KGCRCIYwhKJF0H3eWA26hjg2ZCRhjpEQtDL70FSBN?_encoding=UTF8&%2AVersion%2A=1&%2Aentries%2A=0&mgh=1) and am running into a `FileNotFoundError` when I point to the location of the dataset.
As far as I can tell, the problem is that `AmazonPhotos.zip` decompresses to `panx_dataset` and `load_dataset()` is not looking in the correct path:
```
# path where load_dataset is looking for fr.tar.gz
/root/.cache/huggingface/datasets/9b8c4f1578e45cb2539332c79738beb3b54afbcd842b079cabfd79e3ed6704f6/
# path where it actually exists
/root/.cache/huggingface/datasets/9b8c4f1578e45cb2539332c79738beb3b54afbcd842b079cabfd79e3ed6704f6/panx_dataset/
```
## Steps to reproduce the problem
1. Manually download the XTREME benchmark from [here](https://www.amazon.com/clouddrive/share/d3KGCRCIYwhKJF0H3eWA26hjg2ZCRhjpEQtDL70FSBN?_encoding=UTF8&%2AVersion%2A=1&%2Aentries%2A=0&mgh=1)
2. Run the following code snippet
```python
from nlp import load_dataset
# AmazonPhotos.zip is in the root of the folder
dataset = load_dataset("xtreme", "PAN-X.fr", data_dir='./')
```
3. Here is the stack trace
```
---------------------------------------------------------------------------
FileNotFoundError Traceback (most recent call last)
<ipython-input-4-26786bb5fa93> in <module>
----> 1 dataset = load_dataset("xtreme", "PAN-X.fr", data_dir='./')
/usr/local/lib/python3.6/dist-packages/nlp/load.py in load_dataset(path, name, version, data_dir, data_files, split, cache_dir, download_config, download_mode, ignore_verifications, save_infos, **config_kwargs)
522 download_mode=download_mode,
523 ignore_verifications=ignore_verifications,
--> 524 save_infos=save_infos,
525 )
526
/usr/local/lib/python3.6/dist-packages/nlp/builder.py in download_and_prepare(self, download_config, download_mode, ignore_verifications, save_infos, try_from_hf_gcs, dl_manager, **download_and_prepare_kwargs)
430 verify_infos = not save_infos and not ignore_verifications
431 self._download_and_prepare(
--> 432 dl_manager=dl_manager, verify_infos=verify_infos, **download_and_prepare_kwargs
433 )
434 # Sync info
/usr/local/lib/python3.6/dist-packages/nlp/builder.py in _download_and_prepare(self, dl_manager, verify_infos, **prepare_split_kwargs)
464 split_dict = SplitDict(dataset_name=self.name)
465 split_generators_kwargs = self._make_split_generators_kwargs(prepare_split_kwargs)
--> 466 split_generators = self._split_generators(dl_manager, **split_generators_kwargs)
467 # Checksums verification
468 if verify_infos:
/usr/local/lib/python3.6/dist-packages/nlp/datasets/xtreme/b8c2ed3583a7a7ac60b503576dfed3271ac86757628897e945bd329c43b8a746/xtreme.py in _split_generators(self, dl_manager)
725 panx_dl_dir = dl_manager.extract(panx_path)
726 lang = self.config.name.split(".")[1]
--> 727 lang_folder = dl_manager.extract(os.path.join(panx_dl_dir, lang + ".tar.gz"))
728 return [
729 nlp.SplitGenerator(
/usr/local/lib/python3.6/dist-packages/nlp/utils/download_manager.py in extract(self, path_or_paths)
196 """
197 return map_nested(
--> 198 lambda path: cached_path(path, extract_compressed_file=True, force_extract=False), path_or_paths,
199 )
200
/usr/local/lib/python3.6/dist-packages/nlp/utils/py_utils.py in map_nested(function, data_struct, dict_only, map_tuple)
170 return tuple(mapped)
171 # Singleton
--> 172 return function(data_struct)
173
174
/usr/local/lib/python3.6/dist-packages/nlp/utils/download_manager.py in <lambda>(path)
196 """
197 return map_nested(
--> 198 lambda path: cached_path(path, extract_compressed_file=True, force_extract=False), path_or_paths,
199 )
200
/usr/local/lib/python3.6/dist-packages/nlp/utils/file_utils.py in cached_path(url_or_filename, download_config, **download_kwargs)
203 elif urlparse(url_or_filename).scheme == "":
204 # File, but it doesn't exist.
--> 205 raise FileNotFoundError("Local file {} doesn't exist".format(url_or_filename))
206 else:
207 # Something unknown
FileNotFoundError: Local file /root/.cache/huggingface/datasets/9b8c4f1578e45cb2539332c79738beb3b54afbcd842b079cabfd79e3ed6704f6/fr.tar.gz doesn't exist
```
## OS and hardware
```
- `nlp` version: 0.3.0
- Platform: Linux-4.15.0-72-generic-x86_64-with-Ubuntu-18.04-bionic
- Python version: 3.6.9
- PyTorch version (GPU?): 1.4.0 (True)
- Tensorflow version (GPU?): 2.1.0 (True)
- Using GPU in script?: <fill in>
- Using distributed or parallel set-up in script?: <fill in>
```
Hi @lewtun, you have to provide the full path to the downloaded file for example `/home/lewtum/..` | [
-0.2940949798,
-0.3835184574,
-0.0021735802,
0.6607137322,
0.1483453214,
0.1238797009,
-0.1730882823,
0.1085543782,
0.1807115972,
0.0440970138,
-0.142752409,
-0.0003449135,
0.1383356601,
-0.0291914046,
0.1631221026,
-0.138935715,
-0.0050916746,
-0.1092639044,
-0.0455732569,
0.0021924675,
-0.3334747851,
0.3826160133,
-0.1232326999,
-0.0158362538,
-0.334369868,
0.0152690765,
0.0525248349,
0.6103969216,
-0.2204438448,
-0.0490749404,
0.4548051357,
-0.1380422413,
0.4193026423,
0.7166676521,
-0.0001206809,
0.036272034,
0.1372580528,
-0.1804516017,
-0.118821457,
-0.5258253813,
-0.3079936206,
-0.1304578185,
-0.0578955859,
-0.1272686124,
-0.0723704398,
0.001396779,
0.1307009012,
-0.5407080054,
0.4081201851,
0.1079234928,
0.1058066115,
0.2785431743,
0.0526133478,
-0.0774002522,
0.2205448002,
0.1630190611,
-0.326156199,
0.0098363124,
0.3490779102,
0.1568440199,
0.0890088081,
0.3036375344,
0.0028805733,
0.0416491665,
0.4682088196,
-0.025538031,
0.1632110327,
-0.285841316,
0.074004814,
0.3027320802,
0.5413936377,
-0.1766106486,
-0.4551267326,
-0.1600849628,
-0.0877793878,
-0.2420943081,
0.3571463227,
0.2817611694,
-0.1429189146,
-0.0044437456,
-0.2909396887,
-0.1955343336,
-0.16509296,
0.1610515118,
-0.0667802542,
0.1623710692,
-0.2162120044,
0.0020339955,
0.3741412163,
0.0450919792,
0.2139798403,
-0.0631330162,
-0.1090404391,
0.1156976372,
-0.2318333834,
0.237138778,
-0.1404142231,
-0.0313960426,
0.2378907204,
0.1972273886,
0.0231548063,
0.1833639294,
-0.0200083926,
0.1590583771,
0.2242524922,
0.2844460607,
0.2408593148,
-0.0752441883,
0.012786705,
0.1807835996,
0.0062318817,
-0.1993154287,
-0.1559433639,
-0.201648891,
-0.1380639821,
-0.0938202739,
0.1176367849,
-0.3426391482,
-0.5313280821,
-0.070154801,
-0.0944777057,
0.0107489191,
0.235674724,
0.2389827073,
0.0993810147,
0.0076578539,
0.0823180079,
0.3665465415,
-0.3185616434,
-0.0045814142,
-0.203115195,
0.2044391334,
-0.3886569738,
0.2901442647,
0.1603095382,
-0.0814561546,
0.3730143905,
-0.1143651307,
0.3260145485,
-0.3670958877,
0.0424612686,
-0.064706251,
-0.0382348932,
0.0822852999,
0.2362203598,
0.1614246517,
0.1086065173,
-0.0067190304,
-0.1187784225,
0.1436626017,
-0.405575633,
-0.1271424145,
-0.0795443654,
0.0333359204,
-0.4040097892,
0.0182433687,
-0.6510797143,
-0.1683329344,
-0.2702901363,
0.0332245529,
-0.0252170153,
0.0418413505,
-0.1289658844,
-0.0762084797,
0.2826336324,
0.4870430827,
-0.180857271,
-0.0352133289,
-0.209055081,
-0.1099212542,
0.0813187212,
0.1574321836,
-0.2371747494,
0.0877058282,
-0.4471827447,
0.3432354927,
0.2603810132,
-0.6826909781,
-0.2903496921,
0.32645455,
-0.2940928936,
0.2417883724,
0.0807779655,
0.0621068478,
-0.2141919136,
-0.085675016,
0.1738443077,
0.1770911962,
0.1379898489,
-0.099802196,
-0.2131121606,
-0.1681564748,
-0.1904784441,
0.3321939409,
-0.0132527063,
-0.0898939967,
0.1114542857,
-0.0186509155,
0.1093093306,
-0.1374855489,
-0.1267777979,
0.5887778997,
0.0742643178,
-0.0401526429,
-0.1889096051,
0.0607481524,
-0.6912906766,
0.3157784939,
-0.2630389035,
-0.2366457134,
-0.0897765309,
0.1072434634,
-0.3324463367,
-0.0907504857,
-0.3421752453,
-0.177363053,
-0.03209389,
0.1423977166,
-0.0039518625,
-0.1507633328,
-0.237391293,
0.3739417791,
0.0338053554,
0.1004235297,
-0.5817270875,
0.2664697468,
0.1891719401,
-0.0366893485,
-0.0080810934,
0.0295067038,
0.2449402213,
-0.3018714488,
0.0110717341,
0.515093267,
0.0157894306,
0.3034423292,
0.3414363563,
0.0678832084,
0.2183353901,
-0.4746904969,
0.1706381738,
0.1261682212,
-0.0502253696,
-0.0008386821,
-0.3532589674,
0.4718582034,
-0.1958654523,
-0.0360134542,
-0.0729344711,
-0.1564880311,
0.1472141743,
-0.1102163717,
-0.1181400791,
-0.1023720428,
0.3790089488,
0.197178632,
0.2383920252,
-0.163610056,
-0.1151505634,
-0.1355714947,
-0.0787747204,
0.0191711932,
0.0012405924,
0.031922657,
-0.2628385723,
0.1123142317,
-0.0349363424,
0.4033969045,
0.4151166081,
0.1524640918,
0.0233505666,
-0.0273290332,
-0.0414360128,
-0.0764894783,
0.0318663307,
0.0110487919,
0.1094328314,
0.1649200618,
-0.326810807,
-0.0543198176,
-0.3668628633,
-0.1084010452,
0.1083223373,
0.0949980244,
-0.3544784188,
0.0258564502,
-0.1741150022,
-0.3895710111,
-0.1025005132,
0.1597320437,
-0.2119821012,
-0.2974933088,
-0.1224299669,
0.5138395429,
0.2439616621,
-0.0332372375,
-0.3228707612,
0.0551574454,
-0.1608922184,
-0.5349488854,
-0.2296063453,
0.2254981101,
-0.0298481453,
-0.0379259922,
0.3940607309,
0.1775508225,
0.0634687468,
-0.3751937151,
0.4378795028,
-0.5723698735,
-0.1013891846,
0.1536201984,
-0.1776450723,
0.470073998,
-0.1234331727,
0.1739171445,
-0.4125460684,
0.0737457275,
0.2622705102,
-0.1435983777,
-0.0725758448,
-0.0108242594,
0.0582666211,
-0.1717713922,
0.1029993594,
-0.1550427228,
-0.0834872946,
-0.2285581827,
-0.060519591,
0.0269690827,
0.0039469628,
0.1430414021,
0.0121734254,
0.0526414104,
0.0021120682,
-0.2169024944,
-0.215043515,
-0.9191763997,
0.4821291566,
-0.153504014,
-0.2848581672,
0.371545583,
0.1730709672,
0.2463556975,
0.2914632857,
-0.4455310702,
-0.1748443693,
0.1003424525,
0.1766919494,
0.0796542019,
0.0285434183,
0.2198377103,
-0.203955397,
0.0781378001,
-0.1340863705,
-0.3067451119,
-0.0713057518,
0.185706526,
0.6754623055,
-0.0910096169,
0.0155383237,
0.0305088758,
0.4812391698,
0.0822565258,
0.2168376744,
0.4140934348,
-0.1053783894,
0.3446895778,
-0.0847818404,
-0.1683694422,
-0.20165959,
-0.125378415,
0.034599781,
0.0388456061,
0.3197817802,
0.1089994982,
-0.2826605439,
0.252410531,
-0.3590713143,
-0.249975875,
0.0791103467,
0.1507031024,
0.1439122707,
-0.0271685682,
0.2944025993,
-0.1495240927,
-0.1423308849,
0.0472167544,
0.346493274,
0.4332348704,
0.2016247511,
-0.3357108235,
0.2821692526,
-0.22684443,
0.4784916341,
0.0736240298,
0.1718678772,
-0.0929104686,
0.0414224491,
0.1955890954,
-0.0877946615,
0.3791088462,
-0.0812447593,
0.1548497826,
0.0090515688,
-0.3738880754,
-0.3268096447,
0.023585625,
0.0402892828,
0.1563169062,
-0.0153820878,
0.5480800271,
-0.256580323,
-0.3150653839,
-0.2097483128,
0.1390486211,
-0.0742263049,
-0.1340292096,
-0.2735158503,
-0.5143994689,
-0.0718383268,
-0.2955914736,
0.1968690902,
0.2673867941,
0.3172520697,
0.2283358574,
-0.104235366,
-0.0428404957,
0.3793025911,
0.0042142086,
0.6529350877,
-0.1743393391,
0.035492681,
0.4252308607,
-0.1178235635,
0.2531484962,
0.6561620235,
0.1108209118,
-0.1297159642,
0.2663335204,
-0.0517168865,
-0.1295137405,
0.3273468316,
0.0207968503,
-0.3362402618,
-0.0526034459,
-0.0299213417,
-0.1372975856,
0.010417562,
0.3201184571,
-0.0367614478,
-0.1670837104,
-0.0699458793,
0.5326871872,
0.2755140364,
0.1686856598,
0.3096198738,
0.0979349315,
-0.1516372263,
-0.2330197245,
0.1875229031,
1.0363705158,
-0.1817589104,
0.134876132,
0.2365760505,
0.1435464919,
-0.029546896,
-0.257006228,
0.3308094144,
-0.2593764663,
-0.3965885341,
-0.2539668083,
-0.1413373053,
0.2486441135,
0.0921129212,
0.318685174,
0.294089824,
0.1441639662,
0.0109186582,
0.0423502177,
-0.0192198157,
-0.2817929983,
-0.3109995127,
-0.5007690191,
0.062607348,
-0.0410947055,
0.5804377198,
-0.1612381339,
-0.1279452741,
-0.1890367568,
-0.0302863792,
-0.0370581374,
0.300927937,
-0.2347044945,
0.1349928975,
-0.0442410409,
-0.4934229851,
-0.1455711126,
0.4456166029,
0.0857498944,
-0.2637139559,
-0.2606285214,
0.3505087197,
-0.0731189772,
-0.1928685009,
0.017975688,
-0.1091078967,
-0.1411273479,
-0.1512782276,
0.1349851042,
-0.0841432363,
-0.1423195153,
-0.3568318784,
-0.2701240182,
-0.0669966936,
-0.2799675167,
-0.0454851538,
-0.2646584511,
0.0523820221,
0.0430448353,
-0.0202294588,
0.0439684615,
0.1505744755,
-0.118280068,
0.0264784675,
0.1194933206,
-0.4309361577,
-0.0279016327,
0.5984719396,
-0.3182873726,
-0.2164823711,
0.2697499692,
0.1841868162,
0.0473579392,
-0.1390714943,
0.3956478238,
0.3742909431,
-0.5853355527,
0.0172143169,
-0.1310359687,
0.2062305063,
0.0936491787,
0.2869619131,
0.4050014019,
-0.405505836,
0.2294514924,
-0.4906130433,
-0.0221328735,
0.3766581118,
-0.0306952409,
0.2828480601,
-0.025744956,
-0.2261562645,
0.1318863332,
-0.3666867912,
-0.2243921012,
0.3964021206,
-0.0309914462,
-0.0513414778,
0.2765414417,
0.1092198342,
0.5288568139,
0.0609974787,
0.0577792302,
0.2188751101,
-0.2673533559,
-0.042208951,
0.070269078,
0.1751424968,
0.0311536118,
-0.1865861118,
0.0188073851,
-0.1455451697,
-0.0865158737,
-0.0247351769,
0.1848333925,
0.3872475624,
0.0307886191,
-0.1474801749,
-0.109829396,
0.1663479209,
-0.4709266126,
0.1061932296,
0.1898030639,
0.4924296737,
0.0212684646,
-0.0236132722,
-0.0951868445,
-0.0887796134,
-0.3238076568,
-0.0843955427,
0.2894157767,
0.2882056534,
0.3363098204,
-0.3605222404,
0.3339118958,
0.1849846691,
0.2267096341,
0.3662359416,
-0.2820648253,
0.1108190864,
0.0315918252,
0.1250389069,
-0.0269205384,
-0.1127348989,
0.1083498001,
-0.0816022456,
-0.1020235568,
0.3889035583,
0.1993317008,
0.2852789164,
0.2068145871,
-0.0222183093,
0.7002959847,
-0.0479072928,
0.2296518534,
0.4015394747,
-0.0840391666,
0.1403926909,
0.2540921569,
0.3396309614,
0.1165549308,
0.4072642624,
-0.2131435722,
0.5099995136,
-0.0704317242,
0.4083868265,
-0.3891381621,
-0.4278742075,
-0.2259723544,
0.2799414396,
0.1763960421,
0.1806118041,
-0.2744501233,
0.2971868813,
-0.4949178398,
-0.0147488527,
-0.4205291569,
0.1546148956,
-0.0668891892,
0.018383652,
-0.2635989189,
-0.3721786439,
-0.1487562209,
0.0487964451,
-0.1414866745,
-0.1530173868,
-0.0398861617,
0.0794363916,
-0.0456202701,
0.0826279595,
-0.136523515,
0.2178889811,
-0.0494192466,
-0.1700527966,
0.4847475886,
0.0723631084,
-0.014322266,
0.2167022526,
0.20186764,
0.1844724417,
0.0698764622,
-0.1004494056,
-0.1165880933,
0.2017824054,
-0.046735432,
0.1467267722,
0.0984190702,
-0.0198984779,
0.0405202173,
0.2966162562,
0.1619621664,
-0.057388179,
0.1973587871,
-0.073995851,
0.3093758523,
-0.0460789725,
0.0277055409,
-0.4094927013,
0.1580157429,
-0.1510884911,
-0.2176133543,
-0.1051064655,
-0.1655076295,
0.0924881995,
-0.1326874793,
0.0062671155,
0.2456578314,
0.0179533474,
0.0025497172,
0.2727974057,
0.4918948412,
-0.2644323707,
-0.5227890611,
-0.2552601099,
-0.7857862711,
0.1571289301,
-0.0327611342,
-0.234746635,
0.0456143133,
0.162872076,
-0.0656049699,
0.2150096297,
0.3023925722,
-0.0805271417,
0.3330072165,
0.3020875752,
-0.2846806049,
-0.0318463109,
0.2175111771,
0.0961923897,
-0.0552845448,
-0.2977229059,
-0.0097987745,
0.1965632141,
-0.0720982999,
-0.0004322454,
0.0005190521,
-0.3038448393,
-0.2595978677,
0.3466373682,
-0.128362447,
0.2355117053,
0.0069287121,
-0.3553114533,
-0.2619482875,
-0.2585630119,
0.1081846058,
0.081758,
0.0971925706,
0.4771679044,
-0.0876284763,
0.1216646507,
-0.5112357736,
0.2954388857,
0.1425302327,
-0.0016406216,
-0.3504888117,
0.1002617031,
-0.2921203971,
0.0513204895,
0.2885350287,
0.3758066297,
0.0382824987,
0.337918371,
-0.1413765401,
-0.1874237061,
0.4719303548,
0.0057810992,
-0.140384227,
0.2902039587,
0.0600747913,
0.2342755795,
-0.1433009505,
-0.3426618576,
0.2560198903,
0.0822851509,
0.024347797,
-0.0055717975,
-0.015755048,
-0.2069309652,
-0.1993100643,
0.1498197168,
0.2356412411,
0.1080834568,
-0.1697504818,
0.1547186375,
0.0482866764
] |
https://github.com/huggingface/datasets/issues/412 | Unable to load XTREME dataset from disk | I was able to repro. Opening a PR to fix that.
Thanks for reporting this issue ! | Hi 🤗 team!
## Description of the problem
Following the [docs](https://huggingface.co/nlp/loading_datasets.html?highlight=xtreme#manually-downloading-files) I'm trying to load the `PAN-X.fr` dataset from the [XTREME](https://github.com/google-research/xtreme) benchmark.
I have manually downloaded the `AmazonPhotos.zip` file from [here](https://www.amazon.com/clouddrive/share/d3KGCRCIYwhKJF0H3eWA26hjg2ZCRhjpEQtDL70FSBN?_encoding=UTF8&%2AVersion%2A=1&%2Aentries%2A=0&mgh=1) and am running into a `FileNotFoundError` when I point to the location of the dataset.
As far as I can tell, the problem is that `AmazonPhotos.zip` decompresses to `panx_dataset` and `load_dataset()` is not looking in the correct path:
```
# path where load_dataset is looking for fr.tar.gz
/root/.cache/huggingface/datasets/9b8c4f1578e45cb2539332c79738beb3b54afbcd842b079cabfd79e3ed6704f6/
# path where it actually exists
/root/.cache/huggingface/datasets/9b8c4f1578e45cb2539332c79738beb3b54afbcd842b079cabfd79e3ed6704f6/panx_dataset/
```
## Steps to reproduce the problem
1. Manually download the XTREME benchmark from [here](https://www.amazon.com/clouddrive/share/d3KGCRCIYwhKJF0H3eWA26hjg2ZCRhjpEQtDL70FSBN?_encoding=UTF8&%2AVersion%2A=1&%2Aentries%2A=0&mgh=1)
2. Run the following code snippet
```python
from nlp import load_dataset
# AmazonPhotos.zip is in the root of the folder
dataset = load_dataset("xtreme", "PAN-X.fr", data_dir='./')
```
3. Here is the stack trace
```
---------------------------------------------------------------------------
FileNotFoundError Traceback (most recent call last)
<ipython-input-4-26786bb5fa93> in <module>
----> 1 dataset = load_dataset("xtreme", "PAN-X.fr", data_dir='./')
/usr/local/lib/python3.6/dist-packages/nlp/load.py in load_dataset(path, name, version, data_dir, data_files, split, cache_dir, download_config, download_mode, ignore_verifications, save_infos, **config_kwargs)
522 download_mode=download_mode,
523 ignore_verifications=ignore_verifications,
--> 524 save_infos=save_infos,
525 )
526
/usr/local/lib/python3.6/dist-packages/nlp/builder.py in download_and_prepare(self, download_config, download_mode, ignore_verifications, save_infos, try_from_hf_gcs, dl_manager, **download_and_prepare_kwargs)
430 verify_infos = not save_infos and not ignore_verifications
431 self._download_and_prepare(
--> 432 dl_manager=dl_manager, verify_infos=verify_infos, **download_and_prepare_kwargs
433 )
434 # Sync info
/usr/local/lib/python3.6/dist-packages/nlp/builder.py in _download_and_prepare(self, dl_manager, verify_infos, **prepare_split_kwargs)
464 split_dict = SplitDict(dataset_name=self.name)
465 split_generators_kwargs = self._make_split_generators_kwargs(prepare_split_kwargs)
--> 466 split_generators = self._split_generators(dl_manager, **split_generators_kwargs)
467 # Checksums verification
468 if verify_infos:
/usr/local/lib/python3.6/dist-packages/nlp/datasets/xtreme/b8c2ed3583a7a7ac60b503576dfed3271ac86757628897e945bd329c43b8a746/xtreme.py in _split_generators(self, dl_manager)
725 panx_dl_dir = dl_manager.extract(panx_path)
726 lang = self.config.name.split(".")[1]
--> 727 lang_folder = dl_manager.extract(os.path.join(panx_dl_dir, lang + ".tar.gz"))
728 return [
729 nlp.SplitGenerator(
/usr/local/lib/python3.6/dist-packages/nlp/utils/download_manager.py in extract(self, path_or_paths)
196 """
197 return map_nested(
--> 198 lambda path: cached_path(path, extract_compressed_file=True, force_extract=False), path_or_paths,
199 )
200
/usr/local/lib/python3.6/dist-packages/nlp/utils/py_utils.py in map_nested(function, data_struct, dict_only, map_tuple)
170 return tuple(mapped)
171 # Singleton
--> 172 return function(data_struct)
173
174
/usr/local/lib/python3.6/dist-packages/nlp/utils/download_manager.py in <lambda>(path)
196 """
197 return map_nested(
--> 198 lambda path: cached_path(path, extract_compressed_file=True, force_extract=False), path_or_paths,
199 )
200
/usr/local/lib/python3.6/dist-packages/nlp/utils/file_utils.py in cached_path(url_or_filename, download_config, **download_kwargs)
203 elif urlparse(url_or_filename).scheme == "":
204 # File, but it doesn't exist.
--> 205 raise FileNotFoundError("Local file {} doesn't exist".format(url_or_filename))
206 else:
207 # Something unknown
FileNotFoundError: Local file /root/.cache/huggingface/datasets/9b8c4f1578e45cb2539332c79738beb3b54afbcd842b079cabfd79e3ed6704f6/fr.tar.gz doesn't exist
```
## OS and hardware
```
- `nlp` version: 0.3.0
- Platform: Linux-4.15.0-72-generic-x86_64-with-Ubuntu-18.04-bionic
- Python version: 3.6.9
- PyTorch version (GPU?): 1.4.0 (True)
- Tensorflow version (GPU?): 2.1.0 (True)
- Using GPU in script?: <fill in>
- Using distributed or parallel set-up in script?: <fill in>
``` | 17 | Unable to load XTREME dataset from disk
Hi 🤗 team!
## Description of the problem
Following the [docs](https://huggingface.co/nlp/loading_datasets.html?highlight=xtreme#manually-downloading-files) I'm trying to load the `PAN-X.fr` dataset from the [XTREME](https://github.com/google-research/xtreme) benchmark.
I have manually downloaded the `AmazonPhotos.zip` file from [here](https://www.amazon.com/clouddrive/share/d3KGCRCIYwhKJF0H3eWA26hjg2ZCRhjpEQtDL70FSBN?_encoding=UTF8&%2AVersion%2A=1&%2Aentries%2A=0&mgh=1) and am running into a `FileNotFoundError` when I point to the location of the dataset.
As far as I can tell, the problem is that `AmazonPhotos.zip` decompresses to `panx_dataset` and `load_dataset()` is not looking in the correct path:
```
# path where load_dataset is looking for fr.tar.gz
/root/.cache/huggingface/datasets/9b8c4f1578e45cb2539332c79738beb3b54afbcd842b079cabfd79e3ed6704f6/
# path where it actually exists
/root/.cache/huggingface/datasets/9b8c4f1578e45cb2539332c79738beb3b54afbcd842b079cabfd79e3ed6704f6/panx_dataset/
```
## Steps to reproduce the problem
1. Manually download the XTREME benchmark from [here](https://www.amazon.com/clouddrive/share/d3KGCRCIYwhKJF0H3eWA26hjg2ZCRhjpEQtDL70FSBN?_encoding=UTF8&%2AVersion%2A=1&%2Aentries%2A=0&mgh=1)
2. Run the following code snippet
```python
from nlp import load_dataset
# AmazonPhotos.zip is in the root of the folder
dataset = load_dataset("xtreme", "PAN-X.fr", data_dir='./')
```
3. Here is the stack trace
```
---------------------------------------------------------------------------
FileNotFoundError Traceback (most recent call last)
<ipython-input-4-26786bb5fa93> in <module>
----> 1 dataset = load_dataset("xtreme", "PAN-X.fr", data_dir='./')
/usr/local/lib/python3.6/dist-packages/nlp/load.py in load_dataset(path, name, version, data_dir, data_files, split, cache_dir, download_config, download_mode, ignore_verifications, save_infos, **config_kwargs)
522 download_mode=download_mode,
523 ignore_verifications=ignore_verifications,
--> 524 save_infos=save_infos,
525 )
526
/usr/local/lib/python3.6/dist-packages/nlp/builder.py in download_and_prepare(self, download_config, download_mode, ignore_verifications, save_infos, try_from_hf_gcs, dl_manager, **download_and_prepare_kwargs)
430 verify_infos = not save_infos and not ignore_verifications
431 self._download_and_prepare(
--> 432 dl_manager=dl_manager, verify_infos=verify_infos, **download_and_prepare_kwargs
433 )
434 # Sync info
/usr/local/lib/python3.6/dist-packages/nlp/builder.py in _download_and_prepare(self, dl_manager, verify_infos, **prepare_split_kwargs)
464 split_dict = SplitDict(dataset_name=self.name)
465 split_generators_kwargs = self._make_split_generators_kwargs(prepare_split_kwargs)
--> 466 split_generators = self._split_generators(dl_manager, **split_generators_kwargs)
467 # Checksums verification
468 if verify_infos:
/usr/local/lib/python3.6/dist-packages/nlp/datasets/xtreme/b8c2ed3583a7a7ac60b503576dfed3271ac86757628897e945bd329c43b8a746/xtreme.py in _split_generators(self, dl_manager)
725 panx_dl_dir = dl_manager.extract(panx_path)
726 lang = self.config.name.split(".")[1]
--> 727 lang_folder = dl_manager.extract(os.path.join(panx_dl_dir, lang + ".tar.gz"))
728 return [
729 nlp.SplitGenerator(
/usr/local/lib/python3.6/dist-packages/nlp/utils/download_manager.py in extract(self, path_or_paths)
196 """
197 return map_nested(
--> 198 lambda path: cached_path(path, extract_compressed_file=True, force_extract=False), path_or_paths,
199 )
200
/usr/local/lib/python3.6/dist-packages/nlp/utils/py_utils.py in map_nested(function, data_struct, dict_only, map_tuple)
170 return tuple(mapped)
171 # Singleton
--> 172 return function(data_struct)
173
174
/usr/local/lib/python3.6/dist-packages/nlp/utils/download_manager.py in <lambda>(path)
196 """
197 return map_nested(
--> 198 lambda path: cached_path(path, extract_compressed_file=True, force_extract=False), path_or_paths,
199 )
200
/usr/local/lib/python3.6/dist-packages/nlp/utils/file_utils.py in cached_path(url_or_filename, download_config, **download_kwargs)
203 elif urlparse(url_or_filename).scheme == "":
204 # File, but it doesn't exist.
--> 205 raise FileNotFoundError("Local file {} doesn't exist".format(url_or_filename))
206 else:
207 # Something unknown
FileNotFoundError: Local file /root/.cache/huggingface/datasets/9b8c4f1578e45cb2539332c79738beb3b54afbcd842b079cabfd79e3ed6704f6/fr.tar.gz doesn't exist
```
## OS and hardware
```
- `nlp` version: 0.3.0
- Platform: Linux-4.15.0-72-generic-x86_64-with-Ubuntu-18.04-bionic
- Python version: 3.6.9
- PyTorch version (GPU?): 1.4.0 (True)
- Tensorflow version (GPU?): 2.1.0 (True)
- Using GPU in script?: <fill in>
- Using distributed or parallel set-up in script?: <fill in>
```
I was able to repro. Opening a PR to fix that.
Thanks for reporting this issue ! | [
-0.2940949798,
-0.3835184574,
-0.0021735802,
0.6607137322,
0.1483453214,
0.1238797009,
-0.1730882823,
0.1085543782,
0.1807115972,
0.0440970138,
-0.142752409,
-0.0003449135,
0.1383356601,
-0.0291914046,
0.1631221026,
-0.138935715,
-0.0050916746,
-0.1092639044,
-0.0455732569,
0.0021924675,
-0.3334747851,
0.3826160133,
-0.1232326999,
-0.0158362538,
-0.334369868,
0.0152690765,
0.0525248349,
0.6103969216,
-0.2204438448,
-0.0490749404,
0.4548051357,
-0.1380422413,
0.4193026423,
0.7166676521,
-0.0001206809,
0.036272034,
0.1372580528,
-0.1804516017,
-0.118821457,
-0.5258253813,
-0.3079936206,
-0.1304578185,
-0.0578955859,
-0.1272686124,
-0.0723704398,
0.001396779,
0.1307009012,
-0.5407080054,
0.4081201851,
0.1079234928,
0.1058066115,
0.2785431743,
0.0526133478,
-0.0774002522,
0.2205448002,
0.1630190611,
-0.326156199,
0.0098363124,
0.3490779102,
0.1568440199,
0.0890088081,
0.3036375344,
0.0028805733,
0.0416491665,
0.4682088196,
-0.025538031,
0.1632110327,
-0.285841316,
0.074004814,
0.3027320802,
0.5413936377,
-0.1766106486,
-0.4551267326,
-0.1600849628,
-0.0877793878,
-0.2420943081,
0.3571463227,
0.2817611694,
-0.1429189146,
-0.0044437456,
-0.2909396887,
-0.1955343336,
-0.16509296,
0.1610515118,
-0.0667802542,
0.1623710692,
-0.2162120044,
0.0020339955,
0.3741412163,
0.0450919792,
0.2139798403,
-0.0631330162,
-0.1090404391,
0.1156976372,
-0.2318333834,
0.237138778,
-0.1404142231,
-0.0313960426,
0.2378907204,
0.1972273886,
0.0231548063,
0.1833639294,
-0.0200083926,
0.1590583771,
0.2242524922,
0.2844460607,
0.2408593148,
-0.0752441883,
0.012786705,
0.1807835996,
0.0062318817,
-0.1993154287,
-0.1559433639,
-0.201648891,
-0.1380639821,
-0.0938202739,
0.1176367849,
-0.3426391482,
-0.5313280821,
-0.070154801,
-0.0944777057,
0.0107489191,
0.235674724,
0.2389827073,
0.0993810147,
0.0076578539,
0.0823180079,
0.3665465415,
-0.3185616434,
-0.0045814142,
-0.203115195,
0.2044391334,
-0.3886569738,
0.2901442647,
0.1603095382,
-0.0814561546,
0.3730143905,
-0.1143651307,
0.3260145485,
-0.3670958877,
0.0424612686,
-0.064706251,
-0.0382348932,
0.0822852999,
0.2362203598,
0.1614246517,
0.1086065173,
-0.0067190304,
-0.1187784225,
0.1436626017,
-0.405575633,
-0.1271424145,
-0.0795443654,
0.0333359204,
-0.4040097892,
0.0182433687,
-0.6510797143,
-0.1683329344,
-0.2702901363,
0.0332245529,
-0.0252170153,
0.0418413505,
-0.1289658844,
-0.0762084797,
0.2826336324,
0.4870430827,
-0.180857271,
-0.0352133289,
-0.209055081,
-0.1099212542,
0.0813187212,
0.1574321836,
-0.2371747494,
0.0877058282,
-0.4471827447,
0.3432354927,
0.2603810132,
-0.6826909781,
-0.2903496921,
0.32645455,
-0.2940928936,
0.2417883724,
0.0807779655,
0.0621068478,
-0.2141919136,
-0.085675016,
0.1738443077,
0.1770911962,
0.1379898489,
-0.099802196,
-0.2131121606,
-0.1681564748,
-0.1904784441,
0.3321939409,
-0.0132527063,
-0.0898939967,
0.1114542857,
-0.0186509155,
0.1093093306,
-0.1374855489,
-0.1267777979,
0.5887778997,
0.0742643178,
-0.0401526429,
-0.1889096051,
0.0607481524,
-0.6912906766,
0.3157784939,
-0.2630389035,
-0.2366457134,
-0.0897765309,
0.1072434634,
-0.3324463367,
-0.0907504857,
-0.3421752453,
-0.177363053,
-0.03209389,
0.1423977166,
-0.0039518625,
-0.1507633328,
-0.237391293,
0.3739417791,
0.0338053554,
0.1004235297,
-0.5817270875,
0.2664697468,
0.1891719401,
-0.0366893485,
-0.0080810934,
0.0295067038,
0.2449402213,
-0.3018714488,
0.0110717341,
0.515093267,
0.0157894306,
0.3034423292,
0.3414363563,
0.0678832084,
0.2183353901,
-0.4746904969,
0.1706381738,
0.1261682212,
-0.0502253696,
-0.0008386821,
-0.3532589674,
0.4718582034,
-0.1958654523,
-0.0360134542,
-0.0729344711,
-0.1564880311,
0.1472141743,
-0.1102163717,
-0.1181400791,
-0.1023720428,
0.3790089488,
0.197178632,
0.2383920252,
-0.163610056,
-0.1151505634,
-0.1355714947,
-0.0787747204,
0.0191711932,
0.0012405924,
0.031922657,
-0.2628385723,
0.1123142317,
-0.0349363424,
0.4033969045,
0.4151166081,
0.1524640918,
0.0233505666,
-0.0273290332,
-0.0414360128,
-0.0764894783,
0.0318663307,
0.0110487919,
0.1094328314,
0.1649200618,
-0.326810807,
-0.0543198176,
-0.3668628633,
-0.1084010452,
0.1083223373,
0.0949980244,
-0.3544784188,
0.0258564502,
-0.1741150022,
-0.3895710111,
-0.1025005132,
0.1597320437,
-0.2119821012,
-0.2974933088,
-0.1224299669,
0.5138395429,
0.2439616621,
-0.0332372375,
-0.3228707612,
0.0551574454,
-0.1608922184,
-0.5349488854,
-0.2296063453,
0.2254981101,
-0.0298481453,
-0.0379259922,
0.3940607309,
0.1775508225,
0.0634687468,
-0.3751937151,
0.4378795028,
-0.5723698735,
-0.1013891846,
0.1536201984,
-0.1776450723,
0.470073998,
-0.1234331727,
0.1739171445,
-0.4125460684,
0.0737457275,
0.2622705102,
-0.1435983777,
-0.0725758448,
-0.0108242594,
0.0582666211,
-0.1717713922,
0.1029993594,
-0.1550427228,
-0.0834872946,
-0.2285581827,
-0.060519591,
0.0269690827,
0.0039469628,
0.1430414021,
0.0121734254,
0.0526414104,
0.0021120682,
-0.2169024944,
-0.215043515,
-0.9191763997,
0.4821291566,
-0.153504014,
-0.2848581672,
0.371545583,
0.1730709672,
0.2463556975,
0.2914632857,
-0.4455310702,
-0.1748443693,
0.1003424525,
0.1766919494,
0.0796542019,
0.0285434183,
0.2198377103,
-0.203955397,
0.0781378001,
-0.1340863705,
-0.3067451119,
-0.0713057518,
0.185706526,
0.6754623055,
-0.0910096169,
0.0155383237,
0.0305088758,
0.4812391698,
0.0822565258,
0.2168376744,
0.4140934348,
-0.1053783894,
0.3446895778,
-0.0847818404,
-0.1683694422,
-0.20165959,
-0.125378415,
0.034599781,
0.0388456061,
0.3197817802,
0.1089994982,
-0.2826605439,
0.252410531,
-0.3590713143,
-0.249975875,
0.0791103467,
0.1507031024,
0.1439122707,
-0.0271685682,
0.2944025993,
-0.1495240927,
-0.1423308849,
0.0472167544,
0.346493274,
0.4332348704,
0.2016247511,
-0.3357108235,
0.2821692526,
-0.22684443,
0.4784916341,
0.0736240298,
0.1718678772,
-0.0929104686,
0.0414224491,
0.1955890954,
-0.0877946615,
0.3791088462,
-0.0812447593,
0.1548497826,
0.0090515688,
-0.3738880754,
-0.3268096447,
0.023585625,
0.0402892828,
0.1563169062,
-0.0153820878,
0.5480800271,
-0.256580323,
-0.3150653839,
-0.2097483128,
0.1390486211,
-0.0742263049,
-0.1340292096,
-0.2735158503,
-0.5143994689,
-0.0718383268,
-0.2955914736,
0.1968690902,
0.2673867941,
0.3172520697,
0.2283358574,
-0.104235366,
-0.0428404957,
0.3793025911,
0.0042142086,
0.6529350877,
-0.1743393391,
0.035492681,
0.4252308607,
-0.1178235635,
0.2531484962,
0.6561620235,
0.1108209118,
-0.1297159642,
0.2663335204,
-0.0517168865,
-0.1295137405,
0.3273468316,
0.0207968503,
-0.3362402618,
-0.0526034459,
-0.0299213417,
-0.1372975856,
0.010417562,
0.3201184571,
-0.0367614478,
-0.1670837104,
-0.0699458793,
0.5326871872,
0.2755140364,
0.1686856598,
0.3096198738,
0.0979349315,
-0.1516372263,
-0.2330197245,
0.1875229031,
1.0363705158,
-0.1817589104,
0.134876132,
0.2365760505,
0.1435464919,
-0.029546896,
-0.257006228,
0.3308094144,
-0.2593764663,
-0.3965885341,
-0.2539668083,
-0.1413373053,
0.2486441135,
0.0921129212,
0.318685174,
0.294089824,
0.1441639662,
0.0109186582,
0.0423502177,
-0.0192198157,
-0.2817929983,
-0.3109995127,
-0.5007690191,
0.062607348,
-0.0410947055,
0.5804377198,
-0.1612381339,
-0.1279452741,
-0.1890367568,
-0.0302863792,
-0.0370581374,
0.300927937,
-0.2347044945,
0.1349928975,
-0.0442410409,
-0.4934229851,
-0.1455711126,
0.4456166029,
0.0857498944,
-0.2637139559,
-0.2606285214,
0.3505087197,
-0.0731189772,
-0.1928685009,
0.017975688,
-0.1091078967,
-0.1411273479,
-0.1512782276,
0.1349851042,
-0.0841432363,
-0.1423195153,
-0.3568318784,
-0.2701240182,
-0.0669966936,
-0.2799675167,
-0.0454851538,
-0.2646584511,
0.0523820221,
0.0430448353,
-0.0202294588,
0.0439684615,
0.1505744755,
-0.118280068,
0.0264784675,
0.1194933206,
-0.4309361577,
-0.0279016327,
0.5984719396,
-0.3182873726,
-0.2164823711,
0.2697499692,
0.1841868162,
0.0473579392,
-0.1390714943,
0.3956478238,
0.3742909431,
-0.5853355527,
0.0172143169,
-0.1310359687,
0.2062305063,
0.0936491787,
0.2869619131,
0.4050014019,
-0.405505836,
0.2294514924,
-0.4906130433,
-0.0221328735,
0.3766581118,
-0.0306952409,
0.2828480601,
-0.025744956,
-0.2261562645,
0.1318863332,
-0.3666867912,
-0.2243921012,
0.3964021206,
-0.0309914462,
-0.0513414778,
0.2765414417,
0.1092198342,
0.5288568139,
0.0609974787,
0.0577792302,
0.2188751101,
-0.2673533559,
-0.042208951,
0.070269078,
0.1751424968,
0.0311536118,
-0.1865861118,
0.0188073851,
-0.1455451697,
-0.0865158737,
-0.0247351769,
0.1848333925,
0.3872475624,
0.0307886191,
-0.1474801749,
-0.109829396,
0.1663479209,
-0.4709266126,
0.1061932296,
0.1898030639,
0.4924296737,
0.0212684646,
-0.0236132722,
-0.0951868445,
-0.0887796134,
-0.3238076568,
-0.0843955427,
0.2894157767,
0.2882056534,
0.3363098204,
-0.3605222404,
0.3339118958,
0.1849846691,
0.2267096341,
0.3662359416,
-0.2820648253,
0.1108190864,
0.0315918252,
0.1250389069,
-0.0269205384,
-0.1127348989,
0.1083498001,
-0.0816022456,
-0.1020235568,
0.3889035583,
0.1993317008,
0.2852789164,
0.2068145871,
-0.0222183093,
0.7002959847,
-0.0479072928,
0.2296518534,
0.4015394747,
-0.0840391666,
0.1403926909,
0.2540921569,
0.3396309614,
0.1165549308,
0.4072642624,
-0.2131435722,
0.5099995136,
-0.0704317242,
0.4083868265,
-0.3891381621,
-0.4278742075,
-0.2259723544,
0.2799414396,
0.1763960421,
0.1806118041,
-0.2744501233,
0.2971868813,
-0.4949178398,
-0.0147488527,
-0.4205291569,
0.1546148956,
-0.0668891892,
0.018383652,
-0.2635989189,
-0.3721786439,
-0.1487562209,
0.0487964451,
-0.1414866745,
-0.1530173868,
-0.0398861617,
0.0794363916,
-0.0456202701,
0.0826279595,
-0.136523515,
0.2178889811,
-0.0494192466,
-0.1700527966,
0.4847475886,
0.0723631084,
-0.014322266,
0.2167022526,
0.20186764,
0.1844724417,
0.0698764622,
-0.1004494056,
-0.1165880933,
0.2017824054,
-0.046735432,
0.1467267722,
0.0984190702,
-0.0198984779,
0.0405202173,
0.2966162562,
0.1619621664,
-0.057388179,
0.1973587871,
-0.073995851,
0.3093758523,
-0.0460789725,
0.0277055409,
-0.4094927013,
0.1580157429,
-0.1510884911,
-0.2176133543,
-0.1051064655,
-0.1655076295,
0.0924881995,
-0.1326874793,
0.0062671155,
0.2456578314,
0.0179533474,
0.0025497172,
0.2727974057,
0.4918948412,
-0.2644323707,
-0.5227890611,
-0.2552601099,
-0.7857862711,
0.1571289301,
-0.0327611342,
-0.234746635,
0.0456143133,
0.162872076,
-0.0656049699,
0.2150096297,
0.3023925722,
-0.0805271417,
0.3330072165,
0.3020875752,
-0.2846806049,
-0.0318463109,
0.2175111771,
0.0961923897,
-0.0552845448,
-0.2977229059,
-0.0097987745,
0.1965632141,
-0.0720982999,
-0.0004322454,
0.0005190521,
-0.3038448393,
-0.2595978677,
0.3466373682,
-0.128362447,
0.2355117053,
0.0069287121,
-0.3553114533,
-0.2619482875,
-0.2585630119,
0.1081846058,
0.081758,
0.0971925706,
0.4771679044,
-0.0876284763,
0.1216646507,
-0.5112357736,
0.2954388857,
0.1425302327,
-0.0016406216,
-0.3504888117,
0.1002617031,
-0.2921203971,
0.0513204895,
0.2885350287,
0.3758066297,
0.0382824987,
0.337918371,
-0.1413765401,
-0.1874237061,
0.4719303548,
0.0057810992,
-0.140384227,
0.2902039587,
0.0600747913,
0.2342755795,
-0.1433009505,
-0.3426618576,
0.2560198903,
0.0822851509,
0.024347797,
-0.0055717975,
-0.015755048,
-0.2069309652,
-0.1993100643,
0.1498197168,
0.2356412411,
0.1080834568,
-0.1697504818,
0.1547186375,
0.0482866764
] |
https://github.com/huggingface/datasets/issues/407 | MissingBeamOptions for Wikipedia 20200501.en | Fixed. Could you try again @mitchellgordon95 ?
It was due a file not being updated on S3.
We need to make sure all the datasets scripts get updated properly @julien-c | There may or may not be a regression for the pre-processed Wikipedia dataset. This was working fine 10 commits ago (without having Apache Beam available):
```
nlp.load_dataset('wikipedia', "20200501.en", split='train')
```
And now, having pulled master, I get:
```
Downloading and preparing dataset wikipedia/20200501.en (download: 16.99 GiB, generated: 17.07 GiB, total: 34.06 GiB) to /home/hltcoe/mgordon/.cache/huggingface/datasets/wikipedia/20200501.en/1.0.0/76b0b2747b679bb0ee7a1621e50e5a6378477add0c662668a324a5bc07d516dd...
Traceback (most recent call last):
File "scripts/download.py", line 11, in <module>
fire.Fire(download_pretrain)
File "/home/hltcoe/mgordon/.conda/envs/huggingface/lib/python3.6/site-packages/fire/core.py", line 138, in Fire
component_trace = _Fire(component, args, parsed_flag_args, context, name)
File "/home/hltcoe/mgordon/.conda/envs/huggingface/lib/python3.6/site-packages/fire/core.py", line 468, in _Fire
target=component.__name__)
File "/home/hltcoe/mgordon/.conda/envs/huggingface/lib/python3.6/site-packages/fire/core.py", line 672, in _CallAndUpdateTrace
component = fn(*varargs, **kwargs)
File "scripts/download.py", line 6, in download_pretrain
nlp.load_dataset('wikipedia', "20200501.en", split='train')
File "/exp/mgordon/nlp/src/nlp/load.py", line 534, in load_dataset
save_infos=save_infos,
File "/exp/mgordon/nlp/src/nlp/builder.py", line 460, in download_and_prepare
dl_manager=dl_manager, verify_infos=verify_infos, **download_and_prepare_kwargs
File "/exp/mgordon/nlp/src/nlp/builder.py", line 870, in _download_and_prepare
"\n\t`{}`".format(usage_example)
nlp.builder.MissingBeamOptions: Trying to generate a dataset using Apache Beam, yet no Beam Runner or PipelineOptions() has been provided in `load_dataset` or in the builder arguments. For big datasets it has to run on large-scale data processing tools like Dataflow, S
park, etc. More information about Apache Beam runners at https://beam.apache.org/documentation/runners/capability-matrix/
If you really want to run it locally because you feel like the Dataset is small enough, you can use the local beam runner called `DirectRunner` (you may run out of memory).
Example of usage:
`load_dataset('wikipedia', '20200501.en', beam_runner='DirectRunner')`
``` | 30 | MissingBeamOptions for Wikipedia 20200501.en
There may or may not be a regression for the pre-processed Wikipedia dataset. This was working fine 10 commits ago (without having Apache Beam available):
```
nlp.load_dataset('wikipedia', "20200501.en", split='train')
```
And now, having pulled master, I get:
```
Downloading and preparing dataset wikipedia/20200501.en (download: 16.99 GiB, generated: 17.07 GiB, total: 34.06 GiB) to /home/hltcoe/mgordon/.cache/huggingface/datasets/wikipedia/20200501.en/1.0.0/76b0b2747b679bb0ee7a1621e50e5a6378477add0c662668a324a5bc07d516dd...
Traceback (most recent call last):
File "scripts/download.py", line 11, in <module>
fire.Fire(download_pretrain)
File "/home/hltcoe/mgordon/.conda/envs/huggingface/lib/python3.6/site-packages/fire/core.py", line 138, in Fire
component_trace = _Fire(component, args, parsed_flag_args, context, name)
File "/home/hltcoe/mgordon/.conda/envs/huggingface/lib/python3.6/site-packages/fire/core.py", line 468, in _Fire
target=component.__name__)
File "/home/hltcoe/mgordon/.conda/envs/huggingface/lib/python3.6/site-packages/fire/core.py", line 672, in _CallAndUpdateTrace
component = fn(*varargs, **kwargs)
File "scripts/download.py", line 6, in download_pretrain
nlp.load_dataset('wikipedia', "20200501.en", split='train')
File "/exp/mgordon/nlp/src/nlp/load.py", line 534, in load_dataset
save_infos=save_infos,
File "/exp/mgordon/nlp/src/nlp/builder.py", line 460, in download_and_prepare
dl_manager=dl_manager, verify_infos=verify_infos, **download_and_prepare_kwargs
File "/exp/mgordon/nlp/src/nlp/builder.py", line 870, in _download_and_prepare
"\n\t`{}`".format(usage_example)
nlp.builder.MissingBeamOptions: Trying to generate a dataset using Apache Beam, yet no Beam Runner or PipelineOptions() has been provided in `load_dataset` or in the builder arguments. For big datasets it has to run on large-scale data processing tools like Dataflow, S
park, etc. More information about Apache Beam runners at https://beam.apache.org/documentation/runners/capability-matrix/
If you really want to run it locally because you feel like the Dataset is small enough, you can use the local beam runner called `DirectRunner` (you may run out of memory).
Example of usage:
`load_dataset('wikipedia', '20200501.en', beam_runner='DirectRunner')`
```
Fixed. Could you try again @mitchellgordon95 ?
It was due a file not being updated on S3.
We need to make sure all the datasets scripts get updated properly @julien-c | [
0.0666168705,
0.126675576,
-0.0205123164,
-0.0542328879,
0.1996195614,
0.1526872814,
0.1799739897,
0.3656723797,
-0.0222086348,
-0.0814261436,
0.1489357799,
0.2753821313,
-0.0917265117,
-0.1684227884,
0.2434723377,
-0.3058641255,
0.1455035359,
0.123902306,
-0.3501991928,
-0.1286827475,
-0.0025926903,
0.4125898778,
-0.2114285082,
-0.1782556176,
-0.5298818946,
0.0631538182,
-0.131519556,
0.1428048462,
-0.0437918566,
-0.2499870956,
0.2779206932,
0.0593028367,
-0.0827243924,
0.1222382262,
-0.000114308,
0.0776108131,
0.6222487092,
-0.2239053249,
-0.5686738491,
0.0119780004,
0.1300004125,
-0.3336529434,
0.384344101,
-0.2550983727,
-0.2759361863,
-0.1181294397,
0.1141193211,
-0.0585303679,
0.3938060999,
-0.0109363794,
0.2136251628,
0.2360554934,
0.2972981334,
-0.1291415989,
0.6020240784,
0.0674148202,
-0.1662567705,
0.0793356299,
-0.1638742238,
-0.0564769991,
-0.2710405886,
0.4797946513,
0.1387168169,
-0.1370007545,
0.5526378751,
-0.2816213369,
0.0226211865,
-0.2574208677,
0.0174538195,
0.1826509833,
0.4940167665,
-0.0229840968,
-0.1063679084,
-0.3746717572,
0.044604484,
0.1787301749,
0.2480828911,
0.0172079653,
-0.1532895863,
-0.0672086924,
0.051209949,
-0.2295793593,
-0.0332924128,
0.2887520492,
-0.06739375,
0.4202919602,
-0.0289065316,
0.0214708317,
0.1668535471,
0.0496225655,
-0.3133725524,
0.03651857,
0.0982149839,
0.235015884,
-0.2165129185,
0.0636977404,
0.2868845463,
0.270527184,
0.0620145649,
0.1695945114,
-0.2793998718,
0.1912725866,
0.0204297267,
-0.0470913462,
0.2198942602,
0.240822494,
-0.0418657102,
-0.3533211052,
0.2516728342,
0.3364216387,
-0.0628021583,
0.1384647638,
0.1992914081,
-0.1387362927,
-0.2713564336,
0.1334021091,
0.009117052,
-0.1717024148,
0.1072272882,
0.0534084588,
-0.2777941823,
-0.1483332217,
-0.2378235459,
0.3198889792,
-0.025773989,
0.4086238444,
0.2018827647,
0.118592374,
-0.2835621834,
-0.2737653553,
-0.1957248449,
0.0212344751,
-0.4779031873,
0.02588249,
0.3871363401,
-0.2097050846,
0.516566813,
0.075855583,
-0.0362863131,
0.0592925176,
-0.0301978476,
0.2644247711,
-0.0725834444,
0.1810249537,
0.1212261915,
0.2927806973,
0.203683719,
0.0199427456,
-0.0530858561,
-0.3294442296,
0.0704844072,
-0.2763872743,
-0.2597138286,
0.167716831,
-0.3119877577,
0.1547893435,
0.0475073159,
0.1872281879,
-0.0253879502,
-0.1822030991,
-0.0967270061,
-0.1229700744,
-0.0582914427,
-0.1482736319,
0.5051083565,
0.4033137262,
0.0298882052,
-0.3304645419,
-0.0621768981,
0.1041162014,
-0.101198405,
0.01172073,
-0.1564821005,
0.5247727036,
-0.2857877314,
-0.1501885504,
0.2243130058,
0.0519688129,
-0.2112267315,
0.1486307085,
-0.0126578137,
0.270898819,
0.097588852,
-0.0528357103,
-0.0672807693,
0.051800523,
0.0919759125,
0.2184600234,
0.1131941527,
0.0529396757,
-0.3270508051,
-0.087788485,
-0.0076873787,
0.0795485228,
0.3505391777,
-0.0505548045,
0.0635949448,
0.5883684754,
0.298085779,
-0.1387826055,
0.2244140804,
0.4500525296,
-0.2889431715,
0.1368466318,
0.2453722358,
-0.05986185,
-0.465187639,
0.1208007783,
-0.1401826441,
0.4367895722,
-0.1831930429,
-0.0022147447,
-0.3467137814,
-0.1367143095,
-0.196816355,
-0.5165300965,
0.2065129876,
0.2034472227,
-0.0185762383,
0.3046477437,
0.0254301876,
0.1162025779,
-0.0404416658,
0.0568883903,
-0.7796520591,
0.2145270407,
-0.3115579784,
-0.1411181986,
-0.0192292184,
0.3081659079,
0.1150458157,
-0.1935396791,
-0.128494665,
0.2234227657,
-0.0789242759,
0.1341897547,
0.0148870181,
-0.0550870448,
0.2404267192,
-0.3211011887,
0.0984832123,
0.3122578859,
-0.046305716,
-0.1272407174,
-0.303478688,
0.2799140513,
0.0182239562,
0.3226441741,
0.0334032923,
0.0919327438,
0.1548369825,
0.0725830868,
-0.2331334203,
-0.2026536465,
0.3785171807,
0.2176060975,
0.1366421729,
-0.0235253256,
0.114962697,
0.0045694858,
0.1719020307,
0.0660794377,
0.0112599656,
-0.0809157267,
-0.4510019422,
-0.2482419163,
0.3509306312,
-0.0857893899,
0.0816844478,
0.2645477355,
0.0524948537,
-0.0169567373,
-0.1228682995,
-0.2095781267,
0.1974875331,
0.114087522,
0.3243006468,
0.0876461118,
0.1405428499,
0.1975443363,
-0.3815244138,
0.1906590313,
-0.1774681509,
0.0871338621,
-0.2838542461,
-0.0979879051,
-0.354059875,
-0.4514617026,
-0.105241321,
0.2488117814,
-0.397413075,
-0.5874938965,
-0.0569582656,
0.1890994459,
-0.16337502,
0.3057293296,
-0.0293640643,
-0.1303647608,
0.0741930306,
0.0197917465,
-0.3342634439,
-0.3922386169,
-0.2000679225,
0.0861518085,
0.1043603718,
-0.0021503121,
0.2901446819,
-0.002974391,
-0.027192086,
-0.4731695354,
-0.5758973956,
0.316193521,
-0.2838523686,
0.1902677864,
0.1779286265,
0.0881580859,
-0.2256867439,
-0.0587335564,
0.4069478512,
-0.1701156646,
-0.1504673213,
-0.0161599964,
-0.1277896464,
0.1010057181,
-0.1923410594,
-0.2217375785,
0.0953757688,
-0.3692912161,
0.015344277,
0.0921728313,
-0.1812784374,
0.4691084623,
-0.100249663,
-0.0062875524,
0.1005272642,
0.1722675264,
-0.2448799461,
0.0835742652,
0.3416598141,
-0.3003979623,
-0.4568086863,
0.0295677781,
-0.1735529155,
0.0571708567,
0.318931818,
-0.4997884035,
-0.0496769063,
0.0941228345,
0.0024681389,
-0.1354263574,
0.0942457616,
0.5044304132,
0.0114219114,
-0.0168618299,
-0.2326326072,
-0.1519108266,
-0.1495183855,
-0.3148490191,
0.4269849956,
-0.1923685372,
0.323589921,
-0.0036709756,
1.0987774134,
-0.0326620974,
0.0656040162,
0.4224383831,
0.0933038071,
0.4521004856,
-0.2759511173,
-0.296728462,
0.2323562503,
-0.1486651301,
0.3013339639,
0.3919003606,
-0.0147323478,
-0.2050668895,
-0.3653712571,
0.0091437623,
-0.2090857029,
-0.3228646517,
0.0901107416,
-0.3193500936,
0.2913956642,
0.1660909355,
0.2335971594,
-0.0019366816,
-0.1577163637,
0.2441104352,
0.1709192097,
0.2070368528,
0.0695515499,
0.1379285753,
-0.056091968,
-0.4986758232,
0.0409605652,
0.0189630911,
-0.0030062087,
0.0389501899,
-0.1371269524,
0.2020366639,
0.0453856923,
0.5689492226,
-0.1977422088,
-0.0263438262,
0.249057278,
0.0347806811,
-0.7107805014,
-0.0275661051,
-0.0550744608,
0.1947837323,
0.2862170339,
0.1784347147,
-0.3835535347,
-0.2234921753,
0.3125833571,
0.0610995926,
-0.0469834432,
-0.0261748508,
-0.2916180193,
0.0066378266,
-0.4207643867,
-0.1309038401,
-0.1549674124,
0.1455961466,
0.0774432495,
0.168731451,
0.0894145891,
0.0287991613,
-0.1335075945,
0.1053509042,
0.2781826854,
0.2502245307,
-0.1114855558,
0.140959993,
0.6523589492,
-0.3377573788,
0.2628810108,
0.1982280016,
0.0455499664,
0.2173913717,
-0.0400635675,
-0.0590368286,
0.3987357616,
0.0289375558,
-0.0487632081,
-0.2030524611,
0.009422278,
0.0940535963,
0.2291370779,
0.3506717682,
-0.2690446079,
-0.1362771839,
-0.2736850083,
0.5236555338,
-0.0176691487,
-0.0113711432,
0.069294706,
0.067014344,
-0.3365367353,
0.3461080492,
0.2415182143,
0.7413403988,
0.0380275324,
0.3953180909,
0.2077924013,
0.302788198,
0.8601713181,
-0.3698055744,
0.1897516847,
-0.174274385,
0.2201998532,
0.0416867882,
0.0354326516,
-0.1920431703,
-0.1310455203,
-0.0968422964,
0.3844056726,
0.3848443627,
0.4188902974,
0.0760007873,
0.2999126315,
0.0761646256,
-0.3209705949,
-0.1950528771,
0.1271082163,
-0.2076164782,
0.5865812898,
-0.3765699267,
-0.1308688223,
-0.2108011544,
-0.1166527718,
-0.2505491674,
0.1885518581,
-0.274704814,
0.5069426298,
-0.1782886982,
-0.5959972143,
0.0212482065,
0.112775892,
0.147446692,
0.0883105248,
-0.4008170068,
0.3684972525,
-0.1940894425,
-0.2362580001,
-0.108562164,
0.2097141892,
0.4952664077,
-0.1708498895,
-0.0616778508,
-0.0610720888,
-0.2416674644,
-0.275562346,
-0.2949697375,
-0.0613050982,
0.0028360239,
0.1048689187,
-0.0824528039,
0.1037254333,
-0.0140286982,
-0.2572487593,
0.1487520933,
-0.1144912168,
0.0374176539,
-0.1460707039,
0.1024447083,
-0.1043075025,
-0.070397608,
0.4993969798,
-0.0020987857,
-0.1289846599,
0.5953382254,
0.3426298499,
-0.1198804006,
-0.1146729589,
-0.090257369,
-0.139383316,
-0.4722254872,
-0.1296566278,
0.0124800801,
-0.0530011505,
-0.0521330014,
0.2447203696,
0.18441163,
-0.1626241207,
0.0780865252,
-0.1943449825,
-0.2954604626,
0.2547385991,
-0.3494717479,
-0.0420394614,
0.1390185356,
0.1013664156,
0.3333055377,
0.0148151275,
-0.296456635,
-0.2154648304,
0.0540284216,
0.2008091211,
0.3083450496,
-0.1186886579,
-0.050054308,
-0.1276488304,
0.1212446243,
0.0212710053,
-0.1894856691,
-0.2302405685,
-0.0315674692,
0.1042667776,
0.0467169844,
0.0865675434,
-0.0781769753,
0.1114092916,
-0.03712954,
-0.2535361648,
0.052871637,
-0.2281830907,
0.1240535825,
0.1823164374,
0.1191579252,
0.1763536483,
-0.1209527999,
0.0150982719,
0.0482740104,
0.1423757821,
0.0532632135,
0.0129565578,
0.2215800434,
-0.0117940977,
-0.1690644324,
0.1042753309,
-0.1854997724,
0.2854600847,
0.2926937044,
-0.0773172677,
-0.2990312576,
-0.0270365793,
0.294274509,
-0.0326079279,
-0.0528617874,
-0.0485747643,
0.010359332,
0.1906128973,
-0.2196089923,
0.2674607635,
0.5279881358,
0.1143720224,
0.0553781688,
-0.0702128559,
0.374345243,
-0.0246602446,
0.3387494087,
0.1726606786,
0.1217526048,
-0.1183102131,
0.2426423132,
0.2166145593,
0.3510866761,
0.0566908158,
0.0239127073,
-0.0307098757,
0.2304619104,
0.2397229671,
0.1288083494,
0.2786285579,
-0.0882284641,
0.09754958,
0.0309128668,
-0.062983945,
0.1639134884,
0.3340351582,
0.180387333,
0.1440523267,
-0.1291937083,
0.5687983632,
0.1001943797,
-0.3893401623,
-0.2345822006,
0.2402314246,
-0.1169963777,
0.0740316287,
-0.3172833323,
-0.1861783117,
-0.2391940504,
0.1574650109,
-0.1074406654,
-0.1232669652,
-0.0504300259,
0.2156558335,
-0.1900829077,
-0.4732023776,
0.2101701051,
-0.0363386162,
0.3338375092,
-0.0730825737,
0.1706405282,
-0.0616371445,
-0.2775766253,
-0.0798460096,
0.2877349555,
0.2786319256,
0.1054167822,
-0.390992403,
-0.121886678,
0.1556937546,
-0.0640751272,
-0.1527651846,
0.0842844397,
0.2606306672,
-0.1013032496,
0.2616642118,
0.0972531289,
-0.2740937769,
-0.1220373139,
0.0980757922,
-0.0550221726,
-0.1236001551,
0.0130100697,
-0.3181712925,
-0.1982581317,
-0.1200943962,
0.0065366141,
-0.4909361005,
0.161068365,
-0.008207161,
0.1992533803,
-0.0541200414,
-0.2968486547,
0.0856657252,
-0.1368456483,
0.5973786712,
0.3424454033,
0.1117995083,
-0.1470000148,
-0.5365690589,
-0.5853410959,
0.2090297937,
-0.0629926622,
-0.0486579649,
0.0740427971,
0.1942423582,
0.2390605658,
0.1642808467,
0.0021001995,
-0.1792952716,
0.0889604241,
-0.0662595555,
-0.4647618234,
-0.0645497516,
-0.1904875636,
-0.2589034438,
-0.1246320829,
0.0241007656,
-0.0880488604,
0.1057779938,
0.0488001406,
-0.0199226532,
-0.2640575171,
0.0616630614,
-0.0682744831,
0.2982193828,
-0.0519036017,
0.3681992888,
-0.1012712643,
-0.2203567624,
-0.2901728451,
-0.1561021507,
-0.0462985113,
0.3026444316,
-0.1934377849,
0.521027267,
-0.0083603561,
-0.1002058834,
-0.3288210034,
0.6905270815,
0.1733900756,
0.1175568402,
-0.3923235536,
0.0239074528,
-0.3116729856,
0.162298888,
0.0910176486,
0.3411854804,
-0.2714781165,
0.174135685,
-0.466804266,
-0.4499905109,
0.249871403,
-0.4550737441,
-0.0926977247,
-0.0041838847,
0.1153389663,
-0.0047390684,
-0.0571005195,
-0.5571911931,
0.033596918,
0.1637207419,
0.054309763,
-0.0907492936,
0.1095093042,
-0.0455888398,
-0.1208940819,
-0.1041853055,
-0.1784141362,
0.1156886965,
-0.1695554852,
-0.089876011,
-0.2151400298
] |
https://github.com/huggingface/datasets/issues/407 | MissingBeamOptions for Wikipedia 20200501.en | I found the same issue with almost any language other than English. (For English, it works). Will someone need to update the file on S3 again? | There may or may not be a regression for the pre-processed Wikipedia dataset. This was working fine 10 commits ago (without having Apache Beam available):
```
nlp.load_dataset('wikipedia', "20200501.en", split='train')
```
And now, having pulled master, I get:
```
Downloading and preparing dataset wikipedia/20200501.en (download: 16.99 GiB, generated: 17.07 GiB, total: 34.06 GiB) to /home/hltcoe/mgordon/.cache/huggingface/datasets/wikipedia/20200501.en/1.0.0/76b0b2747b679bb0ee7a1621e50e5a6378477add0c662668a324a5bc07d516dd...
Traceback (most recent call last):
File "scripts/download.py", line 11, in <module>
fire.Fire(download_pretrain)
File "/home/hltcoe/mgordon/.conda/envs/huggingface/lib/python3.6/site-packages/fire/core.py", line 138, in Fire
component_trace = _Fire(component, args, parsed_flag_args, context, name)
File "/home/hltcoe/mgordon/.conda/envs/huggingface/lib/python3.6/site-packages/fire/core.py", line 468, in _Fire
target=component.__name__)
File "/home/hltcoe/mgordon/.conda/envs/huggingface/lib/python3.6/site-packages/fire/core.py", line 672, in _CallAndUpdateTrace
component = fn(*varargs, **kwargs)
File "scripts/download.py", line 6, in download_pretrain
nlp.load_dataset('wikipedia', "20200501.en", split='train')
File "/exp/mgordon/nlp/src/nlp/load.py", line 534, in load_dataset
save_infos=save_infos,
File "/exp/mgordon/nlp/src/nlp/builder.py", line 460, in download_and_prepare
dl_manager=dl_manager, verify_infos=verify_infos, **download_and_prepare_kwargs
File "/exp/mgordon/nlp/src/nlp/builder.py", line 870, in _download_and_prepare
"\n\t`{}`".format(usage_example)
nlp.builder.MissingBeamOptions: Trying to generate a dataset using Apache Beam, yet no Beam Runner or PipelineOptions() has been provided in `load_dataset` or in the builder arguments. For big datasets it has to run on large-scale data processing tools like Dataflow, S
park, etc. More information about Apache Beam runners at https://beam.apache.org/documentation/runners/capability-matrix/
If you really want to run it locally because you feel like the Dataset is small enough, you can use the local beam runner called `DirectRunner` (you may run out of memory).
Example of usage:
`load_dataset('wikipedia', '20200501.en', beam_runner='DirectRunner')`
``` | 26 | MissingBeamOptions for Wikipedia 20200501.en
There may or may not be a regression for the pre-processed Wikipedia dataset. This was working fine 10 commits ago (without having Apache Beam available):
```
nlp.load_dataset('wikipedia', "20200501.en", split='train')
```
And now, having pulled master, I get:
```
Downloading and preparing dataset wikipedia/20200501.en (download: 16.99 GiB, generated: 17.07 GiB, total: 34.06 GiB) to /home/hltcoe/mgordon/.cache/huggingface/datasets/wikipedia/20200501.en/1.0.0/76b0b2747b679bb0ee7a1621e50e5a6378477add0c662668a324a5bc07d516dd...
Traceback (most recent call last):
File "scripts/download.py", line 11, in <module>
fire.Fire(download_pretrain)
File "/home/hltcoe/mgordon/.conda/envs/huggingface/lib/python3.6/site-packages/fire/core.py", line 138, in Fire
component_trace = _Fire(component, args, parsed_flag_args, context, name)
File "/home/hltcoe/mgordon/.conda/envs/huggingface/lib/python3.6/site-packages/fire/core.py", line 468, in _Fire
target=component.__name__)
File "/home/hltcoe/mgordon/.conda/envs/huggingface/lib/python3.6/site-packages/fire/core.py", line 672, in _CallAndUpdateTrace
component = fn(*varargs, **kwargs)
File "scripts/download.py", line 6, in download_pretrain
nlp.load_dataset('wikipedia', "20200501.en", split='train')
File "/exp/mgordon/nlp/src/nlp/load.py", line 534, in load_dataset
save_infos=save_infos,
File "/exp/mgordon/nlp/src/nlp/builder.py", line 460, in download_and_prepare
dl_manager=dl_manager, verify_infos=verify_infos, **download_and_prepare_kwargs
File "/exp/mgordon/nlp/src/nlp/builder.py", line 870, in _download_and_prepare
"\n\t`{}`".format(usage_example)
nlp.builder.MissingBeamOptions: Trying to generate a dataset using Apache Beam, yet no Beam Runner or PipelineOptions() has been provided in `load_dataset` or in the builder arguments. For big datasets it has to run on large-scale data processing tools like Dataflow, S
park, etc. More information about Apache Beam runners at https://beam.apache.org/documentation/runners/capability-matrix/
If you really want to run it locally because you feel like the Dataset is small enough, you can use the local beam runner called `DirectRunner` (you may run out of memory).
Example of usage:
`load_dataset('wikipedia', '20200501.en', beam_runner='DirectRunner')`
```
I found the same issue with almost any language other than English. (For English, it works). Will someone need to update the file on S3 again? | [
0.0666168705,
0.126675576,
-0.0205123164,
-0.0542328879,
0.1996195614,
0.1526872814,
0.1799739897,
0.3656723797,
-0.0222086348,
-0.0814261436,
0.1489357799,
0.2753821313,
-0.0917265117,
-0.1684227884,
0.2434723377,
-0.3058641255,
0.1455035359,
0.123902306,
-0.3501991928,
-0.1286827475,
-0.0025926903,
0.4125898778,
-0.2114285082,
-0.1782556176,
-0.5298818946,
0.0631538182,
-0.131519556,
0.1428048462,
-0.0437918566,
-0.2499870956,
0.2779206932,
0.0593028367,
-0.0827243924,
0.1222382262,
-0.000114308,
0.0776108131,
0.6222487092,
-0.2239053249,
-0.5686738491,
0.0119780004,
0.1300004125,
-0.3336529434,
0.384344101,
-0.2550983727,
-0.2759361863,
-0.1181294397,
0.1141193211,
-0.0585303679,
0.3938060999,
-0.0109363794,
0.2136251628,
0.2360554934,
0.2972981334,
-0.1291415989,
0.6020240784,
0.0674148202,
-0.1662567705,
0.0793356299,
-0.1638742238,
-0.0564769991,
-0.2710405886,
0.4797946513,
0.1387168169,
-0.1370007545,
0.5526378751,
-0.2816213369,
0.0226211865,
-0.2574208677,
0.0174538195,
0.1826509833,
0.4940167665,
-0.0229840968,
-0.1063679084,
-0.3746717572,
0.044604484,
0.1787301749,
0.2480828911,
0.0172079653,
-0.1532895863,
-0.0672086924,
0.051209949,
-0.2295793593,
-0.0332924128,
0.2887520492,
-0.06739375,
0.4202919602,
-0.0289065316,
0.0214708317,
0.1668535471,
0.0496225655,
-0.3133725524,
0.03651857,
0.0982149839,
0.235015884,
-0.2165129185,
0.0636977404,
0.2868845463,
0.270527184,
0.0620145649,
0.1695945114,
-0.2793998718,
0.1912725866,
0.0204297267,
-0.0470913462,
0.2198942602,
0.240822494,
-0.0418657102,
-0.3533211052,
0.2516728342,
0.3364216387,
-0.0628021583,
0.1384647638,
0.1992914081,
-0.1387362927,
-0.2713564336,
0.1334021091,
0.009117052,
-0.1717024148,
0.1072272882,
0.0534084588,
-0.2777941823,
-0.1483332217,
-0.2378235459,
0.3198889792,
-0.025773989,
0.4086238444,
0.2018827647,
0.118592374,
-0.2835621834,
-0.2737653553,
-0.1957248449,
0.0212344751,
-0.4779031873,
0.02588249,
0.3871363401,
-0.2097050846,
0.516566813,
0.075855583,
-0.0362863131,
0.0592925176,
-0.0301978476,
0.2644247711,
-0.0725834444,
0.1810249537,
0.1212261915,
0.2927806973,
0.203683719,
0.0199427456,
-0.0530858561,
-0.3294442296,
0.0704844072,
-0.2763872743,
-0.2597138286,
0.167716831,
-0.3119877577,
0.1547893435,
0.0475073159,
0.1872281879,
-0.0253879502,
-0.1822030991,
-0.0967270061,
-0.1229700744,
-0.0582914427,
-0.1482736319,
0.5051083565,
0.4033137262,
0.0298882052,
-0.3304645419,
-0.0621768981,
0.1041162014,
-0.101198405,
0.01172073,
-0.1564821005,
0.5247727036,
-0.2857877314,
-0.1501885504,
0.2243130058,
0.0519688129,
-0.2112267315,
0.1486307085,
-0.0126578137,
0.270898819,
0.097588852,
-0.0528357103,
-0.0672807693,
0.051800523,
0.0919759125,
0.2184600234,
0.1131941527,
0.0529396757,
-0.3270508051,
-0.087788485,
-0.0076873787,
0.0795485228,
0.3505391777,
-0.0505548045,
0.0635949448,
0.5883684754,
0.298085779,
-0.1387826055,
0.2244140804,
0.4500525296,
-0.2889431715,
0.1368466318,
0.2453722358,
-0.05986185,
-0.465187639,
0.1208007783,
-0.1401826441,
0.4367895722,
-0.1831930429,
-0.0022147447,
-0.3467137814,
-0.1367143095,
-0.196816355,
-0.5165300965,
0.2065129876,
0.2034472227,
-0.0185762383,
0.3046477437,
0.0254301876,
0.1162025779,
-0.0404416658,
0.0568883903,
-0.7796520591,
0.2145270407,
-0.3115579784,
-0.1411181986,
-0.0192292184,
0.3081659079,
0.1150458157,
-0.1935396791,
-0.128494665,
0.2234227657,
-0.0789242759,
0.1341897547,
0.0148870181,
-0.0550870448,
0.2404267192,
-0.3211011887,
0.0984832123,
0.3122578859,
-0.046305716,
-0.1272407174,
-0.303478688,
0.2799140513,
0.0182239562,
0.3226441741,
0.0334032923,
0.0919327438,
0.1548369825,
0.0725830868,
-0.2331334203,
-0.2026536465,
0.3785171807,
0.2176060975,
0.1366421729,
-0.0235253256,
0.114962697,
0.0045694858,
0.1719020307,
0.0660794377,
0.0112599656,
-0.0809157267,
-0.4510019422,
-0.2482419163,
0.3509306312,
-0.0857893899,
0.0816844478,
0.2645477355,
0.0524948537,
-0.0169567373,
-0.1228682995,
-0.2095781267,
0.1974875331,
0.114087522,
0.3243006468,
0.0876461118,
0.1405428499,
0.1975443363,
-0.3815244138,
0.1906590313,
-0.1774681509,
0.0871338621,
-0.2838542461,
-0.0979879051,
-0.354059875,
-0.4514617026,
-0.105241321,
0.2488117814,
-0.397413075,
-0.5874938965,
-0.0569582656,
0.1890994459,
-0.16337502,
0.3057293296,
-0.0293640643,
-0.1303647608,
0.0741930306,
0.0197917465,
-0.3342634439,
-0.3922386169,
-0.2000679225,
0.0861518085,
0.1043603718,
-0.0021503121,
0.2901446819,
-0.002974391,
-0.027192086,
-0.4731695354,
-0.5758973956,
0.316193521,
-0.2838523686,
0.1902677864,
0.1779286265,
0.0881580859,
-0.2256867439,
-0.0587335564,
0.4069478512,
-0.1701156646,
-0.1504673213,
-0.0161599964,
-0.1277896464,
0.1010057181,
-0.1923410594,
-0.2217375785,
0.0953757688,
-0.3692912161,
0.015344277,
0.0921728313,
-0.1812784374,
0.4691084623,
-0.100249663,
-0.0062875524,
0.1005272642,
0.1722675264,
-0.2448799461,
0.0835742652,
0.3416598141,
-0.3003979623,
-0.4568086863,
0.0295677781,
-0.1735529155,
0.0571708567,
0.318931818,
-0.4997884035,
-0.0496769063,
0.0941228345,
0.0024681389,
-0.1354263574,
0.0942457616,
0.5044304132,
0.0114219114,
-0.0168618299,
-0.2326326072,
-0.1519108266,
-0.1495183855,
-0.3148490191,
0.4269849956,
-0.1923685372,
0.323589921,
-0.0036709756,
1.0987774134,
-0.0326620974,
0.0656040162,
0.4224383831,
0.0933038071,
0.4521004856,
-0.2759511173,
-0.296728462,
0.2323562503,
-0.1486651301,
0.3013339639,
0.3919003606,
-0.0147323478,
-0.2050668895,
-0.3653712571,
0.0091437623,
-0.2090857029,
-0.3228646517,
0.0901107416,
-0.3193500936,
0.2913956642,
0.1660909355,
0.2335971594,
-0.0019366816,
-0.1577163637,
0.2441104352,
0.1709192097,
0.2070368528,
0.0695515499,
0.1379285753,
-0.056091968,
-0.4986758232,
0.0409605652,
0.0189630911,
-0.0030062087,
0.0389501899,
-0.1371269524,
0.2020366639,
0.0453856923,
0.5689492226,
-0.1977422088,
-0.0263438262,
0.249057278,
0.0347806811,
-0.7107805014,
-0.0275661051,
-0.0550744608,
0.1947837323,
0.2862170339,
0.1784347147,
-0.3835535347,
-0.2234921753,
0.3125833571,
0.0610995926,
-0.0469834432,
-0.0261748508,
-0.2916180193,
0.0066378266,
-0.4207643867,
-0.1309038401,
-0.1549674124,
0.1455961466,
0.0774432495,
0.168731451,
0.0894145891,
0.0287991613,
-0.1335075945,
0.1053509042,
0.2781826854,
0.2502245307,
-0.1114855558,
0.140959993,
0.6523589492,
-0.3377573788,
0.2628810108,
0.1982280016,
0.0455499664,
0.2173913717,
-0.0400635675,
-0.0590368286,
0.3987357616,
0.0289375558,
-0.0487632081,
-0.2030524611,
0.009422278,
0.0940535963,
0.2291370779,
0.3506717682,
-0.2690446079,
-0.1362771839,
-0.2736850083,
0.5236555338,
-0.0176691487,
-0.0113711432,
0.069294706,
0.067014344,
-0.3365367353,
0.3461080492,
0.2415182143,
0.7413403988,
0.0380275324,
0.3953180909,
0.2077924013,
0.302788198,
0.8601713181,
-0.3698055744,
0.1897516847,
-0.174274385,
0.2201998532,
0.0416867882,
0.0354326516,
-0.1920431703,
-0.1310455203,
-0.0968422964,
0.3844056726,
0.3848443627,
0.4188902974,
0.0760007873,
0.2999126315,
0.0761646256,
-0.3209705949,
-0.1950528771,
0.1271082163,
-0.2076164782,
0.5865812898,
-0.3765699267,
-0.1308688223,
-0.2108011544,
-0.1166527718,
-0.2505491674,
0.1885518581,
-0.274704814,
0.5069426298,
-0.1782886982,
-0.5959972143,
0.0212482065,
0.112775892,
0.147446692,
0.0883105248,
-0.4008170068,
0.3684972525,
-0.1940894425,
-0.2362580001,
-0.108562164,
0.2097141892,
0.4952664077,
-0.1708498895,
-0.0616778508,
-0.0610720888,
-0.2416674644,
-0.275562346,
-0.2949697375,
-0.0613050982,
0.0028360239,
0.1048689187,
-0.0824528039,
0.1037254333,
-0.0140286982,
-0.2572487593,
0.1487520933,
-0.1144912168,
0.0374176539,
-0.1460707039,
0.1024447083,
-0.1043075025,
-0.070397608,
0.4993969798,
-0.0020987857,
-0.1289846599,
0.5953382254,
0.3426298499,
-0.1198804006,
-0.1146729589,
-0.090257369,
-0.139383316,
-0.4722254872,
-0.1296566278,
0.0124800801,
-0.0530011505,
-0.0521330014,
0.2447203696,
0.18441163,
-0.1626241207,
0.0780865252,
-0.1943449825,
-0.2954604626,
0.2547385991,
-0.3494717479,
-0.0420394614,
0.1390185356,
0.1013664156,
0.3333055377,
0.0148151275,
-0.296456635,
-0.2154648304,
0.0540284216,
0.2008091211,
0.3083450496,
-0.1186886579,
-0.050054308,
-0.1276488304,
0.1212446243,
0.0212710053,
-0.1894856691,
-0.2302405685,
-0.0315674692,
0.1042667776,
0.0467169844,
0.0865675434,
-0.0781769753,
0.1114092916,
-0.03712954,
-0.2535361648,
0.052871637,
-0.2281830907,
0.1240535825,
0.1823164374,
0.1191579252,
0.1763536483,
-0.1209527999,
0.0150982719,
0.0482740104,
0.1423757821,
0.0532632135,
0.0129565578,
0.2215800434,
-0.0117940977,
-0.1690644324,
0.1042753309,
-0.1854997724,
0.2854600847,
0.2926937044,
-0.0773172677,
-0.2990312576,
-0.0270365793,
0.294274509,
-0.0326079279,
-0.0528617874,
-0.0485747643,
0.010359332,
0.1906128973,
-0.2196089923,
0.2674607635,
0.5279881358,
0.1143720224,
0.0553781688,
-0.0702128559,
0.374345243,
-0.0246602446,
0.3387494087,
0.1726606786,
0.1217526048,
-0.1183102131,
0.2426423132,
0.2166145593,
0.3510866761,
0.0566908158,
0.0239127073,
-0.0307098757,
0.2304619104,
0.2397229671,
0.1288083494,
0.2786285579,
-0.0882284641,
0.09754958,
0.0309128668,
-0.062983945,
0.1639134884,
0.3340351582,
0.180387333,
0.1440523267,
-0.1291937083,
0.5687983632,
0.1001943797,
-0.3893401623,
-0.2345822006,
0.2402314246,
-0.1169963777,
0.0740316287,
-0.3172833323,
-0.1861783117,
-0.2391940504,
0.1574650109,
-0.1074406654,
-0.1232669652,
-0.0504300259,
0.2156558335,
-0.1900829077,
-0.4732023776,
0.2101701051,
-0.0363386162,
0.3338375092,
-0.0730825737,
0.1706405282,
-0.0616371445,
-0.2775766253,
-0.0798460096,
0.2877349555,
0.2786319256,
0.1054167822,
-0.390992403,
-0.121886678,
0.1556937546,
-0.0640751272,
-0.1527651846,
0.0842844397,
0.2606306672,
-0.1013032496,
0.2616642118,
0.0972531289,
-0.2740937769,
-0.1220373139,
0.0980757922,
-0.0550221726,
-0.1236001551,
0.0130100697,
-0.3181712925,
-0.1982581317,
-0.1200943962,
0.0065366141,
-0.4909361005,
0.161068365,
-0.008207161,
0.1992533803,
-0.0541200414,
-0.2968486547,
0.0856657252,
-0.1368456483,
0.5973786712,
0.3424454033,
0.1117995083,
-0.1470000148,
-0.5365690589,
-0.5853410959,
0.2090297937,
-0.0629926622,
-0.0486579649,
0.0740427971,
0.1942423582,
0.2390605658,
0.1642808467,
0.0021001995,
-0.1792952716,
0.0889604241,
-0.0662595555,
-0.4647618234,
-0.0645497516,
-0.1904875636,
-0.2589034438,
-0.1246320829,
0.0241007656,
-0.0880488604,
0.1057779938,
0.0488001406,
-0.0199226532,
-0.2640575171,
0.0616630614,
-0.0682744831,
0.2982193828,
-0.0519036017,
0.3681992888,
-0.1012712643,
-0.2203567624,
-0.2901728451,
-0.1561021507,
-0.0462985113,
0.3026444316,
-0.1934377849,
0.521027267,
-0.0083603561,
-0.1002058834,
-0.3288210034,
0.6905270815,
0.1733900756,
0.1175568402,
-0.3923235536,
0.0239074528,
-0.3116729856,
0.162298888,
0.0910176486,
0.3411854804,
-0.2714781165,
0.174135685,
-0.466804266,
-0.4499905109,
0.249871403,
-0.4550737441,
-0.0926977247,
-0.0041838847,
0.1153389663,
-0.0047390684,
-0.0571005195,
-0.5571911931,
0.033596918,
0.1637207419,
0.054309763,
-0.0907492936,
0.1095093042,
-0.0455888398,
-0.1208940819,
-0.1041853055,
-0.1784141362,
0.1156886965,
-0.1695554852,
-0.089876011,
-0.2151400298
] |
https://github.com/huggingface/datasets/issues/407 | MissingBeamOptions for Wikipedia 20200501.en | This is because only some languages are already preprocessed (en, de, fr, it) and stored on our google storage.
We plan to have a systematic way to preprocess more wikipedia languages in the future.
For the other languages you have to process them on your side using apache beam. That's why the lib asks for a Beam runner. | There may or may not be a regression for the pre-processed Wikipedia dataset. This was working fine 10 commits ago (without having Apache Beam available):
```
nlp.load_dataset('wikipedia', "20200501.en", split='train')
```
And now, having pulled master, I get:
```
Downloading and preparing dataset wikipedia/20200501.en (download: 16.99 GiB, generated: 17.07 GiB, total: 34.06 GiB) to /home/hltcoe/mgordon/.cache/huggingface/datasets/wikipedia/20200501.en/1.0.0/76b0b2747b679bb0ee7a1621e50e5a6378477add0c662668a324a5bc07d516dd...
Traceback (most recent call last):
File "scripts/download.py", line 11, in <module>
fire.Fire(download_pretrain)
File "/home/hltcoe/mgordon/.conda/envs/huggingface/lib/python3.6/site-packages/fire/core.py", line 138, in Fire
component_trace = _Fire(component, args, parsed_flag_args, context, name)
File "/home/hltcoe/mgordon/.conda/envs/huggingface/lib/python3.6/site-packages/fire/core.py", line 468, in _Fire
target=component.__name__)
File "/home/hltcoe/mgordon/.conda/envs/huggingface/lib/python3.6/site-packages/fire/core.py", line 672, in _CallAndUpdateTrace
component = fn(*varargs, **kwargs)
File "scripts/download.py", line 6, in download_pretrain
nlp.load_dataset('wikipedia', "20200501.en", split='train')
File "/exp/mgordon/nlp/src/nlp/load.py", line 534, in load_dataset
save_infos=save_infos,
File "/exp/mgordon/nlp/src/nlp/builder.py", line 460, in download_and_prepare
dl_manager=dl_manager, verify_infos=verify_infos, **download_and_prepare_kwargs
File "/exp/mgordon/nlp/src/nlp/builder.py", line 870, in _download_and_prepare
"\n\t`{}`".format(usage_example)
nlp.builder.MissingBeamOptions: Trying to generate a dataset using Apache Beam, yet no Beam Runner or PipelineOptions() has been provided in `load_dataset` or in the builder arguments. For big datasets it has to run on large-scale data processing tools like Dataflow, S
park, etc. More information about Apache Beam runners at https://beam.apache.org/documentation/runners/capability-matrix/
If you really want to run it locally because you feel like the Dataset is small enough, you can use the local beam runner called `DirectRunner` (you may run out of memory).
Example of usage:
`load_dataset('wikipedia', '20200501.en', beam_runner='DirectRunner')`
``` | 58 | MissingBeamOptions for Wikipedia 20200501.en
There may or may not be a regression for the pre-processed Wikipedia dataset. This was working fine 10 commits ago (without having Apache Beam available):
```
nlp.load_dataset('wikipedia', "20200501.en", split='train')
```
And now, having pulled master, I get:
```
Downloading and preparing dataset wikipedia/20200501.en (download: 16.99 GiB, generated: 17.07 GiB, total: 34.06 GiB) to /home/hltcoe/mgordon/.cache/huggingface/datasets/wikipedia/20200501.en/1.0.0/76b0b2747b679bb0ee7a1621e50e5a6378477add0c662668a324a5bc07d516dd...
Traceback (most recent call last):
File "scripts/download.py", line 11, in <module>
fire.Fire(download_pretrain)
File "/home/hltcoe/mgordon/.conda/envs/huggingface/lib/python3.6/site-packages/fire/core.py", line 138, in Fire
component_trace = _Fire(component, args, parsed_flag_args, context, name)
File "/home/hltcoe/mgordon/.conda/envs/huggingface/lib/python3.6/site-packages/fire/core.py", line 468, in _Fire
target=component.__name__)
File "/home/hltcoe/mgordon/.conda/envs/huggingface/lib/python3.6/site-packages/fire/core.py", line 672, in _CallAndUpdateTrace
component = fn(*varargs, **kwargs)
File "scripts/download.py", line 6, in download_pretrain
nlp.load_dataset('wikipedia', "20200501.en", split='train')
File "/exp/mgordon/nlp/src/nlp/load.py", line 534, in load_dataset
save_infos=save_infos,
File "/exp/mgordon/nlp/src/nlp/builder.py", line 460, in download_and_prepare
dl_manager=dl_manager, verify_infos=verify_infos, **download_and_prepare_kwargs
File "/exp/mgordon/nlp/src/nlp/builder.py", line 870, in _download_and_prepare
"\n\t`{}`".format(usage_example)
nlp.builder.MissingBeamOptions: Trying to generate a dataset using Apache Beam, yet no Beam Runner or PipelineOptions() has been provided in `load_dataset` or in the builder arguments. For big datasets it has to run on large-scale data processing tools like Dataflow, S
park, etc. More information about Apache Beam runners at https://beam.apache.org/documentation/runners/capability-matrix/
If you really want to run it locally because you feel like the Dataset is small enough, you can use the local beam runner called `DirectRunner` (you may run out of memory).
Example of usage:
`load_dataset('wikipedia', '20200501.en', beam_runner='DirectRunner')`
```
This is because only some languages are already preprocessed (en, de, fr, it) and stored on our google storage.
We plan to have a systematic way to preprocess more wikipedia languages in the future.
For the other languages you have to process them on your side using apache beam. That's why the lib asks for a Beam runner. | [
0.0666168705,
0.126675576,
-0.0205123164,
-0.0542328879,
0.1996195614,
0.1526872814,
0.1799739897,
0.3656723797,
-0.0222086348,
-0.0814261436,
0.1489357799,
0.2753821313,
-0.0917265117,
-0.1684227884,
0.2434723377,
-0.3058641255,
0.1455035359,
0.123902306,
-0.3501991928,
-0.1286827475,
-0.0025926903,
0.4125898778,
-0.2114285082,
-0.1782556176,
-0.5298818946,
0.0631538182,
-0.131519556,
0.1428048462,
-0.0437918566,
-0.2499870956,
0.2779206932,
0.0593028367,
-0.0827243924,
0.1222382262,
-0.000114308,
0.0776108131,
0.6222487092,
-0.2239053249,
-0.5686738491,
0.0119780004,
0.1300004125,
-0.3336529434,
0.384344101,
-0.2550983727,
-0.2759361863,
-0.1181294397,
0.1141193211,
-0.0585303679,
0.3938060999,
-0.0109363794,
0.2136251628,
0.2360554934,
0.2972981334,
-0.1291415989,
0.6020240784,
0.0674148202,
-0.1662567705,
0.0793356299,
-0.1638742238,
-0.0564769991,
-0.2710405886,
0.4797946513,
0.1387168169,
-0.1370007545,
0.5526378751,
-0.2816213369,
0.0226211865,
-0.2574208677,
0.0174538195,
0.1826509833,
0.4940167665,
-0.0229840968,
-0.1063679084,
-0.3746717572,
0.044604484,
0.1787301749,
0.2480828911,
0.0172079653,
-0.1532895863,
-0.0672086924,
0.051209949,
-0.2295793593,
-0.0332924128,
0.2887520492,
-0.06739375,
0.4202919602,
-0.0289065316,
0.0214708317,
0.1668535471,
0.0496225655,
-0.3133725524,
0.03651857,
0.0982149839,
0.235015884,
-0.2165129185,
0.0636977404,
0.2868845463,
0.270527184,
0.0620145649,
0.1695945114,
-0.2793998718,
0.1912725866,
0.0204297267,
-0.0470913462,
0.2198942602,
0.240822494,
-0.0418657102,
-0.3533211052,
0.2516728342,
0.3364216387,
-0.0628021583,
0.1384647638,
0.1992914081,
-0.1387362927,
-0.2713564336,
0.1334021091,
0.009117052,
-0.1717024148,
0.1072272882,
0.0534084588,
-0.2777941823,
-0.1483332217,
-0.2378235459,
0.3198889792,
-0.025773989,
0.4086238444,
0.2018827647,
0.118592374,
-0.2835621834,
-0.2737653553,
-0.1957248449,
0.0212344751,
-0.4779031873,
0.02588249,
0.3871363401,
-0.2097050846,
0.516566813,
0.075855583,
-0.0362863131,
0.0592925176,
-0.0301978476,
0.2644247711,
-0.0725834444,
0.1810249537,
0.1212261915,
0.2927806973,
0.203683719,
0.0199427456,
-0.0530858561,
-0.3294442296,
0.0704844072,
-0.2763872743,
-0.2597138286,
0.167716831,
-0.3119877577,
0.1547893435,
0.0475073159,
0.1872281879,
-0.0253879502,
-0.1822030991,
-0.0967270061,
-0.1229700744,
-0.0582914427,
-0.1482736319,
0.5051083565,
0.4033137262,
0.0298882052,
-0.3304645419,
-0.0621768981,
0.1041162014,
-0.101198405,
0.01172073,
-0.1564821005,
0.5247727036,
-0.2857877314,
-0.1501885504,
0.2243130058,
0.0519688129,
-0.2112267315,
0.1486307085,
-0.0126578137,
0.270898819,
0.097588852,
-0.0528357103,
-0.0672807693,
0.051800523,
0.0919759125,
0.2184600234,
0.1131941527,
0.0529396757,
-0.3270508051,
-0.087788485,
-0.0076873787,
0.0795485228,
0.3505391777,
-0.0505548045,
0.0635949448,
0.5883684754,
0.298085779,
-0.1387826055,
0.2244140804,
0.4500525296,
-0.2889431715,
0.1368466318,
0.2453722358,
-0.05986185,
-0.465187639,
0.1208007783,
-0.1401826441,
0.4367895722,
-0.1831930429,
-0.0022147447,
-0.3467137814,
-0.1367143095,
-0.196816355,
-0.5165300965,
0.2065129876,
0.2034472227,
-0.0185762383,
0.3046477437,
0.0254301876,
0.1162025779,
-0.0404416658,
0.0568883903,
-0.7796520591,
0.2145270407,
-0.3115579784,
-0.1411181986,
-0.0192292184,
0.3081659079,
0.1150458157,
-0.1935396791,
-0.128494665,
0.2234227657,
-0.0789242759,
0.1341897547,
0.0148870181,
-0.0550870448,
0.2404267192,
-0.3211011887,
0.0984832123,
0.3122578859,
-0.046305716,
-0.1272407174,
-0.303478688,
0.2799140513,
0.0182239562,
0.3226441741,
0.0334032923,
0.0919327438,
0.1548369825,
0.0725830868,
-0.2331334203,
-0.2026536465,
0.3785171807,
0.2176060975,
0.1366421729,
-0.0235253256,
0.114962697,
0.0045694858,
0.1719020307,
0.0660794377,
0.0112599656,
-0.0809157267,
-0.4510019422,
-0.2482419163,
0.3509306312,
-0.0857893899,
0.0816844478,
0.2645477355,
0.0524948537,
-0.0169567373,
-0.1228682995,
-0.2095781267,
0.1974875331,
0.114087522,
0.3243006468,
0.0876461118,
0.1405428499,
0.1975443363,
-0.3815244138,
0.1906590313,
-0.1774681509,
0.0871338621,
-0.2838542461,
-0.0979879051,
-0.354059875,
-0.4514617026,
-0.105241321,
0.2488117814,
-0.397413075,
-0.5874938965,
-0.0569582656,
0.1890994459,
-0.16337502,
0.3057293296,
-0.0293640643,
-0.1303647608,
0.0741930306,
0.0197917465,
-0.3342634439,
-0.3922386169,
-0.2000679225,
0.0861518085,
0.1043603718,
-0.0021503121,
0.2901446819,
-0.002974391,
-0.027192086,
-0.4731695354,
-0.5758973956,
0.316193521,
-0.2838523686,
0.1902677864,
0.1779286265,
0.0881580859,
-0.2256867439,
-0.0587335564,
0.4069478512,
-0.1701156646,
-0.1504673213,
-0.0161599964,
-0.1277896464,
0.1010057181,
-0.1923410594,
-0.2217375785,
0.0953757688,
-0.3692912161,
0.015344277,
0.0921728313,
-0.1812784374,
0.4691084623,
-0.100249663,
-0.0062875524,
0.1005272642,
0.1722675264,
-0.2448799461,
0.0835742652,
0.3416598141,
-0.3003979623,
-0.4568086863,
0.0295677781,
-0.1735529155,
0.0571708567,
0.318931818,
-0.4997884035,
-0.0496769063,
0.0941228345,
0.0024681389,
-0.1354263574,
0.0942457616,
0.5044304132,
0.0114219114,
-0.0168618299,
-0.2326326072,
-0.1519108266,
-0.1495183855,
-0.3148490191,
0.4269849956,
-0.1923685372,
0.323589921,
-0.0036709756,
1.0987774134,
-0.0326620974,
0.0656040162,
0.4224383831,
0.0933038071,
0.4521004856,
-0.2759511173,
-0.296728462,
0.2323562503,
-0.1486651301,
0.3013339639,
0.3919003606,
-0.0147323478,
-0.2050668895,
-0.3653712571,
0.0091437623,
-0.2090857029,
-0.3228646517,
0.0901107416,
-0.3193500936,
0.2913956642,
0.1660909355,
0.2335971594,
-0.0019366816,
-0.1577163637,
0.2441104352,
0.1709192097,
0.2070368528,
0.0695515499,
0.1379285753,
-0.056091968,
-0.4986758232,
0.0409605652,
0.0189630911,
-0.0030062087,
0.0389501899,
-0.1371269524,
0.2020366639,
0.0453856923,
0.5689492226,
-0.1977422088,
-0.0263438262,
0.249057278,
0.0347806811,
-0.7107805014,
-0.0275661051,
-0.0550744608,
0.1947837323,
0.2862170339,
0.1784347147,
-0.3835535347,
-0.2234921753,
0.3125833571,
0.0610995926,
-0.0469834432,
-0.0261748508,
-0.2916180193,
0.0066378266,
-0.4207643867,
-0.1309038401,
-0.1549674124,
0.1455961466,
0.0774432495,
0.168731451,
0.0894145891,
0.0287991613,
-0.1335075945,
0.1053509042,
0.2781826854,
0.2502245307,
-0.1114855558,
0.140959993,
0.6523589492,
-0.3377573788,
0.2628810108,
0.1982280016,
0.0455499664,
0.2173913717,
-0.0400635675,
-0.0590368286,
0.3987357616,
0.0289375558,
-0.0487632081,
-0.2030524611,
0.009422278,
0.0940535963,
0.2291370779,
0.3506717682,
-0.2690446079,
-0.1362771839,
-0.2736850083,
0.5236555338,
-0.0176691487,
-0.0113711432,
0.069294706,
0.067014344,
-0.3365367353,
0.3461080492,
0.2415182143,
0.7413403988,
0.0380275324,
0.3953180909,
0.2077924013,
0.302788198,
0.8601713181,
-0.3698055744,
0.1897516847,
-0.174274385,
0.2201998532,
0.0416867882,
0.0354326516,
-0.1920431703,
-0.1310455203,
-0.0968422964,
0.3844056726,
0.3848443627,
0.4188902974,
0.0760007873,
0.2999126315,
0.0761646256,
-0.3209705949,
-0.1950528771,
0.1271082163,
-0.2076164782,
0.5865812898,
-0.3765699267,
-0.1308688223,
-0.2108011544,
-0.1166527718,
-0.2505491674,
0.1885518581,
-0.274704814,
0.5069426298,
-0.1782886982,
-0.5959972143,
0.0212482065,
0.112775892,
0.147446692,
0.0883105248,
-0.4008170068,
0.3684972525,
-0.1940894425,
-0.2362580001,
-0.108562164,
0.2097141892,
0.4952664077,
-0.1708498895,
-0.0616778508,
-0.0610720888,
-0.2416674644,
-0.275562346,
-0.2949697375,
-0.0613050982,
0.0028360239,
0.1048689187,
-0.0824528039,
0.1037254333,
-0.0140286982,
-0.2572487593,
0.1487520933,
-0.1144912168,
0.0374176539,
-0.1460707039,
0.1024447083,
-0.1043075025,
-0.070397608,
0.4993969798,
-0.0020987857,
-0.1289846599,
0.5953382254,
0.3426298499,
-0.1198804006,
-0.1146729589,
-0.090257369,
-0.139383316,
-0.4722254872,
-0.1296566278,
0.0124800801,
-0.0530011505,
-0.0521330014,
0.2447203696,
0.18441163,
-0.1626241207,
0.0780865252,
-0.1943449825,
-0.2954604626,
0.2547385991,
-0.3494717479,
-0.0420394614,
0.1390185356,
0.1013664156,
0.3333055377,
0.0148151275,
-0.296456635,
-0.2154648304,
0.0540284216,
0.2008091211,
0.3083450496,
-0.1186886579,
-0.050054308,
-0.1276488304,
0.1212446243,
0.0212710053,
-0.1894856691,
-0.2302405685,
-0.0315674692,
0.1042667776,
0.0467169844,
0.0865675434,
-0.0781769753,
0.1114092916,
-0.03712954,
-0.2535361648,
0.052871637,
-0.2281830907,
0.1240535825,
0.1823164374,
0.1191579252,
0.1763536483,
-0.1209527999,
0.0150982719,
0.0482740104,
0.1423757821,
0.0532632135,
0.0129565578,
0.2215800434,
-0.0117940977,
-0.1690644324,
0.1042753309,
-0.1854997724,
0.2854600847,
0.2926937044,
-0.0773172677,
-0.2990312576,
-0.0270365793,
0.294274509,
-0.0326079279,
-0.0528617874,
-0.0485747643,
0.010359332,
0.1906128973,
-0.2196089923,
0.2674607635,
0.5279881358,
0.1143720224,
0.0553781688,
-0.0702128559,
0.374345243,
-0.0246602446,
0.3387494087,
0.1726606786,
0.1217526048,
-0.1183102131,
0.2426423132,
0.2166145593,
0.3510866761,
0.0566908158,
0.0239127073,
-0.0307098757,
0.2304619104,
0.2397229671,
0.1288083494,
0.2786285579,
-0.0882284641,
0.09754958,
0.0309128668,
-0.062983945,
0.1639134884,
0.3340351582,
0.180387333,
0.1440523267,
-0.1291937083,
0.5687983632,
0.1001943797,
-0.3893401623,
-0.2345822006,
0.2402314246,
-0.1169963777,
0.0740316287,
-0.3172833323,
-0.1861783117,
-0.2391940504,
0.1574650109,
-0.1074406654,
-0.1232669652,
-0.0504300259,
0.2156558335,
-0.1900829077,
-0.4732023776,
0.2101701051,
-0.0363386162,
0.3338375092,
-0.0730825737,
0.1706405282,
-0.0616371445,
-0.2775766253,
-0.0798460096,
0.2877349555,
0.2786319256,
0.1054167822,
-0.390992403,
-0.121886678,
0.1556937546,
-0.0640751272,
-0.1527651846,
0.0842844397,
0.2606306672,
-0.1013032496,
0.2616642118,
0.0972531289,
-0.2740937769,
-0.1220373139,
0.0980757922,
-0.0550221726,
-0.1236001551,
0.0130100697,
-0.3181712925,
-0.1982581317,
-0.1200943962,
0.0065366141,
-0.4909361005,
0.161068365,
-0.008207161,
0.1992533803,
-0.0541200414,
-0.2968486547,
0.0856657252,
-0.1368456483,
0.5973786712,
0.3424454033,
0.1117995083,
-0.1470000148,
-0.5365690589,
-0.5853410959,
0.2090297937,
-0.0629926622,
-0.0486579649,
0.0740427971,
0.1942423582,
0.2390605658,
0.1642808467,
0.0021001995,
-0.1792952716,
0.0889604241,
-0.0662595555,
-0.4647618234,
-0.0645497516,
-0.1904875636,
-0.2589034438,
-0.1246320829,
0.0241007656,
-0.0880488604,
0.1057779938,
0.0488001406,
-0.0199226532,
-0.2640575171,
0.0616630614,
-0.0682744831,
0.2982193828,
-0.0519036017,
0.3681992888,
-0.1012712643,
-0.2203567624,
-0.2901728451,
-0.1561021507,
-0.0462985113,
0.3026444316,
-0.1934377849,
0.521027267,
-0.0083603561,
-0.1002058834,
-0.3288210034,
0.6905270815,
0.1733900756,
0.1175568402,
-0.3923235536,
0.0239074528,
-0.3116729856,
0.162298888,
0.0910176486,
0.3411854804,
-0.2714781165,
0.174135685,
-0.466804266,
-0.4499905109,
0.249871403,
-0.4550737441,
-0.0926977247,
-0.0041838847,
0.1153389663,
-0.0047390684,
-0.0571005195,
-0.5571911931,
0.033596918,
0.1637207419,
0.054309763,
-0.0907492936,
0.1095093042,
-0.0455888398,
-0.1208940819,
-0.1041853055,
-0.1784141362,
0.1156886965,
-0.1695554852,
-0.089876011,
-0.2151400298
] |
https://github.com/huggingface/datasets/issues/406 | Faster Shuffling? | I think the slowness here probably come from the fact that we are copying from and to python.
@lhoestq for all the `select`-based methods I think we should stay in Arrow format and update the writer so that it can accept Arrow tables or batches as well. What do you think? | Consider shuffling bookcorpus:
```
dataset = nlp.load_dataset('bookcorpus', split='train')
dataset.shuffle()
```
According to tqdm, this will take around 2.5 hours on my machine to complete (even with the faster version of select from #405). I've also tried with `keep_in_memory=True` and `writer_batch_size=1000`.
But I can also just write the lines to a text file:
```
batch_size = 100000
with open('tmp.txt', 'w+') as out_f:
for i in tqdm(range(0, len(dataset), batch_size)):
batch = dataset[i:i+batch_size]['text']
print("\n".join(batch), file=out_f)
```
Which completes in a couple minutes, followed by `shuf tmp.txt > tmp2.txt` which completes in under a minute. And finally,
```
dataset = nlp.load_dataset('text', data_files='tmp2.txt')
```
Which completes in under 10 minutes. I read up on Apache Arrow this morning, and it seems like the columnar data format is not especially well-suited to shuffling rows, since moving items around requires a lot of book-keeping.
Is shuffle inherently slow, or am I just using it wrong? And if it is slow, would it make sense to try converting the data to a row-based format on disk and then shuffling? (Instead of calling select with a random permutation, as is currently done.) | 51 | Faster Shuffling?
Consider shuffling bookcorpus:
```
dataset = nlp.load_dataset('bookcorpus', split='train')
dataset.shuffle()
```
According to tqdm, this will take around 2.5 hours on my machine to complete (even with the faster version of select from #405). I've also tried with `keep_in_memory=True` and `writer_batch_size=1000`.
But I can also just write the lines to a text file:
```
batch_size = 100000
with open('tmp.txt', 'w+') as out_f:
for i in tqdm(range(0, len(dataset), batch_size)):
batch = dataset[i:i+batch_size]['text']
print("\n".join(batch), file=out_f)
```
Which completes in a couple minutes, followed by `shuf tmp.txt > tmp2.txt` which completes in under a minute. And finally,
```
dataset = nlp.load_dataset('text', data_files='tmp2.txt')
```
Which completes in under 10 minutes. I read up on Apache Arrow this morning, and it seems like the columnar data format is not especially well-suited to shuffling rows, since moving items around requires a lot of book-keeping.
Is shuffle inherently slow, or am I just using it wrong? And if it is slow, would it make sense to try converting the data to a row-based format on disk and then shuffling? (Instead of calling select with a random permutation, as is currently done.)
I think the slowness here probably come from the fact that we are copying from and to python.
@lhoestq for all the `select`-based methods I think we should stay in Arrow format and update the writer so that it can accept Arrow tables or batches as well. What do you think? | [
-0.1038481966,
0.0485300422,
-0.0324606299,
-0.1238689721,
-0.0787099451,
-0.1393205673,
0.1168375313,
0.5494186282,
-0.2944580019,
0.0831827745,
-0.0154477563,
0.5307010412,
-0.1336493492,
-0.2611563504,
0.1678623259,
-0.0926037729,
0.0606320761,
-0.073145628,
-0.2566205859,
-0.0911277756,
-0.1002621502,
-0.3960590661,
-0.2107812613,
-0.2046839893,
-0.0074309111,
-0.2436167747,
-0.2369046807,
0.1180208772,
-0.1844844669,
0.0845986307,
-0.193402648,
0.2316129655,
-0.1237936318,
0.2456131876,
-0.0001148454,
-0.1855446696,
0.0773180947,
0.1337086856,
-0.3280706406,
0.1574877352,
0.4777604043,
-0.062334653,
-0.1090693921,
-0.2044635564,
0.1624594033,
-0.343518883,
0.1161519438,
-0.0758224726,
-0.0899129212,
-0.0375098698,
0.1314272583,
0.3801162541,
-0.1988961697,
0.2204272896,
0.4817525148,
0.2134928852,
-0.3580772579,
0.3437617123,
0.3956697285,
-0.0749705657,
-0.1464883536,
0.2646939456,
-0.1878201365,
-0.0394973233,
0.2072631121,
0.1342580318,
0.1285513192,
0.3230399489,
0.1072725281,
0.3726661205,
0.3013321459,
-0.2000199854,
-0.3548536897,
-0.2874729037,
0.203556478,
-0.0308122672,
0.0791785792,
0.2857199311,
-0.2808453143,
-0.1876986325,
-0.124044776,
0.1041605175,
0.2330210656,
-0.2302718312,
0.3201218545,
0.4178147614,
0.2373137325,
-0.0998314098,
0.6690918803,
-0.0953143537,
0.5340383649,
-0.1793563366,
0.0701039732,
0.4054661095,
-0.2878310978,
-0.2892366648,
-0.1990914047,
-0.0882903039,
-0.1359457523,
0.1803569049,
0.6696808338,
0.2038073838,
0.2009964883,
-0.0543010458,
0.0821900368,
-0.0159303024,
-0.3168696761,
0.1569917202,
-0.0950158238,
0.0842374414,
0.2574741542,
0.0918953419,
-0.0717736036,
-0.3007596433,
-0.0448232181,
-0.2145745754,
-0.4414106607,
0.103658855,
0.0323504582,
-0.2918612957,
-0.0960135683,
-0.0679452345,
0.0125758871,
0.2145960331,
-0.1745277345,
0.2548383176,
-0.0650102347,
-0.1067528576,
-0.1531512439,
0.052899532,
-0.0397013091,
0.1025034785,
-0.075903073,
0.0010087043,
0.0193845555,
0.3855782449,
-0.2566692829,
0.0715124086,
0.1983613819,
0.3333365023,
0.0390318185,
-0.1371049881,
0.0811999887,
0.1164642498,
-0.129593119,
-0.1626021564,
-0.1090413481,
0.0563503578,
-0.328253746,
0.3956871927,
-0.028288044,
-0.1497775763,
0.1397402287,
0.1568019837,
0.2815755904,
-0.2844120264,
-0.4706709981,
-0.0742613822,
0.0032805763,
-0.0329055563,
0.0783746392,
-0.107717216,
0.1294035465,
-0.1461094916,
0.006991908,
-0.2068300843,
-0.0313832983,
0.1186727881,
0.0181324407,
0.5336564779,
0.4336853325,
0.67669487,
-0.0835653394,
0.0888085514,
0.1313968301,
-0.0325663835,
0.7245669365,
0.1752952337,
-0.1763672233,
0.0303565674,
-0.077741161,
0.0723706484,
0.4168792367,
0.1878636628,
0.0499964319,
-0.1446710527,
0.455699116,
0.2858867347,
0.0005490296,
0.2795183659,
-0.5462660193,
-0.1266948432,
0.2373045981,
0.4326204658,
-0.4991606474,
-0.3179177046,
-0.0106278658,
-0.3204745948,
0.3234397769,
-0.2063717991,
-0.1109220162,
0.0519926921,
-0.0280237496,
0.0888932794,
-0.1518577337,
0.0710441023,
-0.1989396363,
-0.057110671,
-0.0291541927,
-0.0216975734,
0.2426876575,
-0.3557791114,
0.1991188228,
-0.173214674,
0.1194693148,
0.1699103117,
-0.0024224296,
-0.2069246173,
0.3986495137,
-0.100055337,
-0.0798938721,
-0.0161000453,
-0.2569809258,
0.0842133835,
-0.1689044982,
-0.1116964221,
0.0451898202,
-0.2143688798,
0.1580179185,
0.3718036711,
-0.2997278273,
0.0496768989,
0.1027159989,
0.2142709792,
-0.0766532272,
-0.1232789606,
0.0910352916,
0.1982078552,
-0.0637712479,
0.2575585246,
0.1842211783,
-0.1660939306,
0.1514941603,
-0.0345029682,
-0.3289415538,
0.5347305536,
-0.4930258393,
0.3141446114,
0.1985873282,
-0.2543619871,
-0.1408239305,
0.2990078926,
-0.097358495,
0.4259059131,
0.6466959715,
0.1116908193,
0.1135968268,
0.4000860155,
-0.3382672071,
0.0998387337,
0.5146844387,
-0.0320698544,
-0.1510276347,
0.1014408171,
0.0868235379,
-0.1578638256,
-0.133907482,
0.0724569857,
0.2643629014,
0.2578004003,
0.1068167537,
-0.0220649838,
-0.0651492476,
-0.2313473374,
0.2150714695,
-0.0015312042,
0.0961963981,
-0.1439817697,
0.1075776219,
-0.0137524083,
-0.1625158787,
-0.177395612,
0.0197072178,
0.163955912,
0.0767697692,
0.0736186877,
-0.0629529282,
-0.1240021139,
-0.1818026155,
-0.0365177616,
-0.04094778,
-0.134100005,
0.1759620309,
0.2394405603,
-0.2295583487,
-0.2709875405,
-0.102301836,
0.2744620442,
-0.1486406922,
-0.164952144,
-0.1873628497,
0.0778130144,
-0.118208237,
0.0518480912,
0.2363510728,
0.2894334197,
0.3592742682,
0.0621868894,
-0.2367980182,
0.0518275425,
0.0315153897,
-0.2365830839,
0.0247276425,
-0.2823907137,
-0.0512627028,
-0.1843823045,
-0.3590665758,
-0.3232360482,
0.0791546404,
-0.1600940824,
-0.1007139683,
0.3606927395,
0.2180090845,
-0.2246398926,
-0.1231470853,
-0.0707205534,
-0.1353549063,
-0.3641660213,
0.2947735488,
-0.0735340342,
0.1561613977,
-0.0280662626,
-0.1540988982,
-0.0747498125,
-0.4670973122,
-0.0291592181,
0.1779474914,
-0.1603410542,
0.2665255368,
0.0757241547,
-0.1876380742,
-0.4554568529,
-0.0309028029,
-0.0455953591,
0.4398033321,
-0.0504291505,
0.1585073918,
-0.4090270102,
-0.0185441151,
-0.0691039786,
0.2417526245,
0.4783862829,
-0.1012295485,
-0.1137261912,
0.3343470991,
0.1900076717,
-0.0072764531,
0.2815833688,
0.0939924866,
0.0873351544,
0.145313412,
0.1917296797,
0.5485805869,
-0.0089886114,
0.4024248719,
-0.1678857505,
0.1251717508,
-0.0263604894,
-0.3092458844,
0.0191647857,
0.154581964,
-0.0148899853,
-0.2202123255,
0.2860590219,
-0.1322849542,
-0.2167060226,
-0.1457936466,
0.4429795146,
0.0978030264,
-0.3071258068,
0.5698946118,
-0.2439901382,
0.011494942,
0.0262769684,
0.2426939607,
-0.1146333665,
-0.1829120964,
0.0393733829,
-0.0735247061,
-0.0736503005,
-0.030637823,
-0.6124540567,
-0.1522419751,
-0.8054005504,
0.2165990919,
0.2030180395,
0.3697017729,
0.2696366906,
-0.3206878304,
0.4373370707,
-0.131452769,
0.2683980465,
0.1939315349,
-0.3236967325,
0.2640222609,
-0.1401328743,
-0.4568903744,
-0.0840425938,
-0.3802317083,
-0.4031208754,
0.1451110542,
0.1813236177,
-0.3581776023,
-0.0427723825,
-0.0153323049,
-0.0565106757,
-0.0170645416,
0.0129582286,
-0.3901494741,
-0.2344474345,
0.0323270559,
0.2596323192,
-0.0461357981,
0.0254317485,
-0.056566719,
0.2224267721,
0.1589545906,
0.0007253885,
0.1433290541,
-0.104286164,
-0.054057546,
-0.0540807992,
0.1584062874,
0.1658078134,
0.0621217377,
-0.0909937918,
0.0022126115,
0.1231655329,
0.0416767634,
-0.1576358378,
-0.1893505454,
0.4593550563,
0.386746645,
0.2079529166,
0.2129655182,
-0.0241836812,
0.3218665719,
-0.0059935413,
-0.5208615661,
0.130805403,
-0.2954316735,
-0.1013390645,
-0.7717423439,
0.2592331171,
0.2543680072,
0.1491474509,
0.2281623483,
-0.1963319182,
0.2470768839,
0.4275334775,
0.141005531,
1.0107343197,
-0.3745574653,
0.494828552,
0.3026474416,
-0.2127190977,
0.0632100254,
-0.1288546175,
0.3773984909,
-0.1711562276,
-0.140891701,
0.2182426453,
-0.1835125387,
0.0028820839,
0.046928253,
-0.0376597382,
0.2010123283,
-0.0023709238,
-0.3239128292,
-0.3013598323,
-0.0370969325,
-0.4331660867,
-0.386584878,
-0.1620001495,
0.002614364,
-0.0321730077,
-0.1597068757,
0.141766727,
0.0812449008,
-0.4642913342,
0.1138689965,
-0.1251078695,
-0.0129022077,
0.048807539,
-0.0064566564,
0.2049918175,
-0.286123693,
-0.0617328323,
-0.138667196,
-0.1246638671,
0.1100129262,
0.1806344539,
0.1125103235,
0.2573267221,
0.3945132494,
0.3727915287,
-0.2835699022,
0.2877428234,
-0.0632589534,
0.2500335574,
0.056199301,
-0.0084811859,
-0.735534966,
-0.3018517494,
0.0860439688,
0.5681177974,
-0.0286943913,
-0.1409672797,
0.2391033471,
-0.3686721325,
-0.0958731398,
0.1014309451,
0.0573843718,
0.1053929329,
0.4705394208,
0.1320172548,
-0.1886123717,
-0.0110096149,
0.280189991,
0.1060086191,
0.1396579444,
0.3078069091,
0.0161027759,
-0.4802681506,
-0.2216252834,
0.1815693229,
0.0415751413,
-0.3499685824,
0.2590775192,
0.0156890824,
-0.0785716474,
0.1282121837,
0.2876178622,
-0.0295776948,
-0.0591709949,
-0.3001863956,
-0.0149933025,
0.1073984355,
0.4669550061,
0.5261847973,
0.0099293869,
0.00506033,
0.3379237056,
-0.385291636,
-0.1506509334,
-0.2425632924,
-0.185369432,
0.0913323313,
0.1223527789,
-0.1389975548,
-0.2877810001,
-0.1926410794,
0.1505216658,
0.1307439059,
0.1484172046,
0.0329901762,
-0.1907643676,
0.0702229738,
0.0341221392,
0.0276611112,
-0.0140175577,
0.0477782413,
-0.3899274766,
-0.3449164927,
-0.2392156422,
-0.2736590505,
0.0012197122,
-0.0083562061,
-0.2712941468,
0.2088955939,
0.1324302554,
-0.0776069164,
0.524964869,
-0.4731838703,
-0.2732438743,
-0.2208494544,
-0.0063988664,
-0.0190976411,
-0.099940896,
-0.1110330075,
0.1236863285,
0.0560270585,
0.0054033045,
0.2663470507,
-0.1399295032,
0.0574535728,
-0.1029639021,
0.194324702,
0.6351498365,
0.2898969352,
-0.4409424365,
0.452080667,
0.1157828718,
-0.1129199415,
-0.2333066314,
-0.3544193804,
0.2145791501,
-0.004530564,
0.1025649384,
-0.2718020678,
-0.1124613509,
-0.3286369443,
-0.0594901666,
-0.1369459182,
-0.420671165,
-0.2316712141,
0.3065516949,
0.3698606491,
-0.25230214,
0.1801477522,
-0.0040580872,
-0.0467771105,
0.1294296533,
0.2270884514,
0.4077349305,
0.6244718432,
0.3014626205,
-0.3874132931,
-0.1106971577,
-0.0040116291,
0.4378825426,
0.1801593006,
0.3086169362,
0.3406612873,
0.1345144659,
0.0066035502,
0.0796893388,
-0.0219781287,
-0.092838347,
-0.0370792821,
0.0731728449,
0.072514303,
-0.0947210863,
-0.2181285769,
0.2042514831,
-0.3194913268,
0.3458900154,
0.2264335603,
0.1036254466,
0.4627440274,
-0.3930012584,
0.1452663392,
-0.2250460684,
0.4474728703,
-0.3134241104,
-0.1612290889,
-0.0375010036,
0.1031905413,
0.2538505793,
0.0662699789,
-0.0725487471,
0.2728680372,
-0.079048261,
0.0622294545,
-0.5087034106,
-0.0149669759,
-0.1064288691,
0.2163714468,
0.4450426102,
-0.0854279697,
0.2795486748,
0.0122325867,
-0.1925521642,
-0.1656651795,
-0.0980605036,
-0.069008857,
-0.1779289544,
0.1612357795,
0.2084820718,
-0.4335986972,
-0.0445255935,
0.1502263695,
-0.2526212633,
-0.0961486101,
-0.5036641955,
-0.2149571776,
-0.1091823801,
0.0238639414,
0.0551287867,
0.1901285052,
0.6890668869,
0.4244919419,
-0.0805730224,
0.1032529399,
-0.2726458907,
-0.2619594336,
-0.3324975073,
-0.2798487842,
-0.0097647458,
0.2360470742,
0.4841253161,
0.2455260754,
0.2714175582,
-0.0475972965,
0.1512840241,
-0.3728960156,
0.356866926,
-0.140944913,
0.2074209303,
0.1653531045,
-0.0630148649,
-0.2124653757,
-0.6004897356,
0.2104822695,
0.1409493536,
-0.0027429834,
-0.0707928091,
0.0825922191,
0.2068640292,
0.3266086876,
-0.1694668978,
-0.0374938697,
-0.1736767441,
0.2170684636,
-0.205933854,
-0.1906143874,
0.1858598888,
-0.0227930993,
0.0193884019,
0.0742553473,
0.1204369366,
0.06340193,
0.0078345733,
0.1306758523,
0.5502994657,
-0.2406554967,
0.1733043492,
-0.2645806372,
0.0541514158,
0.2109878361,
0.2993127108,
-0.1580786109,
0.1426505148,
-0.0488658622,
-0.1984012425,
-0.2610491216,
0.0039235279,
0.390965879,
-0.1595078707,
-0.2572925091,
-0.1266072392,
0.1781401634,
0.2004370391,
0.3141001761,
0.0848388374,
-0.271945715,
-0.0420417897,
-0.0028393026,
0.3295636177,
0.2699500024,
-0.1165978014,
-0.0616498552,
-0.1546361446,
0.3200793862,
-0.4524778128,
0.0876659229,
-0.2333871424,
-0.3020485342
] |
https://github.com/huggingface/datasets/issues/406 | Faster Shuffling? | > @lhoestq for all the `select`-based methods I think we should stay in Arrow format and update the writer so that it can accept Arrow tables or batches as well. What do you think?
I just tried with `writer.write_table` with tables of 1000 elements and it's slower that the solution in #405
On my side (select 10 000 examples):
- Original implementation: 12s
- Batched solution: 100ms
- solution using arrow tables: 350ms
I'll try with arrays and record batches to see if we can make it work. | Consider shuffling bookcorpus:
```
dataset = nlp.load_dataset('bookcorpus', split='train')
dataset.shuffle()
```
According to tqdm, this will take around 2.5 hours on my machine to complete (even with the faster version of select from #405). I've also tried with `keep_in_memory=True` and `writer_batch_size=1000`.
But I can also just write the lines to a text file:
```
batch_size = 100000
with open('tmp.txt', 'w+') as out_f:
for i in tqdm(range(0, len(dataset), batch_size)):
batch = dataset[i:i+batch_size]['text']
print("\n".join(batch), file=out_f)
```
Which completes in a couple minutes, followed by `shuf tmp.txt > tmp2.txt` which completes in under a minute. And finally,
```
dataset = nlp.load_dataset('text', data_files='tmp2.txt')
```
Which completes in under 10 minutes. I read up on Apache Arrow this morning, and it seems like the columnar data format is not especially well-suited to shuffling rows, since moving items around requires a lot of book-keeping.
Is shuffle inherently slow, or am I just using it wrong? And if it is slow, would it make sense to try converting the data to a row-based format on disk and then shuffling? (Instead of calling select with a random permutation, as is currently done.) | 88 | Faster Shuffling?
Consider shuffling bookcorpus:
```
dataset = nlp.load_dataset('bookcorpus', split='train')
dataset.shuffle()
```
According to tqdm, this will take around 2.5 hours on my machine to complete (even with the faster version of select from #405). I've also tried with `keep_in_memory=True` and `writer_batch_size=1000`.
But I can also just write the lines to a text file:
```
batch_size = 100000
with open('tmp.txt', 'w+') as out_f:
for i in tqdm(range(0, len(dataset), batch_size)):
batch = dataset[i:i+batch_size]['text']
print("\n".join(batch), file=out_f)
```
Which completes in a couple minutes, followed by `shuf tmp.txt > tmp2.txt` which completes in under a minute. And finally,
```
dataset = nlp.load_dataset('text', data_files='tmp2.txt')
```
Which completes in under 10 minutes. I read up on Apache Arrow this morning, and it seems like the columnar data format is not especially well-suited to shuffling rows, since moving items around requires a lot of book-keeping.
Is shuffle inherently slow, or am I just using it wrong? And if it is slow, would it make sense to try converting the data to a row-based format on disk and then shuffling? (Instead of calling select with a random permutation, as is currently done.)
> @lhoestq for all the `select`-based methods I think we should stay in Arrow format and update the writer so that it can accept Arrow tables or batches as well. What do you think?
I just tried with `writer.write_table` with tables of 1000 elements and it's slower that the solution in #405
On my side (select 10 000 examples):
- Original implementation: 12s
- Batched solution: 100ms
- solution using arrow tables: 350ms
I'll try with arrays and record batches to see if we can make it work. | [
-0.1645010412,
0.1181396246,
-0.0444609299,
-0.1049748212,
-0.0814408809,
-0.1731706262,
0.1477240175,
0.5459222794,
-0.2346828431,
0.0624631681,
-0.0000821054,
0.5998942852,
-0.1947993785,
-0.2284017801,
0.2151890695,
-0.0612117983,
0.0476635732,
-0.0043826737,
-0.282235384,
-0.0438994132,
-0.0562194027,
-0.4137576818,
-0.1994888633,
-0.1997068524,
-0.0257705208,
-0.2938672602,
-0.187856108,
0.0697673559,
-0.1976449043,
0.0757235736,
-0.2173385173,
0.2811864018,
-0.0521545857,
0.2584167719,
-0.0001122204,
-0.1701223999,
0.0425050221,
0.1037312225,
-0.3138459325,
0.1286939979,
0.380033493,
-0.0521179363,
-0.1779634655,
-0.2150924355,
0.1908937991,
-0.3175549507,
0.1569267362,
-0.0784633458,
-0.1330257654,
-0.0641255304,
0.1537112892,
0.2656770945,
-0.1589048505,
0.2145539671,
0.5277473927,
0.2444072217,
-0.3638018668,
0.272505641,
0.377915591,
-0.1275763214,
-0.2558321655,
0.2600159943,
-0.1540907025,
-0.0505697504,
0.2140825391,
0.1419371814,
0.0656319261,
0.3851956725,
0.0977452621,
0.3810903728,
0.2966603935,
-0.1960282475,
-0.2890030742,
-0.2553759217,
0.1719614565,
-0.0369443223,
0.0981171206,
0.2776351571,
-0.2760347426,
-0.2166484445,
-0.1713005006,
0.0930574983,
0.2021473795,
-0.2257493138,
0.3682125211,
0.3595198095,
0.1895429045,
-0.0979154259,
0.6719360352,
-0.1242222041,
0.5510311723,
-0.1262997687,
-0.0047989916,
0.4045136869,
-0.321424365,
-0.3182566762,
-0.2337396145,
-0.1205969751,
-0.0468583889,
0.1339880377,
0.6908425689,
0.2351150513,
0.2440862954,
-0.0330899693,
0.0294750743,
0.0050700717,
-0.1881678104,
0.0786932856,
-0.1245699078,
0.1490847468,
0.2544292808,
0.1171046942,
-0.076619111,
-0.3060936034,
-0.1184603274,
-0.220976606,
-0.5335652232,
0.1360858679,
0.0855466872,
-0.2906820774,
-0.0308555365,
-0.072786741,
0.0191447921,
0.2176072001,
-0.1134599596,
0.2636506259,
-0.039084956,
-0.1840490699,
-0.0767866969,
-0.0296165943,
-0.0213163085,
0.0395328961,
-0.1393528432,
0.0402008593,
0.1173304841,
0.4005282521,
-0.2564073205,
0.0705071539,
0.1031444073,
0.3123991489,
0.0236264989,
-0.1334686279,
0.0955934972,
0.0091467425,
-0.1462747157,
-0.2022948563,
-0.1624468863,
0.0748468786,
-0.2686473131,
0.4047932327,
0.0084074307,
-0.1314478815,
0.1649597585,
0.168245405,
0.2920650244,
-0.2565493286,
-0.5357549191,
0.0282090046,
0.0150800236,
-0.0602179728,
0.0654671565,
-0.0238686688,
0.0673622787,
-0.1401838362,
0.0244526789,
-0.2616638541,
-0.0000498369,
0.1502280831,
-0.006720461,
0.5517870784,
0.4012801051,
0.6005728841,
-0.0661775395,
0.0918938667,
0.1528078616,
-0.0147359893,
0.6540018916,
0.2467100024,
-0.21856381,
0.0435645208,
-0.0482169017,
-0.02621416,
0.3894705772,
0.207569465,
0.1455650926,
-0.1148245782,
0.4333440959,
0.2368702441,
-0.0020243432,
0.3048751354,
-0.5437976718,
-0.1804254502,
0.2548132837,
0.4310247898,
-0.507371366,
-0.3955102563,
0.0435987711,
-0.3157794476,
0.307264179,
-0.1929803491,
-0.0006519482,
0.048138082,
-0.0866356865,
0.0819224641,
-0.1807378978,
0.0500817001,
-0.2162791491,
-0.0749922693,
-0.0966445878,
-0.0121544152,
0.2877599895,
-0.342728138,
0.210742712,
-0.2337401956,
0.2078984231,
0.1907051206,
0.0213448256,
-0.2241520137,
0.3385129571,
-0.1749183834,
-0.1115133539,
-0.071810551,
-0.2885772884,
0.0425319895,
-0.1818865985,
-0.1339042485,
0.0493440479,
-0.2068352848,
0.1409364939,
0.3582650721,
-0.3306204677,
0.0571807101,
0.1285652667,
0.2276867777,
-0.1215711609,
-0.2004283667,
0.1078859717,
0.1838667244,
-0.0722617432,
0.2219085991,
0.109333463,
-0.2368922234,
0.1598075032,
-0.0240699947,
-0.3439078927,
0.5287791491,
-0.4670107067,
0.3060244918,
0.1508341134,
-0.2817952633,
-0.1983256638,
0.3005361855,
-0.0364963599,
0.416167289,
0.6197940111,
0.0703197718,
-0.0085375607,
0.3828405738,
-0.2867331505,
0.1110057384,
0.444273442,
0.0354823619,
-0.0874339044,
0.0763647929,
0.1151953638,
-0.1434492171,
-0.1449118555,
0.028983824,
0.2201105803,
0.2666478753,
0.0663304478,
-0.0658480301,
-0.0587905869,
-0.2190837711,
0.185421735,
-0.0540740266,
0.108166106,
-0.1161488369,
0.1254769564,
-0.0036938172,
-0.151749447,
-0.153251797,
0.1124856919,
0.1517268121,
0.1317405701,
0.0266398415,
-0.093146503,
-0.1624270082,
-0.1187379956,
-0.0148240514,
-0.0479761548,
-0.008571513,
0.2399177849,
0.2391576171,
-0.2472816557,
-0.2346794903,
-0.0368512049,
0.3515054584,
-0.1599137187,
-0.0430693142,
-0.1856268942,
0.0427751914,
-0.0941627175,
0.0918411389,
0.2291276157,
0.274120301,
0.3628979325,
0.098798871,
-0.2361451238,
0.0463987514,
0.0200849771,
-0.2806489766,
0.0375689082,
-0.2801623642,
-0.0506352447,
-0.1814995706,
-0.4017319679,
-0.2940492332,
0.0484572686,
-0.2136876881,
-0.1209503859,
0.3594200015,
0.2213588208,
-0.1924252957,
-0.1647044718,
-0.1412422657,
-0.0271906797,
-0.4196074903,
0.3166359067,
-0.1018240526,
0.2229261398,
-0.0784573108,
-0.1216172948,
-0.070332922,
-0.505990386,
-0.0254837666,
0.1991568506,
-0.1796477586,
0.247685656,
0.0956991315,
-0.188132897,
-0.4313292801,
-0.0367175713,
-0.0820132047,
0.4609699249,
-0.0559887141,
0.2647231519,
-0.3275972605,
-0.0486320592,
-0.0881516188,
0.16407305,
0.4675886631,
-0.1230990887,
-0.1321261972,
0.2906357646,
0.1878262013,
0.0932341516,
0.2486406863,
0.1484410763,
0.1078997105,
0.1583163291,
0.257773459,
0.4758408666,
-0.0132598616,
0.3537459373,
-0.1806487739,
0.1811616123,
-0.0629276112,
-0.3044175804,
0.0902215913,
0.1761185378,
-0.0104922205,
-0.1328269392,
0.3145890534,
-0.130344823,
-0.2358281165,
-0.1519665718,
0.4087903798,
0.140617758,
-0.2767399549,
0.6161748767,
-0.2175592929,
0.0669739991,
0.0130959004,
0.1989496648,
-0.0729396045,
-0.2581877112,
0.034668427,
-0.0771945417,
-0.0035626478,
0.0157667324,
-0.6201172471,
-0.1037961096,
-0.7348014712,
0.1945824921,
0.2546136975,
0.4203131795,
0.2630218267,
-0.2731858492,
0.4100109041,
-0.1316803843,
0.2454742193,
0.1847003549,
-0.3379398584,
0.2078163624,
-0.0334035419,
-0.3991724849,
-0.0382953025,
-0.3553336561,
-0.3880007267,
0.0934053808,
0.2187522054,
-0.369884789,
-0.0151679479,
-0.0648522675,
-0.09636309,
-0.0208883733,
-0.0213154554,
-0.3431763351,
-0.1563172042,
0.0247229859,
0.3189598918,
-0.0419460014,
0.0636190474,
-0.0365340337,
0.2075861394,
0.1854449958,
0.0052044168,
0.0925570875,
-0.1126058176,
-0.0189585909,
-0.0445401073,
0.1609745324,
0.1449076235,
0.0884857625,
-0.0016813427,
-0.0676055849,
0.1565767527,
0.1307450831,
-0.0775162578,
-0.2168563306,
0.4103649855,
0.3544316292,
0.2132843435,
0.2864862084,
0.031882599,
0.2609133422,
-0.0044945516,
-0.4609473944,
0.052482523,
-0.3368799388,
-0.1111988872,
-0.7022080421,
0.2207272053,
0.2098457217,
0.1291484088,
0.2435233593,
-0.1922959238,
0.1943429112,
0.3990994096,
0.1793601364,
0.9543702602,
-0.3425573707,
0.4395095706,
0.200553149,
-0.2498933077,
0.0421645865,
-0.1718841642,
0.4339767992,
-0.1869428158,
-0.1428173482,
0.2209911048,
-0.1602594256,
-0.0038970318,
0.1749667823,
0.0103839636,
0.1408393085,
0.0545831174,
-0.2724597454,
-0.2982906103,
-0.0769252554,
-0.3973248005,
-0.4000499249,
-0.0812611654,
0.0079907998,
-0.091270268,
-0.2616399229,
0.1299060732,
0.0397277772,
-0.4066442549,
0.137442112,
-0.1283324063,
-0.0339101739,
0.0252633914,
-0.0187812708,
0.2313006073,
-0.2472966313,
-0.0118325278,
-0.1389426589,
-0.165470928,
0.1175366119,
0.1782704592,
0.087670967,
0.2732323706,
0.3476556838,
0.3208278716,
-0.2797981501,
0.2450403273,
-0.0386298038,
0.24709782,
0.0269272681,
-0.0094229206,
-0.7398142219,
-0.2770707607,
0.0814102292,
0.5765283704,
-0.0462442525,
-0.041251421,
0.2288648188,
-0.367772907,
-0.0874123797,
0.1226013824,
0.0234577283,
0.1255801916,
0.4317755103,
0.147437647,
-0.1711009443,
-0.0032449909,
0.3074453473,
0.1008309722,
0.1374734342,
0.214240849,
0.0512029082,
-0.4982790947,
-0.2763271034,
0.1729941964,
0.0560966283,
-0.4236966968,
0.2555827796,
0.0346920528,
-0.0998302251,
0.1983746439,
0.2802025676,
-0.0444328375,
-0.0701621622,
-0.2347718626,
-0.0422130078,
0.0778445154,
0.4823129177,
0.4376079142,
-0.0092770569,
0.043451108,
0.2773647904,
-0.4098941386,
-0.1012692228,
-0.26354298,
-0.1706923246,
0.1031137556,
0.191715911,
-0.157093972,
-0.2485821694,
-0.2314548343,
0.1217740476,
0.1095127761,
0.1856370866,
0.0099594779,
-0.2204296887,
0.0652233735,
0.0268535614,
0.0692744628,
-0.0124053061,
-0.0442201719,
-0.4056583047,
-0.4026629925,
-0.2240930796,
-0.2556388378,
-0.0581012852,
-0.01862837,
-0.2951928973,
0.1893862188,
0.1526641548,
-0.145420596,
0.504411757,
-0.4405688345,
-0.2880324721,
-0.2536024451,
-0.0390556343,
-0.0204366539,
-0.1000387743,
-0.123727411,
0.1322376877,
0.0891377926,
-0.0098005775,
0.2713642716,
-0.1450661719,
0.0326848924,
-0.0542566255,
0.1430613548,
0.5390293002,
0.2918037474,
-0.4942598045,
0.4230965972,
0.1387188584,
-0.0685576946,
-0.2051187605,
-0.4018737376,
0.2666893601,
0.015882127,
0.073649846,
-0.2112589478,
-0.2286805809,
-0.3007591963,
-0.046709463,
-0.1985905766,
-0.4065414667,
-0.2695236504,
0.3000283241,
0.3499615192,
-0.2810373902,
0.154896751,
-0.020922441,
-0.0263043046,
0.1267724186,
0.2693781853,
0.392806083,
0.7060075998,
0.3252282739,
-0.4333921671,
-0.0891521871,
-0.0549951307,
0.4373283386,
0.2419596016,
0.298815012,
0.3137168288,
0.1732143313,
0.0510274656,
0.0750977397,
0.048592709,
-0.1860371232,
-0.0548711382,
0.0830107182,
-0.0129106566,
-0.1432315707,
-0.23764956,
0.1842692792,
-0.315251261,
0.3856135607,
0.1862425059,
0.0794775039,
0.4294982255,
-0.4428107738,
0.1762868762,
-0.080740869,
0.45672068,
-0.2809704244,
-0.0646836758,
-0.0432204939,
0.1053427234,
0.3080560267,
0.0901572406,
-0.1798042804,
0.270442456,
-0.0519988202,
0.0788250268,
-0.4874316752,
0.0217131451,
-0.1057701781,
0.2321117222,
0.4933179021,
-0.1453856975,
0.2571784556,
0.026448667,
-0.193574369,
-0.1281037629,
-0.0667100847,
-0.0381668694,
-0.0670606345,
0.0632709712,
0.2352299243,
-0.4257181883,
0.0281727426,
0.1450079978,
-0.2164349109,
-0.0908323824,
-0.4721773267,
-0.2413537204,
-0.0959172398,
-0.0337369256,
0.0694231018,
0.1823059022,
0.6906642318,
0.3652184606,
-0.1364853233,
0.1033620089,
-0.34057796,
-0.1763218343,
-0.3086299598,
-0.220232144,
0.0691795573,
0.2312633544,
0.4550160766,
0.2721433938,
0.2278196961,
-0.0682941228,
0.1393442452,
-0.3666186929,
0.398447603,
-0.1806869805,
0.2856482863,
0.2190853953,
-0.0290677585,
-0.1811083257,
-0.6279546618,
0.2281725258,
0.1717587858,
0.0131298825,
-0.0495901033,
0.1054146141,
0.1774184555,
0.3426145911,
-0.2193610519,
-0.0282703359,
-0.2209177911,
0.2068751603,
-0.1463595182,
-0.2218935341,
0.148094818,
-0.0441629291,
-0.0158979259,
0.163041383,
0.1358189434,
0.0746882707,
0.032171946,
0.1745645106,
0.478403151,
-0.2635794282,
0.2802176476,
-0.2502787709,
0.0017434731,
0.1643897742,
0.2768269777,
-0.1753016114,
0.1120074838,
-0.0119548384,
-0.3055002093,
-0.2477167547,
-0.0073186532,
0.3155238032,
-0.1459381729,
-0.2534735501,
-0.078535229,
0.1924699545,
0.283195287,
0.3042107821,
0.0231901407,
-0.3225079775,
-0.053712029,
0.029833097,
0.3315559328,
0.2489202023,
-0.1983097047,
-0.0402147919,
-0.1452147216,
0.3150455654,
-0.4208285213,
0.1110670641,
-0.2892518044,
-0.3250941038
] |
https://github.com/huggingface/datasets/issues/406 | Faster Shuffling? | I tried using `.take` from pyarrow recordbatches but it doesn't improve the speed that much:
```python
import nlp
import numpy as np
dset = nlp.Dataset.from_file("dummy_test_select.arrow") # dummy dataset with 100000 examples like {"a": "h"*512}
indices = np.random.randint(0, 100_000, 1000_000)
```
```python
%%time
batch_size = 10_000
writer = ArrowWriter(schema=dset.schema, path="dummy_path",
writer_batch_size=1000, disable_nullable=False)
for i in tqdm(range(0, len(indices), batch_size)):
table = pa.concat_tables(dset._data.slice(int(i), 1) for i in indices[i : min(len(indices), i + batch_size)])
batch = table.to_pydict()
writer.write_batch(batch)
writer.finalize()
# 9.12s
```
```python
%%time
batch_size = 10_000
writer = ArrowWriter(schema=dset.schema, path="dummy_path",
writer_batch_size=1000, disable_nullable=False)
for i in tqdm(range(0, len(indices), batch_size)):
batch_indices = indices[i : min(len(indices), i + batch_size)]
# First, extract only the indices that we need with a mask
mask = [False] * len(dset)
for k in batch_indices:
mask[k] = True
t_batch = dset._data.filter(pa.array(mask))
# Second, build the list of indices for the filtered table, and taking care of duplicates
rev_positions = {}
duplicates = 0
for i, j in enumerate(sorted(batch_indices)):
if j in rev_positions:
duplicates += 1
else:
rev_positions[j] = i - duplicates
rev_map = [rev_positions[j] for j in batch_indices]
# Third, use `.take` from the combined recordbatch
t_combined = t_batch.combine_chunks() # load in memory
recordbatch = t_combined.to_batches()[0]
table = pa.Table.from_arrays(
[recordbatch[c].take(pa.array(rev_map)) for c in range(len(dset._data.column_names))],
schema=writer.schema
)
writer.write_table(table)
writer.finalize()
# 3.2s
```
| Consider shuffling bookcorpus:
```
dataset = nlp.load_dataset('bookcorpus', split='train')
dataset.shuffle()
```
According to tqdm, this will take around 2.5 hours on my machine to complete (even with the faster version of select from #405). I've also tried with `keep_in_memory=True` and `writer_batch_size=1000`.
But I can also just write the lines to a text file:
```
batch_size = 100000
with open('tmp.txt', 'w+') as out_f:
for i in tqdm(range(0, len(dataset), batch_size)):
batch = dataset[i:i+batch_size]['text']
print("\n".join(batch), file=out_f)
```
Which completes in a couple minutes, followed by `shuf tmp.txt > tmp2.txt` which completes in under a minute. And finally,
```
dataset = nlp.load_dataset('text', data_files='tmp2.txt')
```
Which completes in under 10 minutes. I read up on Apache Arrow this morning, and it seems like the columnar data format is not especially well-suited to shuffling rows, since moving items around requires a lot of book-keeping.
Is shuffle inherently slow, or am I just using it wrong? And if it is slow, would it make sense to try converting the data to a row-based format on disk and then shuffling? (Instead of calling select with a random permutation, as is currently done.) | 210 | Faster Shuffling?
Consider shuffling bookcorpus:
```
dataset = nlp.load_dataset('bookcorpus', split='train')
dataset.shuffle()
```
According to tqdm, this will take around 2.5 hours on my machine to complete (even with the faster version of select from #405). I've also tried with `keep_in_memory=True` and `writer_batch_size=1000`.
But I can also just write the lines to a text file:
```
batch_size = 100000
with open('tmp.txt', 'w+') as out_f:
for i in tqdm(range(0, len(dataset), batch_size)):
batch = dataset[i:i+batch_size]['text']
print("\n".join(batch), file=out_f)
```
Which completes in a couple minutes, followed by `shuf tmp.txt > tmp2.txt` which completes in under a minute. And finally,
```
dataset = nlp.load_dataset('text', data_files='tmp2.txt')
```
Which completes in under 10 minutes. I read up on Apache Arrow this morning, and it seems like the columnar data format is not especially well-suited to shuffling rows, since moving items around requires a lot of book-keeping.
Is shuffle inherently slow, or am I just using it wrong? And if it is slow, would it make sense to try converting the data to a row-based format on disk and then shuffling? (Instead of calling select with a random permutation, as is currently done.)
I tried using `.take` from pyarrow recordbatches but it doesn't improve the speed that much:
```python
import nlp
import numpy as np
dset = nlp.Dataset.from_file("dummy_test_select.arrow") # dummy dataset with 100000 examples like {"a": "h"*512}
indices = np.random.randint(0, 100_000, 1000_000)
```
```python
%%time
batch_size = 10_000
writer = ArrowWriter(schema=dset.schema, path="dummy_path",
writer_batch_size=1000, disable_nullable=False)
for i in tqdm(range(0, len(indices), batch_size)):
table = pa.concat_tables(dset._data.slice(int(i), 1) for i in indices[i : min(len(indices), i + batch_size)])
batch = table.to_pydict()
writer.write_batch(batch)
writer.finalize()
# 9.12s
```
```python
%%time
batch_size = 10_000
writer = ArrowWriter(schema=dset.schema, path="dummy_path",
writer_batch_size=1000, disable_nullable=False)
for i in tqdm(range(0, len(indices), batch_size)):
batch_indices = indices[i : min(len(indices), i + batch_size)]
# First, extract only the indices that we need with a mask
mask = [False] * len(dset)
for k in batch_indices:
mask[k] = True
t_batch = dset._data.filter(pa.array(mask))
# Second, build the list of indices for the filtered table, and taking care of duplicates
rev_positions = {}
duplicates = 0
for i, j in enumerate(sorted(batch_indices)):
if j in rev_positions:
duplicates += 1
else:
rev_positions[j] = i - duplicates
rev_map = [rev_positions[j] for j in batch_indices]
# Third, use `.take` from the combined recordbatch
t_combined = t_batch.combine_chunks() # load in memory
recordbatch = t_combined.to_batches()[0]
table = pa.Table.from_arrays(
[recordbatch[c].take(pa.array(rev_map)) for c in range(len(dset._data.column_names))],
schema=writer.schema
)
writer.write_table(table)
writer.finalize()
# 3.2s
```
| [
-0.2073032409,
0.1424287558,
-0.0256032515,
-0.145350039,
-0.10258995,
-0.1113142818,
0.1211356521,
0.5408861637,
-0.2365822643,
0.0190716758,
-0.0381177217,
0.5862334371,
-0.1683038175,
-0.2764600217,
0.2058221251,
-0.0411372334,
0.0331522599,
-0.0362088792,
-0.2147113681,
-0.0471258909,
-0.0500185899,
-0.4499436021,
-0.2384398282,
-0.2234771401,
-0.0126471855,
-0.2257244885,
-0.1654446572,
0.0786907226,
-0.1654578447,
0.055161044,
-0.1150208861,
0.2012873739,
-0.1080076769,
0.1667569727,
-0.0001167829,
-0.1386467516,
0.0993147716,
0.1305753887,
-0.3299337029,
0.1783211827,
0.4515006542,
-0.0504890122,
-0.1290060133,
-0.1908954829,
0.1902825683,
-0.4143747091,
0.0865717605,
-0.1146507189,
-0.148553431,
-0.022918418,
0.1140142009,
0.3141120374,
-0.1818509847,
0.2556698918,
0.4748251438,
0.2703823745,
-0.3750653565,
0.3879561424,
0.2586724758,
-0.0214156546,
-0.1545356512,
0.2556578815,
-0.1949238479,
0.0181237347,
0.1430737972,
0.1754678935,
0.1023448259,
0.4606058598,
0.1073967069,
0.4037259519,
0.2905986309,
-0.2549728751,
-0.2978287637,
-0.2941877544,
0.2330024242,
-0.0797467381,
0.057025522,
0.3016264141,
-0.2735321522,
-0.2154005319,
-0.0974209756,
0.1640343815,
0.2480157316,
-0.2000270039,
0.3221797049,
0.3900919259,
0.202117607,
-0.060731262,
0.7018341422,
-0.1057813987,
0.4943524003,
-0.1712974906,
0.021909235,
0.411685586,
-0.3191822171,
-0.2636020482,
-0.3010388911,
-0.1255468875,
-0.0711556301,
0.1603336632,
0.6939632297,
0.214463383,
0.1904995441,
-0.0473996848,
0.0462992005,
0.0036273524,
-0.3000273108,
0.0714231506,
-0.1324052811,
0.0648487285,
0.312497139,
0.1253008544,
-0.0777112693,
-0.3089742362,
-0.0426211581,
-0.2280756831,
-0.4801683128,
0.116059944,
0.0091328993,
-0.3454591632,
-0.1375004798,
-0.0533410832,
0.0066608638,
0.1520721167,
-0.1462172419,
0.253467381,
-0.0821314007,
-0.1687268466,
-0.1135870516,
0.0287620649,
-0.0324033275,
0.08957313,
-0.1062910184,
0.0718556792,
0.0299968868,
0.47170192,
-0.2529069781,
0.0169552974,
0.0952398628,
0.321092099,
0.0433102548,
-0.113618046,
0.083029151,
0.112367548,
-0.0979955345,
-0.1490402818,
-0.132677421,
0.0459329635,
-0.339520812,
0.385432899,
0.0259134285,
-0.1179536954,
0.0696306378,
0.1244065911,
0.2436410934,
-0.2887321115,
-0.5230558515,
-0.0648373514,
-0.0311095081,
-0.1096800715,
0.0887994021,
-0.0550133027,
0.0886193812,
-0.1288460344,
0.0646333247,
-0.2630298734,
-0.0793602467,
0.1027544364,
-0.0587742589,
0.5555560589,
0.4522923231,
0.6798374057,
-0.0710057691,
0.0568025447,
0.1080941483,
0.0309063941,
0.6843826175,
0.194541797,
-0.2532132864,
-0.019348653,
-0.1120895222,
0.0253337473,
0.3429554701,
0.2405738533,
0.0689611733,
-0.0779745355,
0.3746804297,
0.2942915857,
0.0483490303,
0.2648988962,
-0.487197876,
-0.1362497807,
0.2310034782,
0.4312670231,
-0.6047837734,
-0.367320329,
0.0409888588,
-0.2627371848,
0.3437723219,
-0.1634202451,
-0.024147464,
-0.0028758682,
-0.0728362203,
0.0040970743,
-0.1673828959,
0.1009117514,
-0.277005285,
-0.0851026699,
-0.0123085305,
-0.0934434235,
0.2220734358,
-0.3609886765,
0.1847950816,
-0.1915201694,
0.191613093,
0.2072871327,
-0.0104970448,
-0.1980128735,
0.4299574494,
-0.102416046,
-0.0807145685,
-0.0310385674,
-0.2975628376,
0.0371087566,
-0.1596858799,
-0.1389847398,
0.1140311584,
-0.2169330865,
0.1356174648,
0.3588957787,
-0.2914273441,
0.072110787,
0.0999830812,
0.2370675653,
-0.0914406329,
-0.1885739863,
0.0344023332,
0.2401290238,
-0.0574309155,
0.2263469398,
0.118693389,
-0.2045536041,
0.1560782343,
-0.0530226417,
-0.4021678567,
0.5432928801,
-0.4847531915,
0.3439682722,
0.1877931356,
-0.2420199811,
-0.1256658733,
0.2605875731,
-0.0751952976,
0.450863868,
0.5965419412,
0.0635084659,
0.0748015791,
0.4007710218,
-0.2726922631,
0.049174387,
0.4478170574,
-0.0474844873,
-0.0537607893,
0.0778429657,
-0.0244944021,
-0.2125132382,
-0.0856434852,
0.0269689262,
0.2142336071,
0.2641349435,
0.1126311272,
-0.0479860604,
-0.0872231573,
-0.230407536,
0.16144678,
-0.0465981439,
0.0837045684,
-0.0975085795,
0.1120571494,
-0.0303852893,
-0.2148165107,
-0.1830171347,
0.0966956094,
0.1835553646,
0.1354514211,
0.0691547319,
-0.1409349144,
-0.1086600497,
-0.1263201237,
-0.0809584185,
0.028073743,
-0.1020171791,
0.1147607192,
0.2489231229,
-0.203647092,
-0.2030913532,
-0.1168930978,
0.33520329,
-0.1054506749,
-0.1940311044,
-0.1823439896,
-0.0091368034,
-0.1343149841,
0.048568882,
0.1978746951,
0.3558698297,
0.327175647,
0.1494713426,
-0.2200953364,
0.021561224,
0.0938111991,
-0.220909223,
0.0969474465,
-0.377856046,
-0.0812891126,
-0.1770185232,
-0.4263556004,
-0.2799150944,
0.0594400652,
-0.1173179299,
-0.0908801258,
0.3733412027,
0.1376007795,
-0.2064495087,
-0.1201335862,
-0.0493216775,
-0.0749143064,
-0.3606601954,
0.3090266883,
-0.1253744066,
0.1422900856,
-0.0030993856,
-0.1096465737,
-0.0249074865,
-0.5705385804,
-0.0554799959,
0.1581885815,
-0.119313322,
0.2787481844,
0.1174007654,
-0.1336579025,
-0.451035738,
-0.0693098456,
-0.0896496475,
0.4983685315,
-0.0774878561,
0.2212919891,
-0.3810479045,
-0.0344087183,
-0.1012931019,
0.1404464394,
0.4684354663,
-0.1875358224,
-0.1023729146,
0.3078251481,
0.1736068726,
0.0701605082,
0.2383756191,
0.1195237786,
0.1213328093,
0.136334762,
0.2258580029,
0.473349601,
-0.0470223092,
0.249029547,
-0.2466055006,
0.0461118072,
-0.0307702459,
-0.3000227213,
0.1443729699,
0.1948067546,
0.0175131857,
-0.12045376,
0.2602736354,
-0.1087936834,
-0.2526512146,
-0.0579943433,
0.4636721313,
0.1634529233,
-0.273141861,
0.5276740789,
-0.2075199336,
0.0069011478,
-0.0099865571,
0.2193981856,
-0.0758062005,
-0.2332173139,
0.0865600482,
-0.0811876953,
-0.0393811055,
-0.0054832101,
-0.591270864,
-0.0939204022,
-0.690349102,
0.22435835,
0.2033423781,
0.4551716447,
0.2934637368,
-0.3032829165,
0.4281885922,
-0.1267066002,
0.2624974251,
0.1844917387,
-0.2910935879,
0.206033498,
0.0062214956,
-0.4882080257,
-0.074489437,
-0.3385717273,
-0.3702445924,
0.0964805335,
0.2184393108,
-0.3918656707,
0.0253929868,
0.0135670491,
-0.0772424489,
-0.0157020837,
0.0119210705,
-0.3758604527,
-0.246670872,
0.0783743784,
0.2998022735,
-0.0535790622,
0.0080259107,
0.1029720828,
0.2369661033,
0.1267008036,
-0.0103694871,
0.0648303702,
-0.0899240822,
-0.0197220817,
-0.000094533,
0.137655437,
0.1903957129,
0.0832221955,
-0.1275290251,
-0.0508878827,
0.2487168461,
0.0248963665,
-0.1076378375,
-0.1637823433,
0.3971325159,
0.3331100345,
0.2223043144,
0.2512410581,
0.0435298346,
0.2704720497,
0.0193482712,
-0.4496092796,
0.0902750567,
-0.3458965123,
-0.0779214725,
-0.6981351376,
0.3353739977,
0.3034199476,
0.1467077285,
0.2382644713,
-0.1312586963,
0.2584004998,
0.3906690776,
0.1868158579,
0.9388628602,
-0.3655799925,
0.4324250221,
0.3174660206,
-0.2735366821,
0.0770981237,
-0.0952981561,
0.362070024,
-0.1664983034,
-0.0615006164,
0.2290953994,
-0.2028221637,
-0.0359409004,
0.0739555806,
0.0364175662,
0.1265505701,
-0.0108730644,
-0.2703079879,
-0.2791453302,
-0.025185138,
-0.3461185992,
-0.4222585261,
-0.0649614334,
0.0090785325,
-0.1261392832,
-0.1887585521,
0.1764243841,
0.1053683013,
-0.3683366776,
0.1437906325,
-0.1949706376,
-0.0230594538,
0.1270229965,
-0.0127136167,
0.2234880626,
-0.2524958253,
-0.1077338159,
-0.1966210008,
-0.1868239343,
0.0435281433,
0.1743920892,
0.1419886053,
0.2909941673,
0.3207318783,
0.3545379341,
-0.3061876893,
0.2015725374,
0.0204854012,
0.2604016662,
0.0838745087,
0.0118569843,
-0.7292292714,
-0.2502436638,
0.0936558917,
0.6161043644,
0.0301326029,
-0.0538850129,
0.178405866,
-0.3653876781,
-0.0951612592,
0.084770225,
0.0038555544,
0.1426538825,
0.3974075317,
0.2168789357,
-0.1787637621,
-0.0021244278,
0.3385837078,
0.0916302204,
0.1737976372,
0.2557826638,
0.0044423416,
-0.4787675738,
-0.2208832651,
0.1195752695,
0.0927252844,
-0.399561584,
0.2578274012,
0.0304934718,
-0.0647595078,
0.1437390894,
0.2030363977,
-0.0384068303,
-0.0316661261,
-0.307947576,
-0.0839978307,
0.1671339124,
0.4880537093,
0.44944942,
0.040726766,
0.0059983432,
0.2657168806,
-0.4514319599,
-0.1856051087,
-0.2125834823,
-0.1643106788,
0.118373774,
0.1486974955,
-0.1962724328,
-0.246767655,
-0.2014066279,
0.1216192842,
0.1083658561,
0.2122838646,
0.0690097213,
-0.1696736217,
0.0784118325,
0.0565264523,
0.0680001676,
-0.029617222,
0.0130024143,
-0.4090907276,
-0.3787913322,
-0.2591432035,
-0.2203105539,
-0.0359104313,
-0.0143613555,
-0.3235982656,
0.1757279932,
0.1370864213,
-0.1018622145,
0.5023977757,
-0.4558427334,
-0.2822437882,
-0.212438643,
-0.0117256586,
0.0002806522,
-0.0607920773,
-0.1332335025,
0.0808448046,
0.1220137477,
-0.0661131293,
0.232735008,
-0.1760274768,
0.0310676545,
-0.1178011298,
0.2123602331,
0.5724337697,
0.2858690023,
-0.5049552321,
0.4132997394,
0.076131478,
-0.1094662249,
-0.203536123,
-0.3783608079,
0.2629652917,
0.0307832584,
0.0544831194,
-0.2800427973,
-0.1498416513,
-0.401699692,
-0.1037762389,
-0.120823428,
-0.4394890964,
-0.3144519329,
0.3442713916,
0.3613233864,
-0.2875059545,
0.1918439567,
-0.0268153138,
0.0144086257,
0.1336644441,
0.2126208097,
0.3895175159,
0.7033469677,
0.2981711626,
-0.4683301151,
-0.090886645,
-0.018253047,
0.5345419645,
0.2181614041,
0.3152852654,
0.3625561297,
0.1196433455,
0.0600798689,
0.1762860566,
-0.0175821669,
-0.1426123083,
0.0021403907,
0.0642023683,
-0.0033141673,
-0.085961923,
-0.2722112536,
0.1819037646,
-0.3435500562,
0.3356221914,
0.2366923243,
0.0677235946,
0.4312196374,
-0.4143012464,
0.1808573604,
-0.1028551906,
0.4148306847,
-0.2638711333,
-0.1417447478,
-0.0495336652,
0.1888807565,
0.2471140623,
0.0517049059,
-0.1387279481,
0.2436000705,
-0.0785281956,
0.0411724001,
-0.5003123283,
-0.0093053579,
-0.0582356378,
0.2283153087,
0.4879379869,
-0.1585578024,
0.24803029,
0.0245645232,
-0.1947031021,
-0.1007221043,
-0.0872065425,
-0.0288395062,
-0.1066077352,
0.1006261557,
0.1622859389,
-0.3728920221,
-0.047851447,
0.1560516953,
-0.1136876717,
-0.1456873268,
-0.5345343947,
-0.1929798126,
-0.1256035566,
0.0831801221,
0.0428384542,
0.0916243643,
0.7034355998,
0.4074105024,
-0.126374647,
0.1671242416,
-0.2396186292,
-0.2513002157,
-0.2989161909,
-0.3349252045,
-0.1049491614,
0.241728738,
0.5042907596,
0.284442544,
0.3205122948,
-0.0640760213,
0.1768755168,
-0.3291896582,
0.3407905996,
-0.1731743962,
0.2252848744,
0.2525813878,
-0.0485384166,
-0.217092678,
-0.6656163335,
0.1990627348,
0.2431151271,
-0.005819425,
0.0005776435,
0.0327273905,
0.1565547138,
0.3020456731,
-0.1743311137,
-0.0529878959,
-0.1665408015,
0.2265946865,
-0.1683645248,
-0.2666845918,
0.2494230121,
0.0240982398,
0.0117009282,
0.0665720403,
0.1200328767,
0.062114127,
0.083030045,
0.1514194906,
0.5137015581,
-0.271922648,
0.2024232,
-0.2667111158,
0.0697063282,
0.149395287,
0.3052289188,
-0.2260490358,
0.0448299311,
-0.0256070122,
-0.2617835402,
-0.1980851591,
0.0609432384,
0.4382949471,
-0.1793804169,
-0.2132153511,
-0.0514394045,
0.2328604609,
0.2575276196,
0.3161090612,
0.1360975206,
-0.2586582899,
-0.0449453294,
-0.0011651125,
0.3642782867,
0.1605045497,
-0.1450720876,
-0.0107188076,
-0.1453752518,
0.3728182912,
-0.4335771501,
0.0835621879,
-0.3130492568,
-0.3294509649
] |
https://github.com/huggingface/datasets/issues/406 | Faster Shuffling? | Shuffling is now significantly faster thanks to #513
Feel free to play with it now :)
Closing this one, but feel free to re-open if you have other questions | Consider shuffling bookcorpus:
```
dataset = nlp.load_dataset('bookcorpus', split='train')
dataset.shuffle()
```
According to tqdm, this will take around 2.5 hours on my machine to complete (even with the faster version of select from #405). I've also tried with `keep_in_memory=True` and `writer_batch_size=1000`.
But I can also just write the lines to a text file:
```
batch_size = 100000
with open('tmp.txt', 'w+') as out_f:
for i in tqdm(range(0, len(dataset), batch_size)):
batch = dataset[i:i+batch_size]['text']
print("\n".join(batch), file=out_f)
```
Which completes in a couple minutes, followed by `shuf tmp.txt > tmp2.txt` which completes in under a minute. And finally,
```
dataset = nlp.load_dataset('text', data_files='tmp2.txt')
```
Which completes in under 10 minutes. I read up on Apache Arrow this morning, and it seems like the columnar data format is not especially well-suited to shuffling rows, since moving items around requires a lot of book-keeping.
Is shuffle inherently slow, or am I just using it wrong? And if it is slow, would it make sense to try converting the data to a row-based format on disk and then shuffling? (Instead of calling select with a random permutation, as is currently done.) | 29 | Faster Shuffling?
Consider shuffling bookcorpus:
```
dataset = nlp.load_dataset('bookcorpus', split='train')
dataset.shuffle()
```
According to tqdm, this will take around 2.5 hours on my machine to complete (even with the faster version of select from #405). I've also tried with `keep_in_memory=True` and `writer_batch_size=1000`.
But I can also just write the lines to a text file:
```
batch_size = 100000
with open('tmp.txt', 'w+') as out_f:
for i in tqdm(range(0, len(dataset), batch_size)):
batch = dataset[i:i+batch_size]['text']
print("\n".join(batch), file=out_f)
```
Which completes in a couple minutes, followed by `shuf tmp.txt > tmp2.txt` which completes in under a minute. And finally,
```
dataset = nlp.load_dataset('text', data_files='tmp2.txt')
```
Which completes in under 10 minutes. I read up on Apache Arrow this morning, and it seems like the columnar data format is not especially well-suited to shuffling rows, since moving items around requires a lot of book-keeping.
Is shuffle inherently slow, or am I just using it wrong? And if it is slow, would it make sense to try converting the data to a row-based format on disk and then shuffling? (Instead of calling select with a random permutation, as is currently done.)
Shuffling is now significantly faster thanks to #513
Feel free to play with it now :)
Closing this one, but feel free to re-open if you have other questions | [
-0.1669750214,
0.0758927763,
-0.0756696165,
-0.1069153696,
-0.0451757461,
-0.1096985638,
0.1049446613,
0.5459721684,
-0.222425878,
0.1107434779,
-0.0171531308,
0.5978962183,
-0.1472126395,
-0.2247784734,
0.1525782645,
-0.0917220861,
0.0197474435,
-0.0066344216,
-0.2984011471,
-0.0681977943,
-0.1076796949,
-0.3407296836,
-0.1966789067,
-0.2414290309,
-0.0211047903,
-0.2671125233,
-0.1641607881,
0.1271979511,
-0.1086057723,
0.0356095769,
-0.18164666,
0.2036724389,
-0.1019434631,
0.2518034577,
-0.0001064402,
-0.18781735,
-0.0013782764,
0.1245128885,
-0.3185117841,
0.1700073481,
0.4203976393,
-0.0366484448,
-0.1810668558,
-0.2470212281,
0.1335790604,
-0.2439088821,
0.1669650674,
-0.0882610902,
-0.0787343234,
-0.0348338,
0.1946194768,
0.306712687,
-0.1423861384,
0.1317121089,
0.5130022764,
0.098355107,
-0.3334550858,
0.2333613485,
0.2945885062,
-0.086321719,
-0.1773553938,
0.2387265265,
-0.0959550068,
-0.0672892481,
0.137143001,
0.1144749373,
0.0959912986,
0.3252631426,
0.0591604933,
0.4156249166,
0.2406330258,
-0.2018207461,
-0.2674720287,
-0.2720342875,
0.2022289038,
-0.0449452102,
0.1043059081,
0.2704422474,
-0.239393577,
-0.1595275104,
-0.0910153091,
0.1850958318,
0.2104176134,
-0.1917830855,
0.2724061012,
0.442337662,
0.2230267227,
-0.1347958297,
0.6850677133,
-0.1429264247,
0.3533960879,
-0.0897841826,
0.0236884803,
0.4135655165,
-0.283429414,
-0.3294466734,
-0.2499970645,
-0.1825530231,
-0.1107687503,
0.1838969439,
0.7327419519,
0.2453480065,
0.2195363641,
-0.0025332328,
0.0044259876,
0.0172556788,
-0.3033534288,
0.0676692277,
-0.0833190531,
0.174163565,
0.1895966381,
0.1265304685,
-0.087552011,
-0.3122541308,
-0.1035778373,
-0.1677166224,
-0.4825845659,
0.1387092173,
0.0155340582,
-0.2844125032,
-0.0667906478,
-0.0099282749,
0.0018036887,
0.2151008248,
-0.1538622379,
0.275154233,
-0.0306298472,
-0.2389082164,
-0.14743644,
-0.0921701044,
-0.0841054544,
0.0927617624,
-0.1854155362,
0.0111723579,
0.1070575863,
0.4471132457,
-0.181314826,
0.0750128776,
0.0932676792,
0.3140337765,
0.0747545958,
-0.1450025737,
0.0529059693,
0.0301001091,
-0.1538799256,
-0.1871066689,
-0.163969174,
0.1298397183,
-0.2964134812,
0.3371614814,
0.0634577051,
-0.1148028076,
0.1358178407,
0.241995275,
0.2536455691,
-0.278349191,
-0.3240191638,
0.0042139506,
-0.0300786048,
-0.0588061325,
0.0889042243,
0.0079696756,
0.0558056012,
-0.1506493986,
0.0332128778,
-0.2832564712,
-0.0301030427,
0.1387460381,
-0.0630682558,
0.4716357589,
0.378451407,
0.5905823708,
-0.0927201584,
0.0524726436,
0.151807785,
0.1000732929,
0.6754475832,
0.1847667843,
-0.2222537398,
0.0069718659,
-0.1234954447,
0.0189204216,
0.329983741,
0.2190210074,
0.1064448357,
-0.0470620915,
0.4243717492,
0.3086519241,
0.0576070845,
0.2672392726,
-0.5271471739,
-0.1680127978,
0.2397627831,
0.4268020093,
-0.4836191535,
-0.3931615353,
0.0215598419,
-0.2457867116,
0.3352413177,
-0.2223268449,
0.0048057884,
0.0780969858,
-0.0988786072,
0.0684457123,
-0.172212109,
-0.0461623333,
-0.2284313142,
-0.0307572819,
-0.0511140898,
-0.0219244082,
0.2823065519,
-0.3760943413,
0.1389163136,
-0.2351232469,
0.2231090367,
0.1523121446,
0.1031892523,
-0.1222537011,
0.3160507083,
-0.1441676319,
-0.1249850765,
-0.032915052,
-0.2858459651,
0.060233742,
-0.1428826302,
-0.1032397449,
0.041422382,
-0.1743187606,
0.1801926494,
0.4312618971,
-0.3207772076,
0.0851426572,
0.1532296687,
0.2604211569,
-0.1293296218,
-0.154676795,
0.1511733085,
0.1778826565,
-0.0839821845,
0.2608782053,
0.0671197996,
-0.0981706381,
0.1191635579,
0.0282842368,
-0.360794872,
0.5761176348,
-0.4362381697,
0.2577602863,
0.1505967677,
-0.2896022201,
-0.1527446806,
0.1924869716,
-0.068920508,
0.3874970078,
0.6559894681,
0.0933466032,
0.040864639,
0.404800266,
-0.363710165,
0.136624679,
0.5051816702,
0.0175944939,
-0.0612063892,
0.0454888754,
0.0998163447,
-0.0828497857,
-0.151659295,
0.0592623949,
0.1986665726,
0.3086874783,
0.1105102152,
-0.0429087132,
-0.152237311,
-0.225377202,
0.1467135847,
-0.0810678601,
0.1443348229,
-0.0461750701,
0.1731485426,
0.0282910541,
-0.2468810081,
-0.1958768666,
0.1010337546,
0.1578457206,
0.1300907433,
0.0456532985,
-0.1185930222,
-0.1928806901,
-0.1469245255,
-0.0087562259,
-0.0410587788,
-0.0655925274,
0.220376268,
0.2674485445,
-0.2967946529,
-0.2441505641,
-0.0966953114,
0.3949587345,
-0.0981088355,
-0.0882317051,
-0.202263087,
0.0434111394,
-0.1129605621,
0.157792747,
0.2093464583,
0.278398186,
0.4065814912,
0.1497822702,
-0.205658406,
0.1125963032,
-0.0035845041,
-0.2856873572,
0.0597443581,
-0.2784018815,
-0.0796291977,
-0.1288376153,
-0.3703230321,
-0.3678687513,
0.0662479699,
-0.1745668203,
-0.1471478194,
0.2800326049,
0.2361858338,
-0.1627957225,
-0.2388629466,
-0.2241324037,
-0.0004684497,
-0.4718469083,
0.331335634,
-0.0771486089,
0.2015340328,
-0.0852285177,
-0.1230718493,
-0.0027066134,
-0.4613553286,
-0.0153977238,
0.1507294625,
-0.1685829908,
0.2793677747,
0.0150952414,
-0.1759362817,
-0.4089841247,
-0.0797426105,
-0.0427275486,
0.4191711545,
-0.1128400341,
0.2114584148,
-0.3544738889,
-0.0188405365,
-0.1047079116,
0.0991762951,
0.4139262438,
-0.1405697167,
-0.2141788304,
0.2670761347,
0.1871365607,
0.0565983132,
0.2416375577,
0.1690843403,
0.0107138623,
0.1163990051,
0.2601452768,
0.4409126639,
-0.0831344724,
0.3029328585,
-0.1711629331,
0.1169439107,
-0.0787569657,
-0.2479392588,
0.0979945138,
0.1595517993,
0.0225038901,
-0.1101273224,
0.3593631983,
-0.0794382989,
-0.2885236144,
-0.09890569,
0.3730283082,
0.1068890989,
-0.2913455367,
0.5682032108,
-0.1953888535,
0.0134633379,
-0.0165438056,
0.1917996258,
-0.0891628265,
-0.2027380466,
0.0412719063,
-0.1133088022,
-0.076141037,
0.0043633543,
-0.5783766508,
-0.1198523492,
-0.7263133526,
0.1553501785,
0.231643796,
0.368396461,
0.2024151683,
-0.3260200322,
0.3546541631,
-0.1572311223,
0.3486216664,
0.1606160849,
-0.3252025247,
0.2688458562,
-0.0398483239,
-0.4078153968,
-0.0648056865,
-0.3783377409,
-0.3934675455,
0.1685015857,
0.2311153561,
-0.3417009711,
-0.0323171392,
-0.0146006197,
-0.1042356938,
-0.0056246296,
-0.0057704262,
-0.3624523282,
-0.2114625871,
-0.057144206,
0.3083365262,
-0.0509890988,
0.1128477752,
-0.0503517129,
0.1073432192,
0.190297991,
-0.0195576996,
0.1275953203,
-0.0592937469,
0.0056247264,
0.0301180743,
0.1298808903,
0.1527165323,
0.149002865,
-0.1030580252,
-0.0561412722,
0.1591081321,
0.1278183758,
-0.1362478137,
-0.2232069373,
0.4086352885,
0.3234091699,
0.2304273248,
0.2706474066,
0.0015277509,
0.3054817319,
0.009950351,
-0.3429876268,
0.1012384966,
-0.3108820617,
-0.140318349,
-0.6326963305,
0.2537316382,
0.233756572,
0.1193953156,
0.2409455925,
-0.2747865915,
0.1304338872,
0.3508598506,
0.1714956164,
0.9784499407,
-0.3513527811,
0.4275635481,
0.2920376062,
-0.1599370986,
0.1142089441,
-0.2114715874,
0.4349349141,
-0.162618205,
-0.0779475123,
0.2206714749,
-0.1078560874,
-0.0328951739,
0.1291020066,
-0.0351380929,
0.1118037254,
0.0240858048,
-0.2238418162,
-0.305084765,
-0.0248683393,
-0.3679129183,
-0.4044308662,
-0.1523009539,
0.0756226182,
-0.0353098363,
-0.2183146328,
0.0845695809,
0.05691728,
-0.3565791845,
0.1671098173,
-0.1411593854,
-0.0466481894,
0.0424326845,
-0.0049427599,
0.1969108731,
-0.219865948,
-0.0890044868,
-0.1474565268,
-0.1571685076,
0.1294108927,
0.1665554643,
0.1377655268,
0.2241069376,
0.3170353472,
0.2754784226,
-0.2594658732,
0.2806795835,
-0.0948650986,
0.1715531349,
0.0587382428,
0.0107995458,
-0.7354444265,
-0.2590073347,
0.0628950447,
0.425283134,
-0.0435124859,
0.0112040192,
0.2331181467,
-0.4184881151,
-0.1625947356,
0.1803779453,
-0.0564528927,
0.0677822977,
0.4045178294,
0.2591700256,
-0.2443018258,
-0.0556299649,
0.3341698647,
0.0881195962,
0.1921719015,
0.2500740886,
0.0357507467,
-0.4441967905,
-0.3494409025,
0.093716085,
0.0310786664,
-0.2851612866,
0.2599405348,
0.0369748399,
-0.1273554862,
0.1988561153,
0.2838092148,
-0.039192196,
-0.0405681953,
-0.2472261935,
-0.0956170484,
0.070236899,
0.4469087124,
0.440960139,
0.0791365951,
-0.0008868575,
0.3681527674,
-0.389165163,
-0.1299377829,
-0.3335529864,
-0.1338438094,
-0.0133705437,
0.1615586281,
-0.1246138886,
-0.2722465098,
-0.1843120009,
0.214924708,
0.1929070204,
0.226962775,
-0.0056596883,
-0.2980475128,
0.0635205209,
-0.0011384636,
-0.0246390067,
0.0445706099,
0.0134925582,
-0.3567684293,
-0.3619441688,
-0.2215158194,
-0.2338101864,
-0.1148811877,
-0.0143769793,
-0.1896765381,
0.2071964741,
0.1564921737,
-0.0573201776,
0.4489627481,
-0.4027820826,
-0.310120225,
-0.2046226114,
-0.0101118665,
-0.0348244421,
-0.0576543137,
-0.0612212941,
0.0715657473,
0.1007818431,
-0.039818652,
0.2357551008,
-0.1027975753,
-0.0396683887,
-0.0157078579,
0.1746309996,
0.5327724814,
0.2393197864,
-0.4209707975,
0.3680211306,
0.2163218558,
-0.1668010056,
-0.169032976,
-0.3094875515,
0.1626503468,
0.0659177154,
0.0296354704,
-0.2250949442,
-0.1986939013,
-0.3012602329,
-0.0637250021,
-0.1909380555,
-0.3947408199,
-0.1797784567,
0.3211913705,
0.3621633947,
-0.300388217,
0.1553272009,
-0.0316409469,
0.0585022867,
0.1827100962,
0.2390763462,
0.3683659434,
0.6607499719,
0.3610320091,
-0.4724348783,
-0.1147834957,
-0.0151019562,
0.5250040293,
0.2303858995,
0.2822841704,
0.3461494744,
0.1851515025,
0.0884338468,
0.0645427108,
-0.0455440655,
-0.0914310962,
-0.0940985754,
0.0419209152,
-0.0113568977,
-0.1790166497,
-0.2583903074,
0.1940491647,
-0.2067512274,
0.3013902009,
0.2567067444,
0.070608899,
0.42158252,
-0.4581941366,
0.209262237,
-0.1324178278,
0.4662488103,
-0.3132484555,
-0.0837447047,
0.0033858605,
0.0879177749,
0.2972172201,
0.0233024824,
-0.126887247,
0.2161458433,
-0.1597126126,
0.0817435086,
-0.5459907651,
0.0270191208,
-0.1925856322,
0.2017215192,
0.5362645388,
-0.1407140791,
0.3526442945,
0.0941163376,
-0.2557084262,
-0.1196411103,
-0.0964171141,
-0.0493318811,
-0.1389133185,
0.1064435095,
0.232695058,
-0.3602102995,
-0.0536472686,
0.1026572585,
-0.2391816229,
-0.1113286912,
-0.4861654043,
-0.2253013849,
-0.1179693714,
0.0232418217,
0.1024108976,
0.147825405,
0.7567032576,
0.3429253995,
-0.1528656036,
0.1661732793,
-0.3669344485,
-0.3012741208,
-0.2292390466,
-0.2744219303,
0.0347886309,
0.1922417283,
0.4784704447,
0.2030566633,
0.1948629022,
-0.0333126858,
0.0978695303,
-0.3102419376,
0.3355526924,
-0.231339246,
0.3123426437,
0.1673236489,
-0.0707291886,
-0.1520501077,
-0.6242111921,
0.1967944354,
0.1044084579,
0.0960791484,
0.0145561993,
0.0407963842,
0.1834352762,
0.3243211806,
-0.1760912538,
-0.073448427,
-0.2031284273,
0.1617669463,
-0.1379482448,
-0.2202107906,
0.1556528807,
-0.0129024871,
-0.0332172103,
0.1238512546,
0.1579966247,
0.060477078,
0.1138709635,
0.1917483211,
0.4745638072,
-0.1944721043,
0.2417831272,
-0.2040429413,
0.0080958456,
0.1869806945,
0.2431640923,
-0.2253529429,
0.2110219002,
0.0181421172,
-0.2957252264,
-0.249424696,
-0.0688091144,
0.360404104,
-0.1840323806,
-0.2736570239,
-0.1092586815,
0.1635109335,
0.2349600941,
0.3031380475,
0.0220221132,
-0.2748107612,
-0.0233339388,
0.0324437357,
0.2525326014,
0.2655863762,
-0.1720367074,
-0.0808962137,
-0.1346876919,
0.2549237311,
-0.4111461043,
0.0948214829,
-0.2713312209,
-0.3557108045
] |
https://github.com/huggingface/datasets/issues/388 | 🐛 [Dataset] Cannot download wmt14, wmt15 and wmt17 | similar slow download speed here for nlp.load_dataset('wmt14', 'fr-en')
`
Downloading: 100%|██████████████████████████████████████████████████████████| 658M/658M [1:00:42<00:00, 181kB/s]
Downloading: 100%|██████████████████████████████████████████████████████████| 918M/918M [1:39:38<00:00, 154kB/s]
Downloading: 2%|▉ | 40.9M/2.37G [04:48<5:03:06, 128kB/s]
`
Could we just download a specific subdataset in 'wmt14', such as 'newstest14'? | 1. I try downloading `wmt14`, `wmt15`, `wmt17`, `wmt19` with the following code:
```
nlp.load_dataset('wmt14','de-en')
nlp.load_dataset('wmt15','de-en')
nlp.load_dataset('wmt17','de-en')
nlp.load_dataset('wmt19','de-en')
```
The code runs but the download speed is **extremely slow**, the same behaviour is not observed on `wmt16` and `wmt18`
2. When trying to download `wmt17 zh-en`, I got the following error:
> ConnectionError: Couldn't reach https://storage.googleapis.com/tfdataset-data/downloadataset/uncorpus/UNv1.0.en-zh.tar.gz | 38 | 🐛 [Dataset] Cannot download wmt14, wmt15 and wmt17
1. I try downloading `wmt14`, `wmt15`, `wmt17`, `wmt19` with the following code:
```
nlp.load_dataset('wmt14','de-en')
nlp.load_dataset('wmt15','de-en')
nlp.load_dataset('wmt17','de-en')
nlp.load_dataset('wmt19','de-en')
```
The code runs but the download speed is **extremely slow**, the same behaviour is not observed on `wmt16` and `wmt18`
2. When trying to download `wmt17 zh-en`, I got the following error:
> ConnectionError: Couldn't reach https://storage.googleapis.com/tfdataset-data/downloadataset/uncorpus/UNv1.0.en-zh.tar.gz
similar slow download speed here for nlp.load_dataset('wmt14', 'fr-en')
`
Downloading: 100%|██████████████████████████████████████████████████████████| 658M/658M [1:00:42<00:00, 181kB/s]
Downloading: 100%|██████████████████████████████████████████████████████████| 918M/918M [1:39:38<00:00, 154kB/s]
Downloading: 2%|▉ | 40.9M/2.37G [04:48<5:03:06, 128kB/s]
`
Could we just download a specific subdataset in 'wmt14', such as 'newstest14'? | [
-0.2754458785,
-0.1981760263,
-0.0195056088,
0.4694990218,
0.0656871423,
0.1942015439,
0.0270851869,
0.2684626281,
0.0861185044,
-0.031171903,
-0.2506633401,
-0.0679133311,
0.2125765234,
0.0307871476,
-0.062822856,
-0.1890517026,
-0.1460020393,
0.1014121324,
-0.2369924337,
-0.0269568712,
-0.2904828787,
0.2036183029,
-0.0906962305,
0.1271257401,
0.2401780486,
0.0780034661,
-0.0501665398,
-0.1968957037,
-0.1596406996,
-0.274823159,
0.5160506964,
0.3601159751,
0.0586539581,
0.1450441927,
-0.0001219386,
0.0825732052,
0.1835665703,
-0.1369366944,
-0.3636049032,
-0.1387346834,
-0.5023853779,
-0.3797954023,
-0.0570705533,
-0.0451346189,
-0.0286946334,
-0.4139440358,
0.2948006988,
-0.1618006229,
0.2084506452,
0.3149534762,
0.1214061305,
0.1912995428,
-0.1842958629,
0.0588123091,
0.2260122001,
-0.297344625,
-0.1599630564,
0.162872687,
0.0911368802,
-0.0998706967,
0.1882560253,
0.0394498371,
0.1054433137,
0.468554765,
0.0881750882,
0.1837196946,
0.0343795195,
-0.3379813135,
0.130381912,
0.4677027762,
0.7240511775,
0.0134221045,
-0.5606610775,
0.1094948277,
-0.1864442378,
-0.1793483496,
0.1590446085,
0.2385325432,
-0.3889274895,
-0.0097063109,
-0.258025229,
0.1541270316,
-0.2150070518,
0.5520457029,
-0.1538665742,
0.6958836317,
0.2310096622,
0.1035005897,
0.2030016035,
-0.0791504681,
-0.081632711,
-0.1097037941,
0.0649879947,
0.1140193194,
-0.4582256675,
-0.1419679821,
-0.2928100228,
-0.0565241165,
0.0961090475,
0.0370479524,
0.2588017881,
0.3004487455,
0.0732923746,
-0.0901718885,
0.2149015814,
-0.0372556224,
-0.1363026202,
-0.1615839005,
0.3071223795,
0.0234270729,
0.1086897701,
0.127839759,
-0.0146292783,
-0.0734965801,
-0.3333625197,
0.0429438464,
-0.0641034469,
0.0900534838,
-0.4714156091,
-0.1830092967,
-0.1725571156,
-0.3095322549,
-0.2633674145,
0.2749699652,
-0.1472433507,
0.2098656595,
0.0350209773,
0.1641627103,
-0.0373848006,
-0.2366258055,
-0.0851306766,
-0.0776007026,
-0.1194325015,
0.0852764025,
0.3873591423,
0.2008733898,
0.1021279544,
-0.1979430318,
-0.4624213576,
0.17575562,
0.0462516248,
-0.1504184157,
-0.3103294671,
0.2144235671,
0.0229125768,
0.504422307,
0.0043043094,
0.2673935294,
-0.2623716891,
-0.0306955241,
0.0474635698,
0.1335317791,
0.1591808349,
0.0375397727,
-0.178183049,
-0.0758742988,
-0.4116555452,
0.1583165377,
-0.1979249418,
0.0384485424,
-0.3133221865,
-0.0542281903,
-0.4436590672,
-0.0637914389,
0.2325400561,
0.3726831377,
-0.2943880558,
-0.140479371,
-0.3939937353,
-0.0772320926,
0.2761004865,
0.4165425599,
-0.0116094425,
0.0389963686,
-0.1322286427,
0.0135202706,
0.612869978,
-0.0660050362,
-0.5310536027,
0.4080588818,
-0.3529971242,
0.0949893892,
0.2438895851,
0.2227172554,
0.0412153453,
-0.038121555,
0.1125601903,
0.5967072845,
-0.065545164,
0.0432800949,
0.0339886621,
-0.391399771,
0.4888459444,
0.158246696,
-0.0716144741,
0.1904319823,
0.0406710729,
0.2375046313,
0.4658766091,
0.0016445927,
0.1256798506,
-0.0367693305,
-0.0768176541,
-0.1869157255,
0.0371693633,
0.0805694833,
-0.8039488792,
0.3596591353,
-0.0426550806,
-0.0757528841,
0.0591382049,
0.0498418733,
-0.1687218845,
-0.3384788036,
0.11574018,
0.1946618855,
0.0570866242,
0.4249058366,
-0.024331741,
-0.0735513419,
0.0306155682,
0.242402181,
0.1400819719,
0.0745668113,
0.0931103528,
0.0142261982,
0.0210618731,
0.191470921,
0.5240713954,
-0.2323475331,
0.1202668697,
-0.1981447935,
-0.0477989092,
0.0404798463,
-0.1348661184,
0.327801764,
0.047276333,
-0.1049362347,
0.0062306765,
-0.3015384674,
-0.0232190508,
0.5032980442,
0.0925629288,
-0.2129790783,
-0.0748013705,
0.208676964,
0.3825477958,
0.3309427202,
0.3173202276,
0.1293124259,
0.3910716772,
-0.1069187373,
0.19997859,
-0.1739578694,
0.2182213515,
0.120861575,
-0.0325227417,
-0.0482302979,
-0.1440733075,
0.4479542375,
0.4699536562,
-0.0467509925,
0.0359251052,
0.2993105054,
0.0086816587,
-0.0588148758,
-0.2114623785,
0.4395286441,
0.4815124869,
0.0023184381,
0.3339683414,
-0.035488043,
0.2888127267,
-0.4605612457,
0.2112389803,
0.1993152648,
-0.3576084971,
0.1509037316,
0.0544253141,
-0.0624081418,
-0.1587810218,
0.0544615984,
0.3649357557,
0.3378575742,
-0.1209444702,
0.1075224876,
-0.6640235782,
-0.5608866215,
-0.1469939649,
-0.1450150311,
-0.1277524531,
-0.2961663008,
-0.0341592953,
0.3210787177,
-0.1442072392,
0.0491754264,
-0.005147852,
0.1736542583,
-0.0359969884,
0.0824436769,
-0.3095358014,
-0.0627547354,
-0.263109386,
0.0413992554,
0.3632282913,
0.2588674724,
0.3428497314,
-0.3035114706,
-0.216574952,
-0.2507106662,
-0.0878891647,
-0.1628995836,
-0.1206066906,
0.0440178812,
-0.050942231,
0.6214649081,
0.0594320819,
-0.2801191509,
0.0967657864,
0.0080840662,
-0.1996394098,
-0.0294789411,
-0.0728667527,
0.0812953338,
-0.0819144696,
-0.4950370193,
-0.5639946461,
-0.4488962889,
0.3042044342,
-0.0260779783,
0.4307360947,
0.180479154,
-0.449282378,
-0.0245241392,
0.2001229823,
0.1783763468,
-0.0993990004,
0.2111730278,
0.5299037695,
0.0487383381,
-0.3680869043,
0.1324006468,
0.1844144613,
0.1965638548,
0.5387357473,
-0.5226667523,
0.1722510308,
-0.1968161315,
-0.3020077646,
0.2634515464,
-0.2586896122,
0.156190753,
-0.2869667113,
-0.1237124205,
-0.0530793332,
-0.1602719277,
0.0036501102,
0.192375645,
0.2642641366,
0.1058425456,
0.2024156749,
0.0867902637,
0.3931768239,
0.276928544,
-0.0128256036,
0.4106544256,
0.029258946,
-0.147588402,
0.1673335284,
-0.2676241696,
0.0524179339,
-0.1229716018,
0.3658304214,
0.4481179714,
-0.2541321516,
-0.1831545979,
-0.3033003807,
0.0940264389,
-0.0100965798,
-0.3930918574,
0.0041977391,
0.0122557068,
0.052595567,
0.2146439701,
-0.0400632545,
-0.033200074,
-0.3105881214,
0.0108703636,
0.2935231924,
-0.045160871,
0.1850492656,
-0.0280558839,
-0.0978084132,
-0.5492725372,
0.2894976437,
0.0763228387,
0.7073528767,
-0.1326804012,
0.1520878971,
0.0723670274,
-0.0145371035,
0.3030672073,
-0.1729930043,
0.464315325,
0.146784842,
-0.1720145345,
-0.3408594131,
-0.1419169307,
-0.1690538526,
-0.1852246821,
0.3035874665,
0.3525131047,
-0.5763116479,
-0.3394087553,
0.0019278824,
0.1817184538,
-0.1563268155,
0.0998173133,
-0.1148849055,
-0.424874723,
-0.0797265694,
-0.1973152459,
-0.141858995,
0.1513555944,
-0.0258544516,
-0.1020516604,
0.1112806797,
-0.1125813052,
0.1008934081,
0.0968136266,
0.0111811012,
0.4100052118,
0.2851954103,
0.124530524,
0.1230277121,
0.1208340675,
0.4883978963,
0.2290775478,
0.0528075099,
0.2032563239,
-0.06111224,
-0.10436818,
0.5792751312,
0.0183540098,
0.2489415258,
-0.0697893277,
0.1338159442,
-0.0625193715,
0.1462149471,
0.2862616777,
-0.3440870047,
-0.2097565681,
-0.326593399,
0.403504014,
0.0848553926,
-0.1049616188,
0.3273227513,
-0.0833920836,
-0.2306993604,
-0.0298583247,
0.1237997413,
0.9365188479,
-0.1632586271,
0.1926652491,
-0.0968299061,
0.0193083808,
0.3620100319,
-0.0062120333,
0.1284437627,
-0.0610413924,
-0.3517689109,
-0.066842854,
0.112916708,
-0.0246464275,
0.3345567286,
-0.2419376969,
0.4412823617,
0.1158206314,
0.3251468539,
0.4289503694,
0.1513634026,
0.0347834453,
-0.0403638966,
-0.2547501326,
0.045896776,
-0.1982330233,
0.4878910184,
-0.0211248249,
-0.3443230689,
-0.1988646686,
-0.0988529101,
-0.4196382165,
0.0415864065,
-0.3956823945,
0.0358494483,
-0.3102170527,
-0.0945121571,
0.1591803879,
0.0962364152,
0.2075096369,
0.0768230855,
-0.4566870332,
0.0620991066,
-0.6321642399,
-0.0321622863,
0.0685846657,
-0.1318040043,
-0.1424511224,
-0.1964861751,
-0.114329949,
-0.1696126312,
0.1090629548,
-0.2224171758,
-0.0756766796,
-0.1023715436,
-0.4478808939,
0.2547477186,
-0.1786808372,
-0.1608707458,
-0.2535403371,
-0.1225442141,
0.0466517024,
-0.1645884365,
-0.0397008881,
0.2860144675,
0.1273250133,
-0.1963332146,
-0.0019030776,
0.6198268533,
0.00290961,
0.105477415,
0.3953413367,
0.0506547466,
-0.1604820043,
-0.2704816163,
-0.3811046481,
-0.1060790718,
-0.162546277,
-0.0781911314,
-0.2101412416,
0.0140312612,
-0.0060375892,
0.4558541179,
-0.0392551273,
0.1682025492,
0.028010793,
-0.6202649474,
-0.1609705538,
0.1318271756,
-0.1765397787,
0.1199002266,
-0.5219160318,
0.1192378998,
0.113582328,
0.4160390198,
-0.2092129439,
0.05656977,
-0.3388035893,
0.0471049324,
0.2880392075,
-0.0706826225,
0.2289939821,
0.1886251867,
-0.034175463,
0.0251633786,
-0.3593530655,
-0.0542407073,
-0.0218974687,
0.2447007,
0.1939215064,
-0.3757938743,
0.2078461647,
-0.2565249205,
-0.0859250724,
-0.0188450012,
0.0220741481,
-0.1119568348,
0.0593067668,
0.0382560901,
0.2219018787,
0.1416694671,
-0.2665585279,
0.1743685603,
0.0305271298,
0.3759010136,
0.1019111425,
0.2991656065,
0.0468898118,
-0.0848335028,
-0.45549649,
-0.2001155019,
0.1027136743,
0.1104803532,
0.3243231475,
0.0250202026,
-0.020086959,
0.0019959696,
0.1979027838,
0.5765166283,
0.0147556104,
-0.0014475957,
0.1004848629,
0.0253083259,
-0.2922023535,
-0.1287101507,
0.4113742113,
-0.020106636,
-0.0409840457,
0.0618023202,
0.1289481074,
-0.2663393617,
-0.009403009,
-0.2022636533,
0.421530962,
-0.0747954845,
0.0920513421,
0.3748517931,
0.1693943888,
0.077566281,
-0.0218249131,
0.0485171303,
0.1603427976,
0.244849354,
-0.2588813603,
0.2282996029,
-0.1018999591,
0.0528464988,
-0.1000814289,
-0.3135136366,
-0.1546791643,
0.628254652,
-0.0257671848,
0.0091525223,
0.2310026884,
0.0964130461,
-0.0531191528,
-0.2443245947,
-0.3528069854,
0.1790961325,
0.2587439716,
-0.1399999261,
-0.2276779711,
-0.0766250342,
-0.4428306818,
0.1516771913,
-0.1457246244,
-0.4017065763,
0.269056201,
0.2768546939,
0.0600420684,
-0.2822739184,
-0.38528952,
-0.1095985919,
-0.0400092155,
-0.3327305317,
0.1910595,
0.0114704631,
-0.1317569613,
0.1907149553,
0.16743581,
-0.0386507399,
0.1761791408,
0.0461454615,
0.1767431349,
-0.0575564131,
-0.0859021917,
-0.097540848,
0.2834538519,
0.2556299865,
-0.1936441809,
0.4711660743,
-0.0174483024,
-0.0536401272,
0.1863855571,
0.1968058646,
-0.2136814892,
-0.1679445207,
0.4751252532,
-0.1047995612,
0.0741505027,
-0.065372996,
-0.117645286,
-0.2411355227,
-0.1365992874,
-0.0488954633,
-0.1071152985,
0.3333057761,
0.0484651737,
0.0064600781,
-0.1535179317,
0.9997259378,
-0.0436174273,
0.2473966926,
-0.2425632179,
-0.374601692,
-0.6246225238,
0.0966061354,
-0.2321971357,
0.0898796171,
0.212248683,
0.1397722065,
0.1016817987,
0.2786848247,
0.0979442894,
0.5578718185,
-0.2036716342,
0.2489025891,
-0.4591288865,
-0.3036426306,
0.0157666337,
0.4082072079,
-0.2625907958,
-0.467015624,
0.4813465178,
-0.3863250613,
-0.0498685464,
-0.0533832312,
-0.0902345628,
0.2436763495,
0.3555136323,
0.3386852145,
0.0117223877,
0.635294199,
0.0285192579,
-0.1947274506,
-0.3011879325,
-0.0414867885,
-0.119731918,
-0.0060222708,
0.1648761034,
0.1999554634,
0.0487306342,
0.4505467415,
-0.2935019732,
0.226051122,
-0.2680615485,
0.2887163758,
0.1474457085,
0.1920247823,
-0.1904366612,
0.0886308402,
0.1265804619,
-0.0310888179,
-0.0599885173,
-0.1564524174,
-0.5516495705,
-0.2328878939,
0.5788879991,
-0.2664409578,
-0.2547085285,
-0.1597991586,
0.3558370769,
-0.0425938219,
0.3084098697,
-0.0320453942,
0.2063067406,
0.1983071268,
-0.0943482369,
-0.314253509,
0.2210628092,
0.0923449993,
-0.3264966011,
0.0395807549,
0.0355665237,
0.1923961937,
-0.4283827841,
-0.2856143713,
-0.2166664451
] |
https://github.com/huggingface/datasets/issues/388 | 🐛 [Dataset] Cannot download wmt14, wmt15 and wmt17 | > The code runs but the download speed is extremely slow, the same behaviour is not observed on wmt16 and wmt18
The original source for the files may provide slow download speeds.
We can probably host these files ourselves.
> When trying to download wmt17 zh-en, I got the following error:
> ConnectionError: Couldn't reach https://storage.googleapis.com/tfdataset-data/downloadataset/uncorpus/UNv1.0.en-zh.tar.gz
Looks like the file`UNv1.0.en-zh.tar.gz` is missing, or the url changed. We need to fix that
> Could we just download a specific subdataset in 'wmt14', such as 'newstest14'?
Right now I don't think it's possible. Maybe @patrickvonplaten knows more about it
| 1. I try downloading `wmt14`, `wmt15`, `wmt17`, `wmt19` with the following code:
```
nlp.load_dataset('wmt14','de-en')
nlp.load_dataset('wmt15','de-en')
nlp.load_dataset('wmt17','de-en')
nlp.load_dataset('wmt19','de-en')
```
The code runs but the download speed is **extremely slow**, the same behaviour is not observed on `wmt16` and `wmt18`
2. When trying to download `wmt17 zh-en`, I got the following error:
> ConnectionError: Couldn't reach https://storage.googleapis.com/tfdataset-data/downloadataset/uncorpus/UNv1.0.en-zh.tar.gz | 97 | 🐛 [Dataset] Cannot download wmt14, wmt15 and wmt17
1. I try downloading `wmt14`, `wmt15`, `wmt17`, `wmt19` with the following code:
```
nlp.load_dataset('wmt14','de-en')
nlp.load_dataset('wmt15','de-en')
nlp.load_dataset('wmt17','de-en')
nlp.load_dataset('wmt19','de-en')
```
The code runs but the download speed is **extremely slow**, the same behaviour is not observed on `wmt16` and `wmt18`
2. When trying to download `wmt17 zh-en`, I got the following error:
> ConnectionError: Couldn't reach https://storage.googleapis.com/tfdataset-data/downloadataset/uncorpus/UNv1.0.en-zh.tar.gz
> The code runs but the download speed is extremely slow, the same behaviour is not observed on wmt16 and wmt18
The original source for the files may provide slow download speeds.
We can probably host these files ourselves.
> When trying to download wmt17 zh-en, I got the following error:
> ConnectionError: Couldn't reach https://storage.googleapis.com/tfdataset-data/downloadataset/uncorpus/UNv1.0.en-zh.tar.gz
Looks like the file`UNv1.0.en-zh.tar.gz` is missing, or the url changed. We need to fix that
> Could we just download a specific subdataset in 'wmt14', such as 'newstest14'?
Right now I don't think it's possible. Maybe @patrickvonplaten knows more about it
| [
-0.2686095238,
-0.1404750347,
-0.0071864091,
0.5019996762,
-0.0168405585,
0.2251573503,
-0.0530771725,
0.2993668318,
0.091135174,
-0.0368140936,
-0.2252274156,
-0.0799277648,
0.1161911115,
0.0058767498,
0.0343048759,
-0.2081655115,
-0.1193280071,
0.0341800526,
-0.3183059692,
0.0080128834,
-0.3116196096,
0.1468856633,
-0.0868213251,
0.0733702108,
0.2240647525,
-0.0069651073,
-0.205278635,
-0.0254713856,
-0.1000092998,
-0.3394283354,
0.4278958738,
0.2947583199,
0.084403798,
0.2282150984,
-0.0001149252,
0.0709943771,
0.1664441079,
-0.1815564036,
-0.3427718282,
-0.091652438,
-0.5097863078,
-0.4445598722,
-0.1338344514,
-0.0916884542,
-0.049892202,
-0.4900565743,
0.2561156154,
-0.1568862349,
0.3314900398,
0.3418520093,
0.1644344479,
0.241835162,
-0.1462135166,
-0.0085076876,
0.2681640983,
-0.2418022156,
-0.119127892,
0.1768725216,
0.0858171433,
-0.0647066087,
0.201987654,
0.053943567,
0.0507231653,
0.4143845737,
0.0648013353,
0.1147263199,
-0.0066977404,
-0.2883559167,
0.0657301247,
0.4004979134,
0.7070283294,
0.0280685946,
-0.5350030661,
0.0941140726,
-0.03123964,
-0.1249264032,
0.1994022578,
0.2483087778,
-0.2839076221,
0.0238749739,
-0.2142187506,
0.0485208929,
-0.1946803927,
0.5462664962,
-0.0335705578,
0.6662645936,
0.2300115675,
0.0512684658,
0.0850214586,
-0.0345224291,
0.0830067098,
-0.1274168938,
0.0934070349,
0.0012822263,
-0.3166342378,
-0.0942260101,
-0.2909418643,
-0.0173590295,
0.0405315012,
0.008377267,
0.2951493263,
0.2358808219,
0.0183146782,
-0.0712847635,
0.1781585366,
-0.1028665453,
-0.1670797467,
-0.2394862324,
0.3152789176,
0.1925608814,
0.1304366142,
0.1407723725,
-0.0634533688,
-0.140570119,
-0.4265265763,
0.1794077903,
0.0678063482,
0.0819199383,
-0.3032379746,
-0.2359868288,
-0.0952851921,
-0.2585290372,
-0.2333590388,
0.2315391749,
-0.2232050896,
0.3033596277,
-0.0140739754,
0.0879310369,
-0.0782803223,
-0.3754115701,
-0.1115829498,
-0.0619362965,
-0.0947363004,
0.1375950277,
0.4606335163,
0.2327834368,
0.2125828862,
-0.1855627596,
-0.3248115778,
0.1220186576,
0.082729876,
-0.0089067183,
-0.2034358531,
0.2094966024,
0.0389031768,
0.5146358013,
-0.0152601311,
0.2459966242,
-0.2595426142,
-0.0184404776,
-0.0653079897,
-0.0278565958,
0.1655278653,
0.0922635421,
-0.1611425579,
-0.1466827691,
-0.3369725347,
0.0296971239,
-0.1942421794,
-0.0796275288,
-0.3151359558,
-0.0935670286,
-0.334267199,
-0.1286200285,
0.2433606684,
0.4242474139,
-0.3487030268,
-0.0085135028,
-0.3759481013,
-0.0351441577,
0.2923084795,
0.3570437729,
-0.0795982033,
0.0716932267,
-0.1589742154,
-0.1769256294,
0.5281009674,
-0.1343882233,
-0.4725867212,
0.2704170644,
-0.3284673095,
0.1723010391,
0.2460231483,
0.1870342195,
0.02674843,
-0.0835051686,
0.104713738,
0.6350848079,
0.0012760665,
0.0515112132,
-0.0706806928,
-0.3561582565,
0.3798068464,
0.1910878867,
-0.0478559174,
0.1234174967,
-0.0262467004,
0.2235046923,
0.4299489856,
-0.0060661417,
0.2387937009,
-0.0190676562,
-0.1557719857,
-0.1321371645,
0.0291817933,
0.0744897425,
-0.7336919904,
0.3186697364,
-0.1053287908,
-0.165256232,
0.0810762793,
-0.0034321472,
-0.2751205862,
-0.3440807462,
0.0790601373,
0.0972764194,
0.1050883085,
0.5249680877,
-0.0412880853,
-0.0831200033,
0.0002132431,
0.1862973422,
0.1373167336,
0.040224839,
-0.0418929718,
0.0532664508,
-0.0445458144,
0.1713178307,
0.5440140963,
-0.2567560673,
0.1717381328,
-0.2130446583,
-0.0371351317,
0.1358812302,
-0.1739644855,
0.3611805737,
0.1119710281,
-0.1792987287,
0.0926528499,
-0.3793898225,
0.0370961502,
0.5412626266,
0.0641172081,
-0.1362140775,
-0.0726943165,
0.1897854358,
0.1448701918,
0.2603432536,
0.2921270132,
0.1436411738,
0.4012099206,
-0.1410463899,
0.1060652584,
-0.0886811316,
0.1613160968,
0.1243788153,
-0.1367559731,
-0.0958056673,
-0.1503300518,
0.4106874168,
0.4148617387,
-0.0372206606,
0.0187882725,
0.23579368,
-0.0668036416,
-0.0749669001,
-0.2241235673,
0.5326935053,
0.4717300236,
0.0562896095,
0.3155218959,
0.0273673926,
0.2627876997,
-0.4930698276,
0.2584998906,
0.206851989,
-0.344170332,
0.2035882473,
0.0771230012,
-0.1378411204,
-0.1374784559,
0.0716202706,
0.3822633624,
0.257314235,
-0.19863002,
0.0536605194,
-0.6793518066,
-0.5351993442,
-0.3434388638,
-0.2511228323,
-0.1482517868,
-0.3052475154,
0.1282155514,
0.2785880566,
-0.2804340124,
0.120267801,
0.0317886248,
0.2259990126,
-0.1738286167,
0.1984796822,
-0.2139068842,
-0.1356357336,
-0.2548263073,
0.0976742953,
0.3586398959,
0.3376228809,
0.2934268713,
-0.3645831048,
-0.1957137585,
-0.3108945489,
-0.0325513035,
-0.1599159241,
-0.0036147092,
0.1372745186,
-0.0390133336,
0.5934835076,
0.1324963123,
-0.3987887204,
0.1563430727,
-0.0093735978,
-0.0448997617,
-0.0634617582,
-0.0964997411,
0.0993852541,
-0.0341021232,
-0.6237543821,
-0.5904383063,
-0.523463726,
0.1860346645,
-0.0353249423,
0.4430008531,
0.1396969706,
-0.3087505698,
-0.0415653959,
0.1024814844,
0.1844176203,
-0.056667909,
-0.0280257687,
0.5375441313,
-0.1619544923,
-0.3553984463,
0.1727952659,
0.2059615999,
0.2009566426,
0.463263303,
-0.5046479106,
0.0646782517,
-0.1197668463,
-0.272934854,
0.1870684028,
-0.198119849,
0.1420208365,
-0.1899032593,
-0.1756810546,
-0.092162177,
-0.1102055162,
-0.0474174246,
0.1542582214,
0.3609258235,
0.1070158184,
0.0580700263,
0.0540272295,
0.5281318426,
0.2144055516,
0.0288451836,
0.382537663,
0.0698560104,
-0.0967577249,
0.2006233335,
-0.2211506814,
0.0559332706,
-0.1493364275,
0.3521569371,
0.4451560378,
-0.1774459183,
-0.1599804461,
-0.332405597,
0.013520956,
-0.1174127311,
-0.412101239,
0.0676090121,
0.0765767917,
0.0848159418,
0.2502114773,
-0.090730086,
-0.1047706455,
-0.2486218363,
0.1401174814,
0.2866021395,
-0.0554876328,
0.2225298584,
-0.1112922877,
-0.0839063525,
-0.4219072759,
0.3272366226,
0.0696536601,
0.6666911244,
-0.0727572367,
0.0959878862,
0.0811179131,
-0.0427734181,
0.3269477189,
-0.2589517832,
0.3664773703,
0.1476515681,
-0.0270383358,
-0.3202755153,
-0.1805517673,
-0.1551137567,
-0.1363301575,
0.2854500413,
0.2413641661,
-0.5075768232,
-0.2647193074,
-0.0120117655,
0.3046760261,
-0.2263693511,
0.1271537244,
-0.0926809534,
-0.4546773434,
-0.1686351001,
-0.2483868003,
-0.1952327937,
0.0476711132,
-0.0636227652,
-0.1080399826,
0.120682694,
0.0130324736,
-0.0089065619,
0.1007082164,
0.1134608388,
0.470412761,
0.2651001215,
0.1576224267,
0.2695897222,
0.2070242912,
0.4462991953,
0.1590935886,
0.087642312,
0.1112573817,
-0.0822961107,
-0.015038982,
0.5899679661,
0.0758287311,
0.1944027096,
0.0797457099,
0.1139243543,
-0.1158551425,
0.1670591086,
0.3086410761,
-0.4566769898,
-0.154849261,
-0.394379288,
0.3080307841,
0.0518216714,
-0.1139826477,
0.3615950644,
-0.0987036154,
-0.2175686657,
0.0566778108,
0.1134927422,
1.0516219139,
-0.0584436059,
0.1815835387,
-0.1388888061,
-0.093082346,
0.4372523725,
0.0056295469,
0.2301348746,
-0.0400009677,
-0.3949953914,
-0.0398699641,
0.1387973428,
0.0006315252,
0.3304264545,
-0.309235245,
0.4790839851,
0.1480702311,
0.2751793265,
0.2732684314,
0.0889242291,
0.076386638,
-0.0982354432,
-0.3572633862,
0.054013513,
-0.2071111947,
0.4592017829,
-0.1164930463,
-0.3337391317,
-0.17406106,
-0.0624474734,
-0.3034554422,
0.0511227623,
-0.2851746976,
0.0560326502,
-0.3349586725,
-0.0503589213,
0.1038980708,
0.0765501261,
0.205512628,
0.1284273416,
-0.4939321578,
0.1827993542,
-0.5684783459,
-0.0973134488,
0.0150150992,
-0.0919857919,
-0.1524520218,
-0.2483958602,
-0.182030648,
-0.1257845312,
0.0838260353,
-0.1685774326,
-0.0482180417,
-0.1796247363,
-0.2898651659,
0.2355899811,
-0.1408683658,
-0.1040887162,
-0.1262219995,
-0.2186394632,
0.1043439209,
-0.2395484298,
-0.1040247083,
0.2727036476,
0.1063078195,
-0.174978599,
-0.0320206732,
0.6141953468,
-0.0027180221,
0.1257405132,
0.53130126,
0.182004571,
-0.1084023938,
-0.2623314559,
-0.3209676743,
-0.2857595086,
-0.3247822225,
-0.0723353326,
-0.1397091299,
0.0443734676,
-0.0148886815,
0.414452076,
0.0939490572,
0.1857426316,
-0.0060852244,
-0.5259037018,
-0.1334532797,
0.1294776052,
0.0421935692,
0.0920008272,
-0.4193428159,
0.0345063023,
0.1674448252,
0.3862774968,
-0.288970232,
0.0907664821,
-0.3084711432,
0.1050012782,
0.1838263124,
-0.0147717968,
0.1369225234,
0.2186165154,
-0.0207850412,
-0.0205848757,
-0.2606441081,
-0.0791363418,
-0.0208680332,
0.2387756109,
0.088669084,
-0.3916057646,
0.1831959337,
-0.2471768111,
-0.0604223721,
0.0526068509,
-0.0663640425,
-0.1141840145,
0.0583755448,
0.0471806489,
0.1464035511,
0.0883585438,
-0.2555852234,
0.2022087872,
0.0496772788,
0.3802533746,
0.0688228235,
0.2652400434,
0.069811523,
-0.1944236457,
-0.3725174069,
-0.2481483072,
0.0905403197,
0.2064655572,
0.3934916854,
0.05170146,
-0.0551671833,
0.1035647839,
0.20667395,
0.6060749888,
0.0949705988,
-0.0037310496,
0.1826518476,
0.0850052536,
-0.3482971787,
-0.1051263511,
0.4268740118,
-0.0493981466,
-0.1335228384,
-0.0182766989,
0.1604174078,
-0.2951155305,
-0.0482874438,
-0.1061279625,
0.3336080015,
-0.0446988568,
0.1348262727,
0.3830813169,
0.131867528,
-0.0223076902,
-0.1458288729,
-0.0114109386,
0.1830571592,
0.2075385153,
-0.293712914,
0.2960051,
0.0022072634,
0.0512286425,
-0.0633128881,
-0.3241367042,
-0.0649503469,
0.5230964422,
0.1908031404,
0.0568312965,
0.2189498842,
0.162699908,
-0.0995309502,
-0.1670860797,
-0.4335703254,
0.3511621654,
0.3017347157,
-0.1393083036,
-0.3634735346,
-0.1048655808,
-0.4123687148,
0.1891581863,
-0.112833187,
-0.3035286069,
0.3537468314,
0.2533999681,
0.0291212387,
-0.4037007391,
-0.3220402002,
-0.1665658355,
0.0105883777,
-0.3628241718,
0.1755484492,
0.2881408334,
-0.1696108431,
0.2712332308,
0.2734300196,
0.0342606753,
0.1940801442,
0.0514926352,
0.2307006419,
-0.05296579,
-0.0396347381,
-0.1296417564,
0.3255563378,
0.2726576626,
-0.1567443907,
0.480682373,
0.0442804359,
-0.1215061098,
0.1598025858,
0.0724952221,
-0.2559207082,
-0.1743178666,
0.4113019705,
-0.0269319564,
0.0457282141,
-0.0965425745,
-0.1521428525,
-0.2968740761,
-0.1195236668,
0.0169864967,
-0.0918755084,
0.2861557603,
-0.0004837811,
0.0248234756,
-0.1885652393,
1.0825707912,
0.0145788016,
0.1532882303,
-0.2088082433,
-0.4053680301,
-0.6960794926,
0.1433442831,
-0.2470804751,
0.0924237296,
0.1040166765,
0.126698941,
0.0964725912,
0.2451935261,
0.0724120364,
0.4204583168,
-0.1497842371,
0.306248337,
-0.5024483204,
-0.2226487249,
0.0942266881,
0.4402628839,
-0.2074291706,
-0.4251109958,
0.4701156914,
-0.2363035828,
-0.0323652178,
0.0643200576,
-0.157158494,
0.2465581745,
0.2980616987,
0.3182751536,
0.0408844501,
0.5406653285,
-0.0545892306,
-0.2572304606,
-0.4410835505,
-0.1929124743,
-0.0798032507,
0.0345674157,
0.153981939,
0.2596022785,
0.0195872039,
0.4092368186,
-0.3668289185,
0.2018211335,
-0.2354794443,
0.3416226506,
0.0719431117,
0.0303546786,
-0.2026437968,
0.0776835829,
0.2446887493,
-0.0529656559,
-0.1159356609,
-0.1798534095,
-0.5251287222,
-0.2719205618,
0.6197152138,
-0.2890968323,
-0.2216445208,
-0.2276799977,
0.3758017123,
-0.0810561106,
0.3304468393,
0.0215583444,
0.2301204354,
0.2397797108,
0.0174540095,
-0.1903076619,
0.209417671,
-0.0343330167,
-0.2718364596,
0.0291394815,
0.0931025147,
0.1694594622,
-0.4575900137,
-0.2863951027,
-0.104282625
] |
https://github.com/huggingface/datasets/issues/388 | 🐛 [Dataset] Cannot download wmt14, wmt15 and wmt17 | Yeah, the download speed is sadly always extremely slow :-/.
I will try to check out the `wmt17 zh-en` bug :-) | 1. I try downloading `wmt14`, `wmt15`, `wmt17`, `wmt19` with the following code:
```
nlp.load_dataset('wmt14','de-en')
nlp.load_dataset('wmt15','de-en')
nlp.load_dataset('wmt17','de-en')
nlp.load_dataset('wmt19','de-en')
```
The code runs but the download speed is **extremely slow**, the same behaviour is not observed on `wmt16` and `wmt18`
2. When trying to download `wmt17 zh-en`, I got the following error:
> ConnectionError: Couldn't reach https://storage.googleapis.com/tfdataset-data/downloadataset/uncorpus/UNv1.0.en-zh.tar.gz | 21 | 🐛 [Dataset] Cannot download wmt14, wmt15 and wmt17
1. I try downloading `wmt14`, `wmt15`, `wmt17`, `wmt19` with the following code:
```
nlp.load_dataset('wmt14','de-en')
nlp.load_dataset('wmt15','de-en')
nlp.load_dataset('wmt17','de-en')
nlp.load_dataset('wmt19','de-en')
```
The code runs but the download speed is **extremely slow**, the same behaviour is not observed on `wmt16` and `wmt18`
2. When trying to download `wmt17 zh-en`, I got the following error:
> ConnectionError: Couldn't reach https://storage.googleapis.com/tfdataset-data/downloadataset/uncorpus/UNv1.0.en-zh.tar.gz
Yeah, the download speed is sadly always extremely slow :-/.
I will try to check out the `wmt17 zh-en` bug :-) | [
-0.3693391085,
-0.2487271875,
0.0216565877,
0.3820065856,
0.1480188668,
0.0315844566,
0.02061552,
0.1097688973,
0.150864616,
-0.0224934816,
-0.1192298159,
0.0813112557,
0.2570132017,
0.0221289843,
-0.0504058078,
-0.1498072743,
-0.0636183396,
-0.0127320513,
-0.3244121373,
-0.0993769467,
-0.3538653255,
0.2009577602,
-0.2064671814,
0.0905935913,
0.2752310634,
0.0833001211,
-0.1313608289,
-0.1531073004,
-0.2954230309,
-0.2548480928,
0.3610231876,
0.3276952803,
-0.0559857413,
0.2809773386,
-0.0001131215,
-0.0560207702,
0.2967316806,
-0.0383984894,
-0.2685247064,
-0.2018243074,
-0.5110455155,
-0.394241184,
-0.0794063807,
0.0854353905,
-0.018409729,
-0.296677053,
0.2496936023,
-0.0439675711,
0.0649197176,
0.2494039834,
0.1683284491,
0.2879307866,
-0.0686754137,
-0.1455197334,
0.2407008857,
-0.2033242136,
-0.3107455969,
0.0399783999,
0.0785966739,
-0.1796048582,
0.1557220221,
0.0584839098,
0.0875244141,
0.3362599611,
0.1760081649,
0.0942740366,
0.0510466658,
-0.2017602175,
0.0827955157,
0.4504011869,
0.7103346586,
0.0851511955,
-0.4957499206,
0.2819175124,
-0.0918945968,
-0.2350521237,
0.3443362117,
0.3135755062,
-0.2158726156,
-0.0734717101,
-0.4669175148,
0.257280767,
-0.1383328587,
0.4892607331,
-0.0957625732,
0.7104790807,
0.1332418025,
0.1434032917,
0.3129827082,
-0.1106803864,
-0.0816214383,
-0.2723140419,
0.0001885141,
0.0334916636,
-0.481495589,
-0.0322299302,
-0.0658688098,
0.0954645798,
0.0754290074,
0.1016090661,
0.285010308,
0.2121489644,
0.0210254602,
-0.0517259166,
0.2097492516,
-0.0219042748,
-0.2130882442,
-0.1640495956,
0.4323970079,
0.2450238019,
0.1523039639,
0.1677440405,
0.1467084587,
-0.0488006547,
-0.2299161702,
0.0242731757,
-0.0505105481,
0.0019587874,
-0.4001107812,
-0.1665736288,
-0.1238350272,
-0.2453393191,
-0.1645410806,
0.3225754499,
-0.2840414047,
0.1698943973,
-0.1212050393,
0.1779886335,
-0.0842857733,
-0.2417663336,
-0.161367178,
-0.1574997455,
-0.2656620443,
0.0487126261,
0.543492496,
0.2756902575,
0.1349683702,
-0.0276948996,
-0.4596245289,
0.1299185157,
0.1053119823,
-0.1755292267,
-0.1506621838,
0.30813393,
0.0414031297,
0.4511936903,
-0.1181476936,
0.2141902745,
-0.2180138826,
-0.0147893541,
-0.1912532002,
0.068316631,
0.1833386868,
0.1696573049,
-0.1521886885,
-0.1954451203,
-0.1842024028,
0.0742721856,
-0.254424423,
0.0659195185,
-0.2866137028,
-0.1090281606,
-0.3650814891,
-0.1189390421,
0.1813007295,
0.3788799644,
-0.3131742775,
-0.0457644463,
-0.3016705513,
-0.1056641787,
0.3926262259,
0.4808878303,
-0.0214604866,
-0.0690825731,
-0.261177212,
-0.1133300066,
0.479339838,
-0.0569394082,
-0.5938488841,
0.4285424054,
-0.1727690548,
0.0856170058,
0.1779767871,
0.1772716343,
-0.0855818987,
-0.0825823918,
0.1270344853,
0.7016555667,
0.0059171729,
0.0621069372,
-0.0823498815,
-0.3496224582,
0.4960257709,
0.0793751329,
-0.1310658008,
0.0629866272,
0.0774702802,
0.2308820039,
0.4280625284,
-0.049295377,
0.1207070351,
0.211965099,
0.0061049922,
-0.2326267064,
0.1675237268,
0.2613883018,
-0.8036825061,
0.3271984756,
-0.173181355,
0.0420764945,
0.0533727035,
0.0986740142,
-0.0930988118,
-0.2325118333,
-0.1148577332,
0.119619064,
0.0992337912,
0.4008775055,
-0.0808942318,
0.0385471508,
0.2440879792,
0.1637265086,
0.1860145628,
0.0721244961,
0.0375178121,
0.0890046954,
-0.1497061551,
0.1078929007,
0.4190080464,
-0.2034529299,
0.0905698314,
-0.2255446017,
-0.1061336398,
0.0301308222,
-0.1187644675,
0.3457849622,
0.034266144,
0.0129580721,
0.1846446097,
-0.3644967377,
0.0430599675,
0.5446996093,
0.1592681408,
-0.2901196182,
-0.2831049562,
0.1604014933,
0.2294865102,
0.2556655407,
0.2638524473,
-0.0287950709,
0.3943087161,
-0.0271754265,
0.0697235763,
-0.0704720318,
0.3118413687,
0.1041931883,
-0.1764550656,
-0.1047058627,
-0.1786278188,
0.3837153316,
0.7334492207,
-0.0273740701,
0.044522576,
0.2151578367,
-0.0097008534,
-0.2793852687,
-0.1021254361,
0.241955474,
0.5307394862,
-0.018456934,
0.3182319403,
-0.0075912811,
0.0528218001,
-0.4657372832,
0.2658329606,
0.0323505737,
-0.2632794082,
0.2083516866,
0.1461829096,
-0.1172623634,
-0.2702294588,
-0.0391779393,
0.3722789884,
0.3183622062,
-0.1137540042,
0.0215990394,
-0.568872869,
-0.4337560534,
-0.0417041369,
-0.0972288996,
-0.2328410745,
-0.4373258054,
-0.0106158052,
0.3592895865,
-0.1175310314,
0.0834659785,
0.0112376884,
0.0518177673,
0.0321940407,
0.1122516766,
-0.223230809,
-0.0508839525,
-0.293674171,
0.0506422333,
0.250195384,
-0.0048260689,
0.3465155661,
-0.2549158633,
0.0043225735,
-0.2484764904,
-0.182816416,
-0.0734223276,
-0.132842496,
-0.0097920373,
0.0210059136,
0.3756833076,
-0.0484724492,
0.0197901241,
0.267724365,
-0.1306689978,
-0.0933631286,
0.1500161141,
-0.1475163847,
-0.1163984016,
-0.1455319524,
-0.4618680477,
-0.4196478724,
-0.3909375072,
0.2283409685,
0.0177120641,
0.26472193,
0.2665113807,
-0.2433957756,
-0.0090889633,
0.1340951174,
0.1358187199,
-0.2116517127,
0.109678492,
0.551905036,
-0.0122116506,
-0.4962176085,
0.2889940143,
0.3083999157,
0.1282168329,
0.4666343331,
-0.5050538182,
0.0814787596,
-0.2245027721,
-0.0868186951,
0.2105650306,
-0.0806292295,
0.1803441644,
-0.2014333755,
-0.1320722848,
-0.0635466725,
-0.2266352326,
0.0003429949,
0.3354968429,
0.2945868969,
0.057515949,
0.0751542896,
0.1130233854,
0.2551254034,
0.3227807283,
0.0355762951,
0.4502711296,
0.0570782721,
-0.0395573601,
0.0555573069,
-0.1616865098,
0.0864985138,
-0.1508360505,
0.4195179343,
0.3306365013,
-0.1776615977,
-0.2543931603,
-0.2211970538,
0.2076510638,
0.1560289562,
-0.3032636642,
-0.0362840593,
0.0926285461,
-0.0247284435,
0.2582342625,
0.0545315593,
0.0280997381,
-0.4963300824,
0.1535629928,
0.2811172903,
-0.1159658432,
0.1709707975,
-0.0542916693,
-0.0251256842,
-0.5100096464,
0.2622941732,
-0.0869377255,
0.6925248504,
-0.2452953905,
0.1321940124,
0.1541799605,
-0.1334349811,
0.3795636892,
-0.335547924,
0.4085902572,
0.2441133857,
-0.0998250693,
-0.3103895187,
-0.2699891329,
-0.3074086607,
-0.2978400588,
0.2070448846,
0.4671503007,
-0.4036861658,
-0.2595308125,
-0.0028819647,
0.2527551055,
-0.083433494,
0.0329962187,
-0.1655884385,
-0.4258915186,
-0.0759302229,
-0.1960382015,
-0.2923614085,
0.0790406317,
-0.2044108808,
-0.0717162192,
0.1685198694,
0.0046444088,
-0.0387747213,
0.0195358768,
0.0290739425,
0.2013512403,
0.3527792394,
0.0411571003,
0.2088116854,
-0.0041828305,
0.4881175458,
0.1826082021,
-0.0191789679,
0.202725783,
-0.1937301159,
-0.1419255733,
0.4482380152,
0.0616980568,
0.1161121652,
-0.0197453126,
0.1926824152,
-0.1204143465,
-0.0646363795,
0.4672895372,
-0.3162604868,
-0.2791850269,
-0.228262037,
0.2917951345,
0.0922985673,
-0.0632301643,
0.340610683,
-0.0752304941,
-0.1006242856,
0.0542612448,
-0.0727053285,
0.8992096782,
-0.0750671029,
0.1676117629,
0.0284456313,
-0.0120264739,
0.3487121761,
-0.0787985846,
0.2581680119,
-0.1769599319,
-0.2249808758,
-0.0033691972,
0.0311149433,
0.0274602808,
0.2101257294,
-0.4092717767,
0.5043516159,
0.2017365545,
0.2596512437,
0.2110848725,
0.0916042924,
-0.0027352273,
-0.0822545141,
-0.0691426098,
0.1338376105,
-0.1257581413,
0.5930085778,
-0.0115368739,
-0.3399750292,
-0.0633041784,
-0.0504250377,
-0.3375659287,
0.2289008945,
-0.2211636603,
0.1064876765,
-0.2780907154,
-0.0289231837,
0.1129964143,
-0.1082200259,
0.1168984473,
0.1473508775,
-0.4352408648,
0.1044976637,
-0.5686906576,
0.1226676404,
0.0455061048,
-0.0656878799,
-0.0766175687,
-0.2632241845,
-0.1547880322,
-0.1998170763,
-0.0494099222,
-0.0731024742,
-0.0469887704,
-0.1141858101,
-0.2927283049,
0.2307782918,
-0.0337506384,
-0.1279283315,
-0.2546489835,
-0.0952033773,
0.1239215061,
-0.0279908292,
0.0628984421,
0.40319556,
0.1070545614,
-0.265699029,
-0.1343064308,
0.6130915284,
-0.151909098,
0.1501203477,
0.3498305678,
0.1883087158,
-0.2084124237,
-0.3143334687,
-0.3719795942,
-0.08975254,
-0.4002478123,
-0.0692306459,
-0.1440846771,
0.1001698524,
0.117056042,
0.4755737782,
-0.0490256064,
0.0558666512,
0.0562260449,
-0.5779902935,
-0.0762097836,
-0.0173781738,
-0.0752178803,
0.0603909753,
-0.3815558553,
-0.0613971651,
0.3596580923,
0.0912113786,
-0.2972775102,
0.0841396302,
-0.2831424475,
-0.0205838922,
0.2991086841,
-0.1970584095,
0.1398500055,
0.1217766255,
0.0317453817,
-0.115399003,
-0.5138581395,
-0.1349561512,
-0.012688525,
0.19682616,
0.2312014997,
-0.3998679519,
0.1013381779,
-0.2693148255,
-0.1387003809,
-0.0299086925,
0.0238058642,
-0.0697161704,
-0.1134995222,
0.0155444294,
0.0159867667,
0.1784757227,
-0.0522681661,
0.1789712757,
0.081071049,
0.3983919621,
-0.0322969481,
0.216685161,
0.1420232952,
-0.1306735575,
-0.4640175998,
-0.1250663698,
0.0042287484,
0.1668861806,
0.455745995,
-0.1503381282,
0.1145967394,
-0.19031699,
0.2894704342,
0.5473507643,
-0.0197062809,
-0.1659722328,
0.0818411559,
0.1417398006,
-0.2528589964,
-0.3240988255,
0.2707697749,
0.266007781,
-0.0896599665,
-0.116564244,
0.2668007314,
-0.2275669128,
0.0049271211,
-0.1171079203,
0.5208178759,
-0.1662730277,
-0.0732544214,
0.3250985742,
0.0912304074,
0.1914716959,
-0.0457199067,
-0.0515026078,
0.0135426894,
0.1461063027,
-0.1071900576,
0.194119364,
0.1337236017,
0.1880328357,
-0.0064205006,
-0.4491775632,
-0.1341985166,
0.4470543861,
-0.108242102,
0.083721891,
0.2773936093,
0.0468396135,
-0.1860200912,
-0.2336348891,
-0.5212219954,
0.2492412925,
0.1441928744,
-0.217621088,
-0.1578582227,
-0.0406399518,
-0.3839213848,
0.3018142581,
-0.2011140883,
-0.1044841856,
0.3324413002,
0.1468765885,
0.0592012182,
-0.4044608474,
-0.2451430857,
-0.101860553,
-0.0117122866,
-0.2720139921,
0.1310621053,
0.0434971154,
-0.1083544344,
0.0509572476,
0.1166173294,
0.1323673427,
0.2466509938,
0.0441900417,
0.1514765173,
-0.0550387055,
-0.0769834295,
-0.126711756,
0.5055839419,
0.3176569343,
-0.3132900298,
0.3788609505,
0.0105593838,
-0.1253323853,
0.1614060104,
0.0476471968,
-0.1173025966,
-0.0278119799,
0.4096531868,
-0.1731016636,
0.0070706457,
-0.0808530152,
-0.0291829854,
-0.2272982299,
-0.0489755534,
0.2235086113,
-0.0314476043,
0.3116572499,
-0.1972490847,
0.0626759976,
-0.1403967738,
0.9632147551,
0.1747047603,
0.0081978897,
-0.1843705028,
-0.2348641157,
-0.6164390445,
0.103055805,
-0.2522727847,
0.1988196671,
0.061646197,
0.2748517394,
-0.0309101343,
0.2128814906,
0.1794090718,
0.4960561395,
-0.0012603477,
0.3387594819,
-0.3486464024,
-0.1576450765,
0.067123957,
0.2313786745,
-0.3162716627,
-0.5026991367,
0.5336247087,
-0.4530446827,
0.0299828276,
-0.1813531071,
-0.0418835804,
0.1448133439,
0.3595474064,
0.3521799743,
0.1409450769,
0.5347113013,
0.1001044661,
-0.2366069704,
-0.4052688479,
-0.0648828,
0.0872773677,
-0.006620463,
0.0628529936,
0.0696177483,
0.1808975637,
0.4258288443,
-0.3366211653,
0.2417767793,
-0.3410271406,
0.3019997478,
0.1489570737,
0.203763485,
-0.1593159288,
0.0825900882,
0.1561182886,
-0.0960126668,
-0.047536999,
-0.2808297873,
-0.4668972492,
-0.2708589435,
0.3842182755,
-0.1362172961,
-0.2359120101,
-0.3162318468,
0.2579326034,
-0.1017072424,
0.2079437971,
-0.0433067605,
0.2353959531,
0.1794020832,
-0.1781784892,
-0.2937730551,
0.2973268926,
-0.0095805973,
-0.1704113334,
0.0426895246,
0.1026006043,
0.1412756145,
-0.4580459595,
-0.1470395029,
-0.039496839
] |
https://github.com/huggingface/datasets/issues/387 | Conversion through to_pandas output numpy arrays for lists instead of python objects | To convert from arrow type we have three options: to_numpy, to_pandas and to_pydict/to_pylist.
- to_numpy and to_pandas return numpy arrays instead of lists but are very fast.
- to_pydict/to_pylist can be 100x slower and become the bottleneck for reading data, but at least they return lists.
Maybe we can have to_pydict/to_pylist as the default and use to_numpy or to_pandas when the format (set by `set_format`) is 'numpy' or 'pandas' | In a related question, the conversion through to_pandas output numpy arrays for the lists instead of python objects.
Here is an example:
```python
>>> dataset._data.slice(key, 1).to_pandas().to_dict("list")
{'sentence1': ['Amrozi accused his brother , whom he called " the witness " , of deliberately distorting his evidence .'], 'sentence2': ['Referring to him as only " the witness " , Amrozi accused his brother of deliberately distorting his evidence .'], 'label': [1], 'idx': [0], 'input_ids': [array([ 101, 7277, 2180, 5303, 4806, 1117, 1711, 117, 2292,
1119, 1270, 107, 1103, 7737, 107, 117, 1104, 9938,
4267, 12223, 21811, 1117, 2554, 119, 102])], 'token_type_ids': [array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0])], 'attention_mask': [array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1])]}
>>> type(dataset._data.slice(key, 1).to_pandas().to_dict("list")['input_ids'][0])
<class 'numpy.ndarray'>
>>> dataset._data.slice(key, 1).to_pydict()
{'sentence1': ['Amrozi accused his brother , whom he called " the witness " , of deliberately distorting his evidence .'], 'sentence2': ['Referring to him as only " the witness " , Amrozi accused his brother of deliberately distorting his evidence .'], 'label': [1], 'idx': [0], 'input_ids': [[101, 7277, 2180, 5303, 4806, 1117, 1711, 117, 2292, 1119, 1270, 107, 1103, 7737, 107, 117, 1104, 9938, 4267, 12223, 21811, 1117, 2554, 119, 102]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]}
``` | 69 | Conversion through to_pandas output numpy arrays for lists instead of python objects
In a related question, the conversion through to_pandas output numpy arrays for the lists instead of python objects.
Here is an example:
```python
>>> dataset._data.slice(key, 1).to_pandas().to_dict("list")
{'sentence1': ['Amrozi accused his brother , whom he called " the witness " , of deliberately distorting his evidence .'], 'sentence2': ['Referring to him as only " the witness " , Amrozi accused his brother of deliberately distorting his evidence .'], 'label': [1], 'idx': [0], 'input_ids': [array([ 101, 7277, 2180, 5303, 4806, 1117, 1711, 117, 2292,
1119, 1270, 107, 1103, 7737, 107, 117, 1104, 9938,
4267, 12223, 21811, 1117, 2554, 119, 102])], 'token_type_ids': [array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0])], 'attention_mask': [array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1])]}
>>> type(dataset._data.slice(key, 1).to_pandas().to_dict("list")['input_ids'][0])
<class 'numpy.ndarray'>
>>> dataset._data.slice(key, 1).to_pydict()
{'sentence1': ['Amrozi accused his brother , whom he called " the witness " , of deliberately distorting his evidence .'], 'sentence2': ['Referring to him as only " the witness " , Amrozi accused his brother of deliberately distorting his evidence .'], 'label': [1], 'idx': [0], 'input_ids': [[101, 7277, 2180, 5303, 4806, 1117, 1711, 117, 2292, 1119, 1270, 107, 1103, 7737, 107, 117, 1104, 9938, 4267, 12223, 21811, 1117, 2554, 119, 102]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]}
```
To convert from arrow type we have three options: to_numpy, to_pandas and to_pydict/to_pylist.
- to_numpy and to_pandas return numpy arrays instead of lists but are very fast.
- to_pydict/to_pylist can be 100x slower and become the bottleneck for reading data, but at least they return lists.
Maybe we can have to_pydict/to_pylist as the default and use to_numpy or to_pandas when the format (set by `set_format`) is 'numpy' or 'pandas' | [
0.2560278773,
-0.0724573731,
-0.236763522,
-0.0092356168,
0.2625886798,
0.0842923149,
0.6678314209,
0.3210130632,
0.0850154161,
0.1096882746,
-0.2230845094,
0.6318754554,
0.0461792424,
-0.0179825723,
0.0116414279,
-0.1747505963,
0.0956745073,
0.254740268,
-0.2903571427,
-0.0689312369,
-0.2830671072,
0.0156402308,
-0.0143755153,
0.0470167324,
-0.0316811204,
-0.122943528,
-0.2430113703,
-0.0669653863,
-0.0099638887,
-0.2817721665,
-0.1102734655,
-0.0522086844,
-0.1565474868,
0.1077479869,
-0.0000965855,
0.0117587745,
0.1007464975,
0.1284487993,
-0.2778980732,
0.0988122821,
0.2208989859,
-0.496486783,
0.1283212006,
-0.3898861408,
0.019424662,
-0.3709515631,
-0.0011584824,
-0.2352718115,
0.2233627439,
0.237804383,
0.3248372674,
0.082499586,
0.040674597,
-0.0091812219,
-0.1530111134,
-0.053651318,
-0.1116733104,
-0.0968054533,
0.0740230307,
-0.0003449768,
0.0224828776,
0.1968286186,
-0.2312166095,
-0.0540923364,
-0.1202844232,
0.0783430636,
0.1750875115,
-0.2016627491,
-0.0591094308,
0.1322263479,
0.0710336864,
-0.2181084305,
-0.2725657225,
-0.3579931855,
0.011065919,
-0.1044410542,
-0.2819865942,
0.1497368217,
-0.0419388339,
0.3047566712,
-0.0567265861,
0.1415920556,
-0.1975572556,
0.1329678744,
-0.2234634757,
0.1334755719,
-0.0038776789,
-0.0269976258,
0.1181258038,
-0.2326642424,
0.2993659675,
-0.1540306658,
0.2643840909,
0.0086972713,
-0.0715570599,
-0.1338414848,
0.195928812,
-0.3873057067,
-0.03227254,
-0.3329617679,
0.1830254495,
-0.0538951382,
-0.0235339291,
0.1319850087,
0.1248032153,
0.2315273881,
-0.0103130899,
0.1086456329,
-0.0331916027,
-0.0222173929,
0.142820701,
0.1067356691,
0.0208143778,
0.0476764403,
0.1039290205,
0.0543530174,
0.2067093849,
0.0948466808,
-0.3995524943,
0.0214920379,
-0.4321007133,
0.3727926612,
-0.1416669786,
0.0871335566,
-0.0056861043,
0.503351748,
0.0570945516,
0.0784097314,
0.012077041,
0.3128516972,
-0.2222592384,
0.265942961,
0.0089573562,
-0.2215350121,
-0.0210269429,
0.3906453252,
0.0046085678,
0.0056062862,
0.272451371,
0.0529517084,
0.0090368092,
-0.0570253804,
0.3984915912,
0.1581863612,
-0.018321678,
0.1029570103,
0.3305060565,
-0.273571223,
-0.0734088793,
0.3235859871,
0.0897550657,
0.0980034173,
-0.0730488524,
0.3501081169,
0.0267445222,
-0.1353609562,
0.1204930693,
0.1960563958,
0.0979917422,
0.0391965657,
-0.0627016649,
-0.3927682638,
0.1285286248,
-0.2342423201,
-0.0258015878,
0.0015650466,
-0.4275616109,
0.1042092144,
0.0402691886,
-0.0326843858,
0.2190036178,
0.3847589493,
-0.0153797939,
-0.0311418325,
-0.1035963297,
0.1959887743,
-0.0700903833,
-0.2117768973,
-0.1431393474,
0.0259645507,
0.135639295,
0.321323514,
0.2309162766,
0.1676853001,
0.1878182739,
0.0333488286,
0.170878008,
0.0854337513,
0.0253944341,
0.1654041708,
-0.2166431546,
-0.2008067369,
0.2175685912,
-0.0501670018,
-0.0277146399,
0.3013138771,
-0.1478919685,
-0.0752382725,
0.2646342814,
-0.3522580862,
-0.0863962173,
-0.1085292548,
0.1263146549,
-0.1856981367,
-0.0706584752,
-0.0009580478,
0.0929224193,
0.0091780871,
-0.1311029941,
0.325748235,
-0.2217814028,
-0.4243864417,
-0.3495081663,
0.0457586199,
-0.013223853,
0.0276819319,
0.4024395943,
0.0568419136,
0.0981626138,
-0.0829143748,
0.1711258143,
0.0485421941,
-0.178145349,
-0.0365345404,
-0.2771190405,
0.0510209426,
-0.161023289,
-0.0616615564,
-0.0102375895,
0.2658473551,
0.0410774499,
0.1367578804,
0.2536705136,
0.1568619758,
0.2253482342,
-0.1363911927,
0.0789509714,
0.1731403768,
0.1421353966,
-0.0107403025,
0.3149238229,
0.503995657,
0.1378078759,
0.0506746918,
-0.0394134037,
0.5265206695,
0.1004748195,
0.0673767552,
0.1498182267,
0.243842423,
0.2283338904,
0.2267894596,
-0.0221840031,
-0.1647678167,
-0.2045825422,
0.0883949921,
-0.0372104049,
0.0783449784,
-0.5608400106,
0.3296604753,
0.38717255,
-0.1254359782,
0.2982018292,
-0.0429481864,
-0.1170925349,
-0.129683733,
0.0092824325,
-0.0854975432,
0.0647054911,
0.3047472537,
0.134623006,
-0.101120092,
-0.2463523746,
-0.1573564708,
0.1716033965,
0.1403882205,
0.1497249454,
-0.0519285649,
0.2285126299,
-0.2121986896,
-0.214084506,
0.0572395623,
-0.2752454281,
0.1016197279,
-0.228869617,
0.2389462739,
-0.3486659229,
-0.2187673151,
-0.0047960784,
-0.1646869481,
0.2367773801,
-0.4387483299,
0.1186255366,
0.0831533074,
-0.0962845758,
0.0275756065,
0.3894484639,
-0.0102327466,
0.3071251214,
0.1124025062,
-0.137508899,
-0.2112652957,
0.0176342465,
0.3510564566,
-0.0325057283,
0.110142827,
0.100126408,
-0.0634948313,
-0.0570035875,
-0.1335255355,
-0.2751379609,
0.0031090267,
-0.2275831699,
0.1885091215,
0.2113188803,
0.2826877534,
-0.2487782538,
-0.049351804,
-0.0717222393,
-0.0535935685,
-0.0864409655,
0.10110645,
0.0296370238,
-0.0127769876,
-0.1391559839,
-0.2738071084,
-0.3708682656,
-0.2461612672,
0.2457756102,
0.1972574294,
0.1448781043,
0.0419270955,
0.3720467687,
0.3241766691,
0.2355496287,
0.2128999084,
-0.125249356,
0.1298519224,
0.2862128615,
-0.1785426438,
-0.3247751296,
-0.3495488763,
-0.0403356068,
-0.0918322727,
-0.2265650928,
-0.0471112058,
-0.4609471858,
-0.1354731619,
-0.0125894397,
0.193532452,
-0.0326642953,
0.1490451545,
0.2680900693,
-0.3067965508,
-0.0502040945,
0.0971965045,
-0.042838715,
0.0432680808,
-0.0840692669,
-0.063086167,
0.0501085706,
0.1526052952,
0.2194741964,
0.0977591872,
-0.1959162354,
-0.1312121749,
-0.0152707789,
0.3280456364,
-0.1606307477,
-0.1010646969,
-0.2410315722,
-0.1682167351,
-0.0981952846,
0.1248304546,
-0.1472048759,
-0.3451811075,
0.0037209839,
0.2376682907,
-0.3825840652,
-0.0968591347,
0.1131864712,
-0.2335440218,
-0.0478622913,
0.0416291207,
0.2179596573,
-0.2125125229,
0.0127613582,
-0.1765965819,
-0.0360397436,
0.2504289746,
-0.1270266771,
-0.3720668256,
-0.274279505,
-0.3555977345,
0.3058632016,
0.2006745487,
0.1969306469,
0.1245524734,
-0.4118637443,
-0.068260178,
0.0190741271,
0.4703344703,
0.0821755305,
-0.3371399939,
0.3646309972,
0.020565182,
-0.0961634815,
0.10426718,
-0.5635349154,
0.0093348548,
0.1641112268,
0.1090120897,
-0.2452835441,
-0.0595849752,
0.0811372027,
0.2119962573,
0.0118744746,
0.1769614071,
-0.1113037467,
-0.3024592102,
-0.2614572644,
0.019808067,
0.198346585,
0.1258123517,
-0.4265232682,
-0.2748201489,
-0.1618731618,
-0.2216854692,
0.3759466112,
0.1774931699,
0.0346640833,
-0.0405342653,
-0.1933382303,
-0.2015724331,
0.2310631722,
0.1565950513,
-0.0567222238,
-0.2254027128,
-0.1200208366,
-0.0981597304,
-0.0551373474,
0.1993041039,
0.2418476939,
-0.0896879137,
-0.0564584173,
-0.2413831055,
-0.0663805753,
0.1501810551,
-0.1460459977,
0.221169278,
0.0700617582,
-0.0276510362,
-0.3291968703,
0.1209776253,
0.0463758931,
-0.10512463,
-0.0222851243,
-0.1152669787,
-0.20814538,
0.263818711,
0.0325120389,
0.8158720732,
-0.1056176573,
0.300552845,
0.4592901766,
-0.1977166533,
0.472538054,
0.2285953462,
0.1159962863,
-0.2518950403,
-0.0576712936,
-0.0594798513,
-0.0100461543,
0.2043706775,
0.2532418668,
-0.2561310828,
0.1157733202,
-0.2948707342,
0.1316439956,
0.0482267812,
-0.0555580407,
0.0385021269,
-0.1773585975,
-0.5897294879,
0.3352951705,
0.0547804534,
-0.4174696207,
-0.0300411694,
-0.1306801885,
-0.3652647734,
0.1664577127,
0.1722038984,
0.0149758011,
0.2371014655,
0.285707444,
0.1130523682,
-0.3973706067,
-0.3194504976,
0.2990199625,
0.0782361627,
0.1430560052,
0.0597054884,
-0.1594385058,
0.1249623597,
0.1096461043,
0.2293769866,
-0.0577197783,
0.4965388179,
0.1031075418,
-0.0500582829,
0.1760502011,
0.009271998,
-0.2180436254,
-0.1885131449,
-0.0271955803,
0.0076900348,
-0.3465357721,
-0.1482534707,
-0.0516146161,
-0.4196206331,
-0.1843437254,
0.2770851254,
-0.0314754583,
-0.0996002555,
0.3277484775,
0.0246169195,
-0.0796902925,
-0.0120316492,
0.1132594123,
0.4137778878,
0.034513928,
0.0591796078,
0.0701440647,
-0.3847637773,
-0.2387194633,
0.0825424269,
-0.1526093185,
0.0703600347,
0.4293038249,
-0.1121814921,
-0.1417978704,
-0.1393558085,
-0.100474447,
-0.1253193319,
0.3728621602,
-0.4571974576,
-0.2046308219,
-0.2589765489,
0.1818984598,
0.0911657214,
0.3353271484,
0.238317281,
0.1342773139,
-0.2093555331,
-0.2403191924,
-0.5028530359,
-0.1735638976,
-0.318400383,
0.1316960752,
0.0348734446,
-0.2332933843,
-0.1063105017,
0.062240582,
0.3776398599,
0.1625670344,
-0.0079254806,
-0.4519948363,
0.2044615299,
0.0235302895,
-0.0102159344,
-0.1632575691,
0.2116340101,
-0.0201323144,
-0.2478334457,
-0.2464576811,
0.0121445209,
0.0365635306,
-0.0795861632,
0.2235226929,
0.0653868914,
0.3287336528,
0.3674660027,
-0.1215733141,
-0.2407361865,
-0.0627778545,
-0.0520085432,
0.1585795879,
-0.0030756667,
-0.0591702014,
0.0468245819,
0.297647953,
-0.0031876601,
0.0774446428,
0.480910182,
-0.0406188034,
-0.1691294014,
-0.0404674709,
0.3440822959,
0.084560439,
-0.2110835761,
-0.0958571732,
0.0081235766,
0.4007234573,
-0.3073300719,
-0.1081482619,
0.1571554691,
-0.3483892381,
0.2309494019,
0.4312075973,
0.0835086033,
-0.0116920844,
0.1095966548,
-0.0501528308,
0.0815821216,
-0.2662103474,
-0.116451025,
0.582059741,
0.0066452101,
-0.1017889306,
0.0711219907,
-0.1162681356,
0.1665238142,
0.4918718934,
0.0209927596,
0.4034589529,
0.1135591492,
0.0254194774,
0.2546970844,
0.392994523,
0.0771279335,
0.075887531,
-0.1733086258,
0.2135419101,
0.2939057946,
0.0692910701,
-0.2093720734,
0.144248575,
-0.0291089378,
0.3133698404,
-0.2688260972,
-0.1292010695,
-0.1011278555,
-0.0936127901,
0.0145504475,
-0.335552752,
-0.035187576,
-0.2210864127,
0.2059139609,
-0.1674289405,
0.0402285233,
-0.0685615316,
0.2408028543,
-0.140908435,
0.3462823629,
-0.0516202934,
-0.2799858749,
0.2119690478,
0.2059756964,
-0.0634926632,
0.245805487,
0.441347599,
0.02017905,
-0.2248956561,
-0.0034789965,
-0.2018451989,
-0.4503284693,
-0.0309198201,
-0.0265625603,
0.0975788683,
0.1408423483,
0.1832570732,
0.3068818152,
-0.2546875179,
-0.0303882584,
0.152246058,
-0.1255208701,
-0.0353380702,
0.398375541,
-0.0006992351,
-0.4177680612,
-0.0795594156,
0.027520407,
-0.469445765,
-0.3235493302,
0.2452064902,
0.0198498741,
0.2174039483,
0.0547988676,
0.2119052112,
-0.029013291,
0.2661049366,
-0.0585662648,
0.1766676009,
0.0587322339,
0.1991706491,
-0.1691030562,
0.1327243745,
0.2316051871,
-0.1686924398,
-0.1482952237,
0.0618928745,
0.1804657727,
0.2957515419,
-0.3197842836,
0.036337886,
-0.0032571778,
0.0950063393,
-0.1532218158,
0.0503705181,
-0.0822193623,
-0.0826198831,
0.0740318,
-0.1644276083,
0.0799145326,
-0.1453087181,
0.3205462098,
-0.1464014649,
0.0949231982,
-0.0931244045,
0.4012172222,
-0.1292186528,
0.385884434,
0.2196269929,
-0.1814620197,
-0.0560147502,
0.2221429199,
-0.0839766115,
-0.1339959353,
0.5022015572,
-0.0601773039,
0.0746879876,
-0.0050451048,
-0.1248676777,
0.2421612293,
0.2362212986,
0.2632472813,
-0.3227277994,
-0.2985230088,
0.2755733728,
-0.2742532492,
0.1119607985,
-0.1134271026,
0.2221010327,
0.1778132319,
0.0509321392,
-0.1403017342,
-0.4273501039,
0.1870024949,
-0.0968570933,
-0.4538888633,
-0.0789672136,
-0.0686430782,
-0.1896489114,
0.0528112352,
-0.3690465093,
-0.1206935793,
0.2917222083,
-0.2359173745,
-0.0586581193,
0.1337468922,
-0.0355451219,
0.1161898524,
-0.2565559149,
-0.1335961521,
0.05950436,
0.0598583743,
-0.224807933,
-0.3436231613
] |
https://github.com/huggingface/datasets/issues/378 | [dataset] Structure of MLQA seems unecessary nested | Same for the RACE dataset: https://github.com/huggingface/nlp/blob/master/datasets/race/race.py
Should we scan all the datasets to remove this pattern of un-necessary nesting? | The features of the MLQA dataset comprise several nested dictionaries with a single element inside (for `questions` and `ids`): https://github.com/huggingface/nlp/blob/master/datasets/mlqa/mlqa.py#L90-L97
Should we keep this @mariamabarham @patrickvonplaten? Was this added for compatibility with tfds?
```python
features=nlp.Features(
{
"context": nlp.Value("string"),
"questions": nlp.features.Sequence({"question": nlp.Value("string")}),
"answers": nlp.features.Sequence(
{"text": nlp.Value("string"), "answer_start": nlp.Value("int32"),}
),
"ids": nlp.features.Sequence({"idx": nlp.Value("string")})
``` | 19 | [dataset] Structure of MLQA seems unecessary nested
The features of the MLQA dataset comprise several nested dictionaries with a single element inside (for `questions` and `ids`): https://github.com/huggingface/nlp/blob/master/datasets/mlqa/mlqa.py#L90-L97
Should we keep this @mariamabarham @patrickvonplaten? Was this added for compatibility with tfds?
```python
features=nlp.Features(
{
"context": nlp.Value("string"),
"questions": nlp.features.Sequence({"question": nlp.Value("string")}),
"answers": nlp.features.Sequence(
{"text": nlp.Value("string"), "answer_start": nlp.Value("int32"),}
),
"ids": nlp.features.Sequence({"idx": nlp.Value("string")})
```
Same for the RACE dataset: https://github.com/huggingface/nlp/blob/master/datasets/race/race.py
Should we scan all the datasets to remove this pattern of un-necessary nesting? | [
-0.1161424294,
-0.0593215376,
-0.0939640254,
0.3199593723,
-0.049028378,
0.2495960742,
0.087612018,
0.2466984242,
-0.1752907932,
-0.1441373527,
0.0130558833,
0.1971592903,
0.058465261,
0.6652590632,
-0.0376037173,
-0.0648573637,
0.208763063,
-0.0377440564,
-0.0563618131,
0.1263812631,
-0.2246388495,
0.1446331441,
-0.2206719071,
0.0209035538,
-0.0983921736,
-0.1649570316,
-0.314860642,
0.103477709,
0.0523191988,
-0.2634041607,
0.1510073543,
0.2403658628,
-0.1195747033,
-0.0443271399,
-0.0001109656,
-0.0709207803,
0.1456368864,
-0.0216375552,
-0.0548775084,
0.0413486101,
0.0320792198,
-0.1099433154,
0.0695009679,
-0.2508445978,
-0.0989761055,
-0.2140040845,
0.0711579546,
-0.3372651637,
0.2594274282,
-0.0382845625,
0.2054677755,
-0.0469218604,
-0.1306343228,
0.3519123793,
-0.1220627502,
0.1027290151,
0.0172571689,
-0.0262119547,
0.2594554126,
-0.1247474924,
-0.0430973731,
0.4153562188,
-0.1193585619,
-0.1493009627,
0.2905678153,
0.0684560463,
0.1848945171,
-0.5962707996,
-0.0432919972,
0.4557467997,
0.2367849648,
-0.2617452443,
-0.1849279106,
-0.4822609127,
-0.0259917174,
-0.2272675633,
0.1633031666,
0.167507574,
0.0069014244,
0.2347603738,
0.1263678521,
-0.1401171684,
0.0433414429,
0.0321894288,
-0.2222628295,
0.431247592,
0.11238949,
0.0557991043,
-0.1916795373,
-0.1940623373,
0.3292734623,
-0.2776327133,
-0.115241617,
-0.064850539,
-0.2658902407,
-0.2681449354,
0.145891428,
0.0540674329,
0.0904280394,
-0.0091616428,
-0.1017989218,
-0.1273285598,
0.041513484,
-0.1156786829,
0.4433226883,
0.0349121653,
0.0427647531,
-0.3553724289,
-0.0186075196,
-0.1110638529,
0.0128497407,
0.0441049226,
0.1379095614,
0.1818006039,
-0.550295651,
0.0230323263,
0.4006920755,
0.1182040274,
-0.3591926992,
-0.103703782,
-0.6785643101,
-0.1690201312,
0.0719345063,
0.1372532845,
0.1910885572,
0.2438907176,
-0.0796462521,
0.0901070386,
-0.1095337048,
-0.1471690685,
-0.1280266494,
0.0261896923,
-0.0045819432,
-0.1100139469,
-0.1038459092,
0.2253595293,
0.0583131239,
0.0152875409,
0.0062832497,
0.2510586381,
0.1159466058,
-0.1665660441,
0.2065868676,
0.2225803137,
-0.0297142975,
0.0133787394,
-0.0154652363,
-0.0512962118,
-0.2058119178,
0.2050145268,
-0.0776297152,
-0.2186254263,
0.0134884622,
0.2043150812,
-0.1696730256,
-0.1015769094,
0.1816948056,
0.756241262,
0.373468101,
-0.0927800685,
0.0911266953,
0.0090466049,
-0.4748321474,
-0.2003760487,
-0.0313522331,
0.3942874074,
-0.3361496031,
0.0484464169,
-0.3053280413,
0.0333991013,
-0.0127935447,
0.3472165763,
-0.0665524602,
0.3393943608,
-0.2069301009,
0.2875928283,
-0.0089720637,
-0.3737541437,
-0.242326647,
0.2417011708,
0.0202054977,
0.2551007271,
0.2007425427,
0.0926874578,
-0.13739869,
-0.1837862432,
0.188977316,
0.3555287719,
-0.1046043113,
-0.0923255607,
-0.0993930474,
-0.1669279635,
0.6348803043,
-0.0364635736,
-0.4140782952,
-0.2391842157,
-0.3432906568,
-0.0578941889,
0.3980111778,
-0.0094855968,
-0.1960014999,
-0.1509507298,
0.1513851136,
-0.1476751268,
-0.082964018,
-0.1501870304,
-0.5748469234,
0.0441730767,
-0.2565099001,
0.1166459769,
-0.1293931156,
-0.413435936,
0.310305357,
-0.0182227045,
-0.3776371479,
-0.1487939358,
0.2231584042,
-0.2980281115,
-0.1173887998,
0.0568265691,
-0.2501932085,
0.0233593415,
0.0178604126,
0.0614121296,
-0.3382734954,
0.2788204551,
-0.1605366915,
0.3084014058,
0.3650187552,
0.6932074428,
-0.0535366423,
-0.1911388636,
0.2040142119,
0.1118068844,
-0.0075119436,
-0.1424808502,
0.045408994,
0.27379632,
0.3954081833,
-0.2320895493,
0.0044340659,
0.3511701822,
0.0159225799,
-0.2095694691,
-0.2848926187,
0.4127982855,
0.0557212569,
0.3499275446,
0.0185289755,
0.2035999447,
-0.0105990842,
-0.1132050008,
-0.0705683678,
-0.3927461803,
0.1088528335,
0.108664088,
0.0308567807,
0.4261078835,
-0.2589322329,
0.8457379341,
0.4656240344,
-0.0576036125,
0.0363928974,
0.0054507228,
0.1375108361,
-0.4387933314,
0.2027046233,
0.151331529,
0.2826482952,
0.1742970347,
0.0417095572,
0.2460756302,
0.2267717719,
-0.2295659482,
0.3983789682,
0.0990007818,
-0.0684940368,
0.1255249828,
0.3096333146,
0.1429217309,
-0.4245001078,
-0.2349423468,
-0.0185274743,
0.0328289345,
-0.2017996013,
0.2663802207,
-0.3401317298,
-0.8277873993,
0.0951262861,
-0.1595636308,
-0.345222801,
-0.4143369198,
0.1041772291,
-0.1909133196,
-0.1400653124,
0.2615065575,
0.3718317151,
0.3114877343,
0.0528241917,
0.1535452008,
-0.0749020875,
-0.0934206918,
-0.1512103826,
0.1434290409,
0.1969038248,
0.1803000569,
0.2717162669,
0.2582635581,
-0.0109021515,
-0.1725001633,
-0.6402464509,
0.2058472782,
-0.4038881361,
0.3266707659,
0.1748290807,
-0.020761665,
-0.2076146156,
-0.2606467605,
-0.0391049236,
0.6991735697,
-0.257794559,
-0.0002876148,
-0.0311220177,
-0.17652978,
-0.1504606456,
-0.3982408047,
-0.4945943356,
-0.2323882282,
0.26528579,
-0.200856477,
0.4566141367,
0.2072580606,
-0.3831201792,
-0.2453197092,
0.0288472921,
-0.1344178915,
-0.1962103248,
0.1302184165,
0.1351573169,
-0.060355287,
-0.1612295359,
-0.3660828471,
-0.290348649,
0.3013527393,
-0.2624472976,
-0.4380180538,
-0.2253843397,
-0.1168084666,
0.1511100233,
0.2265044004,
-0.0880562514,
0.2082456946,
0.3800465465,
0.0148182288,
0.2296255529,
-0.0620113686,
0.105831176,
0.1495168805,
0.3227380514,
0.0125868283,
0.4372129738,
0.1064926684,
0.2702867389,
0.6254130602,
0.1969489306,
0.0795069337,
0.12108735,
0.2560325265,
-0.2426041067,
-0.2051139027,
0.4185652137,
0.1404144764,
-0.0588465631,
0.3224633336,
-0.1500505209,
-0.0727327764,
0.1247332394,
0.1506259441,
0.1947644651,
-0.2797319889,
0.0122811627,
-0.5949556828,
0.2844959199,
0.021604158,
-0.0077408999,
0.1875218749,
-0.2130336612,
-0.0691158473,
0.129325822,
0.1560501456,
-0.0014968999,
-0.7965767384,
-0.6033443213,
-0.5060997605,
0.0577498078,
-0.0378532149,
0.1418633014,
-0.0846332684,
0.0658481419,
0.0711494163,
-0.0676310807,
0.5189670324,
-0.2795135975,
-0.234572649,
0.2563896179,
0.0427501649,
-0.1570793539,
0.0150379017,
-0.0129218996,
0.408473134,
0.2966899276,
-0.0276695788,
-0.3415408731,
-0.2420086563,
0.1911636293,
0.1286138892,
-0.4076526165,
-0.3557876348,
-0.1688463092,
-0.2850781977,
-0.0315502547,
-0.1503403187,
0.2285671234,
0.1309165061,
0.0849867314,
-0.2012486458,
-0.0813319832,
-0.3202264309,
0.4161021411,
0.2294740826,
0.1594106704,
0.094869867,
0.2396363467,
-0.1131375432,
0.2765875459,
-0.0831341967,
0.4926630855,
0.1150821745,
-0.0733321309,
-0.2357816994,
-0.1626847684,
0.4998658001,
0.2208085358,
-0.1301796734,
0.2457045466,
-0.1459175944,
-0.1141961291,
-0.4050399065,
-0.1108214259,
0.1224460453,
0.0407716893,
-0.0692750514,
-0.3382658362,
0.34297508,
0.0266007259,
-0.2418071926,
-0.1507671177,
0.0275091194,
-0.3063727319,
0.4966258109,
0.0495937355,
0.7502146959,
0.080269292,
0.2257988006,
0.4995675683,
0.1529818773,
0.4479934573,
-0.0196742117,
0.1059957445,
-0.2297642082,
-0.0201861933,
-0.0801835805,
-0.0772077143,
-0.0326405168,
0.226954788,
-0.2821180522,
0.3359481096,
-0.0033660233,
-0.3440563083,
-0.0055837985,
0.2839397192,
0.2938857973,
-0.1255470514,
-0.2925031781,
0.055417411,
-0.0217533372,
0.0426060334,
-0.1231041998,
-0.1098693386,
0.2133321166,
0.0194100365,
-0.1174663827,
-0.1151946038,
-0.322474122,
0.2670013011,
0.1172660291,
-0.1685046703,
0.4472987056,
0.2850085497,
0.1239576489,
0.0077959634,
-0.0711959675,
0.0781342685,
0.2080245912,
-0.0823076665,
0.1668943018,
-0.0428409874,
0.1570523679,
-0.0013510287,
-0.0025434643,
-0.005038714,
0.2122475654,
0.1522621512,
-0.4720565677,
-0.0966366976,
-0.0523439497,
-0.1472114474,
-0.2569827437,
0.2628073692,
-0.081958808,
0.0326912999,
0.0766985491,
0.0239621364,
-0.0052396879,
0.1885453761,
-0.1153902039,
-0.0173724368,
-0.0250454079,
0.1201425269,
0.4022792578,
0.2349774987,
0.3080202639,
0.3002697527,
-0.0681714788,
-0.1803524196,
0.1713416576,
-0.1220774725,
0.2909735143,
0.1756088585,
0.1464812458,
-0.2375949919,
-0.3044600189,
0.1180509552,
0.0134804668,
0.0669714063,
-0.0260011181,
-0.1837908626,
-0.235414654,
0.4425734282,
-0.1116053015,
-0.0637499169,
-0.120700784,
0.3430419564,
-0.0111433528,
0.2345221192,
-0.3226071,
-0.0901742727,
-0.0342493951,
-0.0006586164,
-0.072148487,
-0.3950373232,
0.0485446267,
0.0562661029,
0.117046833,
-0.3386169076,
-0.1039807945,
-0.2011162639,
0.0163677186,
0.091851294,
0.1450988799,
-0.0100539364,
0.0832847953,
-0.0046013072,
-0.1219012141,
-0.1263106167,
0.0334953889,
-0.2133260369,
0.2303095162,
0.224181667,
-0.2433051765,
-0.3525442481,
-0.1441267133,
0.0464699268,
0.1212241724,
-0.1529880762,
0.1883775592,
0.1076351553,
-0.1870583892,
-0.0602206998,
0.0611155294,
0.0929599553,
-0.2350375801,
0.0220594257,
0.2609616816,
0.213564977,
-0.209292531,
0.1950674653,
0.0953019857,
0.5737607479,
-0.3621698916,
-0.1237954572,
-0.1961317509,
0.1801469326,
-0.397552371,
0.1067784354,
-0.0357704759,
0.2692307234,
0.1508830488,
0.3243773878,
0.3548031449,
0.1190220714,
-0.2247090191,
-0.0045983195,
0.2842538357,
0.0008051675,
0.064613536,
0.0652472824,
-0.0418841913,
0.0952361524,
0.4795923829,
0.056891568,
0.2737270296,
0.5982527733,
0.1881875545,
0.1339505464,
0.5289394855,
0.0158706829,
0.4654017389,
0.0724636614,
-0.0744095296,
0.1654355228,
0.1665532589,
-0.1509914398,
0.2589284778,
-0.0840417445,
-0.0470685586,
-0.5038695931,
0.061820209,
0.1850282252,
-0.1930899322,
-0.3244963288,
0.1354412735,
0.0958600491,
-0.019027248,
-0.1349737346,
-0.2654223442,
-0.3414900005,
0.137223348,
-0.1111054569,
-0.0186735205,
-0.2364369929,
0.3297951818,
0.1804777384,
0.2503113747,
0.0762812868,
0.3437649906,
0.3048166931,
-0.1078616381,
-0.0460153297,
0.4059792161,
0.2508127987,
0.1334400177,
-0.7279349566,
0.0768476874,
-0.3143247664,
-0.1537241638,
-0.1712708622,
0.0198042765,
-0.1110553145,
0.2067068815,
0.4055157006,
0.0355420709,
0.0332215205,
0.0554627813,
0.4479641914,
0.033194162,
-0.2274221033,
0.3062977195,
-0.1743714511,
0.055749163,
0.1576087177,
0.1194693744,
-0.4857296944,
-0.2708650231,
0.6146507263,
-0.0230260119,
0.1486745775,
-0.1452291012,
0.0934864953,
0.0028618053,
0.6333814859,
0.178022176,
0.0357495993,
-0.1303561777,
0.0039927512,
-0.5874861479,
-0.2055069804,
-0.0397071913,
-0.0746477991,
0.137637347,
0.2864624858,
-0.0014384836,
0.2262898386,
-0.4077388048,
0.1404839754,
-0.3960297704,
-0.2935957611,
-0.6176457405,
0.0392358899,
-0.2511717975,
0.2211207002,
-0.1902271062,
0.0159041807,
0.2776588202,
0.1377042681,
-0.0955408737,
-0.0318644941,
-0.0550693497,
-0.0857350603,
0.1362803876,
-0.0336260833,
0.4873388112,
-0.0316746831,
0.0028380603,
0.0123235583,
-0.104263261,
0.0031746104,
-0.1777557433,
0.5362421274,
0.106227763,
0.1782301068,
-0.1864857972,
0.1219010651,
0.1441922784,
0.1180163175,
0.1954142451,
-0.2649314702,
-0.4106274843,
0.3911325037,
0.11501389,
0.4158944488,
-0.0828973204,
0.5141797662,
-0.1452320367,
0.1062401608,
-0.1097330675,
-0.3697823882,
0.4228873849,
-0.1451585591,
0.0434376299,
0.1298262626,
0.063566342,
0.1955461949,
0.0920952559,
-0.4175348282,
-0.3561799824,
0.3726509809,
-0.4296782017,
-0.3153368533,
0.2559309602,
0.025458511,
-0.477229923,
-0.2210824341,
-0.0440042093,
-0.0213682484,
-0.4149129391,
0.0735888332,
-0.0863084048
] |
https://github.com/huggingface/datasets/issues/376 | to_pandas conversion doesn't always work | Could you try to update pyarrow to >=0.17.0 ? It should fix the `to_pandas` bug
Also I'm not sure that structures like list<struct> are fully supported in the lib (none of the datasets use that).
It can cause issues when using dataset transforms like `filter` for example | For some complex nested types, the conversion from Arrow to python dict through pandas doesn't seem to be possible.
Here is an example using the official SQUAD v2 JSON file.
This example was found while investigating #373.
```python
>>> squad = load_dataset('json', data_files={nlp.Split.TRAIN: ["./train-v2.0.json"]}, download_mode=nlp.GenerateMode.FORCE_REDOWNLOAD, version="1.0.0", field='data')
>>> squad['train']
Dataset(schema: {'title': 'string', 'paragraphs': 'list<item: struct<qas: list<item: struct<question: string, id: string, answers: list<item: struct<text: string, answer_start: int64>>, is_impossible: bool, plausible_answers: list<item: struct<text: string, answer_start: int64>>>>, context: string>>'}, num_rows: 442)
>>> squad['train'][0]
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/Users/thomwolf/Documents/GitHub/datasets/src/nlp/arrow_dataset.py", line 589, in __getitem__
format_kwargs=self._format_kwargs,
File "/Users/thomwolf/Documents/GitHub/datasets/src/nlp/arrow_dataset.py", line 529, in _getitem
outputs = self._unnest(self._data.slice(key, 1).to_pandas().to_dict("list"))
File "pyarrow/array.pxi", line 559, in pyarrow.lib._PandasConvertible.to_pandas
File "pyarrow/table.pxi", line 1367, in pyarrow.lib.Table._to_pandas
File "/Users/thomwolf/miniconda2/envs/datasets/lib/python3.7/site-packages/pyarrow/pandas_compat.py", line 766, in table_to_blockmanager
blocks = _table_to_blocks(options, table, categories, ext_columns_dtypes)
File "/Users/thomwolf/miniconda2/envs/datasets/lib/python3.7/site-packages/pyarrow/pandas_compat.py", line 1101, in _table_to_blocks
list(extension_columns.keys()))
File "pyarrow/table.pxi", line 881, in pyarrow.lib.table_to_blocks
File "pyarrow/error.pxi", line 105, in pyarrow.lib.check_status
pyarrow.lib.ArrowNotImplementedError: Not implemented type for Arrow list to pandas: struct<qas: list<item: struct<question: string, id: string, answers: list<item: struct<text: string, answer_start: int64>>, is_impossible: bool, plausible_answers: list<item: struct<text: string, answer_start: int64>>>>, context: string>
```
cc @lhoestq would we have a way to detect this from the schema maybe?
Here is the schema for this pretty complex JSON:
```python
>>> squad['train'].schema
title: string
paragraphs: list<item: struct<qas: list<item: struct<question: string, id: string, answers: list<item: struct<text: string, answer_start: int64>>, is_impossible: bool, plausible_answers: list<item: struct<text: string, answer_start: int64>>>>, context: string>>
child 0, item: struct<qas: list<item: struct<question: string, id: string, answers: list<item: struct<text: string, answer_start: int64>>, is_impossible: bool, plausible_answers: list<item: struct<text: string, answer_start: int64>>>>, context: string>
child 0, qas: list<item: struct<question: string, id: string, answers: list<item: struct<text: string, answer_start: int64>>, is_impossible: bool, plausible_answers: list<item: struct<text: string, answer_start: int64>>>>
child 0, item: struct<question: string, id: string, answers: list<item: struct<text: string, answer_start: int64>>, is_impossible: bool, plausible_answers: list<item: struct<text: string, answer_start: int64>>>
child 0, question: string
child 1, id: string
child 2, answers: list<item: struct<text: string, answer_start: int64>>
child 0, item: struct<text: string, answer_start: int64>
child 0, text: string
child 1, answer_start: int64
child 3, is_impossible: bool
child 4, plausible_answers: list<item: struct<text: string, answer_start: int64>>
child 0, item: struct<text: string, answer_start: int64>
child 0, text: string
child 1, answer_start: int64
child 1, context: string
``` | 47 | to_pandas conversion doesn't always work
For some complex nested types, the conversion from Arrow to python dict through pandas doesn't seem to be possible.
Here is an example using the official SQUAD v2 JSON file.
This example was found while investigating #373.
```python
>>> squad = load_dataset('json', data_files={nlp.Split.TRAIN: ["./train-v2.0.json"]}, download_mode=nlp.GenerateMode.FORCE_REDOWNLOAD, version="1.0.0", field='data')
>>> squad['train']
Dataset(schema: {'title': 'string', 'paragraphs': 'list<item: struct<qas: list<item: struct<question: string, id: string, answers: list<item: struct<text: string, answer_start: int64>>, is_impossible: bool, plausible_answers: list<item: struct<text: string, answer_start: int64>>>>, context: string>>'}, num_rows: 442)
>>> squad['train'][0]
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/Users/thomwolf/Documents/GitHub/datasets/src/nlp/arrow_dataset.py", line 589, in __getitem__
format_kwargs=self._format_kwargs,
File "/Users/thomwolf/Documents/GitHub/datasets/src/nlp/arrow_dataset.py", line 529, in _getitem
outputs = self._unnest(self._data.slice(key, 1).to_pandas().to_dict("list"))
File "pyarrow/array.pxi", line 559, in pyarrow.lib._PandasConvertible.to_pandas
File "pyarrow/table.pxi", line 1367, in pyarrow.lib.Table._to_pandas
File "/Users/thomwolf/miniconda2/envs/datasets/lib/python3.7/site-packages/pyarrow/pandas_compat.py", line 766, in table_to_blockmanager
blocks = _table_to_blocks(options, table, categories, ext_columns_dtypes)
File "/Users/thomwolf/miniconda2/envs/datasets/lib/python3.7/site-packages/pyarrow/pandas_compat.py", line 1101, in _table_to_blocks
list(extension_columns.keys()))
File "pyarrow/table.pxi", line 881, in pyarrow.lib.table_to_blocks
File "pyarrow/error.pxi", line 105, in pyarrow.lib.check_status
pyarrow.lib.ArrowNotImplementedError: Not implemented type for Arrow list to pandas: struct<qas: list<item: struct<question: string, id: string, answers: list<item: struct<text: string, answer_start: int64>>, is_impossible: bool, plausible_answers: list<item: struct<text: string, answer_start: int64>>>>, context: string>
```
cc @lhoestq would we have a way to detect this from the schema maybe?
Here is the schema for this pretty complex JSON:
```python
>>> squad['train'].schema
title: string
paragraphs: list<item: struct<qas: list<item: struct<question: string, id: string, answers: list<item: struct<text: string, answer_start: int64>>, is_impossible: bool, plausible_answers: list<item: struct<text: string, answer_start: int64>>>>, context: string>>
child 0, item: struct<qas: list<item: struct<question: string, id: string, answers: list<item: struct<text: string, answer_start: int64>>, is_impossible: bool, plausible_answers: list<item: struct<text: string, answer_start: int64>>>>, context: string>
child 0, qas: list<item: struct<question: string, id: string, answers: list<item: struct<text: string, answer_start: int64>>, is_impossible: bool, plausible_answers: list<item: struct<text: string, answer_start: int64>>>>
child 0, item: struct<question: string, id: string, answers: list<item: struct<text: string, answer_start: int64>>, is_impossible: bool, plausible_answers: list<item: struct<text: string, answer_start: int64>>>
child 0, question: string
child 1, id: string
child 2, answers: list<item: struct<text: string, answer_start: int64>>
child 0, item: struct<text: string, answer_start: int64>
child 0, text: string
child 1, answer_start: int64
child 3, is_impossible: bool
child 4, plausible_answers: list<item: struct<text: string, answer_start: int64>>
child 0, item: struct<text: string, answer_start: int64>
child 0, text: string
child 1, answer_start: int64
child 1, context: string
```
Could you try to update pyarrow to >=0.17.0 ? It should fix the `to_pandas` bug
Also I'm not sure that structures like list<struct> are fully supported in the lib (none of the datasets use that).
It can cause issues when using dataset transforms like `filter` for example | [
0.0346820429,
0.1334792227,
-0.1031353474,
0.0542146564,
0.2966338098,
-0.0923532918,
0.3753250241,
0.4698341191,
-0.1327775717,
-0.2164525092,
-0.2198519856,
0.8954612017,
0.1729374677,
0.0701538175,
-0.0751240849,
-0.0060986485,
0.1450800896,
0.1565449834,
0.0088705104,
-0.0708983168,
-0.0599106252,
0.2531307042,
-0.3004132509,
0.1826230437,
-0.0905479938,
-0.2454892248,
-0.0693987906,
0.2031734139,
-0.0372754857,
-0.4164664745,
0.3161961734,
-0.2416542619,
-0.0060525797,
0.3274361491,
-0.0001048727,
0.1640705168,
0.2705143094,
-0.0000034794,
-0.3173803687,
0.0224590451,
0.2117269933,
-0.2963277102,
0.3813582659,
-0.347482264,
0.0869462788,
-0.3566196263,
0.0171470437,
-0.0835764557,
0.7314297557,
0.4084210694,
0.2785183191,
0.2500543594,
0.2212231606,
0.1054729298,
0.0283313654,
0.0175161324,
-0.1275165826,
0.0906670764,
0.075031355,
-0.1102544665,
-0.0946216136,
-0.0678508058,
0.0189647302,
-0.1256455779,
-0.0272466205,
0.0404619798,
-0.0931732804,
-0.2096058726,
-0.0769638643,
0.2726134956,
0.0939593166,
-0.3873831332,
-0.3478513658,
-0.3279164135,
0.0629387796,
-0.0009636059,
-0.0402866639,
0.0938739106,
-0.1286570877,
0.1151220649,
0.3740178645,
0.2121663839,
-0.1918032765,
0.0442609191,
-0.1055229008,
0.2287071943,
-0.1356018931,
0.0541745387,
-0.0578799434,
-0.3256850839,
0.0986952633,
-0.0277542975,
0.1278441697,
0.1253149062,
-0.3464330435,
-0.2328875661,
-0.022337608,
-0.5411040783,
0.0283722505,
-0.0601906404,
0.4258270264,
0.0907201767,
0.1717901975,
0.2311958075,
0.366830945,
-0.0149530806,
0.0346244909,
0.1606027633,
0.1122557074,
0.0811909288,
-0.1864203215,
0.1348263323,
-0.1662887633,
-0.2421691567,
-0.0859453529,
-0.1153009236,
0.3311733305,
0.0254376233,
-0.4399408102,
-0.0537534878,
-0.5590520501,
0.2023045272,
0.0710941553,
0.1338671446,
-0.074662298,
0.3300739527,
0.0325629264,
0.3296060264,
-0.1141768023,
0.2582934797,
-0.1887710243,
0.1703864038,
-0.0874275193,
-0.2365326881,
0.0982108414,
0.3039857149,
0.0466025546,
0.0504975989,
0.0918958932,
-0.0839028805,
-0.1096945852,
-0.0015051924,
0.1392646283,
0.0685771182,
0.0357965082,
-0.0865218341,
0.1393047869,
-0.5467723012,
-0.116313681,
0.008497118,
-0.1911563426,
0.0046368167,
-0.1746990681,
0.2353433669,
-0.2089507282,
-0.2094292045,
-0.2487305254,
0.3075787425,
0.2559837997,
-0.1344773173,
0.055490002,
-0.2134827524,
0.1080433726,
-0.3103169799,
0.0428103358,
0.0812465623,
-0.5389329791,
-0.0203244016,
0.0307998843,
0.0184500813,
0.0858007222,
0.3102586269,
-0.1158486977,
0.1331139654,
-0.0083089471,
0.360010922,
0.4705030024,
-0.5010074973,
-0.2272090018,
0.1233952045,
-0.1028220206,
0.0469566956,
-0.0094132982,
-0.0619987324,
0.1139434725,
-0.084789969,
0.0009975117,
0.4146357477,
0.0844550505,
-0.0295387879,
-0.3178603649,
-0.0425880551,
0.1657472104,
-0.0479367413,
-0.2070492506,
-0.0420341082,
0.1097066328,
0.1532751173,
0.2502881885,
-0.0173267722,
0.1595969796,
0.053288985,
0.1093757078,
-0.1778444499,
0.1243779063,
-0.1607410312,
-0.4700014889,
0.0486029983,
-0.4537341595,
0.0608940609,
-0.4144334793,
-0.2232550532,
-0.2128350884,
0.1473475248,
-0.18784298,
0.0255587175,
0.3575514555,
-0.1679497659,
-0.0512811914,
-0.0964462832,
-0.1266192198,
-0.1882028282,
-0.2063401043,
0.1719737351,
-0.1708499789,
0.2271745801,
-0.1129681617,
-0.1993498951,
0.2624518871,
0.4142283201,
0.1086490452,
0.0614258982,
0.0796473175,
0.2213226408,
-0.0544629879,
-0.031788066,
0.3201676607,
-0.2909973264,
-0.0313172713,
-0.2659502029,
0.0141430479,
0.3197630048,
0.1506412923,
-0.1804136187,
-0.3506354988,
0.5115053654,
-0.0059452057,
0.3427323699,
-0.0489864349,
0.2725569308,
0.2093357295,
0.0373883396,
-0.2711516321,
-0.0717703104,
-0.4835416675,
0.3345215619,
-0.0204404034,
-0.0447024889,
-0.2443453074,
0.3678494096,
0.550548315,
-0.0689328536,
0.1616615057,
0.0775089934,
0.01619968,
-0.26196751,
0.0648875386,
0.0690606758,
0.2639740109,
0.2140438706,
0.2403578311,
-0.1615491062,
-0.2850792706,
-0.07137312,
0.2082888931,
0.0974632353,
0.5278189778,
0.0792274624,
0.5001676083,
-0.0341711529,
-0.3575002849,
-0.1992798448,
-0.0516331159,
0.0686855614,
-0.2854184806,
0.256487906,
-0.3057737947,
0.0477440804,
-0.0250571277,
-0.1595955491,
-0.0184886567,
-0.3592126667,
-0.0316121653,
-0.1378118545,
-0.1378916502,
0.2406538725,
0.0266216025,
0.0844943747,
0.232708171,
-0.2775377929,
-0.1527978629,
-0.2352079451,
-0.2616931796,
0.2177619934,
0.3379374743,
0.0411353521,
-0.0485286266,
0.279427439,
-0.060433574,
-0.0615332499,
-0.3725874722,
-0.0082611106,
-0.3359125257,
0.0715324506,
0.2027657032,
0.1623567939,
-0.2620194852,
-0.1655699611,
0.2315651178,
-0.0164052248,
-0.2091495991,
0.0947046727,
-0.1275329292,
-0.0346240327,
-0.1428414434,
-0.2469443828,
-0.2260991782,
-0.3014290333,
0.5213175416,
0.1887675077,
0.221952498,
0.1249705255,
0.3326107264,
0.3914608657,
0.1052840725,
0.0423734188,
-0.0694773495,
0.0976861715,
0.2977074981,
-0.1696942747,
-0.3797701299,
-0.069881998,
-0.187622413,
0.2407637835,
-0.3310917318,
-0.1938592792,
-0.1503860652,
-0.0856648907,
0.2066675723,
-0.0267161615,
-0.0419332832,
0.2467585355,
0.2092573494,
-0.2028105855,
-0.2000725418,
-0.0342850164,
0.1739810258,
0.1710568368,
0.0377096869,
-0.1712384075,
0.3040519953,
0.2585918903,
0.4388796389,
0.2099824399,
-0.1460915059,
0.0409789309,
-0.0747576803,
0.1780078411,
-0.044652015,
-0.1240197495,
0.0583535396,
-0.282769829,
0.2170439661,
0.0208706185,
-0.048045285,
-0.4201208651,
0.0662787184,
0.209739238,
-0.2522655725,
-0.2328829169,
0.1130289212,
-0.2635748088,
-0.2586222291,
0.06002298,
0.0072317198,
-0.203866601,
0.0052685253,
-0.1134462878,
-0.1282091588,
-0.0791153684,
0.0545386374,
-0.4279324412,
-0.2682366073,
-0.2955731452,
0.1940233409,
-0.0274752062,
0.3233993649,
0.2389303148,
-0.3229118586,
0.1085108146,
-0.2627048194,
0.3716491461,
0.013256548,
-0.0600719713,
0.3629270494,
0.3301508427,
-0.7625824213,
-0.045996055,
-0.3256263733,
0.4142327309,
0.2585716844,
0.1136590466,
-0.3738933802,
-0.2970249057,
0.1337302774,
-0.0611592159,
0.0308417454,
0.1280531138,
-0.2378215939,
-0.3379614651,
-0.2001912594,
0.2259794474,
0.3510625958,
0.292206049,
-0.2115904689,
-0.4218178391,
-0.1945053041,
-0.1939957738,
0.1717282832,
0.2185313404,
0.1352572143,
0.0284803659,
-0.0527352802,
-0.1477456242,
0.2658387721,
0.0832406506,
0.4682661891,
-0.0706399828,
-0.1046358421,
0.102199465,
0.0393760614,
0.3186956644,
0.2960729599,
-0.1890681088,
0.0780216008,
-0.1481003761,
0.0111736767,
0.2016936541,
-0.2384645343,
0.3859431744,
-0.016881045,
0.0025901943,
-0.1516288221,
0.465560168,
-0.0203577317,
-0.0327580795,
0.0383429565,
0.1135956421,
-0.1131091267,
0.4639155269,
0.2065853775,
0.8790788651,
0.0262424126,
0.3171675801,
0.5428174734,
-0.1710009277,
0.5304214358,
-0.0539957285,
0.147867769,
-0.2938593626,
0.5065792203,
0.0645177141,
-0.142576918,
-0.0863093361,
0.2681828737,
-0.2327599525,
0.0258359127,
-0.1960623264,
0.2170092911,
0.2107064724,
0.2751067877,
-0.0305988602,
-0.2755974233,
-0.6548113227,
0.2362294942,
0.1165925562,
-0.2514948249,
0.1502362043,
-0.4565246403,
-0.4458029568,
-0.1074714661,
-0.0148460716,
0.2622071207,
-0.1795081496,
0.3122818768,
0.3167705536,
-0.3436287045,
0.1971016228,
0.5936032534,
-0.1254543066,
-0.2281091511,
-0.0550537407,
0.0861303359,
0.0346791558,
-0.0109297372,
0.1019863486,
-0.0854176283,
0.3436596096,
-0.0618002899,
-0.1343174875,
0.0810630396,
-0.0348948613,
-0.1304962039,
0.079743132,
0.48927176,
-0.1618465185,
-0.3484070897,
-0.098369807,
-0.0384709388,
-0.3954729438,
-0.241712302,
0.2116262764,
-0.0092255175,
-0.1125637144,
0.4255142808,
0.2137936652,
-0.0839787126,
0.1484849304,
0.2626099288,
0.0930733606,
0.3781284988,
0.5176309943,
0.088429451,
-0.1763882041,
-0.2753968239,
0.1769769788,
0.1379486024,
-0.1889904886,
0.2807770967,
-0.1882598549,
-0.3576731086,
0.0459904112,
0.0207597557,
-0.0589365885,
0.1955635548,
-0.259755373,
-0.4056970477,
-0.2798855007,
0.2288468331,
-0.0408818871,
-0.0069538988,
-0.0486404076,
0.3339015245,
-0.0145014524,
-0.0963490233,
-0.3843575716,
0.2725996077,
-0.3716557622,
0.0740753412,
-0.3814615607,
-0.3459910154,
0.2668171525,
0.0308047831,
0.2160769999,
0.1098615006,
0.0036857203,
-0.3170914352,
-0.0461045913,
0.0781309232,
0.1460113823,
0.1028928161,
-0.0152358599,
0.0452592149,
-0.3004340529,
-0.1509354115,
-0.121289134,
-0.0555397049,
-0.0096375123,
0.1606694162,
0.0099006081,
0.0740235895,
0.2094492018,
-0.1554742754,
-0.0692404285,
0.0523919761,
-0.0738824084,
0.2532298565,
-0.0490229949,
0.0039508268,
0.1122214496,
0.2262327969,
-0.0058492459,
0.1865204275,
0.2958051264,
-0.1624651849,
-0.4413197637,
-0.2185000181,
0.3224134445,
0.5740979314,
-0.1763644814,
0.0570711121,
-0.2007497996,
0.2156662196,
-0.4009671211,
0.0981800705,
0.2420497686,
-0.1563888937,
0.1629417241,
0.1809740365,
0.0274454206,
-0.1156516522,
-0.012555901,
0.065936096,
0.2097221613,
-0.0765963495,
-0.05963476,
0.2138524204,
-0.016144149,
0.0193216745,
0.4070714712,
-0.0857665092,
0.2633347809,
0.332968235,
0.0312269982,
0.0426279455,
0.2017086148,
0.0390786603,
0.3710515499,
0.1623593122,
-0.0544954427,
0.1737105548,
0.2876289189,
-0.022084184,
0.1096088886,
0.7406486273,
-0.0993699804,
-0.1496198177,
-0.0029146746,
0.0964952186,
-0.1920408458,
-0.2609265447,
-0.3624968827,
-0.1506779939,
-0.1066601723,
-0.3490463495,
-0.0708511099,
-0.2164484859,
-0.0891565233,
-0.0799686238,
0.1176135391,
-0.1278519779,
0.191533789,
0.072195664,
0.2520895004,
-0.0163426101,
0.1791756302,
0.1918962598,
-0.007400874,
-0.1781453043,
0.1820497364,
0.5045110583,
0.1560385525,
-0.4481218457,
-0.0124126263,
0.0752604008,
-0.3575071096,
0.0184035823,
0.1065763533,
0.1137406603,
-0.2378425896,
0.3356722891,
0.2290234715,
-0.1850779355,
-0.2165261954,
0.2224217802,
-0.0761557668,
0.1127022281,
0.2996038496,
-0.3052108586,
-0.3296505809,
-0.0944686383,
-0.0046699233,
-0.2677339315,
-0.276588887,
0.1584851742,
0.0071124434,
0.204869628,
-0.2126353532,
0.1546743363,
0.069325611,
0.5761981606,
-0.0310888663,
0.0948052779,
0.0794112608,
0.2102881968,
-0.4790942669,
0.1391238123,
-0.1064214632,
-0.1181198806,
0.0687158033,
0.4990250468,
0.0630584434,
0.150490582,
0.1508843899,
0.01043237,
-0.1435123086,
0.0968661159,
-0.3981229365,
0.0104691591,
0.1829184294,
0.0597023889,
0.162882328,
-0.2981538773,
0.0647493303,
-0.1292549819,
0.1347409934,
-0.0217994936,
-0.2169078439,
-0.0270207822,
-0.1069161892,
0.2247481793,
0.1091792136,
0.1795614064,
-0.058621984,
-0.2362985164,
-0.1898044497,
-0.1666768044,
-0.2485950291,
0.4792465568,
-0.1454408169,
0.2362555563,
-0.0857738107,
0.0941279382,
0.1562324464,
-0.0268115494,
0.1147976443,
-0.1340166777,
-0.32602036,
0.3352851272,
-0.0969314724,
0.2485346794,
-0.2594835162,
0.3689164817,
-0.1254214644,
0.2203355879,
-0.3546595871,
-0.5474946499,
0.5134512186,
-0.3442060947,
-0.353921175,
0.258849889,
0.1708125621,
0.2654415965,
0.1027441993,
-0.1676401794,
-0.1582757682,
0.211167708,
-0.1707342863,
-0.3202185631,
-0.0052575283,
-0.1648397297,
0.1009312123,
-0.2636688352,
-0.0430935845,
0.0050746631,
0.1069144458,
-0.2034539282,
-0.3928066194
] |
https://github.com/huggingface/datasets/issues/375 | TypeError when computing bertscore | I am not able to reproduce this issue on my side.
Could you give us more details about the inputs you used ?
I do get another error though:
```
~/.virtualenvs/hf-datasets/lib/python3.7/site-packages/bert_score/utils.py in bert_cos_score_idf(model, refs, hyps, tokenizer, idf_dict, verbose, batch_size, device, all_layers)
371 return sorted(list(set(l)), key=lambda x: len(x.split(" ")))
372
--> 373 sentences = dedup_and_sort(refs + hyps)
374 embs = []
375 iter_range = range(0, len(sentences), batch_size)
ValueError: operands could not be broadcast together with shapes (0,) (2,)
```
That's because it gets numpy arrays as input and not lists. See #387 | Hi,
I installed nlp 0.3.0 via pip, and my python version is 3.7.
When I tried to compute bertscore with the code:
```
import nlp
bertscore = nlp.load_metric('bertscore')
# load hyps and refs
...
print (bertscore.compute(hyps, refs, lang='en'))
```
I got the following error.
```
Traceback (most recent call last):
File "bert_score_evaluate.py", line 16, in <module>
print (bertscore.compute(hyps, refs, lang='en'))
File "/home/willywsm/anaconda3/envs/torcher/lib/python3.7/site-packages/nlp/metric.py", line 200, in compute
output = self._compute(predictions=predictions, references=references, **metrics_kwargs)
File "/home/willywsm/anaconda3/envs/torcher/lib/python3.7/site-packages/nlp/metrics/bertscore/fb176889831bf0ce995ed197edc94b2e9a83f647a869bb8c9477dbb2d04d0f08/bertscore.py", line 105, in _compute
hashcode = bert_score.utils.get_hash(model_type, num_layers, idf, rescale_with_baseline)
TypeError: get_hash() takes 3 positional arguments but 4 were given
```
It seems like there is something wrong with get_hash() function? | 91 | TypeError when computing bertscore
Hi,
I installed nlp 0.3.0 via pip, and my python version is 3.7.
When I tried to compute bertscore with the code:
```
import nlp
bertscore = nlp.load_metric('bertscore')
# load hyps and refs
...
print (bertscore.compute(hyps, refs, lang='en'))
```
I got the following error.
```
Traceback (most recent call last):
File "bert_score_evaluate.py", line 16, in <module>
print (bertscore.compute(hyps, refs, lang='en'))
File "/home/willywsm/anaconda3/envs/torcher/lib/python3.7/site-packages/nlp/metric.py", line 200, in compute
output = self._compute(predictions=predictions, references=references, **metrics_kwargs)
File "/home/willywsm/anaconda3/envs/torcher/lib/python3.7/site-packages/nlp/metrics/bertscore/fb176889831bf0ce995ed197edc94b2e9a83f647a869bb8c9477dbb2d04d0f08/bertscore.py", line 105, in _compute
hashcode = bert_score.utils.get_hash(model_type, num_layers, idf, rescale_with_baseline)
TypeError: get_hash() takes 3 positional arguments but 4 were given
```
It seems like there is something wrong with get_hash() function?
I am not able to reproduce this issue on my side.
Could you give us more details about the inputs you used ?
I do get another error though:
```
~/.virtualenvs/hf-datasets/lib/python3.7/site-packages/bert_score/utils.py in bert_cos_score_idf(model, refs, hyps, tokenizer, idf_dict, verbose, batch_size, device, all_layers)
371 return sorted(list(set(l)), key=lambda x: len(x.split(" ")))
372
--> 373 sentences = dedup_and_sort(refs + hyps)
374 embs = []
375 iter_range = range(0, len(sentences), batch_size)
ValueError: operands could not be broadcast together with shapes (0,) (2,)
```
That's because it gets numpy arrays as input and not lists. See #387 | [
0.2761255503,
-0.1318789274,
0.0756906345,
0.5165118575,
0.0988566726,
-0.0892143995,
0.1624638736,
0.4776291549,
-0.0689703226,
0.178064391,
0.1973381042,
0.4109015167,
-0.2279064655,
-0.2859783173,
-0.0107830372,
-0.4891377091,
-0.0108124539,
0.2576289177,
0.0752305984,
-0.1934441328,
-0.4337225854,
0.0454930216,
-0.3053170741,
0.2282249331,
0.2554675639,
0.0886289254,
-0.2604393959,
0.134860903,
-0.2278602123,
-0.4158534706,
0.3323255181,
-0.1785546094,
0.0079619959,
0.2735725939,
-0.0001196758,
-0.1642266363,
0.3422837555,
-0.0503759235,
0.1353787631,
-0.296705544,
-0.5725341439,
-0.3105913997,
-0.031961821,
-0.3177136779,
0.2614760399,
0.1489253938,
-0.1354339123,
-0.0481011905,
0.0123424567,
0.1812460423,
0.1339588463,
0.0254175812,
-0.211863488,
0.0177610181,
0.2604243159,
0.0071909223,
0.0185496286,
0.3635785878,
-0.4025582671,
-0.300816834,
0.0149123501,
0.3288401365,
0.0135539174,
0.082364507,
0.2077831328,
0.2061750293,
0.0641872361,
0.188090533,
-0.0999023691,
0.0908539444,
-0.3608181179,
0.0836355165,
-0.3250644803,
0.2343545258,
0.0563025363,
-0.4785050154,
0.2022823393,
-0.1153279021,
-0.001447238,
-0.5615648031,
-0.278387934,
-0.1005954444,
-0.3167914152,
0.1922528744,
0.335963279,
-0.128798902,
-0.1018861681,
0.1736431718,
0.4988455176,
-0.1260613054,
-0.1148243099,
-0.1357132196,
0.1316629797,
0.4445532858,
-0.0911607891,
0.1092808023,
0.1363412142,
0.1133347601,
-0.030332759,
-0.5219545364,
0.0719116032,
-0.0270396005,
-0.3086433709,
0.2734446526,
0.0143347047,
0.4041199684,
0.0988550112,
0.21380575,
-0.1712895483,
0.0942790732,
0.1294127107,
-0.1019417867,
0.0056880079,
-0.1329759955,
0.2726548314,
0.4165843725,
-0.236331284,
-0.1184177995,
0.1208983883,
-0.0305105336,
-0.5161263347,
-0.0156841129,
0.2908791602,
0.3036074936,
-0.031806156,
0.3757752776,
0.0542506799,
0.125297159,
-0.218561694,
0.0710511208,
-0.1651146561,
0.47363621,
-0.4104001522,
-0.0963294208,
0.2049661875,
-0.2787076831,
0.250121057,
0.0212144963,
0.1306796223,
0.0555527061,
-0.2320178449,
-0.2523787618,
0.1263790131,
-0.141063422,
0.0272895843,
-0.0139503516,
0.2995970845,
0.2706361413,
-0.1369116902,
0.0181662254,
-0.447697103,
-0.3143445253,
0.1559609026,
0.0991139561,
0.1796134114,
0.1577751935,
-0.2132615298,
-0.0983943343,
0.2718786299,
-0.27926898,
-0.2460836768,
-0.3767073452,
-0.1823874712,
-0.2621819973,
0.1168278828,
0.2059367448,
-0.1212448776,
0.0793726966,
-0.3344724178,
0.3835711777,
0.418189466,
0.2574718297,
-0.2473278493,
0.0452041849,
-0.0492058247,
0.3692499697,
0.512599647,
-0.5257793069,
-0.0867505372,
-0.1490115821,
0.3625636399,
-0.3087704778,
-0.0399736688,
-0.024080269,
-0.3384364843,
0.0245215222,
0.0581529737,
-0.1452073753,
-0.1038016304,
0.0133662522,
-0.2070170045,
0.035914965,
0.2369994968,
0.0171720088,
0.2854467928,
-0.0981564671,
-0.0882567018,
0.345407486,
-0.1192730665,
-0.1363749355,
0.03455358,
0.050476864,
0.3094348609,
-0.2021873295,
0.2588392794,
-0.1655931771,
0.1092830077,
0.0673471093,
-0.4491260052,
0.2856457233,
-0.0311464705,
0.214844808,
-0.1701605916,
-0.1016705334,
-0.0813257247,
0.0045040809,
0.0332288519,
0.0805321783,
0.2835665941,
0.0595615208,
-0.1374049485,
-0.3083930016,
-0.0790308565,
-0.2511033416,
-0.2863685489,
0.0399264321,
-0.3576809466,
-0.1113912463,
0.2529586256,
0.4223968089,
0.4608674645,
0.2282651812,
-0.1752714366,
0.1923552006,
0.0128551722,
-0.2530881464,
0.2528436482,
0.0289124474,
-0.0318937749,
-0.2653282285,
0.10530857,
-0.0803650022,
0.378934145,
-0.0778162032,
0.1700155139,
0.3666503429,
0.0215995293,
0.3864726424,
0.0584277213,
0.1290575862,
0.1458588541,
0.1078662202,
0.1775078177,
-0.1183458045,
0.3007713258,
0.0703477561,
-0.206773445,
-0.2661766708,
0.2243999988,
-0.3974006176,
0.5296509862,
0.1097305864,
-0.0443876944,
0.3107478023,
0.0447517969,
-0.079753913,
-0.3063563406,
-0.5760135651,
0.4189805984,
-0.14339526,
-0.0812471658,
-0.0095237046,
-0.0576682538,
-0.0341158882,
0.1319586039,
0.1455874741,
-0.1513841003,
-0.161483869,
0.0986192226,
-0.0865081176,
0.0416442603,
-0.2019617558,
0.0317006335,
0.5163309574,
-0.3323076963,
0.4592033029,
-0.2828944623,
-0.2112268209,
-0.2713426054,
-0.6009112597,
-0.393034488,
-0.4392986894,
-0.0611249432,
-0.0487507805,
0.1180295497,
0.211655885,
0.1126755327,
0.3243050575,
0.2135198116,
0.197318539,
-0.1149036735,
-0.226451993,
-0.4213558137,
-0.0705223605,
-0.1354674101,
0.0677993894,
0.1510770023,
-0.1498574167,
-0.1466471255,
-0.0514497533,
-0.2478655577,
0.089284569,
-0.3712441325,
0.0114818234,
0.4287262559,
-0.252073139,
-0.5686556101,
-0.1865832359,
0.4113080502,
-0.2112158239,
-0.1362232417,
0.605329752,
-0.1048111618,
0.0049571022,
-0.141930908,
-0.232582882,
0.1631803364,
-0.0266355425,
0.2447891533,
0.1147987694,
0.3527390659,
0.0608618334,
-0.0426311269,
0.3670555949,
-0.2433393747,
-0.0545859821,
-0.2454429269,
-0.2338040173,
0.1739593148,
-0.1633548141,
-0.3638001084,
-0.2329209447,
-0.0839457661,
0.2205966115,
0.0326961949,
-0.0719919056,
-0.6988810897,
0.1609140486,
-0.0875735581,
-0.1130752414,
0.3430013955,
0.2070798576,
-0.0264374521,
-0.0185621865,
-0.2006421089,
-0.0735507309,
0.2997157574,
0.1567745656,
0.2876432836,
0.0552389026,
0.2681929171,
0.2105775326,
0.7750532627,
0.4110401869,
-0.1427955925,
0.410836488,
0.0980710015,
-0.0665929615,
0.1418494582,
-0.4568255842,
0.0531857312,
0.0878207237,
0.265216589,
0.1736509204,
-0.1130230576,
-0.0135812778,
-0.1446098238,
-0.1400754899,
-0.4488296509,
-0.2586407661,
0.1118821278,
-0.2477543354,
0.5019533038,
0.0393709764,
0.0282556117,
-0.4011196494,
-0.2987887859,
0.0437130667,
-0.1346630752,
0.1600887626,
-0.0850047916,
0.3199121952,
-0.431506753,
-0.260943383,
0.4325510263,
0.5315393806,
0.4602391422,
-0.044084318,
0.2140754014,
0.0286204368,
0.0435652509,
0.391659379,
-0.2287545502,
0.1957283318,
0.1939030141,
0.012567699,
-0.2409181446,
0.0994615555,
-0.4506722689,
0.0259020999,
0.2522265613,
0.1966552734,
-0.1824198961,
0.0829217434,
0.2392494977,
-0.1913160682,
-0.216822654,
-0.1717543602,
-0.3922538757,
-0.1034555882,
0.1337931007,
0.0708657578,
-0.184828192,
0.3278143406,
0.1164419129,
0.3427139521,
0.0810551792,
-0.0545406677,
0.1605660915,
0.0525474623,
-0.0157515071,
0.0007022619,
0.0075160116,
0.0105597414,
-0.096967414,
0.1803428978,
0.0753131956,
-0.0390517041,
-0.3406936824,
-0.0114942519,
0.155364573,
0.557082057,
0.0420730785,
-0.0259381775,
0.0074091665,
0.0348688215,
0.0451917388,
-0.0971727967,
0.1141786948,
0.654345274,
-0.1623405367,
-0.2744376957,
-0.3511204422,
0.5985900164,
0.1391277909,
-0.0441230312,
-0.1602844447,
0.355471611,
-0.1096791178,
0.2573422492,
0.4078999758,
0.986261487,
0.0076944726,
0.0063674152,
0.3951888382,
0.3146583736,
0.6596640944,
0.1578850299,
0.2431864738,
-0.4803035855,
0.0930512547,
-0.0470333844,
-0.1843598932,
-0.0433026515,
-0.1433939636,
-0.1519215554,
0.5336702466,
-0.1822410673,
-0.0090789013,
0.0595020503,
-0.0926759541,
0.1497074962,
-0.3648530841,
-0.2230277807,
0.0929772034,
-0.2057848722,
0.1314042658,
-0.1327212453,
-0.1358574331,
0.0986192822,
-0.3095803261,
-0.3487920165,
0.2200478911,
0.304518044,
0.086837098,
-0.0660902113,
-0.0008571744,
0.1731224805,
-0.0144816767,
0.3831584752,
-0.0302860569,
-0.1866536736,
-0.0229078718,
0.0708983839,
-0.0881783515,
0.1204802841,
0.2667515576,
-0.1431593746,
-0.1279943734,
-0.0330286622,
0.1175678074,
-0.0159542188,
-0.24412404,
-0.0770292133,
0.0197637063,
0.170729503,
-0.0075826608,
0.0523216799,
-0.0347122662,
0.0013454407,
-0.0325210132,
0.0771800056,
0.0615728535,
-0.3198442161,
0.2046664059,
0.0610939041,
-0.1008353382,
0.263322711,
0.3545154929,
0.1891107559,
0.0707342252,
0.4330876172,
0.0131017789,
-0.2483197451,
-0.0143438689,
-0.2957585752,
0.0910889059,
-0.313570559,
0.0125328638,
0.1495844722,
0.2577354908,
0.0460844673,
0.3942524195,
0.0963945165,
0.0542417765,
0.0115345269,
-0.3625419438,
0.0454561487,
0.0628633499,
-0.2470956743,
-0.2727506459,
0.038384065,
0.1021151319,
-0.1322075874,
0.3776409924,
-0.2192404866,
0.0390755832,
-0.3728844523,
0.3584417701,
-0.1926399171,
-0.0827744901,
0.2540489435,
0.1947726309,
0.0388453081,
0.3014288545,
-0.1767050922,
-0.0731122792,
-0.2100670636,
0.1635113657,
0.1310477108,
-0.1000210717,
-0.1430185884,
-0.3009254932,
-0.2370304316,
-0.0528404601,
-0.5451626778,
0.093605049,
-0.0505118035,
0.5203588009,
-0.0175806005,
0.209358722,
0.2586183548,
0.1882199496,
-0.0817685872,
0.341198504,
-0.0502769127,
0.1644683182,
0.0733919144,
-0.1656047851,
-0.1188357025,
0.0411758535,
0.1432889253,
-0.0187744722,
0.2660484612,
-0.0018671723,
0.3188220263,
-0.2743108869,
0.326965481,
0.1402783245,
-0.0391176306,
-0.0568725653,
0.3071951568,
0.0340564176,
-0.1577089429,
-0.0167014301,
-0.3050073683,
0.1646965295,
-0.2107362151,
0.1912526935,
-0.1915954351,
-0.0024432093,
0.0365468562,
-0.2161625922,
-0.0961603671,
-0.2499933243,
-0.1051245779,
0.240621984,
-0.1562428176,
0.0950379372,
0.3902390599,
0.1090635359,
0.1705682725,
0.2774473131,
-0.1277302504,
0.2209455818,
-0.3681940734,
-0.0341563933,
-0.1115673035,
-0.0962209105,
-0.4266493917,
0.3289458156,
0.3853106201,
0.2180595845,
-0.2089057565,
0.6197125316,
-0.2494839579,
0.0003629029,
-0.4004909098,
0.4326593876,
0.1480338275,
-0.0509176776,
-0.228865236,
-0.1270177364,
-0.2422430217,
0.0241072178,
-0.0477329195,
0.1367580295,
0.4916252792,
0.4510847032,
-0.050579343,
-0.2604433894,
-0.325042963,
0.5483910441,
0.2560439706,
-0.3059969544,
-0.0033515366,
0.1129800305,
0.0017467812,
-0.0900230482,
0.3348163366,
0.2629613578,
0.4056596458,
-0.2561150193,
-0.238925755,
0.000881996,
0.0525389686,
0.0479514822,
0.2962496877,
0.3155492544,
0.3683303595,
0.1411132962,
-0.0089416485,
-0.0464184955,
0.1642609239,
-0.0995211005,
0.5115289092,
0.0894533396,
0.8424606323,
-0.070108965,
0.2200590968,
-0.0643103123,
0.0433489941,
-0.413890481,
0.2294123322,
-0.0224555861,
0.4532650113,
0.1220005602,
-0.0497546084,
0.0311040767,
-0.0103854127,
0.5032488108,
0.3842636943,
-0.1603481174,
-0.6217657328,
-0.0705337897,
-0.1833683401,
0.0825197026,
-0.0731538758,
0.1935968548,
-0.0136897508,
0.0601201802,
-0.1586879343,
0.1457274854,
-0.1382824183,
-0.1218959838,
-0.2110374272,
0.2093121409,
-0.2460126281,
-0.22010611,
-0.2454259396,
-0.4443534911,
0.0382015407,
-0.027673699,
-0.0358010046,
-0.2291761339,
0.0267049,
-0.1150477603,
-0.2235095799,
0.0858785957,
0.5075320005,
0.2599185109,
0.387149483,
0.3245075643,
0.1401467174,
-0.2034896016,
0.0518978834,
-0.1327574253,
0.0878443122,
0.0638766289,
-0.3981202245,
0.1798438579,
-0.1646805108,
0.0677559674,
-0.509858489,
0.3263380527,
-0.1633458138,
-0.1433932483,
-0.380513221,
0.1197050214,
0.0851336792,
-0.0169911608,
-0.1053537875,
0.0401983671,
-0.0319029018,
0.3425040543,
-0.4504335225,
-0.007498119,
0.6227504015,
-0.5898153782,
-0.3655669391,
0.1650716364,
0.2566818893,
0.0099778408,
-0.1730732173,
-0.8751229644,
-0.1224635169,
0.3599116504,
0.1091387197,
-0.1743115187,
-0.1304673404,
-0.2308668643,
-0.0303227976,
0.031911321,
-0.0329073854,
-0.0787349045,
-0.1470036209,
0.314571023,
-0.0969070792
] |
https://github.com/huggingface/datasets/issues/373 | Segmentation fault when loading local JSON dataset as of #372 | I've seen this sort of thing before -- it might help to delete the directory -- I've also noticed that there is an error with the json Dataloader for any data I've tried to load. I've replaced it with this, which skips over the data feature population step:
```python
import os
import pyarrow.json as paj
import nlp as hf_nlp
from nlp import DatasetInfo, BuilderConfig, SplitGenerator, Split, utils
from nlp.arrow_writer import ArrowWriter
class JSONDatasetBuilder(hf_nlp.ArrowBasedBuilder):
BUILDER_CONFIG_CLASS = BuilderConfig
def _info(self):
return DatasetInfo()
def _split_generators(self, dl_manager):
""" We handle string, list and dicts in datafiles
"""
if isinstance(self.config.data_files, (str, list, tuple)):
files = self.config.data_files
if isinstance(files, str):
files = [files]
return [SplitGenerator(name=Split.TRAIN, gen_kwargs={"files": files})]
splits = []
for split_name in [Split.TRAIN, Split.VALIDATION, Split.TEST]:
if split_name in self.config.data_files:
files = self.config.data_files[split_name]
if isinstance(files, str):
files = [files]
splits.append(SplitGenerator(name=split_name, gen_kwargs={"files": files}))
return splits
def _prepare_split(self, split_generator):
fname = "{}-{}.arrow".format(self.name, split_generator.name)
fpath = os.path.join(self._cache_dir, fname)
writer = ArrowWriter(path=fpath)
generator = self._generate_tables(**split_generator.gen_kwargs)
for key, table in utils.tqdm(generator, unit=" tables", leave=False):
writer.write_table(table)
num_examples, num_bytes = writer.finalize()
split_generator.split_info.num_examples = num_examples
split_generator.split_info.num_bytes = num_bytes
def _generate_tables(self, files):
for i, file in enumerate(files):
pa_table = paj.read_json(
file
)
yield i, pa_table
``` | The last issue was closed (#369) once the #372 update was merged. However, I'm still not able to load a SQuAD formatted JSON file. Instead of the previously recorded pyarrow error, I now get a segmentation fault.
```
dataset = nlp.load_dataset('json', data_files={nlp.Split.TRAIN: ["./datasets/train-v2.0.json"]}, field='data')
```
causes
```
Using custom data configuration default
Downloading and preparing dataset json/default (download: Unknown size, generated: Unknown size, total: Unknown size) to /home/XXX/.cache/huggingface/datasets/json/default/0.0.0...
0 tables [00:00, ? tables/s]Segmentation fault (core dumped)
```
where `./datasets/train-v2.0.json` is downloaded directly from https://rajpurkar.github.io/SQuAD-explorer/.
This is consistent with other SQuAD-formatted JSON files.
When attempting to load the dataset again, I get the following:
```
Using custom data configuration default
Traceback (most recent call last):
File "dataloader.py", line 6, in <module>
'json', data_files={nlp.Split.TRAIN: ["./datasets/train-v2.0.json"]}, field='data')
File "/home/XXX/.conda/envs/torch/lib/python3.7/site-packages/nlp/load.py", line 524, in load_dataset
save_infos=save_infos,
File "/home/XXX/.conda/envs/torch/lib/python3.7/site-packages/nlp/builder.py", line 382, in download_and_prepare
with incomplete_dir(self._cache_dir) as tmp_data_dir:
File "/home/XXX/.conda/envs/torch/lib/python3.7/contextlib.py", line 112, in __enter__
return next(self.gen)
File "/home/XXX/.conda/envs/torch/lib/python3.7/site-packages/nlp/builder.py", line 368, in incomplete_dir
os.makedirs(tmp_dir)
File "/home/XXX/.conda/envs/torch/lib/python3.7/os.py", line 223, in makedirs
mkdir(name, mode)
FileExistsError: [Errno 17] File exists: '/home/XXX/.cache/huggingface/datasets/json/default/0.0.0.incomplete'
```
(Not sure if you wanted this in the previous issue #369 or not as it was closed.) | 191 | Segmentation fault when loading local JSON dataset as of #372
The last issue was closed (#369) once the #372 update was merged. However, I'm still not able to load a SQuAD formatted JSON file. Instead of the previously recorded pyarrow error, I now get a segmentation fault.
```
dataset = nlp.load_dataset('json', data_files={nlp.Split.TRAIN: ["./datasets/train-v2.0.json"]}, field='data')
```
causes
```
Using custom data configuration default
Downloading and preparing dataset json/default (download: Unknown size, generated: Unknown size, total: Unknown size) to /home/XXX/.cache/huggingface/datasets/json/default/0.0.0...
0 tables [00:00, ? tables/s]Segmentation fault (core dumped)
```
where `./datasets/train-v2.0.json` is downloaded directly from https://rajpurkar.github.io/SQuAD-explorer/.
This is consistent with other SQuAD-formatted JSON files.
When attempting to load the dataset again, I get the following:
```
Using custom data configuration default
Traceback (most recent call last):
File "dataloader.py", line 6, in <module>
'json', data_files={nlp.Split.TRAIN: ["./datasets/train-v2.0.json"]}, field='data')
File "/home/XXX/.conda/envs/torch/lib/python3.7/site-packages/nlp/load.py", line 524, in load_dataset
save_infos=save_infos,
File "/home/XXX/.conda/envs/torch/lib/python3.7/site-packages/nlp/builder.py", line 382, in download_and_prepare
with incomplete_dir(self._cache_dir) as tmp_data_dir:
File "/home/XXX/.conda/envs/torch/lib/python3.7/contextlib.py", line 112, in __enter__
return next(self.gen)
File "/home/XXX/.conda/envs/torch/lib/python3.7/site-packages/nlp/builder.py", line 368, in incomplete_dir
os.makedirs(tmp_dir)
File "/home/XXX/.conda/envs/torch/lib/python3.7/os.py", line 223, in makedirs
mkdir(name, mode)
FileExistsError: [Errno 17] File exists: '/home/XXX/.cache/huggingface/datasets/json/default/0.0.0.incomplete'
```
(Not sure if you wanted this in the previous issue #369 or not as it was closed.)
I've seen this sort of thing before -- it might help to delete the directory -- I've also noticed that there is an error with the json Dataloader for any data I've tried to load. I've replaced it with this, which skips over the data feature population step:
```python
import os
import pyarrow.json as paj
import nlp as hf_nlp
from nlp import DatasetInfo, BuilderConfig, SplitGenerator, Split, utils
from nlp.arrow_writer import ArrowWriter
class JSONDatasetBuilder(hf_nlp.ArrowBasedBuilder):
BUILDER_CONFIG_CLASS = BuilderConfig
def _info(self):
return DatasetInfo()
def _split_generators(self, dl_manager):
""" We handle string, list and dicts in datafiles
"""
if isinstance(self.config.data_files, (str, list, tuple)):
files = self.config.data_files
if isinstance(files, str):
files = [files]
return [SplitGenerator(name=Split.TRAIN, gen_kwargs={"files": files})]
splits = []
for split_name in [Split.TRAIN, Split.VALIDATION, Split.TEST]:
if split_name in self.config.data_files:
files = self.config.data_files[split_name]
if isinstance(files, str):
files = [files]
splits.append(SplitGenerator(name=split_name, gen_kwargs={"files": files}))
return splits
def _prepare_split(self, split_generator):
fname = "{}-{}.arrow".format(self.name, split_generator.name)
fpath = os.path.join(self._cache_dir, fname)
writer = ArrowWriter(path=fpath)
generator = self._generate_tables(**split_generator.gen_kwargs)
for key, table in utils.tqdm(generator, unit=" tables", leave=False):
writer.write_table(table)
num_examples, num_bytes = writer.finalize()
split_generator.split_info.num_examples = num_examples
split_generator.split_info.num_bytes = num_bytes
def _generate_tables(self, files):
for i, file in enumerate(files):
pa_table = paj.read_json(
file
)
yield i, pa_table
``` | [
-0.0172921643,
0.2893962562,
0.0609414466,
0.0578705519,
0.2236099243,
-0.016548574,
0.3200392723,
0.6101838946,
-0.4010095298,
-0.2130427957,
-0.2422537953,
0.7714076042,
0.1327874511,
-0.4265961647,
0.1489231884,
-0.0715277568,
0.0462256782,
0.1267295182,
0.2239412814,
0.0536701232,
-0.1744495481,
0.341650933,
-0.2299684584,
0.132041648,
-0.1667513549,
0.2660645247,
0.0065366551,
0.5419237614,
-0.0745723397,
-0.7302019,
0.2977763414,
-0.0093300445,
0.1517450064,
0.3450249732,
-0.0001186113,
0.1845317781,
0.3318483233,
-0.1096368656,
-0.351701498,
0.052129332,
0.280503571,
-0.2414646894,
0.3380267918,
-0.1453835964,
0.0627314746,
-0.3119795322,
0.0318318084,
0.0812748075,
0.6866551042,
0.1553965062,
0.0921010226,
0.1377256215,
0.0738056451,
0.0523657613,
0.0207758788,
0.0678776577,
0.0166039318,
0.7200927734,
0.5202921033,
-0.1260128319,
-0.3388990462,
-0.0720847845,
0.1212722659,
-0.0382686928,
0.2048573792,
-0.0635561645,
-0.0138484612,
-0.183270961,
0.0524650402,
0.1170205623,
0.241646871,
-0.2380601168,
-0.2328484654,
-0.215749234,
0.0747867227,
-0.2181081474,
0.377320528,
0.2772288918,
-0.1398605704,
0.1523424387,
-0.0569972768,
0.0344605185,
-0.1918934435,
0.0293106697,
-0.2142735571,
0.5192517638,
0.1215122491,
0.0416844524,
0.1051239669,
-0.1629459709,
-0.1519258022,
0.3172395229,
-0.2625274658,
0.3998278975,
-0.3908267021,
-0.1686173081,
0.1120530292,
-0.3626519144,
0.2163051665,
0.0901771635,
0.1800892353,
0.16720514,
0.213912338,
0.1203704923,
0.4853109121,
0.0546771549,
0.1718353629,
0.2025323212,
0.1526306868,
-0.0196300987,
-0.0259738192,
0.2397750616,
-0.1398817003,
-0.2250074297,
-0.2135163248,
0.0280677378,
-0.026821509,
-0.1094669178,
0.0148831829,
0.0695180073,
-0.3147706687,
-0.0120256953,
0.0509858318,
0.0848619491,
0.131286785,
0.1926080883,
-0.2500282824,
0.2047611326,
-0.1014550999,
-0.1726953536,
-0.0175751969,
-0.026820112,
-0.3066570163,
-0.02066602,
0.4054739475,
-0.1225607544,
0.1185210794,
-0.0812495872,
-0.1116152704,
-0.2269218564,
-0.4334720373,
-0.0438979454,
0.0076666065,
0.149673447,
0.0316804126,
-0.0704862252,
-0.0367233902,
-0.258110404,
-0.1803209037,
0.2121895701,
-0.3511878848,
-0.2851627469,
-0.5924193859,
0.1183916181,
-0.3227139711,
-0.0053093983,
0.1444021612,
0.2050792575,
0.0566595085,
-0.4543263316,
-0.1377894729,
-0.0893592238,
-0.0031524748,
-0.2295425683,
0.1466825604,
0.2523784935,
-0.8450294137,
-0.235981822,
0.1668372154,
-0.0015071929,
0.0830977485,
0.5275312662,
-0.3514188826,
0.2732034922,
-0.1530969143,
0.5261089206,
0.4013669491,
-0.2779784501,
-0.3369086683,
0.2427912503,
-0.3994490504,
-0.0413573682,
-0.2372675687,
-0.0655719638,
0.2967052162,
0.082333453,
0.3412533402,
0.4493864775,
-0.1155516803,
0.148324728,
-0.33256495,
-0.0804989487,
0.1726429611,
0.3601407409,
-0.0674157143,
-0.1608243287,
-0.0298585296,
0.144932121,
0.4040017426,
-0.1719319969,
-0.020753853,
0.1606730521,
0.1372899413,
-0.0173206814,
0.1661417633,
-0.1080796048,
-0.7758404613,
0.1020508707,
-0.2894927263,
0.0807943195,
-0.0411318168,
0.0060530603,
-0.2767831385,
-0.113597773,
-0.2061316371,
-0.0540231839,
0.0321171843,
-0.1604941338,
-0.0348594747,
-0.0682968125,
-0.4652939141,
-0.1567875594,
-0.1547569335,
0.3780492842,
-0.115378134,
0.403931886,
-0.1302650571,
-0.4008331895,
0.0927921385,
0.3672267497,
0.1282615215,
-0.2672618628,
-0.0068156607,
0.3295682669,
-0.0804476887,
0.1338738501,
-0.1708230972,
-0.2979546487,
0.2476089895,
-0.0857613608,
-0.1292844415,
-0.0635807961,
-0.1022319347,
-0.0883648768,
-0.3246679604,
0.3362677693,
0.019725915,
-0.0326361656,
-0.0567736253,
-0.2471360862,
0.2981204093,
-0.0848112181,
-0.127403453,
-0.0282977,
0.017286744,
0.1671073586,
-0.0124944225,
0.1766583174,
-0.176521033,
-0.0144743994,
0.3694944978,
-0.0651187971,
0.0355696604,
0.1873179376,
0.1008720696,
-0.291899085,
-0.0247528348,
-0.0487226993,
0.3634797335,
-0.0076968297,
-0.1558918357,
-0.0039153602,
0.0336672217,
-0.0184019394,
-0.0115455464,
0.0482459106,
0.4226094484,
0.5049400926,
0.3639852107,
0.1684011668,
-0.2733655274,
-0.1548731029,
0.1276230216,
0.0563048273,
-0.3743782043,
0.0602172613,
-0.2678272128,
-0.144592911,
-0.2930880189,
-0.142691195,
-0.3419749141,
-0.1941554546,
0.1088884398,
-0.0382638201,
-0.0867830366,
0.2005050182,
0.1665455401,
0.4000801444,
0.100278534,
-0.1863679886,
0.0381454378,
-0.1772578657,
-0.2182419002,
-0.0453669131,
0.3783229887,
-0.064428851,
-0.2067783773,
-0.1894417703,
-0.2709748447,
0.1097925454,
-0.4360967875,
0.1680291444,
-0.0091558713,
0.1945904344,
0.0222649779,
0.2368632555,
-0.1479672492,
-0.3669348657,
0.2814823687,
-0.0462118387,
-0.2511283159,
0.0004014,
-0.1034955904,
0.1337920427,
-0.2878107429,
-0.3897338808,
-0.2453114688,
-0.2271136343,
0.4359024763,
0.0752960294,
0.1372660249,
0.2004073411,
-0.202068001,
0.0147431344,
-0.2370601445,
-0.211095497,
0.0494781993,
-0.1857466102,
0.2052338123,
-0.2988073528,
-0.1417261362,
-0.0219020247,
0.0942518041,
0.1670045853,
-0.2243583202,
-0.1604164243,
0.1161190942,
0.1713584512,
0.2460082769,
-0.3234410286,
-0.2597649097,
0.252478987,
-0.2297297418,
0.0524284095,
0.1972101331,
-0.3602097631,
-0.0937122107,
0.518563807,
0.1982491314,
-0.2657058537,
0.2363279611,
0.0597210377,
0.8267532587,
-0.1374402195,
-0.1625375301,
0.1258322895,
0.0303803328,
0.1219489872,
-0.1489124,
-0.0352489501,
0.3921880722,
-0.0397976786,
-0.1129410416,
0.2475957572,
0.1624517739,
-0.5424820781,
-0.0059678555,
0.1580978632,
-0.5473144054,
-0.1683233678,
0.2632973194,
0.5551205277,
-0.085087128,
-0.0429343581,
0.029452011,
0.002925083,
-0.2315511107,
-0.0598366335,
0.2242510617,
0.2707132995,
0.0932333618,
-0.5434262156,
-0.3422009349,
-0.044759348,
-0.0204033405,
0.1243700683,
0.4645566344,
-0.0012728497,
-0.2062436938,
0.0272209775,
-0.2641842961,
0.3476612866,
0.2620742321,
0.3518280983,
0.3491415381,
0.3293303251,
-0.0743016526,
-0.3046777546,
0.1451893598,
0.4771127701,
0.6556539536,
0.4198310375,
-0.1016693637,
-0.1317110211,
0.2848740816,
0.085961327,
-0.1447808743,
-0.0733838454,
-0.2265140414,
-0.0794774741,
0.0030265301,
0.0393503979,
-0.0417609736,
0.3973942995,
0.0603221431,
0.1337607801,
0.4236767888,
-0.2695536017,
-0.2426751852,
0.3894141018,
0.109123759,
0.0767815858,
0.0468042493,
0.2670259178,
-0.0012032287,
0.3386414647,
0.4461457729,
0.289424181,
-0.2029464394,
0.2748582959,
-0.0069876797,
0.221301049,
0.4691966176,
0.2012591511,
-0.1830905378,
-0.1404705942,
-0.1271870583,
0.0230226144,
-0.4001840949,
0.1378404796,
-0.3075539768,
-0.22677809,
0.2155748308,
0.2009164989,
-0.0955837667,
-0.0633859187,
-0.0289975256,
-0.0604570955,
-0.0157040618,
0.5079239011,
0.1642166227,
0.7734217048,
-0.0452003106,
0.1062065363,
0.2713395655,
-0.1177696139,
0.4012328386,
-0.651129365,
0.3604258001,
-0.4377227128,
0.2696184516,
0.1214248613,
-0.1291204095,
0.1680386364,
0.1842430532,
0.0067202225,
-0.0547783636,
-0.1476247311,
0.2945116758,
-0.0257628523,
0.3388978243,
0.1799480915,
-0.3059540987,
-0.5036041737,
0.0607925132,
-0.3701075315,
0.0345584452,
-0.1490782201,
-0.1694027185,
-0.0852131695,
-0.1265629381,
-0.2838004231,
0.2769853175,
0.1298912466,
0.0143145733,
0.5128051639,
-0.2600146234,
0.1598158777,
0.3644196391,
-0.1501443088,
0.0535290428,
-0.0029325355,
0.3615521193,
-0.1234303489,
0.1117697731,
0.2297594249,
0.0198836662,
0.2879817784,
-0.1601614505,
-0.0406816602,
-0.0503903516,
-0.0745755807,
-0.2796953321,
-0.0691925883,
0.3941943944,
0.1375084519,
-0.165641427,
0.0129154995,
-0.1245389879,
0.1229195669,
-0.0493014604,
0.0542032272,
0.0106453421,
-0.1491624713,
-0.0271746814,
0.1586453468,
-0.0698155984,
0.086437054,
0.6089109182,
-0.1084502041,
-0.3196204007,
0.3064623475,
0.3026754856,
0.0052802488,
-0.2204807103,
0.2212646604,
0.0504690818,
-0.3886027336,
-0.1376271397,
-0.1989229023,
-0.0684244782,
0.0346806645,
0.1022279859,
0.2172864676,
-0.1017907634,
0.003682524,
-0.5508983731,
-0.3031086326,
0.1911866665,
-0.0767692029,
-0.1813701391,
0.1192315668,
0.3389428854,
0.0155138448,
0.2547381818,
-0.2034854293,
0.3259331882,
-0.3733074069,
0.1441615373,
-0.5635961294,
-0.2371917814,
-0.0035354383,
-0.2305135131,
0.0180748329,
0.2454893738,
0.0734464824,
-0.1074406654,
-0.0155517049,
0.1593937576,
0.1383401603,
-0.0180856548,
-0.169466421,
-0.000206776,
0.1075090617,
0.1735595167,
0.1035003141,
-0.1377709359,
0.1467639804,
0.1609329134,
0.2953791618,
0.1064919382,
0.1960288882,
0.0935886502,
0.0295744874,
0.3905389011,
0.0588819496,
0.2412943393,
-0.2039607465,
0.0334326029,
-0.3554685116,
0.1890604496,
0.0100138336,
0.2804842591,
0.083827205,
-0.5798281431,
-0.0544028841,
-0.0720524192,
0.3013584018,
0.572124064,
-0.366515398,
0.1124068499,
0.1887702942,
0.1041740701,
-0.0099354684,
-0.2594086826,
0.747820735,
-0.0356642976,
-0.3024623692,
0.0180357434,
0.1428464949,
-0.0983975381,
0.1315196753,
0.1389719546,
0.567043364,
0.1919362098,
0.1983342171,
0.2170209885,
-0.2254353166,
-0.0237511657,
0.1397864074,
-0.0790002197,
0.1816961765,
0.2541324198,
-0.1939041167,
0.0633175522,
0.1178165823,
0.103707999,
0.2329497486,
-0.3413435221,
-0.3557489216,
0.0997507796,
0.1379035413,
0.0106008612,
0.1785010099,
0.8641576171,
-0.1908431053,
-0.4217525721,
-0.0853033811,
0.0879022181,
-0.3081797957,
0.0873619318,
-0.4969727397,
-0.1789300144,
-0.0405433178,
0.1543644667,
-0.3017129004,
-0.032923758,
0.0855990499,
0.0390483327,
-0.2745318115,
-0.1928052902,
-0.0414179042,
-0.2142157555,
0.0656095594,
-0.0752991363,
0.3355390131,
-0.1362097561,
0.042880211,
0.2439542413,
-0.0208167229,
0.3282357752,
0.3369993269,
-0.1919891089,
-0.1264550388,
-0.2578289509,
0.021681048,
0.0744307041,
0.1027908251,
0.214665249,
-0.1302479804,
0.2761431336,
0.116820015,
-0.0468782485,
0.1349723041,
0.2768834233,
0.1607481539,
0.0973089784,
-0.0871054828,
-0.1949214041,
-0.2481786758,
-0.0677019954,
-0.1263931543,
0.0338318273,
-0.1226418242,
-0.1555688679,
0.5012951493,
0.117711246,
-0.0630639121,
0.0850425959,
0.1083317548,
0.554695189,
0.222614944,
-0.3615116775,
-0.0978454873,
-0.202680558,
-0.290574789,
0.2430060059,
-0.0448601358,
0.0714032203,
0.3016997576,
0.4403116703,
-0.1458825618,
0.284768343,
-0.2370343208,
-0.0482029431,
0.0044929609,
0.2456319928,
-0.4291105866,
0.1797170192,
0.0566489697,
0.1454112977,
-0.1059209853,
-0.1340214908,
0.2665146589,
-0.2023610175,
-0.0858605951,
0.0350697339,
-0.4277082682,
-0.0206915624,
0.0424791276,
0.2701972723,
-0.0820250437,
0.3326257169,
0.1676800847,
-0.3741495609,
-0.4167825878,
-0.419149518,
-0.1761030108,
0.1557720006,
-0.1276239753,
0.4238353968,
-0.0271939095,
0.2040139735,
-0.314923048,
-0.00302146,
-0.3587969542,
0.3453438282,
-0.3175050914,
0.0861750916,
0.0861125737,
0.1618041694,
0.0088498406,
0.327394098,
-0.0774757788,
0.2494782507,
-0.5126639009,
-0.2689228654,
0.4422737062,
-0.6223304868,
-0.2002595961,
0.0687686354,
0.0811639205,
0.1981114894,
0.0035746451,
-0.2775664628,
-0.0704602078,
0.1616209447,
-0.1745934486,
-0.2950671017,
-0.1357095838,
-0.2625448704,
-0.2551772594,
-0.0769582316,
-0.3599273562,
0.1837786436,
-0.0453099199,
-0.2211909592,
-0.2330329716
] |
https://github.com/huggingface/datasets/issues/373 | Segmentation fault when loading local JSON dataset as of #372 | Yes, deleting the directory solves the error whenever I try to rerun.
By replacing the json-loader, you mean the cached file in my `site-packages` directory? e.g. `/home/XXX/.cache/lib/python3.7/site-packages/nlp/datasets/json/(...)/json.py`
When I was testing this out before the #372 PR was merged I had issues installing it properly locally. Since the `json.py` script was downloaded instead of actually using the one provided in the local install. Manually updating that file seemed to solve it, but it didn't seem like a proper solution. Especially when having to run this on a remote compute cluster with no access to that directory. | The last issue was closed (#369) once the #372 update was merged. However, I'm still not able to load a SQuAD formatted JSON file. Instead of the previously recorded pyarrow error, I now get a segmentation fault.
```
dataset = nlp.load_dataset('json', data_files={nlp.Split.TRAIN: ["./datasets/train-v2.0.json"]}, field='data')
```
causes
```
Using custom data configuration default
Downloading and preparing dataset json/default (download: Unknown size, generated: Unknown size, total: Unknown size) to /home/XXX/.cache/huggingface/datasets/json/default/0.0.0...
0 tables [00:00, ? tables/s]Segmentation fault (core dumped)
```
where `./datasets/train-v2.0.json` is downloaded directly from https://rajpurkar.github.io/SQuAD-explorer/.
This is consistent with other SQuAD-formatted JSON files.
When attempting to load the dataset again, I get the following:
```
Using custom data configuration default
Traceback (most recent call last):
File "dataloader.py", line 6, in <module>
'json', data_files={nlp.Split.TRAIN: ["./datasets/train-v2.0.json"]}, field='data')
File "/home/XXX/.conda/envs/torch/lib/python3.7/site-packages/nlp/load.py", line 524, in load_dataset
save_infos=save_infos,
File "/home/XXX/.conda/envs/torch/lib/python3.7/site-packages/nlp/builder.py", line 382, in download_and_prepare
with incomplete_dir(self._cache_dir) as tmp_data_dir:
File "/home/XXX/.conda/envs/torch/lib/python3.7/contextlib.py", line 112, in __enter__
return next(self.gen)
File "/home/XXX/.conda/envs/torch/lib/python3.7/site-packages/nlp/builder.py", line 368, in incomplete_dir
os.makedirs(tmp_dir)
File "/home/XXX/.conda/envs/torch/lib/python3.7/os.py", line 223, in makedirs
mkdir(name, mode)
FileExistsError: [Errno 17] File exists: '/home/XXX/.cache/huggingface/datasets/json/default/0.0.0.incomplete'
```
(Not sure if you wanted this in the previous issue #369 or not as it was closed.) | 96 | Segmentation fault when loading local JSON dataset as of #372
The last issue was closed (#369) once the #372 update was merged. However, I'm still not able to load a SQuAD formatted JSON file. Instead of the previously recorded pyarrow error, I now get a segmentation fault.
```
dataset = nlp.load_dataset('json', data_files={nlp.Split.TRAIN: ["./datasets/train-v2.0.json"]}, field='data')
```
causes
```
Using custom data configuration default
Downloading and preparing dataset json/default (download: Unknown size, generated: Unknown size, total: Unknown size) to /home/XXX/.cache/huggingface/datasets/json/default/0.0.0...
0 tables [00:00, ? tables/s]Segmentation fault (core dumped)
```
where `./datasets/train-v2.0.json` is downloaded directly from https://rajpurkar.github.io/SQuAD-explorer/.
This is consistent with other SQuAD-formatted JSON files.
When attempting to load the dataset again, I get the following:
```
Using custom data configuration default
Traceback (most recent call last):
File "dataloader.py", line 6, in <module>
'json', data_files={nlp.Split.TRAIN: ["./datasets/train-v2.0.json"]}, field='data')
File "/home/XXX/.conda/envs/torch/lib/python3.7/site-packages/nlp/load.py", line 524, in load_dataset
save_infos=save_infos,
File "/home/XXX/.conda/envs/torch/lib/python3.7/site-packages/nlp/builder.py", line 382, in download_and_prepare
with incomplete_dir(self._cache_dir) as tmp_data_dir:
File "/home/XXX/.conda/envs/torch/lib/python3.7/contextlib.py", line 112, in __enter__
return next(self.gen)
File "/home/XXX/.conda/envs/torch/lib/python3.7/site-packages/nlp/builder.py", line 368, in incomplete_dir
os.makedirs(tmp_dir)
File "/home/XXX/.conda/envs/torch/lib/python3.7/os.py", line 223, in makedirs
mkdir(name, mode)
FileExistsError: [Errno 17] File exists: '/home/XXX/.cache/huggingface/datasets/json/default/0.0.0.incomplete'
```
(Not sure if you wanted this in the previous issue #369 or not as it was closed.)
Yes, deleting the directory solves the error whenever I try to rerun.
By replacing the json-loader, you mean the cached file in my `site-packages` directory? e.g. `/home/XXX/.cache/lib/python3.7/site-packages/nlp/datasets/json/(...)/json.py`
When I was testing this out before the #372 PR was merged I had issues installing it properly locally. Since the `json.py` script was downloaded instead of actually using the one provided in the local install. Manually updating that file seemed to solve it, but it didn't seem like a proper solution. Especially when having to run this on a remote compute cluster with no access to that directory. | [
-0.0172921643,
0.2893962562,
0.0609414466,
0.0578705519,
0.2236099243,
-0.016548574,
0.3200392723,
0.6101838946,
-0.4010095298,
-0.2130427957,
-0.2422537953,
0.7714076042,
0.1327874511,
-0.4265961647,
0.1489231884,
-0.0715277568,
0.0462256782,
0.1267295182,
0.2239412814,
0.0536701232,
-0.1744495481,
0.341650933,
-0.2299684584,
0.132041648,
-0.1667513549,
0.2660645247,
0.0065366551,
0.5419237614,
-0.0745723397,
-0.7302019,
0.2977763414,
-0.0093300445,
0.1517450064,
0.3450249732,
-0.0001186113,
0.1845317781,
0.3318483233,
-0.1096368656,
-0.351701498,
0.052129332,
0.280503571,
-0.2414646894,
0.3380267918,
-0.1453835964,
0.0627314746,
-0.3119795322,
0.0318318084,
0.0812748075,
0.6866551042,
0.1553965062,
0.0921010226,
0.1377256215,
0.0738056451,
0.0523657613,
0.0207758788,
0.0678776577,
0.0166039318,
0.7200927734,
0.5202921033,
-0.1260128319,
-0.3388990462,
-0.0720847845,
0.1212722659,
-0.0382686928,
0.2048573792,
-0.0635561645,
-0.0138484612,
-0.183270961,
0.0524650402,
0.1170205623,
0.241646871,
-0.2380601168,
-0.2328484654,
-0.215749234,
0.0747867227,
-0.2181081474,
0.377320528,
0.2772288918,
-0.1398605704,
0.1523424387,
-0.0569972768,
0.0344605185,
-0.1918934435,
0.0293106697,
-0.2142735571,
0.5192517638,
0.1215122491,
0.0416844524,
0.1051239669,
-0.1629459709,
-0.1519258022,
0.3172395229,
-0.2625274658,
0.3998278975,
-0.3908267021,
-0.1686173081,
0.1120530292,
-0.3626519144,
0.2163051665,
0.0901771635,
0.1800892353,
0.16720514,
0.213912338,
0.1203704923,
0.4853109121,
0.0546771549,
0.1718353629,
0.2025323212,
0.1526306868,
-0.0196300987,
-0.0259738192,
0.2397750616,
-0.1398817003,
-0.2250074297,
-0.2135163248,
0.0280677378,
-0.026821509,
-0.1094669178,
0.0148831829,
0.0695180073,
-0.3147706687,
-0.0120256953,
0.0509858318,
0.0848619491,
0.131286785,
0.1926080883,
-0.2500282824,
0.2047611326,
-0.1014550999,
-0.1726953536,
-0.0175751969,
-0.026820112,
-0.3066570163,
-0.02066602,
0.4054739475,
-0.1225607544,
0.1185210794,
-0.0812495872,
-0.1116152704,
-0.2269218564,
-0.4334720373,
-0.0438979454,
0.0076666065,
0.149673447,
0.0316804126,
-0.0704862252,
-0.0367233902,
-0.258110404,
-0.1803209037,
0.2121895701,
-0.3511878848,
-0.2851627469,
-0.5924193859,
0.1183916181,
-0.3227139711,
-0.0053093983,
0.1444021612,
0.2050792575,
0.0566595085,
-0.4543263316,
-0.1377894729,
-0.0893592238,
-0.0031524748,
-0.2295425683,
0.1466825604,
0.2523784935,
-0.8450294137,
-0.235981822,
0.1668372154,
-0.0015071929,
0.0830977485,
0.5275312662,
-0.3514188826,
0.2732034922,
-0.1530969143,
0.5261089206,
0.4013669491,
-0.2779784501,
-0.3369086683,
0.2427912503,
-0.3994490504,
-0.0413573682,
-0.2372675687,
-0.0655719638,
0.2967052162,
0.082333453,
0.3412533402,
0.4493864775,
-0.1155516803,
0.148324728,
-0.33256495,
-0.0804989487,
0.1726429611,
0.3601407409,
-0.0674157143,
-0.1608243287,
-0.0298585296,
0.144932121,
0.4040017426,
-0.1719319969,
-0.020753853,
0.1606730521,
0.1372899413,
-0.0173206814,
0.1661417633,
-0.1080796048,
-0.7758404613,
0.1020508707,
-0.2894927263,
0.0807943195,
-0.0411318168,
0.0060530603,
-0.2767831385,
-0.113597773,
-0.2061316371,
-0.0540231839,
0.0321171843,
-0.1604941338,
-0.0348594747,
-0.0682968125,
-0.4652939141,
-0.1567875594,
-0.1547569335,
0.3780492842,
-0.115378134,
0.403931886,
-0.1302650571,
-0.4008331895,
0.0927921385,
0.3672267497,
0.1282615215,
-0.2672618628,
-0.0068156607,
0.3295682669,
-0.0804476887,
0.1338738501,
-0.1708230972,
-0.2979546487,
0.2476089895,
-0.0857613608,
-0.1292844415,
-0.0635807961,
-0.1022319347,
-0.0883648768,
-0.3246679604,
0.3362677693,
0.019725915,
-0.0326361656,
-0.0567736253,
-0.2471360862,
0.2981204093,
-0.0848112181,
-0.127403453,
-0.0282977,
0.017286744,
0.1671073586,
-0.0124944225,
0.1766583174,
-0.176521033,
-0.0144743994,
0.3694944978,
-0.0651187971,
0.0355696604,
0.1873179376,
0.1008720696,
-0.291899085,
-0.0247528348,
-0.0487226993,
0.3634797335,
-0.0076968297,
-0.1558918357,
-0.0039153602,
0.0336672217,
-0.0184019394,
-0.0115455464,
0.0482459106,
0.4226094484,
0.5049400926,
0.3639852107,
0.1684011668,
-0.2733655274,
-0.1548731029,
0.1276230216,
0.0563048273,
-0.3743782043,
0.0602172613,
-0.2678272128,
-0.144592911,
-0.2930880189,
-0.142691195,
-0.3419749141,
-0.1941554546,
0.1088884398,
-0.0382638201,
-0.0867830366,
0.2005050182,
0.1665455401,
0.4000801444,
0.100278534,
-0.1863679886,
0.0381454378,
-0.1772578657,
-0.2182419002,
-0.0453669131,
0.3783229887,
-0.064428851,
-0.2067783773,
-0.1894417703,
-0.2709748447,
0.1097925454,
-0.4360967875,
0.1680291444,
-0.0091558713,
0.1945904344,
0.0222649779,
0.2368632555,
-0.1479672492,
-0.3669348657,
0.2814823687,
-0.0462118387,
-0.2511283159,
0.0004014,
-0.1034955904,
0.1337920427,
-0.2878107429,
-0.3897338808,
-0.2453114688,
-0.2271136343,
0.4359024763,
0.0752960294,
0.1372660249,
0.2004073411,
-0.202068001,
0.0147431344,
-0.2370601445,
-0.211095497,
0.0494781993,
-0.1857466102,
0.2052338123,
-0.2988073528,
-0.1417261362,
-0.0219020247,
0.0942518041,
0.1670045853,
-0.2243583202,
-0.1604164243,
0.1161190942,
0.1713584512,
0.2460082769,
-0.3234410286,
-0.2597649097,
0.252478987,
-0.2297297418,
0.0524284095,
0.1972101331,
-0.3602097631,
-0.0937122107,
0.518563807,
0.1982491314,
-0.2657058537,
0.2363279611,
0.0597210377,
0.8267532587,
-0.1374402195,
-0.1625375301,
0.1258322895,
0.0303803328,
0.1219489872,
-0.1489124,
-0.0352489501,
0.3921880722,
-0.0397976786,
-0.1129410416,
0.2475957572,
0.1624517739,
-0.5424820781,
-0.0059678555,
0.1580978632,
-0.5473144054,
-0.1683233678,
0.2632973194,
0.5551205277,
-0.085087128,
-0.0429343581,
0.029452011,
0.002925083,
-0.2315511107,
-0.0598366335,
0.2242510617,
0.2707132995,
0.0932333618,
-0.5434262156,
-0.3422009349,
-0.044759348,
-0.0204033405,
0.1243700683,
0.4645566344,
-0.0012728497,
-0.2062436938,
0.0272209775,
-0.2641842961,
0.3476612866,
0.2620742321,
0.3518280983,
0.3491415381,
0.3293303251,
-0.0743016526,
-0.3046777546,
0.1451893598,
0.4771127701,
0.6556539536,
0.4198310375,
-0.1016693637,
-0.1317110211,
0.2848740816,
0.085961327,
-0.1447808743,
-0.0733838454,
-0.2265140414,
-0.0794774741,
0.0030265301,
0.0393503979,
-0.0417609736,
0.3973942995,
0.0603221431,
0.1337607801,
0.4236767888,
-0.2695536017,
-0.2426751852,
0.3894141018,
0.109123759,
0.0767815858,
0.0468042493,
0.2670259178,
-0.0012032287,
0.3386414647,
0.4461457729,
0.289424181,
-0.2029464394,
0.2748582959,
-0.0069876797,
0.221301049,
0.4691966176,
0.2012591511,
-0.1830905378,
-0.1404705942,
-0.1271870583,
0.0230226144,
-0.4001840949,
0.1378404796,
-0.3075539768,
-0.22677809,
0.2155748308,
0.2009164989,
-0.0955837667,
-0.0633859187,
-0.0289975256,
-0.0604570955,
-0.0157040618,
0.5079239011,
0.1642166227,
0.7734217048,
-0.0452003106,
0.1062065363,
0.2713395655,
-0.1177696139,
0.4012328386,
-0.651129365,
0.3604258001,
-0.4377227128,
0.2696184516,
0.1214248613,
-0.1291204095,
0.1680386364,
0.1842430532,
0.0067202225,
-0.0547783636,
-0.1476247311,
0.2945116758,
-0.0257628523,
0.3388978243,
0.1799480915,
-0.3059540987,
-0.5036041737,
0.0607925132,
-0.3701075315,
0.0345584452,
-0.1490782201,
-0.1694027185,
-0.0852131695,
-0.1265629381,
-0.2838004231,
0.2769853175,
0.1298912466,
0.0143145733,
0.5128051639,
-0.2600146234,
0.1598158777,
0.3644196391,
-0.1501443088,
0.0535290428,
-0.0029325355,
0.3615521193,
-0.1234303489,
0.1117697731,
0.2297594249,
0.0198836662,
0.2879817784,
-0.1601614505,
-0.0406816602,
-0.0503903516,
-0.0745755807,
-0.2796953321,
-0.0691925883,
0.3941943944,
0.1375084519,
-0.165641427,
0.0129154995,
-0.1245389879,
0.1229195669,
-0.0493014604,
0.0542032272,
0.0106453421,
-0.1491624713,
-0.0271746814,
0.1586453468,
-0.0698155984,
0.086437054,
0.6089109182,
-0.1084502041,
-0.3196204007,
0.3064623475,
0.3026754856,
0.0052802488,
-0.2204807103,
0.2212646604,
0.0504690818,
-0.3886027336,
-0.1376271397,
-0.1989229023,
-0.0684244782,
0.0346806645,
0.1022279859,
0.2172864676,
-0.1017907634,
0.003682524,
-0.5508983731,
-0.3031086326,
0.1911866665,
-0.0767692029,
-0.1813701391,
0.1192315668,
0.3389428854,
0.0155138448,
0.2547381818,
-0.2034854293,
0.3259331882,
-0.3733074069,
0.1441615373,
-0.5635961294,
-0.2371917814,
-0.0035354383,
-0.2305135131,
0.0180748329,
0.2454893738,
0.0734464824,
-0.1074406654,
-0.0155517049,
0.1593937576,
0.1383401603,
-0.0180856548,
-0.169466421,
-0.000206776,
0.1075090617,
0.1735595167,
0.1035003141,
-0.1377709359,
0.1467639804,
0.1609329134,
0.2953791618,
0.1064919382,
0.1960288882,
0.0935886502,
0.0295744874,
0.3905389011,
0.0588819496,
0.2412943393,
-0.2039607465,
0.0334326029,
-0.3554685116,
0.1890604496,
0.0100138336,
0.2804842591,
0.083827205,
-0.5798281431,
-0.0544028841,
-0.0720524192,
0.3013584018,
0.572124064,
-0.366515398,
0.1124068499,
0.1887702942,
0.1041740701,
-0.0099354684,
-0.2594086826,
0.747820735,
-0.0356642976,
-0.3024623692,
0.0180357434,
0.1428464949,
-0.0983975381,
0.1315196753,
0.1389719546,
0.567043364,
0.1919362098,
0.1983342171,
0.2170209885,
-0.2254353166,
-0.0237511657,
0.1397864074,
-0.0790002197,
0.1816961765,
0.2541324198,
-0.1939041167,
0.0633175522,
0.1178165823,
0.103707999,
0.2329497486,
-0.3413435221,
-0.3557489216,
0.0997507796,
0.1379035413,
0.0106008612,
0.1785010099,
0.8641576171,
-0.1908431053,
-0.4217525721,
-0.0853033811,
0.0879022181,
-0.3081797957,
0.0873619318,
-0.4969727397,
-0.1789300144,
-0.0405433178,
0.1543644667,
-0.3017129004,
-0.032923758,
0.0855990499,
0.0390483327,
-0.2745318115,
-0.1928052902,
-0.0414179042,
-0.2142157555,
0.0656095594,
-0.0752991363,
0.3355390131,
-0.1362097561,
0.042880211,
0.2439542413,
-0.0208167229,
0.3282357752,
0.3369993269,
-0.1919891089,
-0.1264550388,
-0.2578289509,
0.021681048,
0.0744307041,
0.1027908251,
0.214665249,
-0.1302479804,
0.2761431336,
0.116820015,
-0.0468782485,
0.1349723041,
0.2768834233,
0.1607481539,
0.0973089784,
-0.0871054828,
-0.1949214041,
-0.2481786758,
-0.0677019954,
-0.1263931543,
0.0338318273,
-0.1226418242,
-0.1555688679,
0.5012951493,
0.117711246,
-0.0630639121,
0.0850425959,
0.1083317548,
0.554695189,
0.222614944,
-0.3615116775,
-0.0978454873,
-0.202680558,
-0.290574789,
0.2430060059,
-0.0448601358,
0.0714032203,
0.3016997576,
0.4403116703,
-0.1458825618,
0.284768343,
-0.2370343208,
-0.0482029431,
0.0044929609,
0.2456319928,
-0.4291105866,
0.1797170192,
0.0566489697,
0.1454112977,
-0.1059209853,
-0.1340214908,
0.2665146589,
-0.2023610175,
-0.0858605951,
0.0350697339,
-0.4277082682,
-0.0206915624,
0.0424791276,
0.2701972723,
-0.0820250437,
0.3326257169,
0.1676800847,
-0.3741495609,
-0.4167825878,
-0.419149518,
-0.1761030108,
0.1557720006,
-0.1276239753,
0.4238353968,
-0.0271939095,
0.2040139735,
-0.314923048,
-0.00302146,
-0.3587969542,
0.3453438282,
-0.3175050914,
0.0861750916,
0.0861125737,
0.1618041694,
0.0088498406,
0.327394098,
-0.0774757788,
0.2494782507,
-0.5126639009,
-0.2689228654,
0.4422737062,
-0.6223304868,
-0.2002595961,
0.0687686354,
0.0811639205,
0.1981114894,
0.0035746451,
-0.2775664628,
-0.0704602078,
0.1616209447,
-0.1745934486,
-0.2950671017,
-0.1357095838,
-0.2625448704,
-0.2551772594,
-0.0769582316,
-0.3599273562,
0.1837786436,
-0.0453099199,
-0.2211909592,
-0.2330329716
] |
https://github.com/huggingface/datasets/issues/373 | Segmentation fault when loading local JSON dataset as of #372 | I see, diving in the JSON file for SQuAD it's a pretty complex structure.
The best solution for you, if you have a dataset really similar to SQuAD would be to copy and modify the SQuAD data processing script. We will probably add soon an option to be able to specify file path to use instead of the automatic URL encoded in the script but in the meantime you can:
- copy the [squad script](https://github.com/huggingface/nlp/blob/master/datasets/squad/squad.py) in a new script for your dataset
- in the new script replace [these `urls_to_download `](https://github.com/huggingface/nlp/blob/master/datasets/squad/squad.py#L99-L102) by `urls_to_download=self.config.data_files`
- load the dataset with `dataset = load_dataset('path/to/your/new/script', data_files={nlp.Split.TRAIN: "./datasets/train-v2.0.json"})`
This way you can reuse all the processing logic of the SQuAD loading script. | The last issue was closed (#369) once the #372 update was merged. However, I'm still not able to load a SQuAD formatted JSON file. Instead of the previously recorded pyarrow error, I now get a segmentation fault.
```
dataset = nlp.load_dataset('json', data_files={nlp.Split.TRAIN: ["./datasets/train-v2.0.json"]}, field='data')
```
causes
```
Using custom data configuration default
Downloading and preparing dataset json/default (download: Unknown size, generated: Unknown size, total: Unknown size) to /home/XXX/.cache/huggingface/datasets/json/default/0.0.0...
0 tables [00:00, ? tables/s]Segmentation fault (core dumped)
```
where `./datasets/train-v2.0.json` is downloaded directly from https://rajpurkar.github.io/SQuAD-explorer/.
This is consistent with other SQuAD-formatted JSON files.
When attempting to load the dataset again, I get the following:
```
Using custom data configuration default
Traceback (most recent call last):
File "dataloader.py", line 6, in <module>
'json', data_files={nlp.Split.TRAIN: ["./datasets/train-v2.0.json"]}, field='data')
File "/home/XXX/.conda/envs/torch/lib/python3.7/site-packages/nlp/load.py", line 524, in load_dataset
save_infos=save_infos,
File "/home/XXX/.conda/envs/torch/lib/python3.7/site-packages/nlp/builder.py", line 382, in download_and_prepare
with incomplete_dir(self._cache_dir) as tmp_data_dir:
File "/home/XXX/.conda/envs/torch/lib/python3.7/contextlib.py", line 112, in __enter__
return next(self.gen)
File "/home/XXX/.conda/envs/torch/lib/python3.7/site-packages/nlp/builder.py", line 368, in incomplete_dir
os.makedirs(tmp_dir)
File "/home/XXX/.conda/envs/torch/lib/python3.7/os.py", line 223, in makedirs
mkdir(name, mode)
FileExistsError: [Errno 17] File exists: '/home/XXX/.cache/huggingface/datasets/json/default/0.0.0.incomplete'
```
(Not sure if you wanted this in the previous issue #369 or not as it was closed.) | 117 | Segmentation fault when loading local JSON dataset as of #372
The last issue was closed (#369) once the #372 update was merged. However, I'm still not able to load a SQuAD formatted JSON file. Instead of the previously recorded pyarrow error, I now get a segmentation fault.
```
dataset = nlp.load_dataset('json', data_files={nlp.Split.TRAIN: ["./datasets/train-v2.0.json"]}, field='data')
```
causes
```
Using custom data configuration default
Downloading and preparing dataset json/default (download: Unknown size, generated: Unknown size, total: Unknown size) to /home/XXX/.cache/huggingface/datasets/json/default/0.0.0...
0 tables [00:00, ? tables/s]Segmentation fault (core dumped)
```
where `./datasets/train-v2.0.json` is downloaded directly from https://rajpurkar.github.io/SQuAD-explorer/.
This is consistent with other SQuAD-formatted JSON files.
When attempting to load the dataset again, I get the following:
```
Using custom data configuration default
Traceback (most recent call last):
File "dataloader.py", line 6, in <module>
'json', data_files={nlp.Split.TRAIN: ["./datasets/train-v2.0.json"]}, field='data')
File "/home/XXX/.conda/envs/torch/lib/python3.7/site-packages/nlp/load.py", line 524, in load_dataset
save_infos=save_infos,
File "/home/XXX/.conda/envs/torch/lib/python3.7/site-packages/nlp/builder.py", line 382, in download_and_prepare
with incomplete_dir(self._cache_dir) as tmp_data_dir:
File "/home/XXX/.conda/envs/torch/lib/python3.7/contextlib.py", line 112, in __enter__
return next(self.gen)
File "/home/XXX/.conda/envs/torch/lib/python3.7/site-packages/nlp/builder.py", line 368, in incomplete_dir
os.makedirs(tmp_dir)
File "/home/XXX/.conda/envs/torch/lib/python3.7/os.py", line 223, in makedirs
mkdir(name, mode)
FileExistsError: [Errno 17] File exists: '/home/XXX/.cache/huggingface/datasets/json/default/0.0.0.incomplete'
```
(Not sure if you wanted this in the previous issue #369 or not as it was closed.)
I see, diving in the JSON file for SQuAD it's a pretty complex structure.
The best solution for you, if you have a dataset really similar to SQuAD would be to copy and modify the SQuAD data processing script. We will probably add soon an option to be able to specify file path to use instead of the automatic URL encoded in the script but in the meantime you can:
- copy the [squad script](https://github.com/huggingface/nlp/blob/master/datasets/squad/squad.py) in a new script for your dataset
- in the new script replace [these `urls_to_download `](https://github.com/huggingface/nlp/blob/master/datasets/squad/squad.py#L99-L102) by `urls_to_download=self.config.data_files`
- load the dataset with `dataset = load_dataset('path/to/your/new/script', data_files={nlp.Split.TRAIN: "./datasets/train-v2.0.json"})`
This way you can reuse all the processing logic of the SQuAD loading script. | [
-0.0172921643,
0.2893962562,
0.0609414466,
0.0578705519,
0.2236099243,
-0.016548574,
0.3200392723,
0.6101838946,
-0.4010095298,
-0.2130427957,
-0.2422537953,
0.7714076042,
0.1327874511,
-0.4265961647,
0.1489231884,
-0.0715277568,
0.0462256782,
0.1267295182,
0.2239412814,
0.0536701232,
-0.1744495481,
0.341650933,
-0.2299684584,
0.132041648,
-0.1667513549,
0.2660645247,
0.0065366551,
0.5419237614,
-0.0745723397,
-0.7302019,
0.2977763414,
-0.0093300445,
0.1517450064,
0.3450249732,
-0.0001186113,
0.1845317781,
0.3318483233,
-0.1096368656,
-0.351701498,
0.052129332,
0.280503571,
-0.2414646894,
0.3380267918,
-0.1453835964,
0.0627314746,
-0.3119795322,
0.0318318084,
0.0812748075,
0.6866551042,
0.1553965062,
0.0921010226,
0.1377256215,
0.0738056451,
0.0523657613,
0.0207758788,
0.0678776577,
0.0166039318,
0.7200927734,
0.5202921033,
-0.1260128319,
-0.3388990462,
-0.0720847845,
0.1212722659,
-0.0382686928,
0.2048573792,
-0.0635561645,
-0.0138484612,
-0.183270961,
0.0524650402,
0.1170205623,
0.241646871,
-0.2380601168,
-0.2328484654,
-0.215749234,
0.0747867227,
-0.2181081474,
0.377320528,
0.2772288918,
-0.1398605704,
0.1523424387,
-0.0569972768,
0.0344605185,
-0.1918934435,
0.0293106697,
-0.2142735571,
0.5192517638,
0.1215122491,
0.0416844524,
0.1051239669,
-0.1629459709,
-0.1519258022,
0.3172395229,
-0.2625274658,
0.3998278975,
-0.3908267021,
-0.1686173081,
0.1120530292,
-0.3626519144,
0.2163051665,
0.0901771635,
0.1800892353,
0.16720514,
0.213912338,
0.1203704923,
0.4853109121,
0.0546771549,
0.1718353629,
0.2025323212,
0.1526306868,
-0.0196300987,
-0.0259738192,
0.2397750616,
-0.1398817003,
-0.2250074297,
-0.2135163248,
0.0280677378,
-0.026821509,
-0.1094669178,
0.0148831829,
0.0695180073,
-0.3147706687,
-0.0120256953,
0.0509858318,
0.0848619491,
0.131286785,
0.1926080883,
-0.2500282824,
0.2047611326,
-0.1014550999,
-0.1726953536,
-0.0175751969,
-0.026820112,
-0.3066570163,
-0.02066602,
0.4054739475,
-0.1225607544,
0.1185210794,
-0.0812495872,
-0.1116152704,
-0.2269218564,
-0.4334720373,
-0.0438979454,
0.0076666065,
0.149673447,
0.0316804126,
-0.0704862252,
-0.0367233902,
-0.258110404,
-0.1803209037,
0.2121895701,
-0.3511878848,
-0.2851627469,
-0.5924193859,
0.1183916181,
-0.3227139711,
-0.0053093983,
0.1444021612,
0.2050792575,
0.0566595085,
-0.4543263316,
-0.1377894729,
-0.0893592238,
-0.0031524748,
-0.2295425683,
0.1466825604,
0.2523784935,
-0.8450294137,
-0.235981822,
0.1668372154,
-0.0015071929,
0.0830977485,
0.5275312662,
-0.3514188826,
0.2732034922,
-0.1530969143,
0.5261089206,
0.4013669491,
-0.2779784501,
-0.3369086683,
0.2427912503,
-0.3994490504,
-0.0413573682,
-0.2372675687,
-0.0655719638,
0.2967052162,
0.082333453,
0.3412533402,
0.4493864775,
-0.1155516803,
0.148324728,
-0.33256495,
-0.0804989487,
0.1726429611,
0.3601407409,
-0.0674157143,
-0.1608243287,
-0.0298585296,
0.144932121,
0.4040017426,
-0.1719319969,
-0.020753853,
0.1606730521,
0.1372899413,
-0.0173206814,
0.1661417633,
-0.1080796048,
-0.7758404613,
0.1020508707,
-0.2894927263,
0.0807943195,
-0.0411318168,
0.0060530603,
-0.2767831385,
-0.113597773,
-0.2061316371,
-0.0540231839,
0.0321171843,
-0.1604941338,
-0.0348594747,
-0.0682968125,
-0.4652939141,
-0.1567875594,
-0.1547569335,
0.3780492842,
-0.115378134,
0.403931886,
-0.1302650571,
-0.4008331895,
0.0927921385,
0.3672267497,
0.1282615215,
-0.2672618628,
-0.0068156607,
0.3295682669,
-0.0804476887,
0.1338738501,
-0.1708230972,
-0.2979546487,
0.2476089895,
-0.0857613608,
-0.1292844415,
-0.0635807961,
-0.1022319347,
-0.0883648768,
-0.3246679604,
0.3362677693,
0.019725915,
-0.0326361656,
-0.0567736253,
-0.2471360862,
0.2981204093,
-0.0848112181,
-0.127403453,
-0.0282977,
0.017286744,
0.1671073586,
-0.0124944225,
0.1766583174,
-0.176521033,
-0.0144743994,
0.3694944978,
-0.0651187971,
0.0355696604,
0.1873179376,
0.1008720696,
-0.291899085,
-0.0247528348,
-0.0487226993,
0.3634797335,
-0.0076968297,
-0.1558918357,
-0.0039153602,
0.0336672217,
-0.0184019394,
-0.0115455464,
0.0482459106,
0.4226094484,
0.5049400926,
0.3639852107,
0.1684011668,
-0.2733655274,
-0.1548731029,
0.1276230216,
0.0563048273,
-0.3743782043,
0.0602172613,
-0.2678272128,
-0.144592911,
-0.2930880189,
-0.142691195,
-0.3419749141,
-0.1941554546,
0.1088884398,
-0.0382638201,
-0.0867830366,
0.2005050182,
0.1665455401,
0.4000801444,
0.100278534,
-0.1863679886,
0.0381454378,
-0.1772578657,
-0.2182419002,
-0.0453669131,
0.3783229887,
-0.064428851,
-0.2067783773,
-0.1894417703,
-0.2709748447,
0.1097925454,
-0.4360967875,
0.1680291444,
-0.0091558713,
0.1945904344,
0.0222649779,
0.2368632555,
-0.1479672492,
-0.3669348657,
0.2814823687,
-0.0462118387,
-0.2511283159,
0.0004014,
-0.1034955904,
0.1337920427,
-0.2878107429,
-0.3897338808,
-0.2453114688,
-0.2271136343,
0.4359024763,
0.0752960294,
0.1372660249,
0.2004073411,
-0.202068001,
0.0147431344,
-0.2370601445,
-0.211095497,
0.0494781993,
-0.1857466102,
0.2052338123,
-0.2988073528,
-0.1417261362,
-0.0219020247,
0.0942518041,
0.1670045853,
-0.2243583202,
-0.1604164243,
0.1161190942,
0.1713584512,
0.2460082769,
-0.3234410286,
-0.2597649097,
0.252478987,
-0.2297297418,
0.0524284095,
0.1972101331,
-0.3602097631,
-0.0937122107,
0.518563807,
0.1982491314,
-0.2657058537,
0.2363279611,
0.0597210377,
0.8267532587,
-0.1374402195,
-0.1625375301,
0.1258322895,
0.0303803328,
0.1219489872,
-0.1489124,
-0.0352489501,
0.3921880722,
-0.0397976786,
-0.1129410416,
0.2475957572,
0.1624517739,
-0.5424820781,
-0.0059678555,
0.1580978632,
-0.5473144054,
-0.1683233678,
0.2632973194,
0.5551205277,
-0.085087128,
-0.0429343581,
0.029452011,
0.002925083,
-0.2315511107,
-0.0598366335,
0.2242510617,
0.2707132995,
0.0932333618,
-0.5434262156,
-0.3422009349,
-0.044759348,
-0.0204033405,
0.1243700683,
0.4645566344,
-0.0012728497,
-0.2062436938,
0.0272209775,
-0.2641842961,
0.3476612866,
0.2620742321,
0.3518280983,
0.3491415381,
0.3293303251,
-0.0743016526,
-0.3046777546,
0.1451893598,
0.4771127701,
0.6556539536,
0.4198310375,
-0.1016693637,
-0.1317110211,
0.2848740816,
0.085961327,
-0.1447808743,
-0.0733838454,
-0.2265140414,
-0.0794774741,
0.0030265301,
0.0393503979,
-0.0417609736,
0.3973942995,
0.0603221431,
0.1337607801,
0.4236767888,
-0.2695536017,
-0.2426751852,
0.3894141018,
0.109123759,
0.0767815858,
0.0468042493,
0.2670259178,
-0.0012032287,
0.3386414647,
0.4461457729,
0.289424181,
-0.2029464394,
0.2748582959,
-0.0069876797,
0.221301049,
0.4691966176,
0.2012591511,
-0.1830905378,
-0.1404705942,
-0.1271870583,
0.0230226144,
-0.4001840949,
0.1378404796,
-0.3075539768,
-0.22677809,
0.2155748308,
0.2009164989,
-0.0955837667,
-0.0633859187,
-0.0289975256,
-0.0604570955,
-0.0157040618,
0.5079239011,
0.1642166227,
0.7734217048,
-0.0452003106,
0.1062065363,
0.2713395655,
-0.1177696139,
0.4012328386,
-0.651129365,
0.3604258001,
-0.4377227128,
0.2696184516,
0.1214248613,
-0.1291204095,
0.1680386364,
0.1842430532,
0.0067202225,
-0.0547783636,
-0.1476247311,
0.2945116758,
-0.0257628523,
0.3388978243,
0.1799480915,
-0.3059540987,
-0.5036041737,
0.0607925132,
-0.3701075315,
0.0345584452,
-0.1490782201,
-0.1694027185,
-0.0852131695,
-0.1265629381,
-0.2838004231,
0.2769853175,
0.1298912466,
0.0143145733,
0.5128051639,
-0.2600146234,
0.1598158777,
0.3644196391,
-0.1501443088,
0.0535290428,
-0.0029325355,
0.3615521193,
-0.1234303489,
0.1117697731,
0.2297594249,
0.0198836662,
0.2879817784,
-0.1601614505,
-0.0406816602,
-0.0503903516,
-0.0745755807,
-0.2796953321,
-0.0691925883,
0.3941943944,
0.1375084519,
-0.165641427,
0.0129154995,
-0.1245389879,
0.1229195669,
-0.0493014604,
0.0542032272,
0.0106453421,
-0.1491624713,
-0.0271746814,
0.1586453468,
-0.0698155984,
0.086437054,
0.6089109182,
-0.1084502041,
-0.3196204007,
0.3064623475,
0.3026754856,
0.0052802488,
-0.2204807103,
0.2212646604,
0.0504690818,
-0.3886027336,
-0.1376271397,
-0.1989229023,
-0.0684244782,
0.0346806645,
0.1022279859,
0.2172864676,
-0.1017907634,
0.003682524,
-0.5508983731,
-0.3031086326,
0.1911866665,
-0.0767692029,
-0.1813701391,
0.1192315668,
0.3389428854,
0.0155138448,
0.2547381818,
-0.2034854293,
0.3259331882,
-0.3733074069,
0.1441615373,
-0.5635961294,
-0.2371917814,
-0.0035354383,
-0.2305135131,
0.0180748329,
0.2454893738,
0.0734464824,
-0.1074406654,
-0.0155517049,
0.1593937576,
0.1383401603,
-0.0180856548,
-0.169466421,
-0.000206776,
0.1075090617,
0.1735595167,
0.1035003141,
-0.1377709359,
0.1467639804,
0.1609329134,
0.2953791618,
0.1064919382,
0.1960288882,
0.0935886502,
0.0295744874,
0.3905389011,
0.0588819496,
0.2412943393,
-0.2039607465,
0.0334326029,
-0.3554685116,
0.1890604496,
0.0100138336,
0.2804842591,
0.083827205,
-0.5798281431,
-0.0544028841,
-0.0720524192,
0.3013584018,
0.572124064,
-0.366515398,
0.1124068499,
0.1887702942,
0.1041740701,
-0.0099354684,
-0.2594086826,
0.747820735,
-0.0356642976,
-0.3024623692,
0.0180357434,
0.1428464949,
-0.0983975381,
0.1315196753,
0.1389719546,
0.567043364,
0.1919362098,
0.1983342171,
0.2170209885,
-0.2254353166,
-0.0237511657,
0.1397864074,
-0.0790002197,
0.1816961765,
0.2541324198,
-0.1939041167,
0.0633175522,
0.1178165823,
0.103707999,
0.2329497486,
-0.3413435221,
-0.3557489216,
0.0997507796,
0.1379035413,
0.0106008612,
0.1785010099,
0.8641576171,
-0.1908431053,
-0.4217525721,
-0.0853033811,
0.0879022181,
-0.3081797957,
0.0873619318,
-0.4969727397,
-0.1789300144,
-0.0405433178,
0.1543644667,
-0.3017129004,
-0.032923758,
0.0855990499,
0.0390483327,
-0.2745318115,
-0.1928052902,
-0.0414179042,
-0.2142157555,
0.0656095594,
-0.0752991363,
0.3355390131,
-0.1362097561,
0.042880211,
0.2439542413,
-0.0208167229,
0.3282357752,
0.3369993269,
-0.1919891089,
-0.1264550388,
-0.2578289509,
0.021681048,
0.0744307041,
0.1027908251,
0.214665249,
-0.1302479804,
0.2761431336,
0.116820015,
-0.0468782485,
0.1349723041,
0.2768834233,
0.1607481539,
0.0973089784,
-0.0871054828,
-0.1949214041,
-0.2481786758,
-0.0677019954,
-0.1263931543,
0.0338318273,
-0.1226418242,
-0.1555688679,
0.5012951493,
0.117711246,
-0.0630639121,
0.0850425959,
0.1083317548,
0.554695189,
0.222614944,
-0.3615116775,
-0.0978454873,
-0.202680558,
-0.290574789,
0.2430060059,
-0.0448601358,
0.0714032203,
0.3016997576,
0.4403116703,
-0.1458825618,
0.284768343,
-0.2370343208,
-0.0482029431,
0.0044929609,
0.2456319928,
-0.4291105866,
0.1797170192,
0.0566489697,
0.1454112977,
-0.1059209853,
-0.1340214908,
0.2665146589,
-0.2023610175,
-0.0858605951,
0.0350697339,
-0.4277082682,
-0.0206915624,
0.0424791276,
0.2701972723,
-0.0820250437,
0.3326257169,
0.1676800847,
-0.3741495609,
-0.4167825878,
-0.419149518,
-0.1761030108,
0.1557720006,
-0.1276239753,
0.4238353968,
-0.0271939095,
0.2040139735,
-0.314923048,
-0.00302146,
-0.3587969542,
0.3453438282,
-0.3175050914,
0.0861750916,
0.0861125737,
0.1618041694,
0.0088498406,
0.327394098,
-0.0774757788,
0.2494782507,
-0.5126639009,
-0.2689228654,
0.4422737062,
-0.6223304868,
-0.2002595961,
0.0687686354,
0.0811639205,
0.1981114894,
0.0035746451,
-0.2775664628,
-0.0704602078,
0.1616209447,
-0.1745934486,
-0.2950671017,
-0.1357095838,
-0.2625448704,
-0.2551772594,
-0.0769582316,
-0.3599273562,
0.1837786436,
-0.0453099199,
-0.2211909592,
-0.2330329716
] |
https://github.com/huggingface/datasets/issues/373 | Segmentation fault when loading local JSON dataset as of #372 | This seems like a more sensible solution! Thanks, @thomwolf. It's been a little daunting to understand what these scripts actually do, due to the level of abstraction and central documentation.
Am I correct in assuming that the `_generate_examples()` function is the actual procedure for how the data is loaded from file? Meaning that essentially with a file containing another format, that is the only function that requires re-implementation? I'm working with a lot of datasets that, due to licensing and privacy, cannot be published. As this library is so neatly integrated with the transformers library and gives easy access to public sets such as SQUAD and increased performance, it is very neat to be able to load my private sets as well. As of now, I have just been working on scripts for translating all my data into the SQUAD-format before using the json script, but I see that it might not be necessary after all. | The last issue was closed (#369) once the #372 update was merged. However, I'm still not able to load a SQuAD formatted JSON file. Instead of the previously recorded pyarrow error, I now get a segmentation fault.
```
dataset = nlp.load_dataset('json', data_files={nlp.Split.TRAIN: ["./datasets/train-v2.0.json"]}, field='data')
```
causes
```
Using custom data configuration default
Downloading and preparing dataset json/default (download: Unknown size, generated: Unknown size, total: Unknown size) to /home/XXX/.cache/huggingface/datasets/json/default/0.0.0...
0 tables [00:00, ? tables/s]Segmentation fault (core dumped)
```
where `./datasets/train-v2.0.json` is downloaded directly from https://rajpurkar.github.io/SQuAD-explorer/.
This is consistent with other SQuAD-formatted JSON files.
When attempting to load the dataset again, I get the following:
```
Using custom data configuration default
Traceback (most recent call last):
File "dataloader.py", line 6, in <module>
'json', data_files={nlp.Split.TRAIN: ["./datasets/train-v2.0.json"]}, field='data')
File "/home/XXX/.conda/envs/torch/lib/python3.7/site-packages/nlp/load.py", line 524, in load_dataset
save_infos=save_infos,
File "/home/XXX/.conda/envs/torch/lib/python3.7/site-packages/nlp/builder.py", line 382, in download_and_prepare
with incomplete_dir(self._cache_dir) as tmp_data_dir:
File "/home/XXX/.conda/envs/torch/lib/python3.7/contextlib.py", line 112, in __enter__
return next(self.gen)
File "/home/XXX/.conda/envs/torch/lib/python3.7/site-packages/nlp/builder.py", line 368, in incomplete_dir
os.makedirs(tmp_dir)
File "/home/XXX/.conda/envs/torch/lib/python3.7/os.py", line 223, in makedirs
mkdir(name, mode)
FileExistsError: [Errno 17] File exists: '/home/XXX/.cache/huggingface/datasets/json/default/0.0.0.incomplete'
```
(Not sure if you wanted this in the previous issue #369 or not as it was closed.) | 156 | Segmentation fault when loading local JSON dataset as of #372
The last issue was closed (#369) once the #372 update was merged. However, I'm still not able to load a SQuAD formatted JSON file. Instead of the previously recorded pyarrow error, I now get a segmentation fault.
```
dataset = nlp.load_dataset('json', data_files={nlp.Split.TRAIN: ["./datasets/train-v2.0.json"]}, field='data')
```
causes
```
Using custom data configuration default
Downloading and preparing dataset json/default (download: Unknown size, generated: Unknown size, total: Unknown size) to /home/XXX/.cache/huggingface/datasets/json/default/0.0.0...
0 tables [00:00, ? tables/s]Segmentation fault (core dumped)
```
where `./datasets/train-v2.0.json` is downloaded directly from https://rajpurkar.github.io/SQuAD-explorer/.
This is consistent with other SQuAD-formatted JSON files.
When attempting to load the dataset again, I get the following:
```
Using custom data configuration default
Traceback (most recent call last):
File "dataloader.py", line 6, in <module>
'json', data_files={nlp.Split.TRAIN: ["./datasets/train-v2.0.json"]}, field='data')
File "/home/XXX/.conda/envs/torch/lib/python3.7/site-packages/nlp/load.py", line 524, in load_dataset
save_infos=save_infos,
File "/home/XXX/.conda/envs/torch/lib/python3.7/site-packages/nlp/builder.py", line 382, in download_and_prepare
with incomplete_dir(self._cache_dir) as tmp_data_dir:
File "/home/XXX/.conda/envs/torch/lib/python3.7/contextlib.py", line 112, in __enter__
return next(self.gen)
File "/home/XXX/.conda/envs/torch/lib/python3.7/site-packages/nlp/builder.py", line 368, in incomplete_dir
os.makedirs(tmp_dir)
File "/home/XXX/.conda/envs/torch/lib/python3.7/os.py", line 223, in makedirs
mkdir(name, mode)
FileExistsError: [Errno 17] File exists: '/home/XXX/.cache/huggingface/datasets/json/default/0.0.0.incomplete'
```
(Not sure if you wanted this in the previous issue #369 or not as it was closed.)
This seems like a more sensible solution! Thanks, @thomwolf. It's been a little daunting to understand what these scripts actually do, due to the level of abstraction and central documentation.
Am I correct in assuming that the `_generate_examples()` function is the actual procedure for how the data is loaded from file? Meaning that essentially with a file containing another format, that is the only function that requires re-implementation? I'm working with a lot of datasets that, due to licensing and privacy, cannot be published. As this library is so neatly integrated with the transformers library and gives easy access to public sets such as SQUAD and increased performance, it is very neat to be able to load my private sets as well. As of now, I have just been working on scripts for translating all my data into the SQUAD-format before using the json script, but I see that it might not be necessary after all. | [
-0.0172921643,
0.2893962562,
0.0609414466,
0.0578705519,
0.2236099243,
-0.016548574,
0.3200392723,
0.6101838946,
-0.4010095298,
-0.2130427957,
-0.2422537953,
0.7714076042,
0.1327874511,
-0.4265961647,
0.1489231884,
-0.0715277568,
0.0462256782,
0.1267295182,
0.2239412814,
0.0536701232,
-0.1744495481,
0.341650933,
-0.2299684584,
0.132041648,
-0.1667513549,
0.2660645247,
0.0065366551,
0.5419237614,
-0.0745723397,
-0.7302019,
0.2977763414,
-0.0093300445,
0.1517450064,
0.3450249732,
-0.0001186113,
0.1845317781,
0.3318483233,
-0.1096368656,
-0.351701498,
0.052129332,
0.280503571,
-0.2414646894,
0.3380267918,
-0.1453835964,
0.0627314746,
-0.3119795322,
0.0318318084,
0.0812748075,
0.6866551042,
0.1553965062,
0.0921010226,
0.1377256215,
0.0738056451,
0.0523657613,
0.0207758788,
0.0678776577,
0.0166039318,
0.7200927734,
0.5202921033,
-0.1260128319,
-0.3388990462,
-0.0720847845,
0.1212722659,
-0.0382686928,
0.2048573792,
-0.0635561645,
-0.0138484612,
-0.183270961,
0.0524650402,
0.1170205623,
0.241646871,
-0.2380601168,
-0.2328484654,
-0.215749234,
0.0747867227,
-0.2181081474,
0.377320528,
0.2772288918,
-0.1398605704,
0.1523424387,
-0.0569972768,
0.0344605185,
-0.1918934435,
0.0293106697,
-0.2142735571,
0.5192517638,
0.1215122491,
0.0416844524,
0.1051239669,
-0.1629459709,
-0.1519258022,
0.3172395229,
-0.2625274658,
0.3998278975,
-0.3908267021,
-0.1686173081,
0.1120530292,
-0.3626519144,
0.2163051665,
0.0901771635,
0.1800892353,
0.16720514,
0.213912338,
0.1203704923,
0.4853109121,
0.0546771549,
0.1718353629,
0.2025323212,
0.1526306868,
-0.0196300987,
-0.0259738192,
0.2397750616,
-0.1398817003,
-0.2250074297,
-0.2135163248,
0.0280677378,
-0.026821509,
-0.1094669178,
0.0148831829,
0.0695180073,
-0.3147706687,
-0.0120256953,
0.0509858318,
0.0848619491,
0.131286785,
0.1926080883,
-0.2500282824,
0.2047611326,
-0.1014550999,
-0.1726953536,
-0.0175751969,
-0.026820112,
-0.3066570163,
-0.02066602,
0.4054739475,
-0.1225607544,
0.1185210794,
-0.0812495872,
-0.1116152704,
-0.2269218564,
-0.4334720373,
-0.0438979454,
0.0076666065,
0.149673447,
0.0316804126,
-0.0704862252,
-0.0367233902,
-0.258110404,
-0.1803209037,
0.2121895701,
-0.3511878848,
-0.2851627469,
-0.5924193859,
0.1183916181,
-0.3227139711,
-0.0053093983,
0.1444021612,
0.2050792575,
0.0566595085,
-0.4543263316,
-0.1377894729,
-0.0893592238,
-0.0031524748,
-0.2295425683,
0.1466825604,
0.2523784935,
-0.8450294137,
-0.235981822,
0.1668372154,
-0.0015071929,
0.0830977485,
0.5275312662,
-0.3514188826,
0.2732034922,
-0.1530969143,
0.5261089206,
0.4013669491,
-0.2779784501,
-0.3369086683,
0.2427912503,
-0.3994490504,
-0.0413573682,
-0.2372675687,
-0.0655719638,
0.2967052162,
0.082333453,
0.3412533402,
0.4493864775,
-0.1155516803,
0.148324728,
-0.33256495,
-0.0804989487,
0.1726429611,
0.3601407409,
-0.0674157143,
-0.1608243287,
-0.0298585296,
0.144932121,
0.4040017426,
-0.1719319969,
-0.020753853,
0.1606730521,
0.1372899413,
-0.0173206814,
0.1661417633,
-0.1080796048,
-0.7758404613,
0.1020508707,
-0.2894927263,
0.0807943195,
-0.0411318168,
0.0060530603,
-0.2767831385,
-0.113597773,
-0.2061316371,
-0.0540231839,
0.0321171843,
-0.1604941338,
-0.0348594747,
-0.0682968125,
-0.4652939141,
-0.1567875594,
-0.1547569335,
0.3780492842,
-0.115378134,
0.403931886,
-0.1302650571,
-0.4008331895,
0.0927921385,
0.3672267497,
0.1282615215,
-0.2672618628,
-0.0068156607,
0.3295682669,
-0.0804476887,
0.1338738501,
-0.1708230972,
-0.2979546487,
0.2476089895,
-0.0857613608,
-0.1292844415,
-0.0635807961,
-0.1022319347,
-0.0883648768,
-0.3246679604,
0.3362677693,
0.019725915,
-0.0326361656,
-0.0567736253,
-0.2471360862,
0.2981204093,
-0.0848112181,
-0.127403453,
-0.0282977,
0.017286744,
0.1671073586,
-0.0124944225,
0.1766583174,
-0.176521033,
-0.0144743994,
0.3694944978,
-0.0651187971,
0.0355696604,
0.1873179376,
0.1008720696,
-0.291899085,
-0.0247528348,
-0.0487226993,
0.3634797335,
-0.0076968297,
-0.1558918357,
-0.0039153602,
0.0336672217,
-0.0184019394,
-0.0115455464,
0.0482459106,
0.4226094484,
0.5049400926,
0.3639852107,
0.1684011668,
-0.2733655274,
-0.1548731029,
0.1276230216,
0.0563048273,
-0.3743782043,
0.0602172613,
-0.2678272128,
-0.144592911,
-0.2930880189,
-0.142691195,
-0.3419749141,
-0.1941554546,
0.1088884398,
-0.0382638201,
-0.0867830366,
0.2005050182,
0.1665455401,
0.4000801444,
0.100278534,
-0.1863679886,
0.0381454378,
-0.1772578657,
-0.2182419002,
-0.0453669131,
0.3783229887,
-0.064428851,
-0.2067783773,
-0.1894417703,
-0.2709748447,
0.1097925454,
-0.4360967875,
0.1680291444,
-0.0091558713,
0.1945904344,
0.0222649779,
0.2368632555,
-0.1479672492,
-0.3669348657,
0.2814823687,
-0.0462118387,
-0.2511283159,
0.0004014,
-0.1034955904,
0.1337920427,
-0.2878107429,
-0.3897338808,
-0.2453114688,
-0.2271136343,
0.4359024763,
0.0752960294,
0.1372660249,
0.2004073411,
-0.202068001,
0.0147431344,
-0.2370601445,
-0.211095497,
0.0494781993,
-0.1857466102,
0.2052338123,
-0.2988073528,
-0.1417261362,
-0.0219020247,
0.0942518041,
0.1670045853,
-0.2243583202,
-0.1604164243,
0.1161190942,
0.1713584512,
0.2460082769,
-0.3234410286,
-0.2597649097,
0.252478987,
-0.2297297418,
0.0524284095,
0.1972101331,
-0.3602097631,
-0.0937122107,
0.518563807,
0.1982491314,
-0.2657058537,
0.2363279611,
0.0597210377,
0.8267532587,
-0.1374402195,
-0.1625375301,
0.1258322895,
0.0303803328,
0.1219489872,
-0.1489124,
-0.0352489501,
0.3921880722,
-0.0397976786,
-0.1129410416,
0.2475957572,
0.1624517739,
-0.5424820781,
-0.0059678555,
0.1580978632,
-0.5473144054,
-0.1683233678,
0.2632973194,
0.5551205277,
-0.085087128,
-0.0429343581,
0.029452011,
0.002925083,
-0.2315511107,
-0.0598366335,
0.2242510617,
0.2707132995,
0.0932333618,
-0.5434262156,
-0.3422009349,
-0.044759348,
-0.0204033405,
0.1243700683,
0.4645566344,
-0.0012728497,
-0.2062436938,
0.0272209775,
-0.2641842961,
0.3476612866,
0.2620742321,
0.3518280983,
0.3491415381,
0.3293303251,
-0.0743016526,
-0.3046777546,
0.1451893598,
0.4771127701,
0.6556539536,
0.4198310375,
-0.1016693637,
-0.1317110211,
0.2848740816,
0.085961327,
-0.1447808743,
-0.0733838454,
-0.2265140414,
-0.0794774741,
0.0030265301,
0.0393503979,
-0.0417609736,
0.3973942995,
0.0603221431,
0.1337607801,
0.4236767888,
-0.2695536017,
-0.2426751852,
0.3894141018,
0.109123759,
0.0767815858,
0.0468042493,
0.2670259178,
-0.0012032287,
0.3386414647,
0.4461457729,
0.289424181,
-0.2029464394,
0.2748582959,
-0.0069876797,
0.221301049,
0.4691966176,
0.2012591511,
-0.1830905378,
-0.1404705942,
-0.1271870583,
0.0230226144,
-0.4001840949,
0.1378404796,
-0.3075539768,
-0.22677809,
0.2155748308,
0.2009164989,
-0.0955837667,
-0.0633859187,
-0.0289975256,
-0.0604570955,
-0.0157040618,
0.5079239011,
0.1642166227,
0.7734217048,
-0.0452003106,
0.1062065363,
0.2713395655,
-0.1177696139,
0.4012328386,
-0.651129365,
0.3604258001,
-0.4377227128,
0.2696184516,
0.1214248613,
-0.1291204095,
0.1680386364,
0.1842430532,
0.0067202225,
-0.0547783636,
-0.1476247311,
0.2945116758,
-0.0257628523,
0.3388978243,
0.1799480915,
-0.3059540987,
-0.5036041737,
0.0607925132,
-0.3701075315,
0.0345584452,
-0.1490782201,
-0.1694027185,
-0.0852131695,
-0.1265629381,
-0.2838004231,
0.2769853175,
0.1298912466,
0.0143145733,
0.5128051639,
-0.2600146234,
0.1598158777,
0.3644196391,
-0.1501443088,
0.0535290428,
-0.0029325355,
0.3615521193,
-0.1234303489,
0.1117697731,
0.2297594249,
0.0198836662,
0.2879817784,
-0.1601614505,
-0.0406816602,
-0.0503903516,
-0.0745755807,
-0.2796953321,
-0.0691925883,
0.3941943944,
0.1375084519,
-0.165641427,
0.0129154995,
-0.1245389879,
0.1229195669,
-0.0493014604,
0.0542032272,
0.0106453421,
-0.1491624713,
-0.0271746814,
0.1586453468,
-0.0698155984,
0.086437054,
0.6089109182,
-0.1084502041,
-0.3196204007,
0.3064623475,
0.3026754856,
0.0052802488,
-0.2204807103,
0.2212646604,
0.0504690818,
-0.3886027336,
-0.1376271397,
-0.1989229023,
-0.0684244782,
0.0346806645,
0.1022279859,
0.2172864676,
-0.1017907634,
0.003682524,
-0.5508983731,
-0.3031086326,
0.1911866665,
-0.0767692029,
-0.1813701391,
0.1192315668,
0.3389428854,
0.0155138448,
0.2547381818,
-0.2034854293,
0.3259331882,
-0.3733074069,
0.1441615373,
-0.5635961294,
-0.2371917814,
-0.0035354383,
-0.2305135131,
0.0180748329,
0.2454893738,
0.0734464824,
-0.1074406654,
-0.0155517049,
0.1593937576,
0.1383401603,
-0.0180856548,
-0.169466421,
-0.000206776,
0.1075090617,
0.1735595167,
0.1035003141,
-0.1377709359,
0.1467639804,
0.1609329134,
0.2953791618,
0.1064919382,
0.1960288882,
0.0935886502,
0.0295744874,
0.3905389011,
0.0588819496,
0.2412943393,
-0.2039607465,
0.0334326029,
-0.3554685116,
0.1890604496,
0.0100138336,
0.2804842591,
0.083827205,
-0.5798281431,
-0.0544028841,
-0.0720524192,
0.3013584018,
0.572124064,
-0.366515398,
0.1124068499,
0.1887702942,
0.1041740701,
-0.0099354684,
-0.2594086826,
0.747820735,
-0.0356642976,
-0.3024623692,
0.0180357434,
0.1428464949,
-0.0983975381,
0.1315196753,
0.1389719546,
0.567043364,
0.1919362098,
0.1983342171,
0.2170209885,
-0.2254353166,
-0.0237511657,
0.1397864074,
-0.0790002197,
0.1816961765,
0.2541324198,
-0.1939041167,
0.0633175522,
0.1178165823,
0.103707999,
0.2329497486,
-0.3413435221,
-0.3557489216,
0.0997507796,
0.1379035413,
0.0106008612,
0.1785010099,
0.8641576171,
-0.1908431053,
-0.4217525721,
-0.0853033811,
0.0879022181,
-0.3081797957,
0.0873619318,
-0.4969727397,
-0.1789300144,
-0.0405433178,
0.1543644667,
-0.3017129004,
-0.032923758,
0.0855990499,
0.0390483327,
-0.2745318115,
-0.1928052902,
-0.0414179042,
-0.2142157555,
0.0656095594,
-0.0752991363,
0.3355390131,
-0.1362097561,
0.042880211,
0.2439542413,
-0.0208167229,
0.3282357752,
0.3369993269,
-0.1919891089,
-0.1264550388,
-0.2578289509,
0.021681048,
0.0744307041,
0.1027908251,
0.214665249,
-0.1302479804,
0.2761431336,
0.116820015,
-0.0468782485,
0.1349723041,
0.2768834233,
0.1607481539,
0.0973089784,
-0.0871054828,
-0.1949214041,
-0.2481786758,
-0.0677019954,
-0.1263931543,
0.0338318273,
-0.1226418242,
-0.1555688679,
0.5012951493,
0.117711246,
-0.0630639121,
0.0850425959,
0.1083317548,
0.554695189,
0.222614944,
-0.3615116775,
-0.0978454873,
-0.202680558,
-0.290574789,
0.2430060059,
-0.0448601358,
0.0714032203,
0.3016997576,
0.4403116703,
-0.1458825618,
0.284768343,
-0.2370343208,
-0.0482029431,
0.0044929609,
0.2456319928,
-0.4291105866,
0.1797170192,
0.0566489697,
0.1454112977,
-0.1059209853,
-0.1340214908,
0.2665146589,
-0.2023610175,
-0.0858605951,
0.0350697339,
-0.4277082682,
-0.0206915624,
0.0424791276,
0.2701972723,
-0.0820250437,
0.3326257169,
0.1676800847,
-0.3741495609,
-0.4167825878,
-0.419149518,
-0.1761030108,
0.1557720006,
-0.1276239753,
0.4238353968,
-0.0271939095,
0.2040139735,
-0.314923048,
-0.00302146,
-0.3587969542,
0.3453438282,
-0.3175050914,
0.0861750916,
0.0861125737,
0.1618041694,
0.0088498406,
0.327394098,
-0.0774757788,
0.2494782507,
-0.5126639009,
-0.2689228654,
0.4422737062,
-0.6223304868,
-0.2002595961,
0.0687686354,
0.0811639205,
0.1981114894,
0.0035746451,
-0.2775664628,
-0.0704602078,
0.1616209447,
-0.1745934486,
-0.2950671017,
-0.1357095838,
-0.2625448704,
-0.2551772594,
-0.0769582316,
-0.3599273562,
0.1837786436,
-0.0453099199,
-0.2211909592,
-0.2330329716
] |
https://github.com/huggingface/datasets/issues/373 | Segmentation fault when loading local JSON dataset as of #372 | Yes `_generate_examples()` is the main entry point. If you change the shape of the returned dictionary you also need to update the `features` in the `_info`.
I'm currently writing the doc so it should be easier soon to use the library and know how to add your datasets.
| The last issue was closed (#369) once the #372 update was merged. However, I'm still not able to load a SQuAD formatted JSON file. Instead of the previously recorded pyarrow error, I now get a segmentation fault.
```
dataset = nlp.load_dataset('json', data_files={nlp.Split.TRAIN: ["./datasets/train-v2.0.json"]}, field='data')
```
causes
```
Using custom data configuration default
Downloading and preparing dataset json/default (download: Unknown size, generated: Unknown size, total: Unknown size) to /home/XXX/.cache/huggingface/datasets/json/default/0.0.0...
0 tables [00:00, ? tables/s]Segmentation fault (core dumped)
```
where `./datasets/train-v2.0.json` is downloaded directly from https://rajpurkar.github.io/SQuAD-explorer/.
This is consistent with other SQuAD-formatted JSON files.
When attempting to load the dataset again, I get the following:
```
Using custom data configuration default
Traceback (most recent call last):
File "dataloader.py", line 6, in <module>
'json', data_files={nlp.Split.TRAIN: ["./datasets/train-v2.0.json"]}, field='data')
File "/home/XXX/.conda/envs/torch/lib/python3.7/site-packages/nlp/load.py", line 524, in load_dataset
save_infos=save_infos,
File "/home/XXX/.conda/envs/torch/lib/python3.7/site-packages/nlp/builder.py", line 382, in download_and_prepare
with incomplete_dir(self._cache_dir) as tmp_data_dir:
File "/home/XXX/.conda/envs/torch/lib/python3.7/contextlib.py", line 112, in __enter__
return next(self.gen)
File "/home/XXX/.conda/envs/torch/lib/python3.7/site-packages/nlp/builder.py", line 368, in incomplete_dir
os.makedirs(tmp_dir)
File "/home/XXX/.conda/envs/torch/lib/python3.7/os.py", line 223, in makedirs
mkdir(name, mode)
FileExistsError: [Errno 17] File exists: '/home/XXX/.cache/huggingface/datasets/json/default/0.0.0.incomplete'
```
(Not sure if you wanted this in the previous issue #369 or not as it was closed.) | 48 | Segmentation fault when loading local JSON dataset as of #372
The last issue was closed (#369) once the #372 update was merged. However, I'm still not able to load a SQuAD formatted JSON file. Instead of the previously recorded pyarrow error, I now get a segmentation fault.
```
dataset = nlp.load_dataset('json', data_files={nlp.Split.TRAIN: ["./datasets/train-v2.0.json"]}, field='data')
```
causes
```
Using custom data configuration default
Downloading and preparing dataset json/default (download: Unknown size, generated: Unknown size, total: Unknown size) to /home/XXX/.cache/huggingface/datasets/json/default/0.0.0...
0 tables [00:00, ? tables/s]Segmentation fault (core dumped)
```
where `./datasets/train-v2.0.json` is downloaded directly from https://rajpurkar.github.io/SQuAD-explorer/.
This is consistent with other SQuAD-formatted JSON files.
When attempting to load the dataset again, I get the following:
```
Using custom data configuration default
Traceback (most recent call last):
File "dataloader.py", line 6, in <module>
'json', data_files={nlp.Split.TRAIN: ["./datasets/train-v2.0.json"]}, field='data')
File "/home/XXX/.conda/envs/torch/lib/python3.7/site-packages/nlp/load.py", line 524, in load_dataset
save_infos=save_infos,
File "/home/XXX/.conda/envs/torch/lib/python3.7/site-packages/nlp/builder.py", line 382, in download_and_prepare
with incomplete_dir(self._cache_dir) as tmp_data_dir:
File "/home/XXX/.conda/envs/torch/lib/python3.7/contextlib.py", line 112, in __enter__
return next(self.gen)
File "/home/XXX/.conda/envs/torch/lib/python3.7/site-packages/nlp/builder.py", line 368, in incomplete_dir
os.makedirs(tmp_dir)
File "/home/XXX/.conda/envs/torch/lib/python3.7/os.py", line 223, in makedirs
mkdir(name, mode)
FileExistsError: [Errno 17] File exists: '/home/XXX/.cache/huggingface/datasets/json/default/0.0.0.incomplete'
```
(Not sure if you wanted this in the previous issue #369 or not as it was closed.)
Yes `_generate_examples()` is the main entry point. If you change the shape of the returned dictionary you also need to update the `features` in the `_info`.
I'm currently writing the doc so it should be easier soon to use the library and know how to add your datasets.
| [
-0.0172921643,
0.2893962562,
0.0609414466,
0.0578705519,
0.2236099243,
-0.016548574,
0.3200392723,
0.6101838946,
-0.4010095298,
-0.2130427957,
-0.2422537953,
0.7714076042,
0.1327874511,
-0.4265961647,
0.1489231884,
-0.0715277568,
0.0462256782,
0.1267295182,
0.2239412814,
0.0536701232,
-0.1744495481,
0.341650933,
-0.2299684584,
0.132041648,
-0.1667513549,
0.2660645247,
0.0065366551,
0.5419237614,
-0.0745723397,
-0.7302019,
0.2977763414,
-0.0093300445,
0.1517450064,
0.3450249732,
-0.0001186113,
0.1845317781,
0.3318483233,
-0.1096368656,
-0.351701498,
0.052129332,
0.280503571,
-0.2414646894,
0.3380267918,
-0.1453835964,
0.0627314746,
-0.3119795322,
0.0318318084,
0.0812748075,
0.6866551042,
0.1553965062,
0.0921010226,
0.1377256215,
0.0738056451,
0.0523657613,
0.0207758788,
0.0678776577,
0.0166039318,
0.7200927734,
0.5202921033,
-0.1260128319,
-0.3388990462,
-0.0720847845,
0.1212722659,
-0.0382686928,
0.2048573792,
-0.0635561645,
-0.0138484612,
-0.183270961,
0.0524650402,
0.1170205623,
0.241646871,
-0.2380601168,
-0.2328484654,
-0.215749234,
0.0747867227,
-0.2181081474,
0.377320528,
0.2772288918,
-0.1398605704,
0.1523424387,
-0.0569972768,
0.0344605185,
-0.1918934435,
0.0293106697,
-0.2142735571,
0.5192517638,
0.1215122491,
0.0416844524,
0.1051239669,
-0.1629459709,
-0.1519258022,
0.3172395229,
-0.2625274658,
0.3998278975,
-0.3908267021,
-0.1686173081,
0.1120530292,
-0.3626519144,
0.2163051665,
0.0901771635,
0.1800892353,
0.16720514,
0.213912338,
0.1203704923,
0.4853109121,
0.0546771549,
0.1718353629,
0.2025323212,
0.1526306868,
-0.0196300987,
-0.0259738192,
0.2397750616,
-0.1398817003,
-0.2250074297,
-0.2135163248,
0.0280677378,
-0.026821509,
-0.1094669178,
0.0148831829,
0.0695180073,
-0.3147706687,
-0.0120256953,
0.0509858318,
0.0848619491,
0.131286785,
0.1926080883,
-0.2500282824,
0.2047611326,
-0.1014550999,
-0.1726953536,
-0.0175751969,
-0.026820112,
-0.3066570163,
-0.02066602,
0.4054739475,
-0.1225607544,
0.1185210794,
-0.0812495872,
-0.1116152704,
-0.2269218564,
-0.4334720373,
-0.0438979454,
0.0076666065,
0.149673447,
0.0316804126,
-0.0704862252,
-0.0367233902,
-0.258110404,
-0.1803209037,
0.2121895701,
-0.3511878848,
-0.2851627469,
-0.5924193859,
0.1183916181,
-0.3227139711,
-0.0053093983,
0.1444021612,
0.2050792575,
0.0566595085,
-0.4543263316,
-0.1377894729,
-0.0893592238,
-0.0031524748,
-0.2295425683,
0.1466825604,
0.2523784935,
-0.8450294137,
-0.235981822,
0.1668372154,
-0.0015071929,
0.0830977485,
0.5275312662,
-0.3514188826,
0.2732034922,
-0.1530969143,
0.5261089206,
0.4013669491,
-0.2779784501,
-0.3369086683,
0.2427912503,
-0.3994490504,
-0.0413573682,
-0.2372675687,
-0.0655719638,
0.2967052162,
0.082333453,
0.3412533402,
0.4493864775,
-0.1155516803,
0.148324728,
-0.33256495,
-0.0804989487,
0.1726429611,
0.3601407409,
-0.0674157143,
-0.1608243287,
-0.0298585296,
0.144932121,
0.4040017426,
-0.1719319969,
-0.020753853,
0.1606730521,
0.1372899413,
-0.0173206814,
0.1661417633,
-0.1080796048,
-0.7758404613,
0.1020508707,
-0.2894927263,
0.0807943195,
-0.0411318168,
0.0060530603,
-0.2767831385,
-0.113597773,
-0.2061316371,
-0.0540231839,
0.0321171843,
-0.1604941338,
-0.0348594747,
-0.0682968125,
-0.4652939141,
-0.1567875594,
-0.1547569335,
0.3780492842,
-0.115378134,
0.403931886,
-0.1302650571,
-0.4008331895,
0.0927921385,
0.3672267497,
0.1282615215,
-0.2672618628,
-0.0068156607,
0.3295682669,
-0.0804476887,
0.1338738501,
-0.1708230972,
-0.2979546487,
0.2476089895,
-0.0857613608,
-0.1292844415,
-0.0635807961,
-0.1022319347,
-0.0883648768,
-0.3246679604,
0.3362677693,
0.019725915,
-0.0326361656,
-0.0567736253,
-0.2471360862,
0.2981204093,
-0.0848112181,
-0.127403453,
-0.0282977,
0.017286744,
0.1671073586,
-0.0124944225,
0.1766583174,
-0.176521033,
-0.0144743994,
0.3694944978,
-0.0651187971,
0.0355696604,
0.1873179376,
0.1008720696,
-0.291899085,
-0.0247528348,
-0.0487226993,
0.3634797335,
-0.0076968297,
-0.1558918357,
-0.0039153602,
0.0336672217,
-0.0184019394,
-0.0115455464,
0.0482459106,
0.4226094484,
0.5049400926,
0.3639852107,
0.1684011668,
-0.2733655274,
-0.1548731029,
0.1276230216,
0.0563048273,
-0.3743782043,
0.0602172613,
-0.2678272128,
-0.144592911,
-0.2930880189,
-0.142691195,
-0.3419749141,
-0.1941554546,
0.1088884398,
-0.0382638201,
-0.0867830366,
0.2005050182,
0.1665455401,
0.4000801444,
0.100278534,
-0.1863679886,
0.0381454378,
-0.1772578657,
-0.2182419002,
-0.0453669131,
0.3783229887,
-0.064428851,
-0.2067783773,
-0.1894417703,
-0.2709748447,
0.1097925454,
-0.4360967875,
0.1680291444,
-0.0091558713,
0.1945904344,
0.0222649779,
0.2368632555,
-0.1479672492,
-0.3669348657,
0.2814823687,
-0.0462118387,
-0.2511283159,
0.0004014,
-0.1034955904,
0.1337920427,
-0.2878107429,
-0.3897338808,
-0.2453114688,
-0.2271136343,
0.4359024763,
0.0752960294,
0.1372660249,
0.2004073411,
-0.202068001,
0.0147431344,
-0.2370601445,
-0.211095497,
0.0494781993,
-0.1857466102,
0.2052338123,
-0.2988073528,
-0.1417261362,
-0.0219020247,
0.0942518041,
0.1670045853,
-0.2243583202,
-0.1604164243,
0.1161190942,
0.1713584512,
0.2460082769,
-0.3234410286,
-0.2597649097,
0.252478987,
-0.2297297418,
0.0524284095,
0.1972101331,
-0.3602097631,
-0.0937122107,
0.518563807,
0.1982491314,
-0.2657058537,
0.2363279611,
0.0597210377,
0.8267532587,
-0.1374402195,
-0.1625375301,
0.1258322895,
0.0303803328,
0.1219489872,
-0.1489124,
-0.0352489501,
0.3921880722,
-0.0397976786,
-0.1129410416,
0.2475957572,
0.1624517739,
-0.5424820781,
-0.0059678555,
0.1580978632,
-0.5473144054,
-0.1683233678,
0.2632973194,
0.5551205277,
-0.085087128,
-0.0429343581,
0.029452011,
0.002925083,
-0.2315511107,
-0.0598366335,
0.2242510617,
0.2707132995,
0.0932333618,
-0.5434262156,
-0.3422009349,
-0.044759348,
-0.0204033405,
0.1243700683,
0.4645566344,
-0.0012728497,
-0.2062436938,
0.0272209775,
-0.2641842961,
0.3476612866,
0.2620742321,
0.3518280983,
0.3491415381,
0.3293303251,
-0.0743016526,
-0.3046777546,
0.1451893598,
0.4771127701,
0.6556539536,
0.4198310375,
-0.1016693637,
-0.1317110211,
0.2848740816,
0.085961327,
-0.1447808743,
-0.0733838454,
-0.2265140414,
-0.0794774741,
0.0030265301,
0.0393503979,
-0.0417609736,
0.3973942995,
0.0603221431,
0.1337607801,
0.4236767888,
-0.2695536017,
-0.2426751852,
0.3894141018,
0.109123759,
0.0767815858,
0.0468042493,
0.2670259178,
-0.0012032287,
0.3386414647,
0.4461457729,
0.289424181,
-0.2029464394,
0.2748582959,
-0.0069876797,
0.221301049,
0.4691966176,
0.2012591511,
-0.1830905378,
-0.1404705942,
-0.1271870583,
0.0230226144,
-0.4001840949,
0.1378404796,
-0.3075539768,
-0.22677809,
0.2155748308,
0.2009164989,
-0.0955837667,
-0.0633859187,
-0.0289975256,
-0.0604570955,
-0.0157040618,
0.5079239011,
0.1642166227,
0.7734217048,
-0.0452003106,
0.1062065363,
0.2713395655,
-0.1177696139,
0.4012328386,
-0.651129365,
0.3604258001,
-0.4377227128,
0.2696184516,
0.1214248613,
-0.1291204095,
0.1680386364,
0.1842430532,
0.0067202225,
-0.0547783636,
-0.1476247311,
0.2945116758,
-0.0257628523,
0.3388978243,
0.1799480915,
-0.3059540987,
-0.5036041737,
0.0607925132,
-0.3701075315,
0.0345584452,
-0.1490782201,
-0.1694027185,
-0.0852131695,
-0.1265629381,
-0.2838004231,
0.2769853175,
0.1298912466,
0.0143145733,
0.5128051639,
-0.2600146234,
0.1598158777,
0.3644196391,
-0.1501443088,
0.0535290428,
-0.0029325355,
0.3615521193,
-0.1234303489,
0.1117697731,
0.2297594249,
0.0198836662,
0.2879817784,
-0.1601614505,
-0.0406816602,
-0.0503903516,
-0.0745755807,
-0.2796953321,
-0.0691925883,
0.3941943944,
0.1375084519,
-0.165641427,
0.0129154995,
-0.1245389879,
0.1229195669,
-0.0493014604,
0.0542032272,
0.0106453421,
-0.1491624713,
-0.0271746814,
0.1586453468,
-0.0698155984,
0.086437054,
0.6089109182,
-0.1084502041,
-0.3196204007,
0.3064623475,
0.3026754856,
0.0052802488,
-0.2204807103,
0.2212646604,
0.0504690818,
-0.3886027336,
-0.1376271397,
-0.1989229023,
-0.0684244782,
0.0346806645,
0.1022279859,
0.2172864676,
-0.1017907634,
0.003682524,
-0.5508983731,
-0.3031086326,
0.1911866665,
-0.0767692029,
-0.1813701391,
0.1192315668,
0.3389428854,
0.0155138448,
0.2547381818,
-0.2034854293,
0.3259331882,
-0.3733074069,
0.1441615373,
-0.5635961294,
-0.2371917814,
-0.0035354383,
-0.2305135131,
0.0180748329,
0.2454893738,
0.0734464824,
-0.1074406654,
-0.0155517049,
0.1593937576,
0.1383401603,
-0.0180856548,
-0.169466421,
-0.000206776,
0.1075090617,
0.1735595167,
0.1035003141,
-0.1377709359,
0.1467639804,
0.1609329134,
0.2953791618,
0.1064919382,
0.1960288882,
0.0935886502,
0.0295744874,
0.3905389011,
0.0588819496,
0.2412943393,
-0.2039607465,
0.0334326029,
-0.3554685116,
0.1890604496,
0.0100138336,
0.2804842591,
0.083827205,
-0.5798281431,
-0.0544028841,
-0.0720524192,
0.3013584018,
0.572124064,
-0.366515398,
0.1124068499,
0.1887702942,
0.1041740701,
-0.0099354684,
-0.2594086826,
0.747820735,
-0.0356642976,
-0.3024623692,
0.0180357434,
0.1428464949,
-0.0983975381,
0.1315196753,
0.1389719546,
0.567043364,
0.1919362098,
0.1983342171,
0.2170209885,
-0.2254353166,
-0.0237511657,
0.1397864074,
-0.0790002197,
0.1816961765,
0.2541324198,
-0.1939041167,
0.0633175522,
0.1178165823,
0.103707999,
0.2329497486,
-0.3413435221,
-0.3557489216,
0.0997507796,
0.1379035413,
0.0106008612,
0.1785010099,
0.8641576171,
-0.1908431053,
-0.4217525721,
-0.0853033811,
0.0879022181,
-0.3081797957,
0.0873619318,
-0.4969727397,
-0.1789300144,
-0.0405433178,
0.1543644667,
-0.3017129004,
-0.032923758,
0.0855990499,
0.0390483327,
-0.2745318115,
-0.1928052902,
-0.0414179042,
-0.2142157555,
0.0656095594,
-0.0752991363,
0.3355390131,
-0.1362097561,
0.042880211,
0.2439542413,
-0.0208167229,
0.3282357752,
0.3369993269,
-0.1919891089,
-0.1264550388,
-0.2578289509,
0.021681048,
0.0744307041,
0.1027908251,
0.214665249,
-0.1302479804,
0.2761431336,
0.116820015,
-0.0468782485,
0.1349723041,
0.2768834233,
0.1607481539,
0.0973089784,
-0.0871054828,
-0.1949214041,
-0.2481786758,
-0.0677019954,
-0.1263931543,
0.0338318273,
-0.1226418242,
-0.1555688679,
0.5012951493,
0.117711246,
-0.0630639121,
0.0850425959,
0.1083317548,
0.554695189,
0.222614944,
-0.3615116775,
-0.0978454873,
-0.202680558,
-0.290574789,
0.2430060059,
-0.0448601358,
0.0714032203,
0.3016997576,
0.4403116703,
-0.1458825618,
0.284768343,
-0.2370343208,
-0.0482029431,
0.0044929609,
0.2456319928,
-0.4291105866,
0.1797170192,
0.0566489697,
0.1454112977,
-0.1059209853,
-0.1340214908,
0.2665146589,
-0.2023610175,
-0.0858605951,
0.0350697339,
-0.4277082682,
-0.0206915624,
0.0424791276,
0.2701972723,
-0.0820250437,
0.3326257169,
0.1676800847,
-0.3741495609,
-0.4167825878,
-0.419149518,
-0.1761030108,
0.1557720006,
-0.1276239753,
0.4238353968,
-0.0271939095,
0.2040139735,
-0.314923048,
-0.00302146,
-0.3587969542,
0.3453438282,
-0.3175050914,
0.0861750916,
0.0861125737,
0.1618041694,
0.0088498406,
0.327394098,
-0.0774757788,
0.2494782507,
-0.5126639009,
-0.2689228654,
0.4422737062,
-0.6223304868,
-0.2002595961,
0.0687686354,
0.0811639205,
0.1981114894,
0.0035746451,
-0.2775664628,
-0.0704602078,
0.1616209447,
-0.1745934486,
-0.2950671017,
-0.1357095838,
-0.2625448704,
-0.2551772594,
-0.0769582316,
-0.3599273562,
0.1837786436,
-0.0453099199,
-0.2211909592,
-0.2330329716
] |
https://github.com/huggingface/datasets/issues/373 | Segmentation fault when loading local JSON dataset as of #372 | Could you try to update pyarrow to >=0.17.0 @vegarab ?
I don't have any segmentation fault with my version of pyarrow (0.17.1)
I tested with
```python
import nlp
s = nlp.load_dataset("json", data_files="train-v2.0.json", field="data", split="train")
s[0]
# {'title': 'Normans', 'paragraphs': [{'qas': [{'question': 'In what country is Normandy located?', 'id':...
``` | The last issue was closed (#369) once the #372 update was merged. However, I'm still not able to load a SQuAD formatted JSON file. Instead of the previously recorded pyarrow error, I now get a segmentation fault.
```
dataset = nlp.load_dataset('json', data_files={nlp.Split.TRAIN: ["./datasets/train-v2.0.json"]}, field='data')
```
causes
```
Using custom data configuration default
Downloading and preparing dataset json/default (download: Unknown size, generated: Unknown size, total: Unknown size) to /home/XXX/.cache/huggingface/datasets/json/default/0.0.0...
0 tables [00:00, ? tables/s]Segmentation fault (core dumped)
```
where `./datasets/train-v2.0.json` is downloaded directly from https://rajpurkar.github.io/SQuAD-explorer/.
This is consistent with other SQuAD-formatted JSON files.
When attempting to load the dataset again, I get the following:
```
Using custom data configuration default
Traceback (most recent call last):
File "dataloader.py", line 6, in <module>
'json', data_files={nlp.Split.TRAIN: ["./datasets/train-v2.0.json"]}, field='data')
File "/home/XXX/.conda/envs/torch/lib/python3.7/site-packages/nlp/load.py", line 524, in load_dataset
save_infos=save_infos,
File "/home/XXX/.conda/envs/torch/lib/python3.7/site-packages/nlp/builder.py", line 382, in download_and_prepare
with incomplete_dir(self._cache_dir) as tmp_data_dir:
File "/home/XXX/.conda/envs/torch/lib/python3.7/contextlib.py", line 112, in __enter__
return next(self.gen)
File "/home/XXX/.conda/envs/torch/lib/python3.7/site-packages/nlp/builder.py", line 368, in incomplete_dir
os.makedirs(tmp_dir)
File "/home/XXX/.conda/envs/torch/lib/python3.7/os.py", line 223, in makedirs
mkdir(name, mode)
FileExistsError: [Errno 17] File exists: '/home/XXX/.cache/huggingface/datasets/json/default/0.0.0.incomplete'
```
(Not sure if you wanted this in the previous issue #369 or not as it was closed.) | 49 | Segmentation fault when loading local JSON dataset as of #372
The last issue was closed (#369) once the #372 update was merged. However, I'm still not able to load a SQuAD formatted JSON file. Instead of the previously recorded pyarrow error, I now get a segmentation fault.
```
dataset = nlp.load_dataset('json', data_files={nlp.Split.TRAIN: ["./datasets/train-v2.0.json"]}, field='data')
```
causes
```
Using custom data configuration default
Downloading and preparing dataset json/default (download: Unknown size, generated: Unknown size, total: Unknown size) to /home/XXX/.cache/huggingface/datasets/json/default/0.0.0...
0 tables [00:00, ? tables/s]Segmentation fault (core dumped)
```
where `./datasets/train-v2.0.json` is downloaded directly from https://rajpurkar.github.io/SQuAD-explorer/.
This is consistent with other SQuAD-formatted JSON files.
When attempting to load the dataset again, I get the following:
```
Using custom data configuration default
Traceback (most recent call last):
File "dataloader.py", line 6, in <module>
'json', data_files={nlp.Split.TRAIN: ["./datasets/train-v2.0.json"]}, field='data')
File "/home/XXX/.conda/envs/torch/lib/python3.7/site-packages/nlp/load.py", line 524, in load_dataset
save_infos=save_infos,
File "/home/XXX/.conda/envs/torch/lib/python3.7/site-packages/nlp/builder.py", line 382, in download_and_prepare
with incomplete_dir(self._cache_dir) as tmp_data_dir:
File "/home/XXX/.conda/envs/torch/lib/python3.7/contextlib.py", line 112, in __enter__
return next(self.gen)
File "/home/XXX/.conda/envs/torch/lib/python3.7/site-packages/nlp/builder.py", line 368, in incomplete_dir
os.makedirs(tmp_dir)
File "/home/XXX/.conda/envs/torch/lib/python3.7/os.py", line 223, in makedirs
mkdir(name, mode)
FileExistsError: [Errno 17] File exists: '/home/XXX/.cache/huggingface/datasets/json/default/0.0.0.incomplete'
```
(Not sure if you wanted this in the previous issue #369 or not as it was closed.)
Could you try to update pyarrow to >=0.17.0 @vegarab ?
I don't have any segmentation fault with my version of pyarrow (0.17.1)
I tested with
```python
import nlp
s = nlp.load_dataset("json", data_files="train-v2.0.json", field="data", split="train")
s[0]
# {'title': 'Normans', 'paragraphs': [{'qas': [{'question': 'In what country is Normandy located?', 'id':...
``` | [
-0.0172921643,
0.2893962562,
0.0609414466,
0.0578705519,
0.2236099243,
-0.016548574,
0.3200392723,
0.6101838946,
-0.4010095298,
-0.2130427957,
-0.2422537953,
0.7714076042,
0.1327874511,
-0.4265961647,
0.1489231884,
-0.0715277568,
0.0462256782,
0.1267295182,
0.2239412814,
0.0536701232,
-0.1744495481,
0.341650933,
-0.2299684584,
0.132041648,
-0.1667513549,
0.2660645247,
0.0065366551,
0.5419237614,
-0.0745723397,
-0.7302019,
0.2977763414,
-0.0093300445,
0.1517450064,
0.3450249732,
-0.0001186113,
0.1845317781,
0.3318483233,
-0.1096368656,
-0.351701498,
0.052129332,
0.280503571,
-0.2414646894,
0.3380267918,
-0.1453835964,
0.0627314746,
-0.3119795322,
0.0318318084,
0.0812748075,
0.6866551042,
0.1553965062,
0.0921010226,
0.1377256215,
0.0738056451,
0.0523657613,
0.0207758788,
0.0678776577,
0.0166039318,
0.7200927734,
0.5202921033,
-0.1260128319,
-0.3388990462,
-0.0720847845,
0.1212722659,
-0.0382686928,
0.2048573792,
-0.0635561645,
-0.0138484612,
-0.183270961,
0.0524650402,
0.1170205623,
0.241646871,
-0.2380601168,
-0.2328484654,
-0.215749234,
0.0747867227,
-0.2181081474,
0.377320528,
0.2772288918,
-0.1398605704,
0.1523424387,
-0.0569972768,
0.0344605185,
-0.1918934435,
0.0293106697,
-0.2142735571,
0.5192517638,
0.1215122491,
0.0416844524,
0.1051239669,
-0.1629459709,
-0.1519258022,
0.3172395229,
-0.2625274658,
0.3998278975,
-0.3908267021,
-0.1686173081,
0.1120530292,
-0.3626519144,
0.2163051665,
0.0901771635,
0.1800892353,
0.16720514,
0.213912338,
0.1203704923,
0.4853109121,
0.0546771549,
0.1718353629,
0.2025323212,
0.1526306868,
-0.0196300987,
-0.0259738192,
0.2397750616,
-0.1398817003,
-0.2250074297,
-0.2135163248,
0.0280677378,
-0.026821509,
-0.1094669178,
0.0148831829,
0.0695180073,
-0.3147706687,
-0.0120256953,
0.0509858318,
0.0848619491,
0.131286785,
0.1926080883,
-0.2500282824,
0.2047611326,
-0.1014550999,
-0.1726953536,
-0.0175751969,
-0.026820112,
-0.3066570163,
-0.02066602,
0.4054739475,
-0.1225607544,
0.1185210794,
-0.0812495872,
-0.1116152704,
-0.2269218564,
-0.4334720373,
-0.0438979454,
0.0076666065,
0.149673447,
0.0316804126,
-0.0704862252,
-0.0367233902,
-0.258110404,
-0.1803209037,
0.2121895701,
-0.3511878848,
-0.2851627469,
-0.5924193859,
0.1183916181,
-0.3227139711,
-0.0053093983,
0.1444021612,
0.2050792575,
0.0566595085,
-0.4543263316,
-0.1377894729,
-0.0893592238,
-0.0031524748,
-0.2295425683,
0.1466825604,
0.2523784935,
-0.8450294137,
-0.235981822,
0.1668372154,
-0.0015071929,
0.0830977485,
0.5275312662,
-0.3514188826,
0.2732034922,
-0.1530969143,
0.5261089206,
0.4013669491,
-0.2779784501,
-0.3369086683,
0.2427912503,
-0.3994490504,
-0.0413573682,
-0.2372675687,
-0.0655719638,
0.2967052162,
0.082333453,
0.3412533402,
0.4493864775,
-0.1155516803,
0.148324728,
-0.33256495,
-0.0804989487,
0.1726429611,
0.3601407409,
-0.0674157143,
-0.1608243287,
-0.0298585296,
0.144932121,
0.4040017426,
-0.1719319969,
-0.020753853,
0.1606730521,
0.1372899413,
-0.0173206814,
0.1661417633,
-0.1080796048,
-0.7758404613,
0.1020508707,
-0.2894927263,
0.0807943195,
-0.0411318168,
0.0060530603,
-0.2767831385,
-0.113597773,
-0.2061316371,
-0.0540231839,
0.0321171843,
-0.1604941338,
-0.0348594747,
-0.0682968125,
-0.4652939141,
-0.1567875594,
-0.1547569335,
0.3780492842,
-0.115378134,
0.403931886,
-0.1302650571,
-0.4008331895,
0.0927921385,
0.3672267497,
0.1282615215,
-0.2672618628,
-0.0068156607,
0.3295682669,
-0.0804476887,
0.1338738501,
-0.1708230972,
-0.2979546487,
0.2476089895,
-0.0857613608,
-0.1292844415,
-0.0635807961,
-0.1022319347,
-0.0883648768,
-0.3246679604,
0.3362677693,
0.019725915,
-0.0326361656,
-0.0567736253,
-0.2471360862,
0.2981204093,
-0.0848112181,
-0.127403453,
-0.0282977,
0.017286744,
0.1671073586,
-0.0124944225,
0.1766583174,
-0.176521033,
-0.0144743994,
0.3694944978,
-0.0651187971,
0.0355696604,
0.1873179376,
0.1008720696,
-0.291899085,
-0.0247528348,
-0.0487226993,
0.3634797335,
-0.0076968297,
-0.1558918357,
-0.0039153602,
0.0336672217,
-0.0184019394,
-0.0115455464,
0.0482459106,
0.4226094484,
0.5049400926,
0.3639852107,
0.1684011668,
-0.2733655274,
-0.1548731029,
0.1276230216,
0.0563048273,
-0.3743782043,
0.0602172613,
-0.2678272128,
-0.144592911,
-0.2930880189,
-0.142691195,
-0.3419749141,
-0.1941554546,
0.1088884398,
-0.0382638201,
-0.0867830366,
0.2005050182,
0.1665455401,
0.4000801444,
0.100278534,
-0.1863679886,
0.0381454378,
-0.1772578657,
-0.2182419002,
-0.0453669131,
0.3783229887,
-0.064428851,
-0.2067783773,
-0.1894417703,
-0.2709748447,
0.1097925454,
-0.4360967875,
0.1680291444,
-0.0091558713,
0.1945904344,
0.0222649779,
0.2368632555,
-0.1479672492,
-0.3669348657,
0.2814823687,
-0.0462118387,
-0.2511283159,
0.0004014,
-0.1034955904,
0.1337920427,
-0.2878107429,
-0.3897338808,
-0.2453114688,
-0.2271136343,
0.4359024763,
0.0752960294,
0.1372660249,
0.2004073411,
-0.202068001,
0.0147431344,
-0.2370601445,
-0.211095497,
0.0494781993,
-0.1857466102,
0.2052338123,
-0.2988073528,
-0.1417261362,
-0.0219020247,
0.0942518041,
0.1670045853,
-0.2243583202,
-0.1604164243,
0.1161190942,
0.1713584512,
0.2460082769,
-0.3234410286,
-0.2597649097,
0.252478987,
-0.2297297418,
0.0524284095,
0.1972101331,
-0.3602097631,
-0.0937122107,
0.518563807,
0.1982491314,
-0.2657058537,
0.2363279611,
0.0597210377,
0.8267532587,
-0.1374402195,
-0.1625375301,
0.1258322895,
0.0303803328,
0.1219489872,
-0.1489124,
-0.0352489501,
0.3921880722,
-0.0397976786,
-0.1129410416,
0.2475957572,
0.1624517739,
-0.5424820781,
-0.0059678555,
0.1580978632,
-0.5473144054,
-0.1683233678,
0.2632973194,
0.5551205277,
-0.085087128,
-0.0429343581,
0.029452011,
0.002925083,
-0.2315511107,
-0.0598366335,
0.2242510617,
0.2707132995,
0.0932333618,
-0.5434262156,
-0.3422009349,
-0.044759348,
-0.0204033405,
0.1243700683,
0.4645566344,
-0.0012728497,
-0.2062436938,
0.0272209775,
-0.2641842961,
0.3476612866,
0.2620742321,
0.3518280983,
0.3491415381,
0.3293303251,
-0.0743016526,
-0.3046777546,
0.1451893598,
0.4771127701,
0.6556539536,
0.4198310375,
-0.1016693637,
-0.1317110211,
0.2848740816,
0.085961327,
-0.1447808743,
-0.0733838454,
-0.2265140414,
-0.0794774741,
0.0030265301,
0.0393503979,
-0.0417609736,
0.3973942995,
0.0603221431,
0.1337607801,
0.4236767888,
-0.2695536017,
-0.2426751852,
0.3894141018,
0.109123759,
0.0767815858,
0.0468042493,
0.2670259178,
-0.0012032287,
0.3386414647,
0.4461457729,
0.289424181,
-0.2029464394,
0.2748582959,
-0.0069876797,
0.221301049,
0.4691966176,
0.2012591511,
-0.1830905378,
-0.1404705942,
-0.1271870583,
0.0230226144,
-0.4001840949,
0.1378404796,
-0.3075539768,
-0.22677809,
0.2155748308,
0.2009164989,
-0.0955837667,
-0.0633859187,
-0.0289975256,
-0.0604570955,
-0.0157040618,
0.5079239011,
0.1642166227,
0.7734217048,
-0.0452003106,
0.1062065363,
0.2713395655,
-0.1177696139,
0.4012328386,
-0.651129365,
0.3604258001,
-0.4377227128,
0.2696184516,
0.1214248613,
-0.1291204095,
0.1680386364,
0.1842430532,
0.0067202225,
-0.0547783636,
-0.1476247311,
0.2945116758,
-0.0257628523,
0.3388978243,
0.1799480915,
-0.3059540987,
-0.5036041737,
0.0607925132,
-0.3701075315,
0.0345584452,
-0.1490782201,
-0.1694027185,
-0.0852131695,
-0.1265629381,
-0.2838004231,
0.2769853175,
0.1298912466,
0.0143145733,
0.5128051639,
-0.2600146234,
0.1598158777,
0.3644196391,
-0.1501443088,
0.0535290428,
-0.0029325355,
0.3615521193,
-0.1234303489,
0.1117697731,
0.2297594249,
0.0198836662,
0.2879817784,
-0.1601614505,
-0.0406816602,
-0.0503903516,
-0.0745755807,
-0.2796953321,
-0.0691925883,
0.3941943944,
0.1375084519,
-0.165641427,
0.0129154995,
-0.1245389879,
0.1229195669,
-0.0493014604,
0.0542032272,
0.0106453421,
-0.1491624713,
-0.0271746814,
0.1586453468,
-0.0698155984,
0.086437054,
0.6089109182,
-0.1084502041,
-0.3196204007,
0.3064623475,
0.3026754856,
0.0052802488,
-0.2204807103,
0.2212646604,
0.0504690818,
-0.3886027336,
-0.1376271397,
-0.1989229023,
-0.0684244782,
0.0346806645,
0.1022279859,
0.2172864676,
-0.1017907634,
0.003682524,
-0.5508983731,
-0.3031086326,
0.1911866665,
-0.0767692029,
-0.1813701391,
0.1192315668,
0.3389428854,
0.0155138448,
0.2547381818,
-0.2034854293,
0.3259331882,
-0.3733074069,
0.1441615373,
-0.5635961294,
-0.2371917814,
-0.0035354383,
-0.2305135131,
0.0180748329,
0.2454893738,
0.0734464824,
-0.1074406654,
-0.0155517049,
0.1593937576,
0.1383401603,
-0.0180856548,
-0.169466421,
-0.000206776,
0.1075090617,
0.1735595167,
0.1035003141,
-0.1377709359,
0.1467639804,
0.1609329134,
0.2953791618,
0.1064919382,
0.1960288882,
0.0935886502,
0.0295744874,
0.3905389011,
0.0588819496,
0.2412943393,
-0.2039607465,
0.0334326029,
-0.3554685116,
0.1890604496,
0.0100138336,
0.2804842591,
0.083827205,
-0.5798281431,
-0.0544028841,
-0.0720524192,
0.3013584018,
0.572124064,
-0.366515398,
0.1124068499,
0.1887702942,
0.1041740701,
-0.0099354684,
-0.2594086826,
0.747820735,
-0.0356642976,
-0.3024623692,
0.0180357434,
0.1428464949,
-0.0983975381,
0.1315196753,
0.1389719546,
0.567043364,
0.1919362098,
0.1983342171,
0.2170209885,
-0.2254353166,
-0.0237511657,
0.1397864074,
-0.0790002197,
0.1816961765,
0.2541324198,
-0.1939041167,
0.0633175522,
0.1178165823,
0.103707999,
0.2329497486,
-0.3413435221,
-0.3557489216,
0.0997507796,
0.1379035413,
0.0106008612,
0.1785010099,
0.8641576171,
-0.1908431053,
-0.4217525721,
-0.0853033811,
0.0879022181,
-0.3081797957,
0.0873619318,
-0.4969727397,
-0.1789300144,
-0.0405433178,
0.1543644667,
-0.3017129004,
-0.032923758,
0.0855990499,
0.0390483327,
-0.2745318115,
-0.1928052902,
-0.0414179042,
-0.2142157555,
0.0656095594,
-0.0752991363,
0.3355390131,
-0.1362097561,
0.042880211,
0.2439542413,
-0.0208167229,
0.3282357752,
0.3369993269,
-0.1919891089,
-0.1264550388,
-0.2578289509,
0.021681048,
0.0744307041,
0.1027908251,
0.214665249,
-0.1302479804,
0.2761431336,
0.116820015,
-0.0468782485,
0.1349723041,
0.2768834233,
0.1607481539,
0.0973089784,
-0.0871054828,
-0.1949214041,
-0.2481786758,
-0.0677019954,
-0.1263931543,
0.0338318273,
-0.1226418242,
-0.1555688679,
0.5012951493,
0.117711246,
-0.0630639121,
0.0850425959,
0.1083317548,
0.554695189,
0.222614944,
-0.3615116775,
-0.0978454873,
-0.202680558,
-0.290574789,
0.2430060059,
-0.0448601358,
0.0714032203,
0.3016997576,
0.4403116703,
-0.1458825618,
0.284768343,
-0.2370343208,
-0.0482029431,
0.0044929609,
0.2456319928,
-0.4291105866,
0.1797170192,
0.0566489697,
0.1454112977,
-0.1059209853,
-0.1340214908,
0.2665146589,
-0.2023610175,
-0.0858605951,
0.0350697339,
-0.4277082682,
-0.0206915624,
0.0424791276,
0.2701972723,
-0.0820250437,
0.3326257169,
0.1676800847,
-0.3741495609,
-0.4167825878,
-0.419149518,
-0.1761030108,
0.1557720006,
-0.1276239753,
0.4238353968,
-0.0271939095,
0.2040139735,
-0.314923048,
-0.00302146,
-0.3587969542,
0.3453438282,
-0.3175050914,
0.0861750916,
0.0861125737,
0.1618041694,
0.0088498406,
0.327394098,
-0.0774757788,
0.2494782507,
-0.5126639009,
-0.2689228654,
0.4422737062,
-0.6223304868,
-0.2002595961,
0.0687686354,
0.0811639205,
0.1981114894,
0.0035746451,
-0.2775664628,
-0.0704602078,
0.1616209447,
-0.1745934486,
-0.2950671017,
-0.1357095838,
-0.2625448704,
-0.2551772594,
-0.0769582316,
-0.3599273562,
0.1837786436,
-0.0453099199,
-0.2211909592,
-0.2330329716
] |
https://github.com/huggingface/datasets/issues/373 | Segmentation fault when loading local JSON dataset as of #372 | Also if you want to have your own dataset script, we now have a new documentation !
See here:
https://huggingface.co/nlp/add_dataset.html | The last issue was closed (#369) once the #372 update was merged. However, I'm still not able to load a SQuAD formatted JSON file. Instead of the previously recorded pyarrow error, I now get a segmentation fault.
```
dataset = nlp.load_dataset('json', data_files={nlp.Split.TRAIN: ["./datasets/train-v2.0.json"]}, field='data')
```
causes
```
Using custom data configuration default
Downloading and preparing dataset json/default (download: Unknown size, generated: Unknown size, total: Unknown size) to /home/XXX/.cache/huggingface/datasets/json/default/0.0.0...
0 tables [00:00, ? tables/s]Segmentation fault (core dumped)
```
where `./datasets/train-v2.0.json` is downloaded directly from https://rajpurkar.github.io/SQuAD-explorer/.
This is consistent with other SQuAD-formatted JSON files.
When attempting to load the dataset again, I get the following:
```
Using custom data configuration default
Traceback (most recent call last):
File "dataloader.py", line 6, in <module>
'json', data_files={nlp.Split.TRAIN: ["./datasets/train-v2.0.json"]}, field='data')
File "/home/XXX/.conda/envs/torch/lib/python3.7/site-packages/nlp/load.py", line 524, in load_dataset
save_infos=save_infos,
File "/home/XXX/.conda/envs/torch/lib/python3.7/site-packages/nlp/builder.py", line 382, in download_and_prepare
with incomplete_dir(self._cache_dir) as tmp_data_dir:
File "/home/XXX/.conda/envs/torch/lib/python3.7/contextlib.py", line 112, in __enter__
return next(self.gen)
File "/home/XXX/.conda/envs/torch/lib/python3.7/site-packages/nlp/builder.py", line 368, in incomplete_dir
os.makedirs(tmp_dir)
File "/home/XXX/.conda/envs/torch/lib/python3.7/os.py", line 223, in makedirs
mkdir(name, mode)
FileExistsError: [Errno 17] File exists: '/home/XXX/.cache/huggingface/datasets/json/default/0.0.0.incomplete'
```
(Not sure if you wanted this in the previous issue #369 or not as it was closed.) | 20 | Segmentation fault when loading local JSON dataset as of #372
The last issue was closed (#369) once the #372 update was merged. However, I'm still not able to load a SQuAD formatted JSON file. Instead of the previously recorded pyarrow error, I now get a segmentation fault.
```
dataset = nlp.load_dataset('json', data_files={nlp.Split.TRAIN: ["./datasets/train-v2.0.json"]}, field='data')
```
causes
```
Using custom data configuration default
Downloading and preparing dataset json/default (download: Unknown size, generated: Unknown size, total: Unknown size) to /home/XXX/.cache/huggingface/datasets/json/default/0.0.0...
0 tables [00:00, ? tables/s]Segmentation fault (core dumped)
```
where `./datasets/train-v2.0.json` is downloaded directly from https://rajpurkar.github.io/SQuAD-explorer/.
This is consistent with other SQuAD-formatted JSON files.
When attempting to load the dataset again, I get the following:
```
Using custom data configuration default
Traceback (most recent call last):
File "dataloader.py", line 6, in <module>
'json', data_files={nlp.Split.TRAIN: ["./datasets/train-v2.0.json"]}, field='data')
File "/home/XXX/.conda/envs/torch/lib/python3.7/site-packages/nlp/load.py", line 524, in load_dataset
save_infos=save_infos,
File "/home/XXX/.conda/envs/torch/lib/python3.7/site-packages/nlp/builder.py", line 382, in download_and_prepare
with incomplete_dir(self._cache_dir) as tmp_data_dir:
File "/home/XXX/.conda/envs/torch/lib/python3.7/contextlib.py", line 112, in __enter__
return next(self.gen)
File "/home/XXX/.conda/envs/torch/lib/python3.7/site-packages/nlp/builder.py", line 368, in incomplete_dir
os.makedirs(tmp_dir)
File "/home/XXX/.conda/envs/torch/lib/python3.7/os.py", line 223, in makedirs
mkdir(name, mode)
FileExistsError: [Errno 17] File exists: '/home/XXX/.cache/huggingface/datasets/json/default/0.0.0.incomplete'
```
(Not sure if you wanted this in the previous issue #369 or not as it was closed.)
Also if you want to have your own dataset script, we now have a new documentation !
See here:
https://huggingface.co/nlp/add_dataset.html | [
-0.0172921643,
0.2893962562,
0.0609414466,
0.0578705519,
0.2236099243,
-0.016548574,
0.3200392723,
0.6101838946,
-0.4010095298,
-0.2130427957,
-0.2422537953,
0.7714076042,
0.1327874511,
-0.4265961647,
0.1489231884,
-0.0715277568,
0.0462256782,
0.1267295182,
0.2239412814,
0.0536701232,
-0.1744495481,
0.341650933,
-0.2299684584,
0.132041648,
-0.1667513549,
0.2660645247,
0.0065366551,
0.5419237614,
-0.0745723397,
-0.7302019,
0.2977763414,
-0.0093300445,
0.1517450064,
0.3450249732,
-0.0001186113,
0.1845317781,
0.3318483233,
-0.1096368656,
-0.351701498,
0.052129332,
0.280503571,
-0.2414646894,
0.3380267918,
-0.1453835964,
0.0627314746,
-0.3119795322,
0.0318318084,
0.0812748075,
0.6866551042,
0.1553965062,
0.0921010226,
0.1377256215,
0.0738056451,
0.0523657613,
0.0207758788,
0.0678776577,
0.0166039318,
0.7200927734,
0.5202921033,
-0.1260128319,
-0.3388990462,
-0.0720847845,
0.1212722659,
-0.0382686928,
0.2048573792,
-0.0635561645,
-0.0138484612,
-0.183270961,
0.0524650402,
0.1170205623,
0.241646871,
-0.2380601168,
-0.2328484654,
-0.215749234,
0.0747867227,
-0.2181081474,
0.377320528,
0.2772288918,
-0.1398605704,
0.1523424387,
-0.0569972768,
0.0344605185,
-0.1918934435,
0.0293106697,
-0.2142735571,
0.5192517638,
0.1215122491,
0.0416844524,
0.1051239669,
-0.1629459709,
-0.1519258022,
0.3172395229,
-0.2625274658,
0.3998278975,
-0.3908267021,
-0.1686173081,
0.1120530292,
-0.3626519144,
0.2163051665,
0.0901771635,
0.1800892353,
0.16720514,
0.213912338,
0.1203704923,
0.4853109121,
0.0546771549,
0.1718353629,
0.2025323212,
0.1526306868,
-0.0196300987,
-0.0259738192,
0.2397750616,
-0.1398817003,
-0.2250074297,
-0.2135163248,
0.0280677378,
-0.026821509,
-0.1094669178,
0.0148831829,
0.0695180073,
-0.3147706687,
-0.0120256953,
0.0509858318,
0.0848619491,
0.131286785,
0.1926080883,
-0.2500282824,
0.2047611326,
-0.1014550999,
-0.1726953536,
-0.0175751969,
-0.026820112,
-0.3066570163,
-0.02066602,
0.4054739475,
-0.1225607544,
0.1185210794,
-0.0812495872,
-0.1116152704,
-0.2269218564,
-0.4334720373,
-0.0438979454,
0.0076666065,
0.149673447,
0.0316804126,
-0.0704862252,
-0.0367233902,
-0.258110404,
-0.1803209037,
0.2121895701,
-0.3511878848,
-0.2851627469,
-0.5924193859,
0.1183916181,
-0.3227139711,
-0.0053093983,
0.1444021612,
0.2050792575,
0.0566595085,
-0.4543263316,
-0.1377894729,
-0.0893592238,
-0.0031524748,
-0.2295425683,
0.1466825604,
0.2523784935,
-0.8450294137,
-0.235981822,
0.1668372154,
-0.0015071929,
0.0830977485,
0.5275312662,
-0.3514188826,
0.2732034922,
-0.1530969143,
0.5261089206,
0.4013669491,
-0.2779784501,
-0.3369086683,
0.2427912503,
-0.3994490504,
-0.0413573682,
-0.2372675687,
-0.0655719638,
0.2967052162,
0.082333453,
0.3412533402,
0.4493864775,
-0.1155516803,
0.148324728,
-0.33256495,
-0.0804989487,
0.1726429611,
0.3601407409,
-0.0674157143,
-0.1608243287,
-0.0298585296,
0.144932121,
0.4040017426,
-0.1719319969,
-0.020753853,
0.1606730521,
0.1372899413,
-0.0173206814,
0.1661417633,
-0.1080796048,
-0.7758404613,
0.1020508707,
-0.2894927263,
0.0807943195,
-0.0411318168,
0.0060530603,
-0.2767831385,
-0.113597773,
-0.2061316371,
-0.0540231839,
0.0321171843,
-0.1604941338,
-0.0348594747,
-0.0682968125,
-0.4652939141,
-0.1567875594,
-0.1547569335,
0.3780492842,
-0.115378134,
0.403931886,
-0.1302650571,
-0.4008331895,
0.0927921385,
0.3672267497,
0.1282615215,
-0.2672618628,
-0.0068156607,
0.3295682669,
-0.0804476887,
0.1338738501,
-0.1708230972,
-0.2979546487,
0.2476089895,
-0.0857613608,
-0.1292844415,
-0.0635807961,
-0.1022319347,
-0.0883648768,
-0.3246679604,
0.3362677693,
0.019725915,
-0.0326361656,
-0.0567736253,
-0.2471360862,
0.2981204093,
-0.0848112181,
-0.127403453,
-0.0282977,
0.017286744,
0.1671073586,
-0.0124944225,
0.1766583174,
-0.176521033,
-0.0144743994,
0.3694944978,
-0.0651187971,
0.0355696604,
0.1873179376,
0.1008720696,
-0.291899085,
-0.0247528348,
-0.0487226993,
0.3634797335,
-0.0076968297,
-0.1558918357,
-0.0039153602,
0.0336672217,
-0.0184019394,
-0.0115455464,
0.0482459106,
0.4226094484,
0.5049400926,
0.3639852107,
0.1684011668,
-0.2733655274,
-0.1548731029,
0.1276230216,
0.0563048273,
-0.3743782043,
0.0602172613,
-0.2678272128,
-0.144592911,
-0.2930880189,
-0.142691195,
-0.3419749141,
-0.1941554546,
0.1088884398,
-0.0382638201,
-0.0867830366,
0.2005050182,
0.1665455401,
0.4000801444,
0.100278534,
-0.1863679886,
0.0381454378,
-0.1772578657,
-0.2182419002,
-0.0453669131,
0.3783229887,
-0.064428851,
-0.2067783773,
-0.1894417703,
-0.2709748447,
0.1097925454,
-0.4360967875,
0.1680291444,
-0.0091558713,
0.1945904344,
0.0222649779,
0.2368632555,
-0.1479672492,
-0.3669348657,
0.2814823687,
-0.0462118387,
-0.2511283159,
0.0004014,
-0.1034955904,
0.1337920427,
-0.2878107429,
-0.3897338808,
-0.2453114688,
-0.2271136343,
0.4359024763,
0.0752960294,
0.1372660249,
0.2004073411,
-0.202068001,
0.0147431344,
-0.2370601445,
-0.211095497,
0.0494781993,
-0.1857466102,
0.2052338123,
-0.2988073528,
-0.1417261362,
-0.0219020247,
0.0942518041,
0.1670045853,
-0.2243583202,
-0.1604164243,
0.1161190942,
0.1713584512,
0.2460082769,
-0.3234410286,
-0.2597649097,
0.252478987,
-0.2297297418,
0.0524284095,
0.1972101331,
-0.3602097631,
-0.0937122107,
0.518563807,
0.1982491314,
-0.2657058537,
0.2363279611,
0.0597210377,
0.8267532587,
-0.1374402195,
-0.1625375301,
0.1258322895,
0.0303803328,
0.1219489872,
-0.1489124,
-0.0352489501,
0.3921880722,
-0.0397976786,
-0.1129410416,
0.2475957572,
0.1624517739,
-0.5424820781,
-0.0059678555,
0.1580978632,
-0.5473144054,
-0.1683233678,
0.2632973194,
0.5551205277,
-0.085087128,
-0.0429343581,
0.029452011,
0.002925083,
-0.2315511107,
-0.0598366335,
0.2242510617,
0.2707132995,
0.0932333618,
-0.5434262156,
-0.3422009349,
-0.044759348,
-0.0204033405,
0.1243700683,
0.4645566344,
-0.0012728497,
-0.2062436938,
0.0272209775,
-0.2641842961,
0.3476612866,
0.2620742321,
0.3518280983,
0.3491415381,
0.3293303251,
-0.0743016526,
-0.3046777546,
0.1451893598,
0.4771127701,
0.6556539536,
0.4198310375,
-0.1016693637,
-0.1317110211,
0.2848740816,
0.085961327,
-0.1447808743,
-0.0733838454,
-0.2265140414,
-0.0794774741,
0.0030265301,
0.0393503979,
-0.0417609736,
0.3973942995,
0.0603221431,
0.1337607801,
0.4236767888,
-0.2695536017,
-0.2426751852,
0.3894141018,
0.109123759,
0.0767815858,
0.0468042493,
0.2670259178,
-0.0012032287,
0.3386414647,
0.4461457729,
0.289424181,
-0.2029464394,
0.2748582959,
-0.0069876797,
0.221301049,
0.4691966176,
0.2012591511,
-0.1830905378,
-0.1404705942,
-0.1271870583,
0.0230226144,
-0.4001840949,
0.1378404796,
-0.3075539768,
-0.22677809,
0.2155748308,
0.2009164989,
-0.0955837667,
-0.0633859187,
-0.0289975256,
-0.0604570955,
-0.0157040618,
0.5079239011,
0.1642166227,
0.7734217048,
-0.0452003106,
0.1062065363,
0.2713395655,
-0.1177696139,
0.4012328386,
-0.651129365,
0.3604258001,
-0.4377227128,
0.2696184516,
0.1214248613,
-0.1291204095,
0.1680386364,
0.1842430532,
0.0067202225,
-0.0547783636,
-0.1476247311,
0.2945116758,
-0.0257628523,
0.3388978243,
0.1799480915,
-0.3059540987,
-0.5036041737,
0.0607925132,
-0.3701075315,
0.0345584452,
-0.1490782201,
-0.1694027185,
-0.0852131695,
-0.1265629381,
-0.2838004231,
0.2769853175,
0.1298912466,
0.0143145733,
0.5128051639,
-0.2600146234,
0.1598158777,
0.3644196391,
-0.1501443088,
0.0535290428,
-0.0029325355,
0.3615521193,
-0.1234303489,
0.1117697731,
0.2297594249,
0.0198836662,
0.2879817784,
-0.1601614505,
-0.0406816602,
-0.0503903516,
-0.0745755807,
-0.2796953321,
-0.0691925883,
0.3941943944,
0.1375084519,
-0.165641427,
0.0129154995,
-0.1245389879,
0.1229195669,
-0.0493014604,
0.0542032272,
0.0106453421,
-0.1491624713,
-0.0271746814,
0.1586453468,
-0.0698155984,
0.086437054,
0.6089109182,
-0.1084502041,
-0.3196204007,
0.3064623475,
0.3026754856,
0.0052802488,
-0.2204807103,
0.2212646604,
0.0504690818,
-0.3886027336,
-0.1376271397,
-0.1989229023,
-0.0684244782,
0.0346806645,
0.1022279859,
0.2172864676,
-0.1017907634,
0.003682524,
-0.5508983731,
-0.3031086326,
0.1911866665,
-0.0767692029,
-0.1813701391,
0.1192315668,
0.3389428854,
0.0155138448,
0.2547381818,
-0.2034854293,
0.3259331882,
-0.3733074069,
0.1441615373,
-0.5635961294,
-0.2371917814,
-0.0035354383,
-0.2305135131,
0.0180748329,
0.2454893738,
0.0734464824,
-0.1074406654,
-0.0155517049,
0.1593937576,
0.1383401603,
-0.0180856548,
-0.169466421,
-0.000206776,
0.1075090617,
0.1735595167,
0.1035003141,
-0.1377709359,
0.1467639804,
0.1609329134,
0.2953791618,
0.1064919382,
0.1960288882,
0.0935886502,
0.0295744874,
0.3905389011,
0.0588819496,
0.2412943393,
-0.2039607465,
0.0334326029,
-0.3554685116,
0.1890604496,
0.0100138336,
0.2804842591,
0.083827205,
-0.5798281431,
-0.0544028841,
-0.0720524192,
0.3013584018,
0.572124064,
-0.366515398,
0.1124068499,
0.1887702942,
0.1041740701,
-0.0099354684,
-0.2594086826,
0.747820735,
-0.0356642976,
-0.3024623692,
0.0180357434,
0.1428464949,
-0.0983975381,
0.1315196753,
0.1389719546,
0.567043364,
0.1919362098,
0.1983342171,
0.2170209885,
-0.2254353166,
-0.0237511657,
0.1397864074,
-0.0790002197,
0.1816961765,
0.2541324198,
-0.1939041167,
0.0633175522,
0.1178165823,
0.103707999,
0.2329497486,
-0.3413435221,
-0.3557489216,
0.0997507796,
0.1379035413,
0.0106008612,
0.1785010099,
0.8641576171,
-0.1908431053,
-0.4217525721,
-0.0853033811,
0.0879022181,
-0.3081797957,
0.0873619318,
-0.4969727397,
-0.1789300144,
-0.0405433178,
0.1543644667,
-0.3017129004,
-0.032923758,
0.0855990499,
0.0390483327,
-0.2745318115,
-0.1928052902,
-0.0414179042,
-0.2142157555,
0.0656095594,
-0.0752991363,
0.3355390131,
-0.1362097561,
0.042880211,
0.2439542413,
-0.0208167229,
0.3282357752,
0.3369993269,
-0.1919891089,
-0.1264550388,
-0.2578289509,
0.021681048,
0.0744307041,
0.1027908251,
0.214665249,
-0.1302479804,
0.2761431336,
0.116820015,
-0.0468782485,
0.1349723041,
0.2768834233,
0.1607481539,
0.0973089784,
-0.0871054828,
-0.1949214041,
-0.2481786758,
-0.0677019954,
-0.1263931543,
0.0338318273,
-0.1226418242,
-0.1555688679,
0.5012951493,
0.117711246,
-0.0630639121,
0.0850425959,
0.1083317548,
0.554695189,
0.222614944,
-0.3615116775,
-0.0978454873,
-0.202680558,
-0.290574789,
0.2430060059,
-0.0448601358,
0.0714032203,
0.3016997576,
0.4403116703,
-0.1458825618,
0.284768343,
-0.2370343208,
-0.0482029431,
0.0044929609,
0.2456319928,
-0.4291105866,
0.1797170192,
0.0566489697,
0.1454112977,
-0.1059209853,
-0.1340214908,
0.2665146589,
-0.2023610175,
-0.0858605951,
0.0350697339,
-0.4277082682,
-0.0206915624,
0.0424791276,
0.2701972723,
-0.0820250437,
0.3326257169,
0.1676800847,
-0.3741495609,
-0.4167825878,
-0.419149518,
-0.1761030108,
0.1557720006,
-0.1276239753,
0.4238353968,
-0.0271939095,
0.2040139735,
-0.314923048,
-0.00302146,
-0.3587969542,
0.3453438282,
-0.3175050914,
0.0861750916,
0.0861125737,
0.1618041694,
0.0088498406,
0.327394098,
-0.0774757788,
0.2494782507,
-0.5126639009,
-0.2689228654,
0.4422737062,
-0.6223304868,
-0.2002595961,
0.0687686354,
0.0811639205,
0.1981114894,
0.0035746451,
-0.2775664628,
-0.0704602078,
0.1616209447,
-0.1745934486,
-0.2950671017,
-0.1357095838,
-0.2625448704,
-0.2551772594,
-0.0769582316,
-0.3599273562,
0.1837786436,
-0.0453099199,
-0.2211909592,
-0.2330329716
] |
https://github.com/huggingface/datasets/issues/373 | Segmentation fault when loading local JSON dataset as of #372 | @lhoestq
For some reason, I am not able to reproduce the segmentation fault, on pyarrow==0.16.0. Using the exact same environment and file.
Anyhow, I discovered that pyarrow>=0.17.0 is required to read in a JSON file where the pandas structs contain lists. Otherwise, pyarrow complains when attempting to cast the struct:
```py
import nlp
>>> s = nlp.load_dataset("json", data_files="datasets/train-v2.0.json", field="data", split="train")
Using custom data configuration default
>>> s[0]
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/home/vegarab/.conda/envs/torch/lib/python3.7/site-packages/nlp/arrow_dataset.py", line 558, in __getitem__
format_kwargs=self._format_kwargs,
File "/home/vegarab/.conda/envs/torch/lib/python3.7/site-packages/nlp/arrow_dataset.py", line 498, in _getitem
outputs = self._unnest(self._data.slice(key, 1).to_pandas().to_dict("list"))
File "pyarrow/array.pxi", line 559, in pyarrow.lib._PandasConvertible.to_pandas
File "pyarrow/table.pxi", line 1367, in pyarrow.lib.Table._to_pandas
File "/home/vegarab/.conda/envs/torch/lib/python3.7/site-packages/pyarrow/pandas_compat.py", line 766, in table_to_blockmanager
blocks = _table_to_blocks(options, table, categories, ext_columns_dtypes)
File "/home/vegarab/.conda/envs/torch/lib/python3.7/site-packages/pyarrow/pandas_compat.py", line 1101, in _table_to_blocks
list(extension_columns.keys()))
File "pyarrow/table.pxi", line 881, in pyarrow.lib.table_to_blocks
File "pyarrow/error.pxi", line 105, in pyarrow.lib.check_status
pyarrow.lib.ArrowNotImplementedError: Not implemented type for Arrow list to pandas: struct<qas: list<item: struct<question: string, id: string, answers: list<item: struct<text: string, answer_start: int64>>, is_impossible: bool, plausible_answers: list<item: struct<text: string, answer_start: int64>>>>, context: string>
>>> s
Dataset(schema: {'title': 'string', 'paragraphs': 'list<item: struct<qas: list<item: struct<question: string, id: string, answers: list<item: struct<text: string, answer_start: int64>>, is_impossible: bool, plausible_answers: list<item: struct<text: string, answer_start: int64>>>>, context: string>>'}, num_rows: 35)
```
Upgrading to >=0.17.0 provides the same dataset structure, but accessing the records is possible without the same exception.
| The last issue was closed (#369) once the #372 update was merged. However, I'm still not able to load a SQuAD formatted JSON file. Instead of the previously recorded pyarrow error, I now get a segmentation fault.
```
dataset = nlp.load_dataset('json', data_files={nlp.Split.TRAIN: ["./datasets/train-v2.0.json"]}, field='data')
```
causes
```
Using custom data configuration default
Downloading and preparing dataset json/default (download: Unknown size, generated: Unknown size, total: Unknown size) to /home/XXX/.cache/huggingface/datasets/json/default/0.0.0...
0 tables [00:00, ? tables/s]Segmentation fault (core dumped)
```
where `./datasets/train-v2.0.json` is downloaded directly from https://rajpurkar.github.io/SQuAD-explorer/.
This is consistent with other SQuAD-formatted JSON files.
When attempting to load the dataset again, I get the following:
```
Using custom data configuration default
Traceback (most recent call last):
File "dataloader.py", line 6, in <module>
'json', data_files={nlp.Split.TRAIN: ["./datasets/train-v2.0.json"]}, field='data')
File "/home/XXX/.conda/envs/torch/lib/python3.7/site-packages/nlp/load.py", line 524, in load_dataset
save_infos=save_infos,
File "/home/XXX/.conda/envs/torch/lib/python3.7/site-packages/nlp/builder.py", line 382, in download_and_prepare
with incomplete_dir(self._cache_dir) as tmp_data_dir:
File "/home/XXX/.conda/envs/torch/lib/python3.7/contextlib.py", line 112, in __enter__
return next(self.gen)
File "/home/XXX/.conda/envs/torch/lib/python3.7/site-packages/nlp/builder.py", line 368, in incomplete_dir
os.makedirs(tmp_dir)
File "/home/XXX/.conda/envs/torch/lib/python3.7/os.py", line 223, in makedirs
mkdir(name, mode)
FileExistsError: [Errno 17] File exists: '/home/XXX/.cache/huggingface/datasets/json/default/0.0.0.incomplete'
```
(Not sure if you wanted this in the previous issue #369 or not as it was closed.) | 219 | Segmentation fault when loading local JSON dataset as of #372
The last issue was closed (#369) once the #372 update was merged. However, I'm still not able to load a SQuAD formatted JSON file. Instead of the previously recorded pyarrow error, I now get a segmentation fault.
```
dataset = nlp.load_dataset('json', data_files={nlp.Split.TRAIN: ["./datasets/train-v2.0.json"]}, field='data')
```
causes
```
Using custom data configuration default
Downloading and preparing dataset json/default (download: Unknown size, generated: Unknown size, total: Unknown size) to /home/XXX/.cache/huggingface/datasets/json/default/0.0.0...
0 tables [00:00, ? tables/s]Segmentation fault (core dumped)
```
where `./datasets/train-v2.0.json` is downloaded directly from https://rajpurkar.github.io/SQuAD-explorer/.
This is consistent with other SQuAD-formatted JSON files.
When attempting to load the dataset again, I get the following:
```
Using custom data configuration default
Traceback (most recent call last):
File "dataloader.py", line 6, in <module>
'json', data_files={nlp.Split.TRAIN: ["./datasets/train-v2.0.json"]}, field='data')
File "/home/XXX/.conda/envs/torch/lib/python3.7/site-packages/nlp/load.py", line 524, in load_dataset
save_infos=save_infos,
File "/home/XXX/.conda/envs/torch/lib/python3.7/site-packages/nlp/builder.py", line 382, in download_and_prepare
with incomplete_dir(self._cache_dir) as tmp_data_dir:
File "/home/XXX/.conda/envs/torch/lib/python3.7/contextlib.py", line 112, in __enter__
return next(self.gen)
File "/home/XXX/.conda/envs/torch/lib/python3.7/site-packages/nlp/builder.py", line 368, in incomplete_dir
os.makedirs(tmp_dir)
File "/home/XXX/.conda/envs/torch/lib/python3.7/os.py", line 223, in makedirs
mkdir(name, mode)
FileExistsError: [Errno 17] File exists: '/home/XXX/.cache/huggingface/datasets/json/default/0.0.0.incomplete'
```
(Not sure if you wanted this in the previous issue #369 or not as it was closed.)
@lhoestq
For some reason, I am not able to reproduce the segmentation fault, on pyarrow==0.16.0. Using the exact same environment and file.
Anyhow, I discovered that pyarrow>=0.17.0 is required to read in a JSON file where the pandas structs contain lists. Otherwise, pyarrow complains when attempting to cast the struct:
```py
import nlp
>>> s = nlp.load_dataset("json", data_files="datasets/train-v2.0.json", field="data", split="train")
Using custom data configuration default
>>> s[0]
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/home/vegarab/.conda/envs/torch/lib/python3.7/site-packages/nlp/arrow_dataset.py", line 558, in __getitem__
format_kwargs=self._format_kwargs,
File "/home/vegarab/.conda/envs/torch/lib/python3.7/site-packages/nlp/arrow_dataset.py", line 498, in _getitem
outputs = self._unnest(self._data.slice(key, 1).to_pandas().to_dict("list"))
File "pyarrow/array.pxi", line 559, in pyarrow.lib._PandasConvertible.to_pandas
File "pyarrow/table.pxi", line 1367, in pyarrow.lib.Table._to_pandas
File "/home/vegarab/.conda/envs/torch/lib/python3.7/site-packages/pyarrow/pandas_compat.py", line 766, in table_to_blockmanager
blocks = _table_to_blocks(options, table, categories, ext_columns_dtypes)
File "/home/vegarab/.conda/envs/torch/lib/python3.7/site-packages/pyarrow/pandas_compat.py", line 1101, in _table_to_blocks
list(extension_columns.keys()))
File "pyarrow/table.pxi", line 881, in pyarrow.lib.table_to_blocks
File "pyarrow/error.pxi", line 105, in pyarrow.lib.check_status
pyarrow.lib.ArrowNotImplementedError: Not implemented type for Arrow list to pandas: struct<qas: list<item: struct<question: string, id: string, answers: list<item: struct<text: string, answer_start: int64>>, is_impossible: bool, plausible_answers: list<item: struct<text: string, answer_start: int64>>>>, context: string>
>>> s
Dataset(schema: {'title': 'string', 'paragraphs': 'list<item: struct<qas: list<item: struct<question: string, id: string, answers: list<item: struct<text: string, answer_start: int64>>, is_impossible: bool, plausible_answers: list<item: struct<text: string, answer_start: int64>>>>, context: string>>'}, num_rows: 35)
```
Upgrading to >=0.17.0 provides the same dataset structure, but accessing the records is possible without the same exception.
| [
-0.0172921643,
0.2893962562,
0.0609414466,
0.0578705519,
0.2236099243,
-0.016548574,
0.3200392723,
0.6101838946,
-0.4010095298,
-0.2130427957,
-0.2422537953,
0.7714076042,
0.1327874511,
-0.4265961647,
0.1489231884,
-0.0715277568,
0.0462256782,
0.1267295182,
0.2239412814,
0.0536701232,
-0.1744495481,
0.341650933,
-0.2299684584,
0.132041648,
-0.1667513549,
0.2660645247,
0.0065366551,
0.5419237614,
-0.0745723397,
-0.7302019,
0.2977763414,
-0.0093300445,
0.1517450064,
0.3450249732,
-0.0001186113,
0.1845317781,
0.3318483233,
-0.1096368656,
-0.351701498,
0.052129332,
0.280503571,
-0.2414646894,
0.3380267918,
-0.1453835964,
0.0627314746,
-0.3119795322,
0.0318318084,
0.0812748075,
0.6866551042,
0.1553965062,
0.0921010226,
0.1377256215,
0.0738056451,
0.0523657613,
0.0207758788,
0.0678776577,
0.0166039318,
0.7200927734,
0.5202921033,
-0.1260128319,
-0.3388990462,
-0.0720847845,
0.1212722659,
-0.0382686928,
0.2048573792,
-0.0635561645,
-0.0138484612,
-0.183270961,
0.0524650402,
0.1170205623,
0.241646871,
-0.2380601168,
-0.2328484654,
-0.215749234,
0.0747867227,
-0.2181081474,
0.377320528,
0.2772288918,
-0.1398605704,
0.1523424387,
-0.0569972768,
0.0344605185,
-0.1918934435,
0.0293106697,
-0.2142735571,
0.5192517638,
0.1215122491,
0.0416844524,
0.1051239669,
-0.1629459709,
-0.1519258022,
0.3172395229,
-0.2625274658,
0.3998278975,
-0.3908267021,
-0.1686173081,
0.1120530292,
-0.3626519144,
0.2163051665,
0.0901771635,
0.1800892353,
0.16720514,
0.213912338,
0.1203704923,
0.4853109121,
0.0546771549,
0.1718353629,
0.2025323212,
0.1526306868,
-0.0196300987,
-0.0259738192,
0.2397750616,
-0.1398817003,
-0.2250074297,
-0.2135163248,
0.0280677378,
-0.026821509,
-0.1094669178,
0.0148831829,
0.0695180073,
-0.3147706687,
-0.0120256953,
0.0509858318,
0.0848619491,
0.131286785,
0.1926080883,
-0.2500282824,
0.2047611326,
-0.1014550999,
-0.1726953536,
-0.0175751969,
-0.026820112,
-0.3066570163,
-0.02066602,
0.4054739475,
-0.1225607544,
0.1185210794,
-0.0812495872,
-0.1116152704,
-0.2269218564,
-0.4334720373,
-0.0438979454,
0.0076666065,
0.149673447,
0.0316804126,
-0.0704862252,
-0.0367233902,
-0.258110404,
-0.1803209037,
0.2121895701,
-0.3511878848,
-0.2851627469,
-0.5924193859,
0.1183916181,
-0.3227139711,
-0.0053093983,
0.1444021612,
0.2050792575,
0.0566595085,
-0.4543263316,
-0.1377894729,
-0.0893592238,
-0.0031524748,
-0.2295425683,
0.1466825604,
0.2523784935,
-0.8450294137,
-0.235981822,
0.1668372154,
-0.0015071929,
0.0830977485,
0.5275312662,
-0.3514188826,
0.2732034922,
-0.1530969143,
0.5261089206,
0.4013669491,
-0.2779784501,
-0.3369086683,
0.2427912503,
-0.3994490504,
-0.0413573682,
-0.2372675687,
-0.0655719638,
0.2967052162,
0.082333453,
0.3412533402,
0.4493864775,
-0.1155516803,
0.148324728,
-0.33256495,
-0.0804989487,
0.1726429611,
0.3601407409,
-0.0674157143,
-0.1608243287,
-0.0298585296,
0.144932121,
0.4040017426,
-0.1719319969,
-0.020753853,
0.1606730521,
0.1372899413,
-0.0173206814,
0.1661417633,
-0.1080796048,
-0.7758404613,
0.1020508707,
-0.2894927263,
0.0807943195,
-0.0411318168,
0.0060530603,
-0.2767831385,
-0.113597773,
-0.2061316371,
-0.0540231839,
0.0321171843,
-0.1604941338,
-0.0348594747,
-0.0682968125,
-0.4652939141,
-0.1567875594,
-0.1547569335,
0.3780492842,
-0.115378134,
0.403931886,
-0.1302650571,
-0.4008331895,
0.0927921385,
0.3672267497,
0.1282615215,
-0.2672618628,
-0.0068156607,
0.3295682669,
-0.0804476887,
0.1338738501,
-0.1708230972,
-0.2979546487,
0.2476089895,
-0.0857613608,
-0.1292844415,
-0.0635807961,
-0.1022319347,
-0.0883648768,
-0.3246679604,
0.3362677693,
0.019725915,
-0.0326361656,
-0.0567736253,
-0.2471360862,
0.2981204093,
-0.0848112181,
-0.127403453,
-0.0282977,
0.017286744,
0.1671073586,
-0.0124944225,
0.1766583174,
-0.176521033,
-0.0144743994,
0.3694944978,
-0.0651187971,
0.0355696604,
0.1873179376,
0.1008720696,
-0.291899085,
-0.0247528348,
-0.0487226993,
0.3634797335,
-0.0076968297,
-0.1558918357,
-0.0039153602,
0.0336672217,
-0.0184019394,
-0.0115455464,
0.0482459106,
0.4226094484,
0.5049400926,
0.3639852107,
0.1684011668,
-0.2733655274,
-0.1548731029,
0.1276230216,
0.0563048273,
-0.3743782043,
0.0602172613,
-0.2678272128,
-0.144592911,
-0.2930880189,
-0.142691195,
-0.3419749141,
-0.1941554546,
0.1088884398,
-0.0382638201,
-0.0867830366,
0.2005050182,
0.1665455401,
0.4000801444,
0.100278534,
-0.1863679886,
0.0381454378,
-0.1772578657,
-0.2182419002,
-0.0453669131,
0.3783229887,
-0.064428851,
-0.2067783773,
-0.1894417703,
-0.2709748447,
0.1097925454,
-0.4360967875,
0.1680291444,
-0.0091558713,
0.1945904344,
0.0222649779,
0.2368632555,
-0.1479672492,
-0.3669348657,
0.2814823687,
-0.0462118387,
-0.2511283159,
0.0004014,
-0.1034955904,
0.1337920427,
-0.2878107429,
-0.3897338808,
-0.2453114688,
-0.2271136343,
0.4359024763,
0.0752960294,
0.1372660249,
0.2004073411,
-0.202068001,
0.0147431344,
-0.2370601445,
-0.211095497,
0.0494781993,
-0.1857466102,
0.2052338123,
-0.2988073528,
-0.1417261362,
-0.0219020247,
0.0942518041,
0.1670045853,
-0.2243583202,
-0.1604164243,
0.1161190942,
0.1713584512,
0.2460082769,
-0.3234410286,
-0.2597649097,
0.252478987,
-0.2297297418,
0.0524284095,
0.1972101331,
-0.3602097631,
-0.0937122107,
0.518563807,
0.1982491314,
-0.2657058537,
0.2363279611,
0.0597210377,
0.8267532587,
-0.1374402195,
-0.1625375301,
0.1258322895,
0.0303803328,
0.1219489872,
-0.1489124,
-0.0352489501,
0.3921880722,
-0.0397976786,
-0.1129410416,
0.2475957572,
0.1624517739,
-0.5424820781,
-0.0059678555,
0.1580978632,
-0.5473144054,
-0.1683233678,
0.2632973194,
0.5551205277,
-0.085087128,
-0.0429343581,
0.029452011,
0.002925083,
-0.2315511107,
-0.0598366335,
0.2242510617,
0.2707132995,
0.0932333618,
-0.5434262156,
-0.3422009349,
-0.044759348,
-0.0204033405,
0.1243700683,
0.4645566344,
-0.0012728497,
-0.2062436938,
0.0272209775,
-0.2641842961,
0.3476612866,
0.2620742321,
0.3518280983,
0.3491415381,
0.3293303251,
-0.0743016526,
-0.3046777546,
0.1451893598,
0.4771127701,
0.6556539536,
0.4198310375,
-0.1016693637,
-0.1317110211,
0.2848740816,
0.085961327,
-0.1447808743,
-0.0733838454,
-0.2265140414,
-0.0794774741,
0.0030265301,
0.0393503979,
-0.0417609736,
0.3973942995,
0.0603221431,
0.1337607801,
0.4236767888,
-0.2695536017,
-0.2426751852,
0.3894141018,
0.109123759,
0.0767815858,
0.0468042493,
0.2670259178,
-0.0012032287,
0.3386414647,
0.4461457729,
0.289424181,
-0.2029464394,
0.2748582959,
-0.0069876797,
0.221301049,
0.4691966176,
0.2012591511,
-0.1830905378,
-0.1404705942,
-0.1271870583,
0.0230226144,
-0.4001840949,
0.1378404796,
-0.3075539768,
-0.22677809,
0.2155748308,
0.2009164989,
-0.0955837667,
-0.0633859187,
-0.0289975256,
-0.0604570955,
-0.0157040618,
0.5079239011,
0.1642166227,
0.7734217048,
-0.0452003106,
0.1062065363,
0.2713395655,
-0.1177696139,
0.4012328386,
-0.651129365,
0.3604258001,
-0.4377227128,
0.2696184516,
0.1214248613,
-0.1291204095,
0.1680386364,
0.1842430532,
0.0067202225,
-0.0547783636,
-0.1476247311,
0.2945116758,
-0.0257628523,
0.3388978243,
0.1799480915,
-0.3059540987,
-0.5036041737,
0.0607925132,
-0.3701075315,
0.0345584452,
-0.1490782201,
-0.1694027185,
-0.0852131695,
-0.1265629381,
-0.2838004231,
0.2769853175,
0.1298912466,
0.0143145733,
0.5128051639,
-0.2600146234,
0.1598158777,
0.3644196391,
-0.1501443088,
0.0535290428,
-0.0029325355,
0.3615521193,
-0.1234303489,
0.1117697731,
0.2297594249,
0.0198836662,
0.2879817784,
-0.1601614505,
-0.0406816602,
-0.0503903516,
-0.0745755807,
-0.2796953321,
-0.0691925883,
0.3941943944,
0.1375084519,
-0.165641427,
0.0129154995,
-0.1245389879,
0.1229195669,
-0.0493014604,
0.0542032272,
0.0106453421,
-0.1491624713,
-0.0271746814,
0.1586453468,
-0.0698155984,
0.086437054,
0.6089109182,
-0.1084502041,
-0.3196204007,
0.3064623475,
0.3026754856,
0.0052802488,
-0.2204807103,
0.2212646604,
0.0504690818,
-0.3886027336,
-0.1376271397,
-0.1989229023,
-0.0684244782,
0.0346806645,
0.1022279859,
0.2172864676,
-0.1017907634,
0.003682524,
-0.5508983731,
-0.3031086326,
0.1911866665,
-0.0767692029,
-0.1813701391,
0.1192315668,
0.3389428854,
0.0155138448,
0.2547381818,
-0.2034854293,
0.3259331882,
-0.3733074069,
0.1441615373,
-0.5635961294,
-0.2371917814,
-0.0035354383,
-0.2305135131,
0.0180748329,
0.2454893738,
0.0734464824,
-0.1074406654,
-0.0155517049,
0.1593937576,
0.1383401603,
-0.0180856548,
-0.169466421,
-0.000206776,
0.1075090617,
0.1735595167,
0.1035003141,
-0.1377709359,
0.1467639804,
0.1609329134,
0.2953791618,
0.1064919382,
0.1960288882,
0.0935886502,
0.0295744874,
0.3905389011,
0.0588819496,
0.2412943393,
-0.2039607465,
0.0334326029,
-0.3554685116,
0.1890604496,
0.0100138336,
0.2804842591,
0.083827205,
-0.5798281431,
-0.0544028841,
-0.0720524192,
0.3013584018,
0.572124064,
-0.366515398,
0.1124068499,
0.1887702942,
0.1041740701,
-0.0099354684,
-0.2594086826,
0.747820735,
-0.0356642976,
-0.3024623692,
0.0180357434,
0.1428464949,
-0.0983975381,
0.1315196753,
0.1389719546,
0.567043364,
0.1919362098,
0.1983342171,
0.2170209885,
-0.2254353166,
-0.0237511657,
0.1397864074,
-0.0790002197,
0.1816961765,
0.2541324198,
-0.1939041167,
0.0633175522,
0.1178165823,
0.103707999,
0.2329497486,
-0.3413435221,
-0.3557489216,
0.0997507796,
0.1379035413,
0.0106008612,
0.1785010099,
0.8641576171,
-0.1908431053,
-0.4217525721,
-0.0853033811,
0.0879022181,
-0.3081797957,
0.0873619318,
-0.4969727397,
-0.1789300144,
-0.0405433178,
0.1543644667,
-0.3017129004,
-0.032923758,
0.0855990499,
0.0390483327,
-0.2745318115,
-0.1928052902,
-0.0414179042,
-0.2142157555,
0.0656095594,
-0.0752991363,
0.3355390131,
-0.1362097561,
0.042880211,
0.2439542413,
-0.0208167229,
0.3282357752,
0.3369993269,
-0.1919891089,
-0.1264550388,
-0.2578289509,
0.021681048,
0.0744307041,
0.1027908251,
0.214665249,
-0.1302479804,
0.2761431336,
0.116820015,
-0.0468782485,
0.1349723041,
0.2768834233,
0.1607481539,
0.0973089784,
-0.0871054828,
-0.1949214041,
-0.2481786758,
-0.0677019954,
-0.1263931543,
0.0338318273,
-0.1226418242,
-0.1555688679,
0.5012951493,
0.117711246,
-0.0630639121,
0.0850425959,
0.1083317548,
0.554695189,
0.222614944,
-0.3615116775,
-0.0978454873,
-0.202680558,
-0.290574789,
0.2430060059,
-0.0448601358,
0.0714032203,
0.3016997576,
0.4403116703,
-0.1458825618,
0.284768343,
-0.2370343208,
-0.0482029431,
0.0044929609,
0.2456319928,
-0.4291105866,
0.1797170192,
0.0566489697,
0.1454112977,
-0.1059209853,
-0.1340214908,
0.2665146589,
-0.2023610175,
-0.0858605951,
0.0350697339,
-0.4277082682,
-0.0206915624,
0.0424791276,
0.2701972723,
-0.0820250437,
0.3326257169,
0.1676800847,
-0.3741495609,
-0.4167825878,
-0.419149518,
-0.1761030108,
0.1557720006,
-0.1276239753,
0.4238353968,
-0.0271939095,
0.2040139735,
-0.314923048,
-0.00302146,
-0.3587969542,
0.3453438282,
-0.3175050914,
0.0861750916,
0.0861125737,
0.1618041694,
0.0088498406,
0.327394098,
-0.0774757788,
0.2494782507,
-0.5126639009,
-0.2689228654,
0.4422737062,
-0.6223304868,
-0.2002595961,
0.0687686354,
0.0811639205,
0.1981114894,
0.0035746451,
-0.2775664628,
-0.0704602078,
0.1616209447,
-0.1745934486,
-0.2950671017,
-0.1357095838,
-0.2625448704,
-0.2551772594,
-0.0769582316,
-0.3599273562,
0.1837786436,
-0.0453099199,
-0.2211909592,
-0.2330329716
] |
https://github.com/huggingface/datasets/issues/369 | can't load local dataset: pyarrow.lib.ArrowInvalid: straddling object straddles two block boundaries | I am able to reproduce this with the official SQuAD `train-v2.0.json` file downloaded directly from https://rajpurkar.github.io/SQuAD-explorer/ | Trying to load a local SQuAD-formatted dataset (from a JSON file, about 60MB):
```
dataset = nlp.load_dataset(path='json', data_files={nlp.Split.TRAIN: ["./path/to/file.json"]})
```
causes
```
Traceback (most recent call last):
File "dataloader.py", line 9, in <module>
["./path/to/file.json"]})
File "/home/XXX/.conda/envs/torch/lib/python3.7/site-packages/nlp/load.py", line 524, in load_dataset
save_infos=save_infos,
File "/home/XXX/.conda/envs/torch/lib/python3.7/site-packages/nlp/builder.py", line 432, in download_and_prepare
dl_manager=dl_manager, verify_infos=verify_infos, **download_and_prepare_kwargs
File "/home/XXX/.conda/envs/torch/lib/python3.7/site-packages/nlp/builder.py", line 483, in _download_and_prepare
self._prepare_split(split_generator, **prepare_split_kwargs)
File "/home/XXX/.conda/envs/torch/lib/python3.7/site-packages/nlp/builder.py", line 719, in _prepare_split
for key, table in utils.tqdm(generator, unit=" tables", leave=False):
File "/home/XXX/.conda/envs/torch/lib/python3.7/site-packages/tqdm/std.py", line 1129, in __iter__
for obj in iterable:
File "/home/XXX/.conda/envs/torch/lib/python3.7/site-packages/nlp/datasets/json/88c1bc5c68489f7eda549ed05a5a738527c613b3e7a4ee3524d9d233353a949b/json.py", line 53, in _generate_tables
file, read_options=self.config.pa_read_options, parse_options=self.config.pa_parse_options,
File "pyarrow/_json.pyx", line 191, in pyarrow._json.read_json
File "pyarrow/error.pxi", line 85, in pyarrow.lib.check_status
pyarrow.lib.ArrowInvalid: straddling object straddles two block boundaries (try to increase block size?)
```
I haven't been able to find any reports of this specific pyarrow error here or elsewhere. | 16 | can't load local dataset: pyarrow.lib.ArrowInvalid: straddling object straddles two block boundaries
Trying to load a local SQuAD-formatted dataset (from a JSON file, about 60MB):
```
dataset = nlp.load_dataset(path='json', data_files={nlp.Split.TRAIN: ["./path/to/file.json"]})
```
causes
```
Traceback (most recent call last):
File "dataloader.py", line 9, in <module>
["./path/to/file.json"]})
File "/home/XXX/.conda/envs/torch/lib/python3.7/site-packages/nlp/load.py", line 524, in load_dataset
save_infos=save_infos,
File "/home/XXX/.conda/envs/torch/lib/python3.7/site-packages/nlp/builder.py", line 432, in download_and_prepare
dl_manager=dl_manager, verify_infos=verify_infos, **download_and_prepare_kwargs
File "/home/XXX/.conda/envs/torch/lib/python3.7/site-packages/nlp/builder.py", line 483, in _download_and_prepare
self._prepare_split(split_generator, **prepare_split_kwargs)
File "/home/XXX/.conda/envs/torch/lib/python3.7/site-packages/nlp/builder.py", line 719, in _prepare_split
for key, table in utils.tqdm(generator, unit=" tables", leave=False):
File "/home/XXX/.conda/envs/torch/lib/python3.7/site-packages/tqdm/std.py", line 1129, in __iter__
for obj in iterable:
File "/home/XXX/.conda/envs/torch/lib/python3.7/site-packages/nlp/datasets/json/88c1bc5c68489f7eda549ed05a5a738527c613b3e7a4ee3524d9d233353a949b/json.py", line 53, in _generate_tables
file, read_options=self.config.pa_read_options, parse_options=self.config.pa_parse_options,
File "pyarrow/_json.pyx", line 191, in pyarrow._json.read_json
File "pyarrow/error.pxi", line 85, in pyarrow.lib.check_status
pyarrow.lib.ArrowInvalid: straddling object straddles two block boundaries (try to increase block size?)
```
I haven't been able to find any reports of this specific pyarrow error here or elsewhere.
I am able to reproduce this with the official SQuAD `train-v2.0.json` file downloaded directly from https://rajpurkar.github.io/SQuAD-explorer/ | [
-0.2248247862,
0.2079820931,
0.0130986571,
0.1377785355,
0.2781037986,
-0.259719193,
0.3169225156,
0.4687685072,
-0.169140771,
-0.1490107626,
0.0023774765,
0.4203414321,
0.0690722838,
-0.0172276944,
0.1122409552,
-0.1478197277,
-0.2049248815,
0.2665918469,
-0.0051434413,
-0.0658807158,
0.0004075542,
0.2411607951,
-0.1398992985,
0.2639464736,
-0.1967168897,
-0.0133886477,
0.1871292591,
0.489184618,
-0.2591636181,
-0.5631482601,
0.3153220713,
-0.2961510122,
0.0954627991,
0.1106010377,
-0.0001166556,
0.3696366549,
0.1890555769,
-0.0164391287,
-0.3757412136,
-0.355153203,
0.2414885908,
-0.4904562235,
0.4686813354,
-0.1142356172,
-0.0764243454,
-0.3508140147,
-0.2223609984,
-0.073873058,
0.4803351164,
0.1195227951,
0.1514046937,
0.4681633711,
-0.183238849,
0.1065227017,
0.1193087697,
0.1260324866,
-0.1624571085,
0.4610103071,
0.3759774566,
-0.345017612,
-0.3874120414,
-0.1435601413,
-0.1003538892,
0.3243615031,
0.192945987,
0.0093746595,
-0.0391243249,
0.1259257495,
0.1254611462,
0.176623404,
0.3256261945,
-0.3496564031,
-0.0632262528,
-0.0745451003,
0.0622526892,
-0.0295383595,
0.181093812,
0.3203275204,
-0.3467208147,
0.1248238385,
-0.3060500622,
0.1964057535,
-0.1067043543,
0.3012479544,
-0.1913446933,
0.3296272755,
0.0628055483,
0.2973683178,
0.1061380357,
0.1481055319,
0.1631401181,
0.2127097845,
-0.0343892053,
0.2124326825,
-0.2666900158,
0.228009671,
0.1013873219,
-0.1723196208,
0.237925604,
0.1013727635,
0.2416798621,
0.0424476191,
0.2140953988,
0.2787177563,
0.3740186095,
-0.0143481307,
0.1454513967,
0.0765011236,
-0.0175957512,
0.0274802297,
-0.1041604951,
0.1215524897,
-0.199119091,
-0.3780230284,
0.0324987844,
-0.1924573034,
0.2749886513,
-0.1871332377,
-0.2933093309,
0.0940954164,
-0.4935637116,
-0.0608112179,
0.122707516,
0.2767896652,
0.2118474841,
0.2285741121,
-0.105211556,
0.2164439857,
-0.0928959921,
-0.1712169349,
-0.2024861425,
0.0592291951,
-0.3199092746,
-0.1551753432,
0.4050974548,
-0.2470353097,
0.24933891,
-0.0130815655,
0.1818503588,
0.0097799301,
0.1716862917,
0.025009878,
0.2165830433,
0.1760770082,
0.0181108564,
0.0982850641,
0.1713155955,
-0.2304751873,
-0.3545802534,
0.325926125,
0.0253612176,
-0.3207992315,
-0.3150311708,
0.0986374021,
-0.1578409374,
0.0982584506,
0.1755225956,
0.0540476926,
0.1067282781,
-0.1062408984,
0.096265398,
-0.1180267483,
-0.0711894184,
-0.298201263,
0.3827486932,
0.2899156809,
-0.9532226324,
-0.1176799685,
0.1975103915,
-0.0724640936,
0.0969280899,
0.5727161765,
-0.5708695054,
0.1833851188,
-0.056012217,
0.2390381247,
0.5799343586,
-0.3536818624,
-0.5187267065,
0.4949888885,
-0.3832625449,
-0.1650162041,
-0.142509371,
-0.0413009636,
-0.0210624002,
0.282671541,
0.0945461988,
0.6836752892,
-0.1377248168,
0.1846747994,
-0.3309654295,
-0.165549159,
0.2316759229,
0.4529772401,
0.0024092377,
-0.3553717136,
0.0153146926,
0.1048190594,
0.0743053034,
-0.0041733077,
0.2683135569,
0.2235312909,
-0.1914622337,
-0.2516143918,
0.0803212821,
-0.0126009434,
-0.7056607008,
0.0893207043,
-0.0640132576,
-0.0399805121,
-0.2193441391,
0.027672708,
-0.3893592656,
0.2925415039,
-0.1446143687,
-0.0062228395,
0.0418267176,
-0.010541562,
0.0670851395,
-0.090365842,
-0.3402930498,
-0.149033621,
0.0774712414,
-0.0015937611,
0.0514441356,
0.4117664099,
-0.0129657527,
-0.27813977,
0.0033555105,
0.3550056219,
-0.017327996,
-0.1272228062,
-0.1079457402,
0.2835783958,
-0.1293054819,
0.1203495339,
-0.0040453901,
-0.3351646662,
0.2203944176,
-0.3095670342,
0.1677346379,
-0.0205296185,
-0.044734437,
-0.1287048757,
-0.2201543748,
0.4032675922,
-0.1909841895,
0.1956118345,
-0.0854581371,
-0.1480924189,
0.2147215009,
-0.1240261123,
-0.0586368218,
0.0097109005,
0.1784365922,
0.2656930685,
0.5207039118,
0.270675838,
-0.2427754402,
0.0891448855,
0.3627479672,
-0.0371227451,
-0.0401580036,
0.0438291132,
-0.2223277986,
-0.1289466321,
0.1081064641,
-0.1066059396,
0.1868592799,
0.1889302433,
0.0756323189,
-0.1392151564,
-0.2522183657,
-0.2151124924,
-0.0319143981,
-0.0436210297,
0.1300846487,
0.4038743675,
0.4485637844,
-0.1382344961,
-0.4100548625,
-0.073844716,
0.234590888,
0.2450692952,
-0.2443238944,
0.0373925641,
-0.3147735596,
-0.049937807,
-0.1750922501,
-0.4401919246,
-0.2645349801,
-0.1999679506,
-0.0551094152,
0.2310734689,
0.0131699517,
0.1373815984,
-0.011633981,
0.2456824183,
0.1008732989,
-0.4298439324,
-0.0119966567,
-0.5101566315,
-0.3695273697,
0.0328289233,
0.4673337042,
0.4385597706,
0.1786766797,
0.1814607978,
-0.0701137409,
0.0090797395,
-0.0991810858,
0.2115608752,
0.0304585919,
0.1755425781,
0.0036327876,
0.3344264925,
-0.4671182036,
-0.3113955855,
0.6026248932,
-0.0913658664,
-0.2721755505,
0.1993506402,
-0.3250697553,
-0.1124731302,
-0.2069625705,
-0.1498915553,
-0.2904265523,
-0.3914503455,
0.336561352,
-0.0109002218,
0.035600014,
-0.1289469302,
0.1338439882,
0.28383708,
0.0949846059,
-0.2116738558,
-0.0383752435,
-0.4520306885,
0.2738108933,
-0.1152426302,
-0.2694825232,
-0.0710287243,
0.0409647971,
0.2816604078,
0.0627763346,
-0.3481175303,
0.0024617985,
0.0731172487,
0.5344306231,
-0.1907642782,
-0.1876475811,
0.3679306805,
-0.0579305626,
0.0226894803,
0.0716027766,
-0.2526080608,
0.1822911203,
0.0439497642,
0.0337401256,
-0.1755049378,
0.4175981283,
0.1020742506,
0.9232445359,
-0.2643372416,
-0.1505667567,
0.3155280948,
-0.0246920958,
0.0868570507,
-0.1268965751,
-0.3084769249,
0.1649305671,
0.0774960071,
-0.0769033059,
0.1023018584,
0.0603704974,
-0.3845142722,
-0.0449140593,
-0.0214515664,
-0.2746354342,
-0.0994160399,
0.3585600555,
0.1034402624,
-0.1083902717,
-0.0107013881,
-0.0802658498,
-0.1179674864,
-0.1918516904,
-0.1134532094,
0.0333901197,
-0.0317993574,
0.1877584755,
-0.4592278004,
-0.1170404628,
-0.0875754505,
-0.0683353245,
0.3628224432,
0.3158774078,
-0.0147821307,
-0.1853873134,
0.3408859968,
-0.3085048199,
0.5129213333,
0.234229207,
0.1925598532,
0.2869600058,
0.0705933869,
-0.6148581505,
-0.1541523635,
0.1200241819,
0.4119720459,
0.4449226856,
0.3248272836,
-0.1001520455,
-0.3170758486,
0.1256498694,
0.1735462844,
-0.033100076,
-0.2027919739,
-0.3746901751,
-0.3073225319,
-0.4436309338,
0.0817541182,
0.0238221958,
0.24991934,
0.421102047,
-0.080726251,
0.2893454134,
-0.1060653478,
-0.272272706,
0.2479826212,
0.1461411715,
-0.0633542836,
0.0726817325,
0.2435630858,
0.3455853462,
0.0976916328,
0.6214666367,
0.1869539469,
-0.0988839567,
0.1482148468,
0.23100169,
0.3008661866,
0.2950562537,
0.1793146431,
-0.057305187,
-0.1176062673,
-0.0166511759,
0.1620853543,
0.1781000048,
0.040149577,
-0.2675119042,
0.10960567,
0.1865431964,
0.2891853452,
-0.2739402056,
0.1674656868,
0.5299274921,
-0.0523517728,
0.0692546442,
0.4074668586,
0.1166573092,
0.7771915197,
-0.2644697428,
0.1479300112,
0.5714972615,
-0.2305461168,
0.3164280355,
-0.2754613757,
0.005959034,
-0.5188851953,
0.2529402375,
0.0849902108,
-0.2398611009,
-0.0096131116,
0.3080286682,
0.0950919688,
-0.140942201,
-0.1081847697,
0.3453781307,
-0.0026214235,
0.2207461745,
0.0508502275,
-0.271433264,
-0.2926776111,
0.0353431851,
-0.3116564751,
-0.0429674499,
-0.0649114102,
-0.1619158536,
-0.0969070494,
-0.1001789123,
-0.1564717889,
0.4074651599,
-0.055670999,
0.2410970926,
0.392850548,
-0.4113481343,
-0.0838278979,
0.0472864583,
-0.0223636478,
-0.1843994409,
-0.1851103306,
0.2453993112,
0.0351635516,
-0.0871742889,
-0.0076088719,
0.1267256141,
0.211158976,
-0.1905830801,
-0.3152863383,
-0.0097108427,
-0.1107605249,
-0.3773857653,
0.0098415613,
0.2698489726,
0.109373942,
-0.0706366599,
-0.2126792669,
-0.1799736619,
0.1643075049,
0.0283878297,
0.0598793216,
-0.0270295441,
0.1562406421,
-0.2532792091,
0.3292659223,
-0.3607405424,
0.0462622382,
0.4963207841,
-0.1014333144,
0.1640526652,
0.522231102,
0.3958122134,
-0.1078456044,
-0.234476909,
-0.0417826325,
0.5676161051,
-0.48135975,
-0.080852434,
-0.0654439926,
-0.0923319981,
0.1245617345,
0.2647169232,
0.3303146958,
0.009107749,
-0.0937880352,
-0.5132706165,
-0.3523987532,
0.2194439769,
-0.1140951365,
-0.0998066142,
0.2764374614,
0.5523677468,
0.1198210046,
0.3457678854,
-0.2247913927,
0.1964670122,
-0.0767385736,
0.1733498871,
-0.293734014,
-0.2949864566,
0.0617099516,
-0.0491166897,
0.0436313972,
0.0755814314,
-0.1114883125,
-0.2160478532,
-0.0542555526,
0.1099573076,
0.1158918142,
-0.1538786888,
-0.1924217045,
-0.1486532986,
0.0336091146,
-0.0341770276,
-0.011412587,
-0.0316838175,
-0.0636328831,
0.0092392229,
0.13757357,
-0.0495585911,
-0.1432160437,
0.0238068774,
-0.0251235329,
0.0513095856,
0.0436233878,
0.2476351559,
0.0279666819,
-0.0172808692,
-0.2315069884,
0.0654819161,
0.2410797626,
0.1861480027,
0.2242752761,
-0.2875193954,
-0.1363510191,
-0.1797347963,
0.1812477857,
0.3907139599,
-0.1477687657,
-0.0057630576,
0.0170550831,
0.13388367,
-0.1501575112,
-0.1573178768,
0.2622709572,
0.0530034564,
-0.0168349594,
-0.0100827143,
0.1297941506,
-0.2084883749,
-0.0811174214,
0.1575099826,
0.3992907405,
0.0401902497,
-0.4732251167,
0.3453000188,
-0.2074115127,
-0.1616265923,
0.1562598795,
0.0847396851,
0.3768486679,
-0.0452596918,
-0.1026147306,
0.1214387417,
-0.1278780699,
0.2560075819,
-0.0429030508,
-0.425573349,
-0.1164728999,
0.2421925664,
0.1526724845,
-0.3106533289,
0.2070242763,
0.7946995497,
0.2270718962,
-0.3669969738,
0.0756440386,
0.1639966518,
-0.1651429534,
0.0323553234,
-0.7381467223,
-0.1738944948,
-0.1725956798,
0.1801326871,
-0.1772889793,
-0.0201250724,
0.3450927734,
0.1026232839,
-0.0690095574,
-0.4073934853,
0.001884412,
0.1002656296,
-0.3239280879,
-0.2377593368,
0.401273191,
0.1469522566,
-0.1587477922,
-0.0346479863,
-0.1281300187,
0.3428945243,
0.2950406671,
-0.3094572425,
-0.1638808399,
-0.087776497,
-0.1351435035,
-0.2076944709,
0.1110964119,
0.1466926783,
0.1099854857,
0.3763887584,
0.1300738156,
-0.1291117668,
0.0981800258,
0.1858903915,
-0.1291135997,
0.0844407156,
-0.0947916433,
-0.0002224967,
-0.2281882912,
-0.0361344889,
-0.2055172324,
-0.1976290941,
-0.2189732492,
0.1318589598,
0.1730563641,
0.1635759175,
-0.2263658345,
0.0502876565,
0.0127593316,
0.7020562887,
0.3510789275,
0.1076616496,
-0.21429196,
-0.3235679865,
-0.596786499,
0.3562062979,
-0.3159346879,
0.1146411374,
0.3648400605,
0.4121898413,
0.1482035369,
0.4271437824,
-0.1436985731,
0.412066251,
-0.04026898,
-0.1203148514,
-0.4084436297,
-0.0316565558,
0.0676874891,
-0.028870387,
-0.1615072191,
-0.422298193,
0.2162656188,
-0.1609282494,
0.0273397937,
-0.1858122051,
-0.372751236,
0.09867993,
0.0545374267,
0.1093930155,
-0.087136738,
0.3187759519,
0.0858084857,
0.040649645,
-0.2039975673,
-0.2124966681,
-0.2477272451,
0.3365734518,
0.0230683759,
0.3301451504,
-0.1964951605,
0.1363684833,
-0.1094119698,
0.1971800774,
-0.3385674953,
0.1788091213,
0.0149052814,
-0.1495162547,
-0.1281841099,
0.2249829322,
-0.0945451707,
0.0898001418,
0.0397566482,
0.216355592,
-0.4016825557,
-0.2031950057,
0.4354738593,
-0.5085443258,
-0.1987221837,
0.2857095301,
-0.0270966217,
0.4125852585,
-0.1164050475,
-0.4313945472,
-0.0754461214,
0.2239832282,
-0.234624967,
-0.120346725,
0.0563717633,
-0.014574036,
0.0830915049,
-0.1923095584,
-0.0018167682,
0.0800636709,
-0.2020299435,
-0.2691345811,
-0.3540151119
] |
https://github.com/huggingface/datasets/issues/369 | can't load local dataset: pyarrow.lib.ArrowInvalid: straddling object straddles two block boundaries | I am facing this issue in transformers library 3.0.2 while reading a csv using datasets.
Is this fixed in latest version?
I updated the latest version 4.0.1 but still getting this error. What could cause this error? | Trying to load a local SQuAD-formatted dataset (from a JSON file, about 60MB):
```
dataset = nlp.load_dataset(path='json', data_files={nlp.Split.TRAIN: ["./path/to/file.json"]})
```
causes
```
Traceback (most recent call last):
File "dataloader.py", line 9, in <module>
["./path/to/file.json"]})
File "/home/XXX/.conda/envs/torch/lib/python3.7/site-packages/nlp/load.py", line 524, in load_dataset
save_infos=save_infos,
File "/home/XXX/.conda/envs/torch/lib/python3.7/site-packages/nlp/builder.py", line 432, in download_and_prepare
dl_manager=dl_manager, verify_infos=verify_infos, **download_and_prepare_kwargs
File "/home/XXX/.conda/envs/torch/lib/python3.7/site-packages/nlp/builder.py", line 483, in _download_and_prepare
self._prepare_split(split_generator, **prepare_split_kwargs)
File "/home/XXX/.conda/envs/torch/lib/python3.7/site-packages/nlp/builder.py", line 719, in _prepare_split
for key, table in utils.tqdm(generator, unit=" tables", leave=False):
File "/home/XXX/.conda/envs/torch/lib/python3.7/site-packages/tqdm/std.py", line 1129, in __iter__
for obj in iterable:
File "/home/XXX/.conda/envs/torch/lib/python3.7/site-packages/nlp/datasets/json/88c1bc5c68489f7eda549ed05a5a738527c613b3e7a4ee3524d9d233353a949b/json.py", line 53, in _generate_tables
file, read_options=self.config.pa_read_options, parse_options=self.config.pa_parse_options,
File "pyarrow/_json.pyx", line 191, in pyarrow._json.read_json
File "pyarrow/error.pxi", line 85, in pyarrow.lib.check_status
pyarrow.lib.ArrowInvalid: straddling object straddles two block boundaries (try to increase block size?)
```
I haven't been able to find any reports of this specific pyarrow error here or elsewhere. | 37 | can't load local dataset: pyarrow.lib.ArrowInvalid: straddling object straddles two block boundaries
Trying to load a local SQuAD-formatted dataset (from a JSON file, about 60MB):
```
dataset = nlp.load_dataset(path='json', data_files={nlp.Split.TRAIN: ["./path/to/file.json"]})
```
causes
```
Traceback (most recent call last):
File "dataloader.py", line 9, in <module>
["./path/to/file.json"]})
File "/home/XXX/.conda/envs/torch/lib/python3.7/site-packages/nlp/load.py", line 524, in load_dataset
save_infos=save_infos,
File "/home/XXX/.conda/envs/torch/lib/python3.7/site-packages/nlp/builder.py", line 432, in download_and_prepare
dl_manager=dl_manager, verify_infos=verify_infos, **download_and_prepare_kwargs
File "/home/XXX/.conda/envs/torch/lib/python3.7/site-packages/nlp/builder.py", line 483, in _download_and_prepare
self._prepare_split(split_generator, **prepare_split_kwargs)
File "/home/XXX/.conda/envs/torch/lib/python3.7/site-packages/nlp/builder.py", line 719, in _prepare_split
for key, table in utils.tqdm(generator, unit=" tables", leave=False):
File "/home/XXX/.conda/envs/torch/lib/python3.7/site-packages/tqdm/std.py", line 1129, in __iter__
for obj in iterable:
File "/home/XXX/.conda/envs/torch/lib/python3.7/site-packages/nlp/datasets/json/88c1bc5c68489f7eda549ed05a5a738527c613b3e7a4ee3524d9d233353a949b/json.py", line 53, in _generate_tables
file, read_options=self.config.pa_read_options, parse_options=self.config.pa_parse_options,
File "pyarrow/_json.pyx", line 191, in pyarrow._json.read_json
File "pyarrow/error.pxi", line 85, in pyarrow.lib.check_status
pyarrow.lib.ArrowInvalid: straddling object straddles two block boundaries (try to increase block size?)
```
I haven't been able to find any reports of this specific pyarrow error here or elsewhere.
I am facing this issue in transformers library 3.0.2 while reading a csv using datasets.
Is this fixed in latest version?
I updated the latest version 4.0.1 but still getting this error. What could cause this error? | [
-0.2248247862,
0.2079820931,
0.0130986571,
0.1377785355,
0.2781037986,
-0.259719193,
0.3169225156,
0.4687685072,
-0.169140771,
-0.1490107626,
0.0023774765,
0.4203414321,
0.0690722838,
-0.0172276944,
0.1122409552,
-0.1478197277,
-0.2049248815,
0.2665918469,
-0.0051434413,
-0.0658807158,
0.0004075542,
0.2411607951,
-0.1398992985,
0.2639464736,
-0.1967168897,
-0.0133886477,
0.1871292591,
0.489184618,
-0.2591636181,
-0.5631482601,
0.3153220713,
-0.2961510122,
0.0954627991,
0.1106010377,
-0.0001166556,
0.3696366549,
0.1890555769,
-0.0164391287,
-0.3757412136,
-0.355153203,
0.2414885908,
-0.4904562235,
0.4686813354,
-0.1142356172,
-0.0764243454,
-0.3508140147,
-0.2223609984,
-0.073873058,
0.4803351164,
0.1195227951,
0.1514046937,
0.4681633711,
-0.183238849,
0.1065227017,
0.1193087697,
0.1260324866,
-0.1624571085,
0.4610103071,
0.3759774566,
-0.345017612,
-0.3874120414,
-0.1435601413,
-0.1003538892,
0.3243615031,
0.192945987,
0.0093746595,
-0.0391243249,
0.1259257495,
0.1254611462,
0.176623404,
0.3256261945,
-0.3496564031,
-0.0632262528,
-0.0745451003,
0.0622526892,
-0.0295383595,
0.181093812,
0.3203275204,
-0.3467208147,
0.1248238385,
-0.3060500622,
0.1964057535,
-0.1067043543,
0.3012479544,
-0.1913446933,
0.3296272755,
0.0628055483,
0.2973683178,
0.1061380357,
0.1481055319,
0.1631401181,
0.2127097845,
-0.0343892053,
0.2124326825,
-0.2666900158,
0.228009671,
0.1013873219,
-0.1723196208,
0.237925604,
0.1013727635,
0.2416798621,
0.0424476191,
0.2140953988,
0.2787177563,
0.3740186095,
-0.0143481307,
0.1454513967,
0.0765011236,
-0.0175957512,
0.0274802297,
-0.1041604951,
0.1215524897,
-0.199119091,
-0.3780230284,
0.0324987844,
-0.1924573034,
0.2749886513,
-0.1871332377,
-0.2933093309,
0.0940954164,
-0.4935637116,
-0.0608112179,
0.122707516,
0.2767896652,
0.2118474841,
0.2285741121,
-0.105211556,
0.2164439857,
-0.0928959921,
-0.1712169349,
-0.2024861425,
0.0592291951,
-0.3199092746,
-0.1551753432,
0.4050974548,
-0.2470353097,
0.24933891,
-0.0130815655,
0.1818503588,
0.0097799301,
0.1716862917,
0.025009878,
0.2165830433,
0.1760770082,
0.0181108564,
0.0982850641,
0.1713155955,
-0.2304751873,
-0.3545802534,
0.325926125,
0.0253612176,
-0.3207992315,
-0.3150311708,
0.0986374021,
-0.1578409374,
0.0982584506,
0.1755225956,
0.0540476926,
0.1067282781,
-0.1062408984,
0.096265398,
-0.1180267483,
-0.0711894184,
-0.298201263,
0.3827486932,
0.2899156809,
-0.9532226324,
-0.1176799685,
0.1975103915,
-0.0724640936,
0.0969280899,
0.5727161765,
-0.5708695054,
0.1833851188,
-0.056012217,
0.2390381247,
0.5799343586,
-0.3536818624,
-0.5187267065,
0.4949888885,
-0.3832625449,
-0.1650162041,
-0.142509371,
-0.0413009636,
-0.0210624002,
0.282671541,
0.0945461988,
0.6836752892,
-0.1377248168,
0.1846747994,
-0.3309654295,
-0.165549159,
0.2316759229,
0.4529772401,
0.0024092377,
-0.3553717136,
0.0153146926,
0.1048190594,
0.0743053034,
-0.0041733077,
0.2683135569,
0.2235312909,
-0.1914622337,
-0.2516143918,
0.0803212821,
-0.0126009434,
-0.7056607008,
0.0893207043,
-0.0640132576,
-0.0399805121,
-0.2193441391,
0.027672708,
-0.3893592656,
0.2925415039,
-0.1446143687,
-0.0062228395,
0.0418267176,
-0.010541562,
0.0670851395,
-0.090365842,
-0.3402930498,
-0.149033621,
0.0774712414,
-0.0015937611,
0.0514441356,
0.4117664099,
-0.0129657527,
-0.27813977,
0.0033555105,
0.3550056219,
-0.017327996,
-0.1272228062,
-0.1079457402,
0.2835783958,
-0.1293054819,
0.1203495339,
-0.0040453901,
-0.3351646662,
0.2203944176,
-0.3095670342,
0.1677346379,
-0.0205296185,
-0.044734437,
-0.1287048757,
-0.2201543748,
0.4032675922,
-0.1909841895,
0.1956118345,
-0.0854581371,
-0.1480924189,
0.2147215009,
-0.1240261123,
-0.0586368218,
0.0097109005,
0.1784365922,
0.2656930685,
0.5207039118,
0.270675838,
-0.2427754402,
0.0891448855,
0.3627479672,
-0.0371227451,
-0.0401580036,
0.0438291132,
-0.2223277986,
-0.1289466321,
0.1081064641,
-0.1066059396,
0.1868592799,
0.1889302433,
0.0756323189,
-0.1392151564,
-0.2522183657,
-0.2151124924,
-0.0319143981,
-0.0436210297,
0.1300846487,
0.4038743675,
0.4485637844,
-0.1382344961,
-0.4100548625,
-0.073844716,
0.234590888,
0.2450692952,
-0.2443238944,
0.0373925641,
-0.3147735596,
-0.049937807,
-0.1750922501,
-0.4401919246,
-0.2645349801,
-0.1999679506,
-0.0551094152,
0.2310734689,
0.0131699517,
0.1373815984,
-0.011633981,
0.2456824183,
0.1008732989,
-0.4298439324,
-0.0119966567,
-0.5101566315,
-0.3695273697,
0.0328289233,
0.4673337042,
0.4385597706,
0.1786766797,
0.1814607978,
-0.0701137409,
0.0090797395,
-0.0991810858,
0.2115608752,
0.0304585919,
0.1755425781,
0.0036327876,
0.3344264925,
-0.4671182036,
-0.3113955855,
0.6026248932,
-0.0913658664,
-0.2721755505,
0.1993506402,
-0.3250697553,
-0.1124731302,
-0.2069625705,
-0.1498915553,
-0.2904265523,
-0.3914503455,
0.336561352,
-0.0109002218,
0.035600014,
-0.1289469302,
0.1338439882,
0.28383708,
0.0949846059,
-0.2116738558,
-0.0383752435,
-0.4520306885,
0.2738108933,
-0.1152426302,
-0.2694825232,
-0.0710287243,
0.0409647971,
0.2816604078,
0.0627763346,
-0.3481175303,
0.0024617985,
0.0731172487,
0.5344306231,
-0.1907642782,
-0.1876475811,
0.3679306805,
-0.0579305626,
0.0226894803,
0.0716027766,
-0.2526080608,
0.1822911203,
0.0439497642,
0.0337401256,
-0.1755049378,
0.4175981283,
0.1020742506,
0.9232445359,
-0.2643372416,
-0.1505667567,
0.3155280948,
-0.0246920958,
0.0868570507,
-0.1268965751,
-0.3084769249,
0.1649305671,
0.0774960071,
-0.0769033059,
0.1023018584,
0.0603704974,
-0.3845142722,
-0.0449140593,
-0.0214515664,
-0.2746354342,
-0.0994160399,
0.3585600555,
0.1034402624,
-0.1083902717,
-0.0107013881,
-0.0802658498,
-0.1179674864,
-0.1918516904,
-0.1134532094,
0.0333901197,
-0.0317993574,
0.1877584755,
-0.4592278004,
-0.1170404628,
-0.0875754505,
-0.0683353245,
0.3628224432,
0.3158774078,
-0.0147821307,
-0.1853873134,
0.3408859968,
-0.3085048199,
0.5129213333,
0.234229207,
0.1925598532,
0.2869600058,
0.0705933869,
-0.6148581505,
-0.1541523635,
0.1200241819,
0.4119720459,
0.4449226856,
0.3248272836,
-0.1001520455,
-0.3170758486,
0.1256498694,
0.1735462844,
-0.033100076,
-0.2027919739,
-0.3746901751,
-0.3073225319,
-0.4436309338,
0.0817541182,
0.0238221958,
0.24991934,
0.421102047,
-0.080726251,
0.2893454134,
-0.1060653478,
-0.272272706,
0.2479826212,
0.1461411715,
-0.0633542836,
0.0726817325,
0.2435630858,
0.3455853462,
0.0976916328,
0.6214666367,
0.1869539469,
-0.0988839567,
0.1482148468,
0.23100169,
0.3008661866,
0.2950562537,
0.1793146431,
-0.057305187,
-0.1176062673,
-0.0166511759,
0.1620853543,
0.1781000048,
0.040149577,
-0.2675119042,
0.10960567,
0.1865431964,
0.2891853452,
-0.2739402056,
0.1674656868,
0.5299274921,
-0.0523517728,
0.0692546442,
0.4074668586,
0.1166573092,
0.7771915197,
-0.2644697428,
0.1479300112,
0.5714972615,
-0.2305461168,
0.3164280355,
-0.2754613757,
0.005959034,
-0.5188851953,
0.2529402375,
0.0849902108,
-0.2398611009,
-0.0096131116,
0.3080286682,
0.0950919688,
-0.140942201,
-0.1081847697,
0.3453781307,
-0.0026214235,
0.2207461745,
0.0508502275,
-0.271433264,
-0.2926776111,
0.0353431851,
-0.3116564751,
-0.0429674499,
-0.0649114102,
-0.1619158536,
-0.0969070494,
-0.1001789123,
-0.1564717889,
0.4074651599,
-0.055670999,
0.2410970926,
0.392850548,
-0.4113481343,
-0.0838278979,
0.0472864583,
-0.0223636478,
-0.1843994409,
-0.1851103306,
0.2453993112,
0.0351635516,
-0.0871742889,
-0.0076088719,
0.1267256141,
0.211158976,
-0.1905830801,
-0.3152863383,
-0.0097108427,
-0.1107605249,
-0.3773857653,
0.0098415613,
0.2698489726,
0.109373942,
-0.0706366599,
-0.2126792669,
-0.1799736619,
0.1643075049,
0.0283878297,
0.0598793216,
-0.0270295441,
0.1562406421,
-0.2532792091,
0.3292659223,
-0.3607405424,
0.0462622382,
0.4963207841,
-0.1014333144,
0.1640526652,
0.522231102,
0.3958122134,
-0.1078456044,
-0.234476909,
-0.0417826325,
0.5676161051,
-0.48135975,
-0.080852434,
-0.0654439926,
-0.0923319981,
0.1245617345,
0.2647169232,
0.3303146958,
0.009107749,
-0.0937880352,
-0.5132706165,
-0.3523987532,
0.2194439769,
-0.1140951365,
-0.0998066142,
0.2764374614,
0.5523677468,
0.1198210046,
0.3457678854,
-0.2247913927,
0.1964670122,
-0.0767385736,
0.1733498871,
-0.293734014,
-0.2949864566,
0.0617099516,
-0.0491166897,
0.0436313972,
0.0755814314,
-0.1114883125,
-0.2160478532,
-0.0542555526,
0.1099573076,
0.1158918142,
-0.1538786888,
-0.1924217045,
-0.1486532986,
0.0336091146,
-0.0341770276,
-0.011412587,
-0.0316838175,
-0.0636328831,
0.0092392229,
0.13757357,
-0.0495585911,
-0.1432160437,
0.0238068774,
-0.0251235329,
0.0513095856,
0.0436233878,
0.2476351559,
0.0279666819,
-0.0172808692,
-0.2315069884,
0.0654819161,
0.2410797626,
0.1861480027,
0.2242752761,
-0.2875193954,
-0.1363510191,
-0.1797347963,
0.1812477857,
0.3907139599,
-0.1477687657,
-0.0057630576,
0.0170550831,
0.13388367,
-0.1501575112,
-0.1573178768,
0.2622709572,
0.0530034564,
-0.0168349594,
-0.0100827143,
0.1297941506,
-0.2084883749,
-0.0811174214,
0.1575099826,
0.3992907405,
0.0401902497,
-0.4732251167,
0.3453000188,
-0.2074115127,
-0.1616265923,
0.1562598795,
0.0847396851,
0.3768486679,
-0.0452596918,
-0.1026147306,
0.1214387417,
-0.1278780699,
0.2560075819,
-0.0429030508,
-0.425573349,
-0.1164728999,
0.2421925664,
0.1526724845,
-0.3106533289,
0.2070242763,
0.7946995497,
0.2270718962,
-0.3669969738,
0.0756440386,
0.1639966518,
-0.1651429534,
0.0323553234,
-0.7381467223,
-0.1738944948,
-0.1725956798,
0.1801326871,
-0.1772889793,
-0.0201250724,
0.3450927734,
0.1026232839,
-0.0690095574,
-0.4073934853,
0.001884412,
0.1002656296,
-0.3239280879,
-0.2377593368,
0.401273191,
0.1469522566,
-0.1587477922,
-0.0346479863,
-0.1281300187,
0.3428945243,
0.2950406671,
-0.3094572425,
-0.1638808399,
-0.087776497,
-0.1351435035,
-0.2076944709,
0.1110964119,
0.1466926783,
0.1099854857,
0.3763887584,
0.1300738156,
-0.1291117668,
0.0981800258,
0.1858903915,
-0.1291135997,
0.0844407156,
-0.0947916433,
-0.0002224967,
-0.2281882912,
-0.0361344889,
-0.2055172324,
-0.1976290941,
-0.2189732492,
0.1318589598,
0.1730563641,
0.1635759175,
-0.2263658345,
0.0502876565,
0.0127593316,
0.7020562887,
0.3510789275,
0.1076616496,
-0.21429196,
-0.3235679865,
-0.596786499,
0.3562062979,
-0.3159346879,
0.1146411374,
0.3648400605,
0.4121898413,
0.1482035369,
0.4271437824,
-0.1436985731,
0.412066251,
-0.04026898,
-0.1203148514,
-0.4084436297,
-0.0316565558,
0.0676874891,
-0.028870387,
-0.1615072191,
-0.422298193,
0.2162656188,
-0.1609282494,
0.0273397937,
-0.1858122051,
-0.372751236,
0.09867993,
0.0545374267,
0.1093930155,
-0.087136738,
0.3187759519,
0.0858084857,
0.040649645,
-0.2039975673,
-0.2124966681,
-0.2477272451,
0.3365734518,
0.0230683759,
0.3301451504,
-0.1964951605,
0.1363684833,
-0.1094119698,
0.1971800774,
-0.3385674953,
0.1788091213,
0.0149052814,
-0.1495162547,
-0.1281841099,
0.2249829322,
-0.0945451707,
0.0898001418,
0.0397566482,
0.216355592,
-0.4016825557,
-0.2031950057,
0.4354738593,
-0.5085443258,
-0.1987221837,
0.2857095301,
-0.0270966217,
0.4125852585,
-0.1164050475,
-0.4313945472,
-0.0754461214,
0.2239832282,
-0.234624967,
-0.120346725,
0.0563717633,
-0.014574036,
0.0830915049,
-0.1923095584,
-0.0018167682,
0.0800636709,
-0.2020299435,
-0.2691345811,
-0.3540151119
] |
https://github.com/huggingface/datasets/issues/368 | load_metric can't acquire lock anymore | I found that, in the same process (or the same interactive session), if I do
import nlp
m1 = nlp.load_metric('glue', 'mrpc')
m2 = nlp.load_metric('glue', 'sst2')
I will get the same error `ValueError: Cannot acquire lock, caching file might be used by another process, you should setup a unique 'experiment_id'`. | I can't load metric (glue) anymore after an error in a previous run. I even removed the whole cache folder `/home/XXX/.cache/huggingface/`, and the issue persisted. What are the steps to fix this?
Traceback (most recent call last):
File "/home/XXX/miniconda3/envs/ML-DL-py-3.7/lib/python3.7/site-packages/nlp/metric.py", line 101, in __init__
self.filelock.acquire(timeout=1)
File "/home/XXX/miniconda3/envs/ML-DL-py-3.7/lib/python3.7/site-packages/filelock.py", line 278, in acquire
raise Timeout(self._lock_file)
filelock.Timeout: The file lock '/home/XXX/.cache/huggingface/metrics/glue/1.0.0/1-glue-0.arrow.lock' could not be acquired.
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "examples_huggingface_nlp.py", line 268, in <module>
main()
File "examples_huggingface_nlp.py", line 242, in main
dataset, metric = get_dataset_metric(glue_task)
File "examples_huggingface_nlp.py", line 77, in get_dataset_metric
metric = nlp.load_metric('glue', glue_config, experiment_id=1)
File "/home/XXX/miniconda3/envs/ML-DL-py-3.7/lib/python3.7/site-packages/nlp/load.py", line 440, in load_metric
**metric_init_kwargs,
File "/home/XXX/miniconda3/envs/ML-DL-py-3.7/lib/python3.7/site-packages/nlp/metric.py", line 104, in __init__
"Cannot acquire lock, caching file might be used by another process, "
ValueError: Cannot acquire lock, caching file might be used by another process, you should setup a unique 'experiment_id' for this run.
I0709 15:54:41.008838 139854118430464 filelock.py:318] Lock 139852058030936 released on /home/XXX/.cache/huggingface/metrics/glue/1.0.0/1-glue-0.arrow.lock
| 49 | load_metric can't acquire lock anymore
I can't load metric (glue) anymore after an error in a previous run. I even removed the whole cache folder `/home/XXX/.cache/huggingface/`, and the issue persisted. What are the steps to fix this?
Traceback (most recent call last):
File "/home/XXX/miniconda3/envs/ML-DL-py-3.7/lib/python3.7/site-packages/nlp/metric.py", line 101, in __init__
self.filelock.acquire(timeout=1)
File "/home/XXX/miniconda3/envs/ML-DL-py-3.7/lib/python3.7/site-packages/filelock.py", line 278, in acquire
raise Timeout(self._lock_file)
filelock.Timeout: The file lock '/home/XXX/.cache/huggingface/metrics/glue/1.0.0/1-glue-0.arrow.lock' could not be acquired.
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "examples_huggingface_nlp.py", line 268, in <module>
main()
File "examples_huggingface_nlp.py", line 242, in main
dataset, metric = get_dataset_metric(glue_task)
File "examples_huggingface_nlp.py", line 77, in get_dataset_metric
metric = nlp.load_metric('glue', glue_config, experiment_id=1)
File "/home/XXX/miniconda3/envs/ML-DL-py-3.7/lib/python3.7/site-packages/nlp/load.py", line 440, in load_metric
**metric_init_kwargs,
File "/home/XXX/miniconda3/envs/ML-DL-py-3.7/lib/python3.7/site-packages/nlp/metric.py", line 104, in __init__
"Cannot acquire lock, caching file might be used by another process, "
ValueError: Cannot acquire lock, caching file might be used by another process, you should setup a unique 'experiment_id' for this run.
I0709 15:54:41.008838 139854118430464 filelock.py:318] Lock 139852058030936 released on /home/XXX/.cache/huggingface/metrics/glue/1.0.0/1-glue-0.arrow.lock
I found that, in the same process (or the same interactive session), if I do
import nlp
m1 = nlp.load_metric('glue', 'mrpc')
m2 = nlp.load_metric('glue', 'sst2')
I will get the same error `ValueError: Cannot acquire lock, caching file might be used by another process, you should setup a unique 'experiment_id'`. | [
0.0387075916,
-0.115873985,
0.0723505691,
0.3124665618,
0.3204590976,
0.0294491351,
0.0900949165,
0.0702062771,
0.5023595691,
-0.0785916448,
-0.185066089,
0.0306066237,
-0.0480659232,
-0.2614512146,
-0.0316603929,
-0.1943875104,
-0.2007995844,
-0.089517653,
-0.0916287377,
0.1228042692,
-0.2072484493,
0.3985545039,
-0.1751363277,
-0.1407351643,
-0.3555800319,
-0.1709380746,
-0.0894150361,
0.3625313938,
-0.0941763222,
-0.4639346004,
0.1580356956,
0.0360000394,
0.0657722577,
0.0958727375,
-0.0001253988,
0.0097092241,
0.4328873754,
0.0207839981,
0.0158183686,
-0.2742262483,
-0.0472079925,
-0.5386416316,
0.2313128114,
-0.038114354,
0.0553527921,
0.1542789787,
0.0128485728,
-0.3735764921,
0.3929032087,
0.2302976847,
0.1177397445,
0.4218791723,
0.2450519204,
-0.300993681,
-0.2283043265,
-0.5178470612,
0.1226880029,
0.9323641658,
0.1983930171,
-0.4340366423,
-0.168125838,
0.142888695,
-0.0306592323,
0.1357381046,
0.436443001,
-0.1017124355,
0.3628014922,
-0.114617452,
-0.0268298853,
0.0082819723,
0.0335862339,
-0.1131080315,
-0.2663030028,
-0.1967050582,
0.3940869272,
-0.3095421791,
0.3262718916,
-0.2071052194,
0.1107339412,
0.0614550039,
0.022858955,
-0.3017475605,
0.0311334208,
0.1103478521,
-0.0704876333,
0.1314455569,
-0.0304558892,
0.1059605852,
0.4824419022,
0.1158645898,
-0.1343361139,
0.4646420479,
-0.2977822423,
0.2525921762,
-0.2230447233,
0.3128058016,
0.0215296056,
0.4838052988,
0.0795656741,
0.0472436212,
0.005802229,
0.0168821383,
0.3405644,
0.1478576064,
-0.0365651473,
0.5148496628,
0.4060497582,
-0.0803209022,
0.1938291341,
0.2729448676,
0.0078884885,
-0.0202903003,
-0.04505153,
-0.336350739,
0.1489800662,
0.1632086635,
0.0452221632,
-0.0889208019,
0.0154881403,
0.0259291343,
0.0870657712,
-0.1591016948,
0.1520411074,
0.1608738005,
-0.0276131853,
0.2953266501,
0.1074499264,
0.2743976414,
-0.0106983259,
-0.1547304243,
-0.1928949058,
0.3185299337,
-0.3265421987,
0.2753770351,
0.2608953714,
-0.2996115386,
0.3550314009,
0.0881140232,
0.088500604,
-0.4025236964,
-0.0697803125,
0.0475798324,
-0.2875434756,
0.2150294185,
-0.1425008178,
0.0949410126,
0.1955336034,
-0.2912886143,
-0.0110833123,
-0.3652180135,
-0.4574070573,
-0.3263041675,
-0.0511174425,
0.012352162,
-0.4049868882,
0.0597764403,
0.059666656,
0.143025279,
0.0267865565,
0.0218423083,
-0.0301715769,
-0.1087390184,
-0.1520869434,
-0.2062555701,
0.2813636661,
0.5562862754,
0.0976206958,
-0.3056699634,
-0.18789123,
-0.1079916954,
-0.1382287443,
0.23493132,
0.0458944887,
0.0970942825,
-0.224205941,
0.0844082236,
0.261854589,
-0.7882767916,
-0.6193397045,
-0.0095671713,
-0.1618587971,
-0.0446817204,
0.0548860319,
0.088819243,
0.1180930585,
0.0993978232,
0.3330299556,
0.0924305916,
0.0943363309,
-0.4169384837,
-0.2193696797,
0.0052570105,
0.0715348199,
0.0779737756,
0.2852445841,
0.2650151551,
0.1815577447,
0.352088362,
0.0231217351,
0.3938896656,
-0.2276392877,
0.4092957973,
-0.0556350946,
-0.2220464647,
0.086723201,
-0.1872996688,
-0.3539682627,
0.4585733116,
-0.5009266138,
-0.0561315119,
0.0323619321,
0.0708051398,
-0.4591318667,
0.0309204757,
0.1142944694,
-0.0322564095,
0.0307950079,
0.045482412,
0.0259706527,
0.060122177,
-0.1053757668,
0.5104599595,
-0.0319063589,
0.2045423388,
-0.2858424485,
-0.0922261477,
0.0968823582,
-0.0596505702,
-0.007458359,
0.3105419278,
0.4948723614,
-0.059130203,
0.0469719246,
0.5281560421,
0.0510515645,
0.2600198984,
-0.0119121689,
-0.0147901028,
0.2664883733,
0.013436757,
-0.0115780551,
-0.5587480664,
-0.0614249036,
-0.0619170964,
0.3316040933,
0.0798469707,
0.1930181682,
0.1027683914,
-0.1634518504,
0.1938889623,
0.0462908968,
-0.2189997137,
-0.197861433,
-0.2039315701,
0.5161855817,
-0.1291539967,
0.0738874674,
0.0157025401,
0.234169811,
-0.0599891432,
0.2643680274,
0.090428181,
0.1763946116,
-0.1143527925,
-0.1747927517,
-0.0878666043,
-0.2505742311,
0.3127428293,
0.3478240669,
-0.0408708528,
0.0977799445,
0.1051949114,
0.0304459408,
-0.1265745461,
0.0144020095,
0.0762414932,
-0.0217212122,
0.3686545789,
0.1944015026,
0.0989875197,
-0.0384876058,
0.1585068405,
0.1161004826,
0.2183550298,
-0.2039141059,
0.0098382384,
-0.3964008391,
0.0102867708,
0.22886087,
-0.0039137565,
-0.4821487963,
-0.4297889471,
-0.0750376582,
0.1887990087,
0.3223301768,
0.060957022,
0.179228738,
0.2290401459,
-0.1921597123,
0.2414931208,
-0.1553553492,
-0.4484228492,
-0.0379549228,
-0.1615951657,
0.1437362134,
-0.0956690609,
0.1145743504,
-0.1248921752,
-0.1733729839,
-0.140273273,
-0.2574285865,
0.023972014,
0.0843015909,
0.7145810127,
0.2129419446,
0.0088947155,
-0.0010658652,
0.1230748445,
0.3546611667,
-0.1275534183,
0.0524182096,
0.2911886573,
-0.3696326315,
0.1463905573,
-0.2685170174,
0.161615178,
-0.5034710169,
-0.4056676924,
0.2910679579,
-0.1105199605,
-0.2216465771,
0.1172689795,
-0.2792267501,
0.3122066259,
-0.2726821899,
0.1251486838,
-0.2774214149,
-0.1923305988,
0.2103397995,
0.0043342561,
-0.0900195986,
-0.2496186346,
0.1020826697,
0.1823783517,
-0.1399125159,
-0.3926426172,
-0.751496017,
-0.1141084135,
0.09870556,
-0.2474497408,
-0.1125536785,
0.1439751834,
-0.3512949944,
0.0414207056,
-0.1349385679,
-0.0026851445,
0.1042373553,
0.075785622,
0.2012829334,
0.0657727718,
0.2217898071,
0.1661199629,
0.5310272574,
-0.0442972891,
-0.1021615788,
0.3465195,
0.0595609769,
0.4767448604,
0.1927145123,
-0.3890646696,
-0.1930052936,
0.1417025328,
0.2469889671,
-0.2544842362,
0.0348413326,
0.2423212975,
-0.1883639097,
-0.3141642511,
-0.2212720811,
-0.0936352164,
-0.1036057547,
-0.1123080254,
0.1638353169,
0.1402925849,
0.260379374,
-0.1485799849,
-0.079270862,
0.2771490216,
0.3417001069,
0.0367453769,
0.1605738848,
0.0545908213,
-0.1954054981,
-0.4282641411,
0.3973343372,
-0.0049799047,
0.5216325521,
-0.2394585609,
0.0594330281,
0.1045993865,
-0.1041499525,
0.5359894037,
0.0970067158,
0.1271164566,
0.1798017025,
0.0382612944,
-0.3157490194,
-0.0304225273,
0.0299386159,
0.1489214897,
0.4948725402,
0.7226870656,
-0.2659999728,
-0.1192565411,
-0.2603639662,
0.1650894284,
-0.3048899174,
-0.2024811208,
-0.2063498795,
-0.32368806,
-0.1710140705,
0.0123419724,
-0.1153365448,
0.3378127813,
0.4723193347,
0.2161137313,
-0.1360186338,
-0.4786416292,
-0.0407852307,
-0.0727949962,
0.4126509726,
-0.0869294405,
0.0880514979,
0.4231229424,
-0.1487879306,
-0.2982724309,
0.1877469718,
-0.1136942655,
0.121330753,
0.2333736569,
0.173768416,
0.1053901166,
0.42535007,
-0.1597546935,
0.225980252,
0.1264665723,
0.0955733582,
-0.0979741067,
-0.0315061137,
0.1203092262,
-0.0238318555,
0.0295595191,
0.2193053812,
0.3600983024,
0.2023503035,
-0.1878728271,
0.4180876017,
-0.043118231,
-0.0350698009,
-0.0972786173,
-0.1000875086,
0.8022153974,
-0.1595789492,
-0.2619312406,
0.0298739076,
-0.1457985789,
0.6428795457,
-0.1042101532,
0.1761113107,
-0.0742920041,
-0.3932451308,
0.0441793948,
-0.2175305188,
0.0657586828,
-0.4121153951,
0.051432021,
0.2708450854,
-0.4369369745,
-0.0335608721,
-0.0650877506,
0.1836889237,
-0.6214599609,
0.0531326123,
0.0301301479,
0.0401381887,
-0.3123499453,
0.3805067539,
-0.2036481798,
-0.0550630353,
0.2770385146,
-0.0553841181,
-0.3994782269,
-0.0654044598,
-0.2844849527,
0.070889011,
0.2390862554,
-0.0704396367,
-0.1759536564,
-0.0610575788,
0.3143347204,
0.1398046315,
-0.2994337976,
0.3438144922,
-0.0917133391,
-0.2954326868,
-0.0030770637,
0.2781412899,
0.1166209951,
0.0029363558,
-0.0925318748,
0.046367459,
-0.173346594,
-0.1107540131,
-0.1144868284,
0.1817106903,
0.0533905327,
0.3183442652,
-0.1433252245,
-0.0191316381,
0.234226197,
-0.1494248658,
0.0253103711,
0.2552125454,
-0.0040863343,
-0.1048380584,
-0.2064366341,
-0.2550045252,
0.1637461931,
0.5607221723,
-0.0581934042,
-0.5073885918,
0.216505751,
0.016463168,
-0.0639622137,
-0.1016345546,
-0.3467876911,
-0.1690582335,
-0.4205924869,
0.2429341525,
0.1547179967,
-0.0193137676,
0.00400538,
-0.1858253479,
0.4843350053,
-0.2830851376,
-0.0019897446,
-0.7558656931,
-0.297337234,
0.2834347188,
-0.2853273749,
-0.0136604737,
-0.1148891896,
0.0471757762,
-0.2104178369,
0.4024420977,
-0.1725853682,
0.1829889119,
-0.2871596813,
-0.2451510131,
0.5845177174,
-0.0654657781,
0.1676664203,
-0.0475946218,
0.0198075473,
0.4047593772,
-0.124041751,
-0.0497582853,
-0.1973866224,
0.1797022969,
-0.0850151032,
0.1407680511,
0.0183722079,
-0.2761431932,
0.2459146529,
0.0895489305,
-0.0811777413,
0.2046797872,
0.0613296032,
0.0384051427,
0.0426191688,
0.5235907435,
0.2501640618,
0.2672939301,
0.009064218,
-0.0032563619,
0.0062509216,
0.0792046636,
-0.0596477762,
0.1828986406,
-0.4656666815,
-0.137722522,
-0.0974089503,
-0.1361399591,
0.1559676826,
0.1431013048,
-0.1016528979,
0.0190402009,
0.1252432913,
-0.1216820553,
0.0666975752,
0.0342363417,
-0.0300027132,
0.086954467,
-0.2467592061,
-0.0668206662,
-0.0870528072,
0.3180525899,
-0.131095618,
0.0735199153,
0.3424255848,
-0.0961304083,
0.1432816982,
0.111812301,
0.4970530868,
0.007597683,
0.0205598474,
-0.206730783,
0.1344557405,
-0.2691759467,
0.4959371686,
-0.0428581908,
0.1166444272,
-0.0367392004,
-0.3253388107,
0.1450219154,
-0.3323920369,
0.2503062785,
-0.0408235341,
-0.3007708192,
-0.1008449197,
0.2648640871,
0.2209363133,
0.118606627,
-0.4627082348,
0.6910853982,
-0.2642377019,
-0.3084988892,
-0.0429290943,
0.3635562062,
-0.0644733608,
-0.0953848362,
-0.0069216192,
-0.2487748265,
-0.143132627,
-0.0225577392,
0.184918344,
0.0853728056,
0.4013885856,
0.1992620826,
-0.1833754033,
-0.383061111,
-0.4849724174,
0.300239861,
0.1777811795,
-0.1937876642,
0.3580451906,
0.1135038063,
-0.0232857168,
0.1853679419,
0.2641861737,
0.3333708942,
0.1051831543,
-0.1506633162,
0.0953451768,
-0.0113157891,
0.0107022002,
-0.1575165987,
0.5133903027,
0.3697790802,
-0.3136537373,
-0.0351259634,
0.04042501,
-0.1790903211,
0.2119152397,
-0.0549707748,
0.2851825953,
-0.0977839828,
0.5591540933,
-0.0657939464,
0.018675074,
-0.1547777653,
0.1321268231,
-0.3361938298,
-0.0434217826,
-0.0058517046,
0.1318586469,
0.0049856231,
-0.3068115115,
0.0411795229,
0.0552187674,
0.211400032,
0.504540205,
0.118379958,
-0.4218703508,
-0.1334497929,
-0.745303154,
0.1134843081,
-0.0222580619,
0.0924695283,
0.2634621859,
-0.1080277935,
-0.1685671359,
-0.046102453,
0.2452774197,
0.3517726064,
0.1647495031,
-0.4546447098,
-0.4675468206,
0.1131400764,
0.0678352043,
-0.2684636712,
0.0692889914,
-0.0464071296,
-0.0191469416,
-0.3807814717,
-0.0374481529,
-0.0435915552,
-0.362832427,
0.1442729533,
0.5466171503,
0.2543391883,
0.12036971,
0.2188726217,
0.0913779512,
-0.0422801599,
-0.3698079884,
-0.4085544944,
0.1035868973,
-0.3350953758,
-0.0380125269,
0.0683516413,
-0.3688529432,
-0.1574765742,
-0.2832647562,
0.5227217078,
-0.2089236975,
-0.0723499879,
-0.406219095,
0.0933075175,
-0.110978052,
0.0674841106,
0.2345816791,
0.4868637919,
0.2205926478,
0.3542435765,
-0.2795713544,
-0.07746052,
0.5171992183,
-0.4738138914,
-0.1686318517,
0.2175597101,
0.396950841,
0.1739765406,
-0.0374172777,
-0.4593836069,
-0.1188472807,
0.2529202104,
0.0813985467,
-0.1838923693,
0.2594431043,
-0.2825559378,
-0.0089298859,
0.0027261078,
-0.3539854586,
0.3217027783,
-0.2165521979,
-0.0081745237,
0.1252820492
] |
https://github.com/huggingface/datasets/issues/365 | How to augment data ? | Using batched map is probably the easiest way at the moment.
What kind of augmentation would you like to do ? | Is there any clean way to augment data ?
For now my work-around is to use batched map, like this :
```python
def aug(samples):
# Simply copy the existing data to have x2 amount of data
for k, v in samples.items():
samples[k].extend(v)
return samples
dataset = dataset.map(aug, batched=True)
``` | 21 | How to augment data ?
Is there any clean way to augment data ?
For now my work-around is to use batched map, like this :
```python
def aug(samples):
# Simply copy the existing data to have x2 amount of data
for k, v in samples.items():
samples[k].extend(v)
return samples
dataset = dataset.map(aug, batched=True)
```
Using batched map is probably the easiest way at the moment.
What kind of augmentation would you like to do ? | [
-0.0076104701,
-0.0786106661,
-0.3029458821,
-0.0933211893,
0.0747116655,
0.2788417339,
-0.1045796722,
0.2814401388,
0.1223139316,
0.1161647588,
-0.122473672,
0.0561203323,
-0.0021824669,
0.1659335047,
0.1615760326,
-0.161408335,
0.1548457444,
0.1445471346,
-0.1470571756,
0.1611989588,
-0.104956761,
-0.4687490761,
0.0024018958,
-0.5504879951,
-0.1139782965,
-0.1055828929,
-0.2983652353,
-0.1648693383,
0.0454924777,
-0.3779053986,
-0.2231482565,
0.0820773542,
0.1151696295,
0.242144987,
-0.0000998411,
-0.2089394331,
0.1646331549,
0.0892125368,
-0.3107388318,
0.4721702933,
0.1105213836,
-0.8047289252,
-0.0186208636,
-0.0786828399,
-0.0834561363,
-0.4446456432,
0.0461452082,
-0.0636528507,
0.3388091326,
-0.1767680496,
0.2676831484,
-0.0098135732,
0.3743918836,
0.0117657259,
0.1348077506,
0.3799751103,
0.1615883857,
0.0862626806,
0.7172885537,
0.1436655968,
0.3365127444,
0.1444842368,
-0.1315521598,
-0.097373262,
0.2357288152,
0.0122264661,
0.1705199927,
-0.3990066946,
-0.0154508911,
0.102106601,
0.3820778131,
0.2447233647,
-0.5512056351,
-0.3171164095,
0.2154932618,
-0.0941851288,
-0.3701936603,
-0.1095227227,
0.1549906135,
-0.0199618731,
-0.2288734168,
-0.2409578264,
-0.0837807506,
0.3638653457,
0.0529174134,
0.4135732055,
0.032412935,
-0.0221887529,
-0.1271587163,
-0.2792923152,
-0.1728689224,
0.1948123425,
-0.1550067663,
0.4723390341,
-0.1161073893,
-0.1414954662,
-0.2426721156,
-0.2189950049,
0.0774523914,
0.1073939651,
0.1769824177,
0.1780082881,
-0.1855889857,
0.1188087165,
0.1672572494,
-0.3007957041,
-0.057939142,
0.1513619423,
0.0100311497,
-0.1358960718,
0.2673926651,
-0.0651101023,
-0.1041891128,
-0.1596964598,
0.0384277478,
-0.1040325686,
-0.1227106899,
0.0058557466,
-0.0125688054,
0.0119501837,
-0.2453552186,
0.1206432432,
-0.0216627233,
0.0626219884,
-0.2390586287,
0.0745224804,
-0.1906953454,
0.2592640817,
0.2707095146,
-0.2050133646,
-0.114043124,
0.1182822585,
-0.0716912374,
-0.1564169824,
0.2377940416,
0.1173930615,
0.2470692992,
0.0270549841,
0.0919325128,
-0.0362129509,
0.08321812,
0.010413371,
0.3068697453,
0.2046583593,
0.1408861279,
0.0554039106,
-0.185100615,
0.1971401274,
-0.0127218813,
0.0888804197,
-0.3098217845,
-0.0053878576,
-0.3795257509,
0.2868724465,
0.060854651,
-0.1946117431,
-0.1409716755,
0.365531981,
0.1183647364,
-0.2584449649,
0.0642436668,
0.093988739,
0.1048165709,
-0.3767406046,
0.4527572095,
0.0382830091,
-0.3822378814,
0.0499951392,
-0.143553257,
0.3040353358,
0.1318432093,
0.0393006913,
-0.0303402301,
0.1447836012,
-0.1284518391,
-0.1212251782,
0.2840682566,
-0.1609267592,
-0.3332788348,
-0.0140594989,
0.171677798,
0.1381159425,
-0.1504609883,
0.3285772502,
0.2457567453,
-0.0475736484,
0.1889437884,
0.3833816946,
-0.1481108963,
-0.1654293239,
-0.0901376083,
-0.1093994528,
0.3156548738,
0.1865179837,
-0.0618918799,
-0.1337628812,
0.2854762077,
-0.4683997631,
0.151370272,
-0.1575249434,
0.3186340928,
0.1901423484,
0.1881604791,
0.3953309357,
-0.0614688918,
-0.1812359393,
-0.1726558656,
-0.014786303,
-0.1361604929,
-0.1481724083,
0.1438454241,
-0.1893933117,
-0.0441929586,
-0.1230905652,
0.1288404018,
-0.3399833441,
0.2959401309,
-0.1768560112,
0.0442278236,
-0.4881066084,
-0.0037108585,
-0.1384127289,
0.2112002671,
0.0791611224,
-0.2001276165,
0.0091775805,
0.2698514163,
-0.3361878395,
-0.2222456038,
0.3350797892,
-0.1025169343,
-0.1454634666,
0.109694317,
0.2788130045,
0.0695468932,
0.2102866471,
0.2375258207,
0.2521242797,
0.098079659,
0.1130806059,
0.204998374,
0.2804631889,
0.0073605441,
-0.1436423957,
-0.0969060808,
0.2299026847,
0.0896200389,
0.1053562462,
-0.2545941472,
0.2065231353,
0.2654274106,
0.0409889966,
-0.0918571055,
-0.0353271812,
-0.2036501318,
-0.0124818943,
0.2784783244,
-0.2759413421,
-0.1348334402,
0.0308584459,
-0.4751147926,
-0.1810438335,
-0.1317113489,
-0.175999701,
-0.4588344395,
-0.1853167117,
0.1180566847,
-0.0558093265,
-0.1798988283,
0.4024443626,
0.18571347,
-0.0418795794,
0.2552897334,
0.1530425847,
0.0145460144,
0.1135466844,
-0.0431538783,
-0.048792772,
0.3766632676,
0.2131989151,
0.1516609341,
0.0645518601,
0.0053588673,
0.1715641916,
-0.0934921354,
-0.212117523,
-0.0636444837,
-0.1895337999,
0.0392831601,
-0.6104685664,
-0.2298270315,
-0.3691898584,
-0.0815134794,
0.2527184486,
-0.2411987334,
0.0109084491,
0.1769158095,
0.1015365422,
0.0514887348,
-0.2087109387,
0.003575027,
0.2888845503,
0.0025713313,
0.2455697805,
-0.0415380895,
0.0583164655,
0.5223011971,
0.158653304,
0.2197446972,
-0.1253726035,
-0.5068559051,
-0.2053863555,
0.0732153207,
0.2120389044,
0.1939319074,
-0.0102070533,
-0.0845807046,
-0.1673969924,
-0.0973308533,
-0.1113428846,
0.1161694229,
-0.1131239831,
-0.1461568177,
-0.0387622006,
-0.2443743646,
0.1633574069,
-0.4032551348,
-0.1918664575,
0.1039540172,
0.2002732456,
0.0443590879,
-0.2269426882,
0.2483762056,
-0.0357572883,
0.1118211225,
-0.0389118083,
-0.1680570394,
-0.2406018376,
0.5701762438,
-0.2656956911,
0.0013287943,
-0.0552210994,
-0.304452002,
0.1406927258,
0.1969477087,
-0.0404017791,
-0.2016662508,
-0.0954498574,
0.0220215693,
-0.202099517,
0.1835163981,
0.1146985292,
-0.1391177773,
-0.1791117787,
0.0582224578,
-0.012135189,
-0.0202244259,
0.3734323978,
0.1653359532,
-0.1720094383,
-0.1517800391,
-0.1649216563,
0.0782190859,
0.0789996535,
-0.0428789929,
0.1349995434,
-0.1324144602,
0.0905665904,
0.0054750033,
-0.0927538276,
-0.015437562,
-0.1174417436,
-0.2254609466,
-0.0095395148,
0.2916849256,
-0.1485466659,
0.0818372071,
-0.1999631971,
-0.3598058522,
-0.0773132443,
0.1951367408,
-0.434459269,
0.2437217832,
-0.2577318549,
-0.1267354041,
-0.4629675746,
-0.2162118852,
-0.0094654821,
-0.1793206781,
0.2181586474,
-0.0718270242,
-0.3334368467,
-0.033921387,
-0.508192718,
0.6014178991,
0.2712254226,
0.0943001956,
0.4166790247,
-0.0557102188,
0.0767642334,
-0.0162956808,
0.3793669343,
-0.2902058661,
-0.3733690083,
-0.1220443547,
0.0605353713,
-0.2919298112,
-0.0664407164,
-0.3477962017,
0.1122817397,
0.3791007996,
0.4248923957,
0.0626000464,
0.0361151211,
0.3265301585,
0.5222181082,
-0.1211359724,
0.0620600805,
0.1321879923,
-0.1137376353,
-0.0604068935,
0.097567454,
0.0429013371,
-0.026428964,
0.4464073777,
-0.1634343714,
-0.1746935546,
0.1322159767,
0.3371097744,
0.198712036,
0.2410275936,
0.339759618,
-0.0092986524,
0.0632393658,
0.0371347815,
0.3818001151,
0.2620843649,
-0.1211248711,
-0.3090840578,
-0.2685712278,
-0.439720273,
0.7446142435,
-0.2391797602,
0.3427325785,
0.2730869651,
-0.2558054626,
-0.0340622365,
-0.3682532609,
0.1775991917,
0.1166254729,
0.1629989296,
-0.3898421228,
-0.6086575985,
0.0950630158,
-0.0550284274,
-0.0754460618,
0.2048730105,
-0.2119991332,
-0.0661272481,
0.331089735,
0.4750809669,
0.6668502688,
0.3043496609,
-0.0304867849,
-0.0017352384,
-0.1681498289,
0.263751179,
-0.1249460429,
0.1636634469,
-0.0347782671,
-0.17534253,
0.0363154039,
0.0919379145,
0.0353777707,
0.2566660047,
-0.0770542175,
0.2041570842,
-0.1932991594,
-0.008147046,
-0.0521628223,
0.0789847374,
0.2488763034,
-0.2243460268,
-0.0252265986,
0.2686212063,
-0.0155816767,
-0.3063996136,
-0.1489025354,
-0.0248522498,
-0.1278847456,
0.1565122455,
-0.1564067155,
-0.0651296452,
-0.1435310096,
-0.0372006744,
0.2617554665,
-0.2358972132,
-0.0895471871,
0.0098612038,
0.0609893911,
0.4246045053,
0.0444213599,
0.1089751273,
0.1607654095,
0.2134145796,
-0.0879859179,
0.053744439,
0.2833588421,
0.0617833212,
-0.2197449803,
0.2065997422,
0.0877045393,
-0.4093130231,
-0.303245306,
0.0217585564,
0.0097650588,
-0.3889298439,
-0.0714753047,
0.403893441,
0.0414336622,
-0.1766957194,
0.2063099444,
0.2602942884,
-0.4080253839,
0.3073632717,
0.1646901965,
-0.1629056633,
-0.0814709365,
0.062455751,
0.0894904882,
-0.343085885,
0.4695489407,
-0.0964903906,
0.0148587525,
-0.2405358851,
-0.0907340124,
0.0660513043,
0.1444944143,
-0.1780954301,
0.0590979755,
0.1074356586,
0.1204387248,
-0.0869833082,
0.2047005445,
0.0359199047,
-0.1315044612,
-0.376416564,
-0.5651544333,
0.2206886709,
0.4015715718,
0.2265173495,
-0.0090964437,
0.1098168641,
-0.2741593122,
0.5316249132,
-0.4084593356,
0.1374560297,
0.3545909524,
0.2290199399,
-0.0154561028,
-0.0441207774,
-0.0938915089,
-0.1243736446,
0.268746376,
-0.1383431852,
0.0089734383,
-0.2991035283,
-0.1092935279,
0.014618203,
-0.0773288906,
-0.0449199378,
-0.0239888858,
0.0309057087,
0.0723411217,
-0.4569345713,
0.0233956352,
-0.0968524069,
-0.0409793742,
0.2198073715,
0.3289917707,
0.2789763808,
-0.1022352651,
0.1524555683,
-0.1076583415,
-0.0375377573,
0.1082073227,
0.0245846454,
0.2293596417,
-0.0667488948,
0.2334058732,
0.1745451689,
0.1658675969,
-0.1393942535,
0.0500464514,
0.1432811767,
0.0567189977,
-0.0536568873,
0.2166284472,
0.2777226269,
0.11262808,
0.2396585345,
0.3434222341,
0.4050261974,
-0.2293675542,
0.0586353764,
0.2702949941,
0.1469020396,
0.1718359739,
0.1846887618,
0.2326919734,
0.0667622685,
-0.0691916868,
-0.099369064,
0.0514885411,
-0.0264224522,
0.0020593107,
0.419390291,
-0.1256749481,
-0.3333931863,
-0.099726975,
-0.0049823076,
-0.0200894997,
0.0695251226,
0.0646147579,
0.4033408165,
0.4989079237,
-0.2140614092,
-0.0579283684,
-0.2152506113,
0.145721361,
0.328640908,
0.138994813,
0.4616528749,
0.4834704995,
0.3421581089,
0.0305834673,
-0.4088160396,
0.0132855698,
0.0493585914,
0.0966357365,
0.0203994252,
0.0104437247,
-0.194288522,
-0.2485844642,
-0.1224425584,
0.2361290455,
-0.3936661482,
0.1462329179,
-0.1888447702,
-0.1361036897,
-0.1875850707,
0.1707565486,
0.1503902823,
0.2097184658,
-0.2779639959,
-0.0743930042,
0.0780009329,
-0.152631253,
0.2677412927,
0.179911226,
0.2255946845,
-0.025502041,
-0.1455083042,
0.3720202744,
-0.2667147815,
-0.0936893821,
-0.1716822237,
-0.0359138325,
0.0097585395,
-0.0681818351,
0.0413303636,
0.2832559347,
-0.2193232328,
0.2328003049,
-0.0459246859,
0.142299518,
-0.3630719781,
0.0264362283,
0.2322733998,
-0.5020993352,
-0.0782478303,
-0.3215795457,
-0.1785208434,
-0.4239553213,
0.1658905596,
-0.3847846687,
-0.1192834526,
0.199228704,
0.1566546857,
-0.1398007274,
0.530213654,
0.6634434462,
0.1763306558,
0.0529038087,
-0.3323198259,
-0.3900740445,
0.1730917096,
-0.0707128718,
-0.1365450621,
-0.0641166568,
-0.1198808253,
0.2669939995,
-0.0046592769,
0.3345373869,
-0.059835583,
-0.2998939455,
0.1108058915,
-0.1535370946,
0.2455344051,
-0.0954854488,
0.3103295565,
0.1946123391,
0.061055325,
-0.086773999,
-0.0694655105,
0.1932782233,
-0.0968895257,
0.0020181537,
0.0599211454,
0.0911880285,
0.4429363012,
0.2636013925,
0.0797936544,
-0.4356221259,
-0.0531485677,
-0.3512001932,
0.0163177885,
-0.3566222489,
0.330992341,
-0.0566236116,
0.2636432648,
0.0097014233,
-0.1251349747,
0.2435499132,
0.2723661661,
-0.0551580973,
-0.0806188285,
-0.2442427278,
0.1907434464,
-0.1638906002,
-0.2496412992,
-0.0956593901,
0.1525159776,
0.0598496571,
-0.058379814,
0.0142233819,
0.0174986646,
0.047541678,
-0.1556225568,
-0.1403153241,
-0.5458517075,
-0.0969869196,
0.0516065285,
0.1564487517,
-0.3696107864,
-0.2171119303,
0.310146153,
0.066133067,
-0.0796067938,
0.4425636232,
-0.1411465406,
-0.3818379939,
-0.1352279633,
0.2422275394,
0.0642678589,
0.0296870768,
-0.3522312045,
-0.3934128881
] |
https://github.com/huggingface/datasets/issues/365 | How to augment data ? | Some samples in the dataset are too long, I want to divide them in several samples. | Is there any clean way to augment data ?
For now my work-around is to use batched map, like this :
```python
def aug(samples):
# Simply copy the existing data to have x2 amount of data
for k, v in samples.items():
samples[k].extend(v)
return samples
dataset = dataset.map(aug, batched=True)
``` | 16 | How to augment data ?
Is there any clean way to augment data ?
For now my work-around is to use batched map, like this :
```python
def aug(samples):
# Simply copy the existing data to have x2 amount of data
for k, v in samples.items():
samples[k].extend(v)
return samples
dataset = dataset.map(aug, batched=True)
```
Some samples in the dataset are too long, I want to divide them in several samples. | [
-0.0921550095,
-0.0665561333,
-0.2976477742,
-0.0226986669,
0.0231513195,
0.3546433449,
-0.0144626945,
0.2735871077,
0.167264387,
0.1517354399,
-0.1143037081,
0.0416504182,
-0.0127321128,
0.126499027,
0.1626521647,
-0.2058322132,
0.1696421802,
0.087343663,
-0.1048347354,
0.2275166959,
-0.0604987666,
-0.4782773852,
-0.0764301717,
-0.6003983617,
-0.1163293421,
-0.0985125154,
-0.3571466506,
-0.3164561093,
0.1215019971,
-0.3110496998,
-0.2560768425,
0.0157935917,
0.0884929597,
0.2807286978,
-0.0001033332,
-0.161446318,
0.1503432095,
0.0704384744,
-0.3406286538,
0.4995983839,
0.0792686269,
-0.7448677421,
-0.0671170428,
-0.0829778314,
-0.1195212007,
-0.4099473357,
0.036111176,
-0.1217740923,
0.3469313979,
-0.1433336586,
0.2301472127,
-0.0034849979,
0.3508443534,
-0.0468548089,
0.1203244925,
0.4339419305,
0.2089642584,
0.1036967486,
0.7045374513,
0.1954567432,
0.3622111976,
0.1173312515,
-0.1749292612,
-0.0523294397,
0.2249265313,
-0.0106469952,
0.2237956226,
-0.410821557,
-0.0086792521,
0.1689892113,
0.3199172616,
0.2096618414,
-0.5844903588,
-0.3439373672,
0.1641151905,
-0.0818065852,
-0.4392803013,
0.0093648508,
0.1522533298,
-0.02580823,
-0.234026283,
-0.2493510544,
-0.0669919252,
0.4183290601,
0.0526313931,
0.4480652511,
0.0393821001,
0.0323318951,
-0.1009378806,
-0.2489600778,
-0.1554083973,
0.1496043801,
-0.127847895,
0.3905820847,
-0.0650749132,
-0.1372216046,
-0.363605082,
-0.27752617,
0.1508689672,
0.0819589645,
0.0989649296,
0.1121669486,
-0.1534660757,
0.1329182237,
0.2125647962,
-0.342486918,
-0.035957098,
0.2162268162,
-0.0182287451,
-0.1561187208,
0.2932982445,
-0.0941533446,
-0.1405783445,
-0.1551610827,
0.0157139823,
-0.0816373229,
-0.1643199623,
0.1094414294,
-0.1225905195,
-0.0545511022,
-0.2011453211,
0.075597927,
0.0647478253,
0.1065368354,
-0.2623957992,
0.0036337413,
-0.3086778522,
0.2466656566,
0.1757234931,
-0.255672276,
-0.0760075524,
0.1257373691,
-0.1042710394,
-0.1410944611,
0.1893499792,
0.1175352111,
0.27617082,
-0.0135683194,
0.091220513,
-0.135986343,
0.0667713955,
-0.0455894098,
0.2609440684,
0.1335830688,
0.1653190851,
0.0235145539,
-0.1955864131,
0.197724849,
-0.0709346309,
0.080461733,
-0.3996520042,
-0.0180646628,
-0.388820529,
0.2422771007,
0.1782972217,
-0.1079656482,
-0.125001356,
0.3729397655,
0.2526082993,
-0.3006930351,
0.0890923142,
0.0653073266,
0.1029087007,
-0.3351727128,
0.4814347625,
0.0424610712,
-0.3115995526,
0.0160702094,
-0.2066368312,
0.2904303074,
0.1537158042,
0.0912340805,
0.0225255229,
0.095416002,
-0.2393284142,
-0.1379316151,
0.3075346351,
-0.1951465011,
-0.3103212416,
0.0397402421,
0.1528492123,
0.0272361115,
-0.179316625,
0.3627091944,
0.3158902824,
-0.0820766985,
0.2134748846,
0.4815993309,
-0.2080278099,
-0.1461941004,
-0.0089432299,
-0.1502868831,
0.3748988807,
0.2271438837,
-0.0541483499,
-0.1308887601,
0.2716343403,
-0.4427701831,
0.1860202104,
-0.1181797534,
0.3794409633,
0.1347668171,
0.1710025668,
0.3944880962,
-0.0669773445,
-0.2257089317,
-0.2261140496,
-0.057170935,
-0.0621210709,
-0.2353711426,
0.2126370817,
-0.26760149,
0.0265950225,
-0.1191704273,
0.1559115946,
-0.3202860057,
0.2384456396,
-0.1932308376,
0.1870044172,
-0.5061724186,
0.0610350519,
-0.2233325243,
0.2332098037,
0.1024845541,
-0.2418870032,
0.0311354846,
0.2829585373,
-0.2612974048,
-0.2415938079,
0.3624904454,
-0.0874168873,
-0.1497419775,
0.1179000735,
0.2847107947,
0.1307738572,
0.1272634119,
0.1616808176,
0.1158385128,
0.1229900345,
0.0553346425,
0.1622655243,
0.2773103118,
-0.0494486503,
-0.148230806,
-0.092368722,
0.1870818436,
0.0217765216,
0.2239460349,
-0.2352088243,
0.2443436384,
0.2990866899,
0.0249038786,
-0.1108221635,
-0.1024340913,
-0.2274215966,
-0.0303909518,
0.3708471656,
-0.2931021452,
-0.0476085618,
0.0122407377,
-0.5297373533,
-0.1937213987,
-0.1063216776,
-0.1373764873,
-0.4725441039,
-0.1186694354,
0.1379896551,
0.0225922018,
-0.0970027596,
0.3941381574,
0.2377460003,
-0.0841581374,
0.2825245261,
0.1574098766,
-0.0124923959,
0.1354324222,
-0.1045707762,
0.0229452848,
0.3718264997,
0.1324879527,
0.2272265553,
0.0688881651,
0.1317285746,
0.1229526028,
-0.0665533841,
-0.19392851,
-0.1079433188,
-0.2196011245,
-0.0119364802,
-0.6965722442,
-0.1861792356,
-0.324695766,
-0.1221535876,
0.2187305093,
-0.2129366547,
0.0391224325,
0.2452377826,
0.1445958763,
0.083821319,
-0.1548655182,
0.0906404182,
0.280369848,
0.0687176734,
0.2036712319,
0.0550058186,
0.1548541188,
0.5739244223,
0.1061317697,
0.1109561026,
-0.2117843926,
-0.3798001111,
-0.2212189436,
0.0574129149,
0.2341430932,
0.2103156149,
-0.0212545693,
-0.0346367843,
-0.1980112344,
-0.0595402941,
-0.102012977,
0.1978407055,
-0.1250299811,
-0.0831875429,
-0.0428711437,
-0.2294330448,
0.1627711654,
-0.4700724781,
-0.2381105572,
0.0521293245,
0.1220853329,
0.0903787091,
-0.2794122398,
0.301271975,
-0.0222953055,
0.0641673654,
-0.1506199986,
-0.1573283225,
-0.1797426939,
0.4674948752,
-0.3396630287,
0.120292291,
-0.0520102233,
-0.3217193484,
0.1637375951,
0.1866897047,
-0.0275576934,
-0.1436759531,
-0.096982643,
0.0596019477,
-0.1858636439,
0.1629553437,
0.0828568041,
-0.2485523224,
-0.095943898,
0.1055775285,
-0.011232961,
-0.0025405064,
0.317833066,
0.1828468591,
-0.1401711851,
-0.0772915035,
-0.2146828175,
0.1893817931,
0.1611508876,
-0.0674247742,
0.0197201781,
-0.2104613036,
0.0398919359,
0.0396239236,
-0.0965592861,
-0.0287133791,
-0.0833247602,
-0.2234877348,
-0.0048725232,
0.2702591419,
-0.121340014,
0.1273223013,
-0.2472566813,
-0.3907500505,
-0.1469993293,
0.1526198536,
-0.4917110503,
0.2618215978,
-0.2806890011,
-0.1275282651,
-0.4692978859,
-0.1887197345,
-0.1047915518,
-0.1614060104,
0.2652883828,
-0.058337573,
-0.3561533093,
-0.0844512135,
-0.5110244751,
0.6042351127,
0.3101937771,
0.1707242727,
0.4370259047,
-0.0654229,
0.0764414519,
0.0232645087,
0.4769048691,
-0.2746006548,
-0.3861761391,
-0.1249654144,
0.1016198844,
-0.2826368213,
-0.0520049222,
-0.2705365717,
0.1159946471,
0.3876576722,
0.3787551522,
0.009586677,
0.0693711862,
0.4424824417,
0.5657034516,
-0.0990030542,
0.0268344879,
0.1507282704,
-0.0923481956,
-0.0636567399,
0.1204257831,
0.0913116336,
-0.0522901192,
0.4356536269,
-0.2565537095,
-0.1560584903,
0.1430500746,
0.3302802742,
0.1137513369,
0.2782664597,
0.2620792985,
0.0637970418,
-0.00651917,
-0.0017000185,
0.4113223255,
0.2880482376,
-0.2564452291,
-0.3336547613,
-0.2030011117,
-0.4443606436,
0.7946294546,
-0.2818866074,
0.3249369562,
0.3466302156,
-0.254550606,
0.1173106432,
-0.3671302199,
0.2343787104,
0.0904839709,
0.1857846677,
-0.4855911732,
-0.6768805981,
0.0268063322,
0.0139643252,
0.0423151106,
0.2104671299,
-0.2805091441,
-0.0812295079,
0.3251071274,
0.4187846184,
0.6144985557,
0.2699092627,
-0.0058698533,
-0.0597643331,
-0.0441758744,
0.3404587507,
-0.1314438879,
0.1807759702,
0.0006916523,
-0.1594685167,
0.0249673352,
0.0587786585,
-0.0081835613,
0.2708621025,
-0.1201604232,
0.2207409143,
-0.2152343541,
-0.0003140219,
-0.204733029,
0.1338316202,
0.1247476786,
-0.2191444635,
0.0907964483,
0.224481523,
-0.0194558203,
-0.3223444223,
-0.1234593838,
0.0400969982,
-0.0346274003,
0.1531697512,
-0.1436039954,
-0.1229506284,
-0.0875685513,
-0.0178649034,
0.2680428326,
-0.209158361,
-0.057911776,
-0.0595551543,
0.0469837785,
0.4749449193,
0.0830104798,
0.0931570232,
0.1042756364,
0.1381228268,
-0.1402867883,
-0.0227406267,
0.222650677,
0.1460526288,
-0.1895871013,
0.2490589172,
0.171606198,
-0.4353039861,
-0.3188322783,
0.0450468399,
0.0474669263,
-0.418359071,
-0.1262004226,
0.3390963376,
-0.014788948,
-0.1913799345,
0.1618331224,
0.2115653455,
-0.4530208707,
0.3214584291,
0.1169692725,
-0.1542834789,
-0.1028690934,
0.0575273782,
0.1098168492,
-0.355903089,
0.4608190358,
-0.0287567675,
0.0284116194,
-0.2682007849,
-0.077870667,
0.0540492721,
0.0975907072,
-0.1610607505,
-0.016011145,
0.1642108113,
0.1389944851,
-0.1316551715,
0.1196243986,
0.115260601,
-0.1619481742,
-0.4005554616,
-0.5174024701,
0.2700826824,
0.3813765645,
0.2557668388,
0.0352602974,
0.1718022078,
-0.3337789476,
0.6286417246,
-0.35032022,
0.169303894,
0.3655646443,
0.2435306311,
-0.0696838349,
-0.0005219746,
-0.1333024353,
-0.0096561722,
0.2015912831,
-0.0205808301,
0.0806735605,
-0.2476275712,
-0.0447631478,
0.0393287092,
-0.0765384436,
-0.037277285,
-0.0468261242,
0.0439799055,
0.057160262,
-0.475413084,
0.0588158071,
-0.087819092,
-0.1041298509,
0.0902893096,
0.3367287815,
0.2322866172,
-0.1297997832,
0.2429975271,
-0.0964808315,
-0.0747143626,
0.0860500932,
0.0781900138,
0.2276207805,
-0.0717222914,
0.1356783211,
0.1772404164,
0.3311465979,
-0.2294767946,
0.0507050566,
0.1601716578,
0.0505798757,
-0.030173488,
0.2075313479,
0.3017404377,
0.1239085197,
0.3368940353,
0.3831687272,
0.3606931567,
-0.2259494215,
0.051517956,
0.2434754372,
0.1107780039,
0.2150778621,
0.245101586,
0.1342368275,
0.1161523908,
-0.1113181561,
-0.0948398858,
0.0579563752,
0.0464528203,
0.002782438,
0.5716443658,
-0.0768293887,
-0.3242099285,
-0.0987122953,
-0.0120589482,
0.0106789432,
0.0604577772,
0.061186485,
0.5287554264,
0.485488534,
-0.1693524867,
-0.1019108519,
-0.2474681735,
0.1468539983,
0.3622614741,
0.1380725503,
0.4326591492,
0.3992356658,
0.4062814713,
-0.0924076587,
-0.4007275701,
-0.048533801,
0.1135687828,
0.1369554698,
0.0132214092,
0.0804359019,
-0.1333819628,
-0.2592556775,
-0.1468065381,
0.2556404173,
-0.4342420995,
0.0638420731,
-0.1879028082,
-0.1046539992,
-0.1646862328,
0.2017742395,
0.1639820635,
0.1576624215,
-0.3386787474,
-0.0578478202,
-0.0050499476,
-0.0924031585,
0.2078319937,
0.1546866894,
0.2194679528,
-0.0045989184,
-0.0708319917,
0.2528021336,
-0.2889795601,
-0.0531215034,
-0.2084931284,
-0.0132865217,
0.0091539491,
-0.1011138409,
0.1081353277,
0.2520718873,
-0.190833509,
0.2433754802,
-0.0326407775,
0.1004196852,
-0.4774590433,
0.0416664369,
0.1873504817,
-0.4557675123,
-0.1458470374,
-0.3373720646,
-0.2430201918,
-0.3728681207,
0.1628329903,
-0.5795018673,
-0.082581982,
0.2132816762,
0.1386142671,
-0.2262696475,
0.4907077551,
0.6586552262,
0.2515904605,
-0.0103411935,
-0.3757664561,
-0.3638254702,
0.1219910607,
-0.226285398,
-0.0621997789,
-0.0669342726,
-0.1357915401,
0.2469607294,
0.0311395302,
0.2954442203,
0.0071910173,
-0.2777398825,
0.1308329552,
-0.1203970686,
0.1989426613,
-0.2289442569,
0.2858726084,
0.2291436493,
-0.0513815768,
-0.0731203407,
-0.0155644789,
0.0748970434,
-0.01186263,
0.0380502194,
0.1570265591,
0.0344088003,
0.3442351818,
0.228108868,
0.108290799,
-0.3414270878,
0.0163101628,
-0.3145478964,
0.035747271,
-0.2887768745,
0.297352612,
-0.0171133578,
0.1958337724,
-0.0604817271,
-0.0329029858,
0.2337292135,
0.272393316,
-0.0157756731,
-0.0742744803,
-0.2161075771,
0.2192267776,
-0.2434018403,
-0.1523364484,
0.0390135385,
0.1653616577,
0.0350599997,
-0.0385341756,
0.1303578019,
0.0786520094,
-0.0162460059,
-0.1023340076,
-0.1499357224,
-0.5930963755,
-0.015427582,
0.1225270554,
0.0666929707,
-0.356107533,
-0.2237810194,
0.339669764,
0.1048018858,
-0.0266908631,
0.3971043825,
-0.063773945,
-0.3384091854,
-0.1645892411,
0.2110571116,
0.0602413006,
-0.0124022774,
-0.2504857779,
-0.4126062095
] |
https://github.com/huggingface/datasets/issues/365 | How to augment data ? | Using batched map is the way to go then.
We'll make it clearer in the docs that map could be used for augmentation.
Let me know if you think there should be another way to do it. Or feel free to close the issue otherwise. | Is there any clean way to augment data ?
For now my work-around is to use batched map, like this :
```python
def aug(samples):
# Simply copy the existing data to have x2 amount of data
for k, v in samples.items():
samples[k].extend(v)
return samples
dataset = dataset.map(aug, batched=True)
``` | 45 | How to augment data ?
Is there any clean way to augment data ?
For now my work-around is to use batched map, like this :
```python
def aug(samples):
# Simply copy the existing data to have x2 amount of data
for k, v in samples.items():
samples[k].extend(v)
return samples
dataset = dataset.map(aug, batched=True)
```
Using batched map is the way to go then.
We'll make it clearer in the docs that map could be used for augmentation.
Let me know if you think there should be another way to do it. Or feel free to close the issue otherwise. | [
-0.016944319,
-0.1455655098,
-0.3001067638,
-0.0854002833,
0.1244003773,
0.1755870283,
-0.0629434958,
0.3091180027,
0.1504425257,
0.1681785882,
-0.1306253523,
0.1878172755,
0.0309321582,
0.1995353699,
0.1029899269,
-0.0984937698,
0.0637117103,
0.167925328,
-0.2380009592,
0.1587178558,
-0.0724246353,
-0.308182627,
-0.0647776276,
-0.5189900994,
-0.088035509,
-0.0856836811,
-0.2475228757,
-0.062760219,
0.0163473655,
-0.3594219089,
-0.2194651812,
0.0810869783,
0.0797761604,
0.1623184085,
-0.0000954823,
-0.1678713411,
0.1755302101,
0.0509367511,
-0.2073568702,
0.4534385204,
0.0881540924,
-0.6956604719,
-0.038464237,
-0.1407383084,
-0.143008858,
-0.4254903495,
0.0193880219,
-0.0791337341,
0.3932871521,
-0.129887715,
0.3211500645,
0.0678813308,
0.3687792122,
-0.0091609582,
0.1637960523,
0.2675372958,
0.0934259742,
0.0432246327,
0.6970157027,
0.1130869389,
0.1968541145,
0.2750149667,
-0.0559569411,
-0.0547930822,
0.2242706865,
-0.0399326682,
0.1791329384,
-0.4076255262,
-0.0293972436,
0.0814064443,
0.3611023724,
0.2461704165,
-0.4855209887,
-0.2073441446,
0.1587937027,
-0.108865492,
-0.303198874,
-0.1451987177,
0.0775153413,
-0.0084154699,
-0.1796174347,
-0.224514395,
-0.1105176359,
0.2781723738,
0.0317735523,
0.470241487,
-0.054266952,
-0.0470597558,
-0.0925382003,
-0.2123643756,
-0.2038540244,
0.2598100603,
-0.1692329943,
0.3838729858,
-0.121526517,
-0.1353021264,
-0.1618474424,
-0.2341885269,
0.1250403672,
0.0737611726,
0.2169509232,
0.2232526839,
-0.1269287318,
0.1107356548,
0.2387804389,
-0.2189144641,
-0.0347955935,
0.1099752039,
0.0264376812,
-0.0756687149,
0.1884726882,
-0.0773251653,
-0.0992700234,
-0.2176900506,
-0.035562966,
-0.0619827323,
-0.0680258945,
-0.0185656846,
-0.1009470969,
0.0252060965,
-0.1755308658,
0.1599726826,
-0.0470882691,
0.1785899699,
-0.1924701333,
0.0894395858,
-0.1249765158,
0.2691837549,
0.1609806418,
-0.166964978,
-0.1795664132,
0.1405819952,
-0.1030168757,
-0.2629322112,
0.1747772396,
0.1583022177,
0.3005461097,
0.0060822181,
0.2012645155,
-0.0010652021,
0.0921209753,
0.0558233634,
0.349416852,
0.2594134212,
0.2155171633,
0.0042816848,
-0.2074761242,
0.1923595369,
0.0386597663,
0.0949691534,
-0.3523137569,
0.0304879993,
-0.3897177875,
0.3262459636,
0.1028609574,
-0.1323001385,
-0.0619797297,
0.3417807817,
0.1576265693,
-0.2634568214,
-0.0511371121,
0.0761926621,
0.0479429215,
-0.4188564718,
0.4802420437,
0.0124731734,
-0.3166129589,
0.0820772797,
-0.0641259402,
0.2990231216,
0.1567149609,
0.0775551349,
-0.1071474478,
0.0946886465,
-0.2257407904,
-0.0112325624,
0.3483181,
-0.1518348157,
-0.2772147954,
0.0411912054,
0.1846946478,
0.0708361119,
-0.0940928757,
0.2117483467,
0.2242876589,
-0.0889439583,
0.23058258,
0.3381913006,
-0.1150584221,
-0.0823143125,
-0.1669189632,
-0.1036003157,
0.2578805387,
0.1245642602,
-0.0462002903,
-0.1519451886,
0.2800815403,
-0.3861433268,
0.2009377033,
-0.2013781071,
0.3344907165,
0.2194982022,
0.2639068961,
0.2855588794,
-0.0182073805,
-0.1426213682,
-0.1639257073,
-0.0198116004,
-0.1903653741,
-0.0073358566,
0.1801940352,
-0.2361216098,
-0.1505277753,
-0.1746350229,
0.0857910588,
-0.3688028753,
0.3643600643,
-0.1430170834,
0.028469488,
-0.4876207709,
-0.0113341436,
-0.1459518224,
0.132283181,
0.0187702365,
-0.1852540672,
0.030189231,
0.1393854618,
-0.2906775177,
-0.1264600605,
0.2679730952,
-0.0552553572,
-0.1496492177,
0.0936705321,
0.321010679,
0.0813134611,
0.158423245,
0.177706331,
0.1764172912,
0.1058721766,
0.076997444,
0.1516088545,
0.2718895078,
0.0201323181,
-0.0853937715,
-0.0976313502,
0.2853248715,
0.2093071789,
0.0269206595,
-0.1385439932,
0.1989011616,
0.2945253849,
-0.0012595579,
-0.1319823414,
-0.0646299422,
-0.2141539752,
0.000232527,
0.2770749331,
-0.3124360442,
-0.175357461,
0.1000301316,
-0.3331009746,
-0.0305129476,
-0.0974093378,
-0.2062396258,
-0.3846090436,
-0.1452928185,
0.0785188004,
-0.0137728676,
-0.1569923311,
0.4487092197,
0.1871990263,
-0.0461754203,
0.2047529966,
0.1581123471,
0.0465566739,
0.0721347183,
0.0315401964,
0.0949200317,
0.3714198172,
0.0627292544,
-0.0108146295,
0.1013587043,
0.0127509311,
0.1902555823,
-0.166220963,
-0.2549057007,
-0.0093709528,
-0.1310875267,
0.0247405358,
-0.472127825,
-0.1677761525,
-0.4171991944,
0.0260448009,
0.2850014567,
-0.346455574,
0.1147304624,
0.1940823793,
0.0446640402,
0.0734463632,
-0.0137542756,
-0.0212278664,
0.2723364234,
0.0149816088,
0.2983079553,
-0.0440835878,
0.0612415858,
0.4653104842,
0.184761256,
0.1090761647,
-0.1462471932,
-0.6015241146,
-0.0726516247,
0.0547883548,
0.2365456074,
0.2434004843,
0.03150649,
-0.0687151849,
-0.1536566615,
-0.057948079,
-0.2477635145,
-0.0023931861,
-0.1426818222,
-0.1327076256,
-0.0629423559,
-0.3509023786,
-0.0605768636,
-0.2882085741,
-0.2773607969,
0.0394844972,
0.1879210025,
0.0891084149,
-0.1781796217,
0.2530728281,
-0.0417771116,
0.1533768624,
-0.0730846226,
-0.3125745058,
-0.2820256352,
0.5944554806,
-0.3446516693,
-0.1548202783,
-0.063640669,
-0.357843399,
0.2325509042,
0.1982689798,
-0.059197437,
-0.3129128218,
-0.027691599,
-0.0003508851,
-0.1766398847,
0.1462291032,
0.1281084865,
-0.1459638774,
-0.2287901342,
-0.0527048931,
0.0190037265,
0.089917168,
0.3732921481,
0.1933885813,
-0.1765828878,
-0.1203419343,
-0.0765815824,
0.0706174299,
-0.0274458677,
0.0174371134,
0.2258877307,
-0.1589359045,
0.1872395873,
0.0216043368,
-0.1034894139,
0.00511517,
-0.1158909798,
-0.2093847841,
0.1152480319,
0.2734788358,
-0.2112434506,
0.0363748893,
-0.1313434392,
-0.3586930633,
-0.0923406482,
0.2182247788,
-0.2953596413,
0.1778493822,
-0.19084391,
-0.0640854836,
-0.4218355417,
-0.1551460475,
0.0004917569,
-0.1836361736,
0.1839322746,
-0.1080471501,
-0.3785928488,
-0.0123384669,
-0.5417193174,
0.5136911869,
0.2506777942,
0.0765952021,
0.3777763844,
-0.1029011235,
0.0396285355,
-0.1556661725,
0.3985162675,
-0.3002896309,
-0.2740712464,
-0.1028812677,
0.0311426744,
-0.2915138006,
-0.0026045963,
-0.4094833732,
0.1118601114,
0.4298161566,
0.3906329274,
-0.0598618761,
-0.0031451397,
0.3289985061,
0.4012631178,
-0.153518483,
0.1334205866,
0.0586463809,
-0.2008093894,
-0.1939121485,
0.061684709,
0.1312017739,
-0.0089593567,
0.4233729243,
-0.2347906381,
-0.0938649401,
0.0015047491,
0.2801462412,
0.208946541,
0.3529751301,
0.3294104636,
-0.013072595,
-0.0385332666,
0.0447141603,
0.3722145855,
0.3186179996,
-0.057677146,
-0.2116484046,
-0.1892743111,
-0.4861543477,
0.6014276147,
-0.0915881246,
0.2584629357,
0.2055290937,
-0.3042531908,
0.058681421,
-0.2436978519,
0.2452332824,
0.1928696632,
0.0815609545,
-0.2515933216,
-0.5197948217,
0.0003868043,
-0.1165877134,
-0.0839472488,
0.220549345,
-0.1855597347,
-0.1190514266,
0.3397482634,
0.3805866838,
0.7213771343,
0.3727220893,
-0.0444137007,
0.064908877,
-0.2082365304,
0.2102980763,
-0.1514596939,
0.1676412523,
-0.1084761098,
-0.149298653,
0.0927327201,
0.138888061,
0.0394610316,
0.2289905846,
-0.1073728576,
0.1823102683,
-0.1157021374,
-0.019616507,
-0.094539769,
0.0810038969,
0.2040972859,
-0.1747233868,
-0.0526402444,
0.2750527561,
-0.010024745,
-0.2535114586,
-0.1283596903,
-0.1450089663,
-0.095341377,
0.0102565065,
-0.0497435406,
0.0456535593,
-0.1479802579,
0.0118606426,
0.2016210258,
-0.2020268291,
-0.1585793048,
-0.0038153334,
0.080493167,
0.3847676516,
-0.0004487215,
0.2140654922,
0.2011196315,
0.2012855113,
-0.089324452,
0.0679805428,
0.2940026224,
-0.0240130462,
-0.221398294,
0.1572825164,
0.0887472928,
-0.4708002806,
-0.2747163177,
-0.0228284337,
0.0618993491,
-0.3910628557,
-0.0462360345,
0.4183834493,
-0.0696104988,
-0.225430429,
0.2535313368,
0.2210983932,
-0.440109551,
0.3310344517,
0.2801365256,
-0.1314961463,
-0.0531031601,
0.0921125934,
0.1217627674,
-0.2552763224,
0.4135271907,
-0.0591218546,
-0.0225002654,
-0.2673144937,
-0.1771592945,
0.1137655228,
0.0449485406,
-0.0836929679,
0.0587837584,
0.0113007277,
0.0981935859,
0.0298101306,
0.1216482818,
0.0794438422,
-0.1278664768,
-0.3241100311,
-0.6035915613,
0.1919020563,
0.3020668328,
0.2361077964,
-0.01861424,
0.1828113347,
-0.24268502,
0.5098893642,
-0.4830341935,
0.1032638103,
0.2558168769,
0.2338086218,
-0.0276296996,
-0.0949620381,
-0.0028970167,
-0.1241881996,
0.2989675999,
-0.0362123027,
-0.0985417962,
-0.3450576067,
-0.0860115737,
0.0079727322,
-0.0643565804,
-0.0786524117,
0.0277403742,
0.0084653273,
-0.0038841786,
-0.3635753691,
0.079745695,
-0.100662671,
-0.0201906115,
0.2206114382,
0.3439672887,
0.2404595912,
0.0768488944,
0.1137533933,
-0.0868782699,
-0.0303419344,
0.1041285098,
0.0236727707,
0.1436490715,
-0.1040572375,
0.3017785549,
0.1183746159,
0.1194552034,
-0.0834004432,
0.1052595377,
0.0853784531,
0.0126016587,
-0.1063188016,
0.3554541171,
0.2193900198,
0.0841825008,
0.2463786006,
0.2900206745,
0.4652895629,
-0.3328397274,
0.097040236,
0.1872601658,
0.1010139808,
0.2055878788,
0.1568876952,
0.2433467358,
0.0172065496,
-0.0071422905,
0.0407138243,
0.0353429914,
-0.0917153656,
-0.0693186,
0.3280281723,
-0.1989978552,
-0.2737839818,
-0.0883593112,
-0.0933990628,
0.0289198123,
0.1247574389,
0.0135722794,
0.3981097341,
0.4890504181,
-0.1650622338,
-0.0689252317,
-0.1213797554,
0.2238373458,
0.2790649533,
0.1664377749,
0.4490498006,
0.482293278,
0.3401311934,
0.0608151965,
-0.4302316308,
-0.0536184162,
0.1077172458,
0.0273708664,
-0.0503117219,
-0.0741055161,
-0.2121244967,
-0.2233176082,
-0.0840658545,
0.2226673663,
-0.3029945791,
0.1754540801,
-0.2292856276,
-0.1337376982,
-0.199699536,
0.0953212827,
0.0933140963,
0.2343371511,
-0.2704225183,
-0.0077716233,
0.1015134379,
-0.1385532022,
0.2698787749,
0.2487731278,
0.2883715928,
0.0173132047,
-0.152237013,
0.2424096316,
-0.1098288223,
-0.094055146,
-0.2680333257,
-0.0830811784,
0.0670159981,
-0.0245253909,
0.1339432597,
0.2917024791,
-0.3056377172,
0.2154828757,
0.0331378281,
0.088130042,
-0.2701216638,
-0.0004437864,
0.2386178076,
-0.4933006167,
-0.1219577864,
-0.4256599545,
-0.2533672452,
-0.4285173416,
0.079748109,
-0.3791306615,
-0.0102193095,
0.0892613232,
0.1759544462,
-0.1422219276,
0.555195868,
0.4812189043,
0.0739836767,
-0.0124302106,
-0.3123760223,
-0.483633101,
0.2194249034,
-0.0562756583,
-0.139025569,
-0.0185143724,
0.0015060082,
0.2872327268,
-0.0130770244,
0.2859384418,
-0.0585888922,
-0.2068441212,
0.071301952,
-0.3207525313,
0.2485236675,
-0.1291373372,
0.3100482523,
0.2314137369,
-0.0674781129,
-0.0694198087,
-0.1177904159,
0.2514117956,
-0.0413073711,
-0.0110295042,
0.0740175098,
0.1275633574,
0.4170663655,
0.2210707217,
0.0901792645,
-0.4682819843,
-0.0659739226,
-0.3132874966,
-0.0571288578,
-0.3910633922,
0.2766560912,
0.0515569709,
0.3043653667,
0.0733211786,
-0.2173112184,
0.1498273462,
0.2771362364,
0.0013815537,
-0.0360092707,
-0.1950935125,
0.328558594,
-0.0998544991,
-0.197616145,
-0.1854779571,
0.1860241741,
0.008391859,
-0.133310765,
-0.0704698637,
-0.2347141504,
0.2004670203,
-0.162376821,
-0.1646198928,
-0.4515867531,
-0.0501349866,
0.099200666,
0.0184293631,
-0.4311223328,
-0.1648068428,
0.2243679464,
0.0660409629,
-0.1228899509,
0.4751554728,
-0.1930028796,
-0.3418256044,
-0.0845567659,
0.1866379529,
0.1729300469,
-0.0744502693,
-0.3311721385,
-0.3802112341
] |
https://github.com/huggingface/datasets/issues/365 | How to augment data ? | It just feels awkward to use map to augment data. Also it means it's not possible to augment data in a non-batched way.
But to be honest I have no idea of a good API... | Is there any clean way to augment data ?
For now my work-around is to use batched map, like this :
```python
def aug(samples):
# Simply copy the existing data to have x2 amount of data
for k, v in samples.items():
samples[k].extend(v)
return samples
dataset = dataset.map(aug, batched=True)
``` | 35 | How to augment data ?
Is there any clean way to augment data ?
For now my work-around is to use batched map, like this :
```python
def aug(samples):
# Simply copy the existing data to have x2 amount of data
for k, v in samples.items():
samples[k].extend(v)
return samples
dataset = dataset.map(aug, batched=True)
```
It just feels awkward to use map to augment data. Also it means it's not possible to augment data in a non-batched way.
But to be honest I have no idea of a good API... | [
-0.0686047524,
-0.0305390656,
-0.2990654111,
-0.1101845801,
0.062444564,
0.3354526758,
-0.1749582589,
0.2741320133,
0.1564611346,
0.1322220117,
-0.0443676598,
0.0903131217,
-0.0178969447,
0.2145760655,
0.1571807712,
-0.1104837731,
0.178280741,
0.1195115745,
-0.0964067429,
0.2644737065,
-0.0689705759,
-0.4659143686,
-0.0256333724,
-0.5230013132,
-0.0577692874,
-0.1176650599,
-0.3457256258,
-0.2689726949,
0.0295525361,
-0.3138853908,
-0.1750326008,
0.0457122512,
0.1227498874,
0.2257131636,
-0.0001022616,
-0.1665669084,
0.2202334851,
0.080063872,
-0.3130414486,
0.3663995564,
0.0928264856,
-0.7476432323,
0.0595018342,
-0.0558866262,
-0.1208658814,
-0.4913313985,
0.1032007933,
-0.1203036457,
0.3686804175,
-0.1997428536,
0.2372494489,
0.031000264,
0.3845406175,
0.0061084628,
0.0283368435,
0.401158452,
0.1855532378,
0.0620644949,
0.7107822299,
0.1219976097,
0.3612777889,
0.0551541634,
-0.204297781,
-0.0643416047,
0.2428515553,
0.006809637,
0.1272957027,
-0.4292885661,
0.0064512407,
0.1234802902,
0.4534496367,
0.2251907736,
-0.5979700089,
-0.2979208231,
0.1898913682,
-0.0986822471,
-0.4096085429,
-0.0384186432,
0.1686008722,
0.0455288924,
-0.2218218148,
-0.2193210572,
-0.0807442144,
0.3997990191,
0.1386636198,
0.3918262422,
0.0202556215,
-0.0249933414,
-0.1155007035,
-0.2687824368,
-0.1262354553,
0.1236282885,
-0.2063965201,
0.452824831,
-0.1286779046,
-0.1373748332,
-0.2147859633,
-0.2292485535,
0.1077813655,
0.1561010927,
0.1647679806,
0.1895723641,
-0.20652996,
0.1317078769,
0.2149590403,
-0.3526518643,
0.0053518303,
0.1251104027,
-0.00391992,
-0.1864407361,
0.3491333127,
-0.0952048004,
-0.0962552652,
-0.0527512915,
-0.020252537,
-0.1264338046,
-0.1354443133,
0.0481496677,
-0.084644407,
-0.0587635711,
-0.2746986151,
0.1306731701,
-0.0200754516,
0.0558103397,
-0.2272863239,
0.0899394974,
-0.1803680062,
0.2548747957,
0.3009601831,
-0.2191844881,
-0.0647227168,
0.1165493876,
-0.0582758076,
-0.0933068097,
0.1988828927,
0.146355018,
0.2114190459,
0.0358113088,
0.0836599916,
-0.1050401181,
0.0959553495,
0.0261886753,
0.2474203706,
0.1416901499,
0.2138693333,
0.0465461165,
-0.1783533692,
0.1664626598,
-0.0362407193,
0.1221702322,
-0.4160352051,
0.0128166899,
-0.389531821,
0.2586481571,
0.1247189194,
-0.2470237017,
-0.2244284898,
0.3998590112,
0.0999822617,
-0.2942929268,
0.0754977688,
0.1829732358,
0.1183257997,
-0.3427893221,
0.480463177,
0.0219710022,
-0.3363800645,
0.0242478848,
-0.1549204439,
0.3433930278,
0.1077008322,
-0.0038102455,
0.0000534654,
0.1986742914,
-0.1652545333,
-0.158856675,
0.3236879408,
-0.2099805176,
-0.2859991789,
-0.0238591488,
0.1997103393,
0.0716655627,
-0.1360218227,
0.3386338353,
0.2250987589,
-0.0124284048,
0.2704178691,
0.4746153057,
-0.1091530845,
-0.1832757294,
0.0216444582,
-0.1854126751,
0.2906927168,
0.1925905198,
-0.1357134283,
-0.1341417879,
0.3120117784,
-0.5104280114,
0.1714840978,
-0.2035458535,
0.3540634811,
0.1331251115,
0.2125597,
0.3954839706,
-0.0858006775,
-0.2248328179,
-0.2453146875,
-0.0238485485,
-0.0882089362,
-0.1936911941,
0.1417807788,
-0.2581710219,
0.0926205069,
-0.1290220618,
0.1425094754,
-0.3532497883,
0.2598412037,
-0.2204670161,
0.0691281259,
-0.5130606294,
-0.0564299077,
-0.1649246514,
0.2361112535,
0.0663796514,
-0.1898200512,
-0.0410506576,
0.3220971227,
-0.3198962808,
-0.2195447087,
0.3375580609,
-0.1587689817,
-0.1490616649,
0.1133330837,
0.2951255739,
0.0626495034,
0.2453919947,
0.2639642656,
0.3063479066,
0.0540743992,
0.1400565952,
0.064187333,
0.3234606385,
-0.0238998979,
-0.1454492807,
-0.0821393132,
0.1868114173,
0.1285755932,
0.1723141074,
-0.258269459,
0.2777763903,
0.3268328309,
0.0306298137,
-0.1232329085,
0.0002799183,
-0.2246225774,
-0.0325746238,
0.3339377046,
-0.2960823178,
-0.0950020328,
0.0237667356,
-0.5188769102,
-0.1817837805,
-0.0920925289,
-0.1316089034,
-0.4617497325,
-0.1724645495,
0.0933030769,
-0.0977837145,
-0.1816693842,
0.3911105096,
0.1194310337,
-0.0705560893,
0.2989989519,
0.1878963411,
0.0435692295,
0.1824369729,
-0.0562931076,
-0.0972773731,
0.3971742392,
0.2224533707,
0.2089010626,
0.0221776217,
0.0124479085,
0.1462172121,
-0.1039225161,
-0.1517766118,
-0.1404372603,
-0.2071709633,
0.0644377619,
-0.6927341819,
-0.1695431471,
-0.4011874795,
-0.0822535455,
0.2475291789,
-0.2263848037,
0.0246046036,
0.1577134728,
0.1307264268,
0.0276362672,
-0.2404659539,
-0.0117860287,
0.2374353409,
0.046320755,
0.2038218677,
0.009705279,
0.0305845626,
0.5850214362,
0.1105988473,
0.2222079784,
-0.1531334668,
-0.487116456,
-0.1613036394,
0.1227223575,
0.202814579,
0.1914292276,
-0.0455104299,
-0.0616299622,
-0.1874712408,
-0.1129962504,
-0.1646444499,
0.1367575824,
-0.1563370079,
-0.1317684948,
-0.0678244457,
-0.2224404514,
0.1538298428,
-0.4205823541,
-0.2322579324,
0.0845217705,
0.1622947156,
0.0418923683,
-0.2198494524,
0.2272855192,
0.0155684426,
0.0743992478,
-0.055906117,
-0.1184880808,
-0.1790707111,
0.5194664001,
-0.2635306418,
0.00463962,
-0.0111851022,
-0.3212346733,
0.155066818,
0.1527658999,
-0.010233745,
-0.2706617415,
-0.078721121,
0.0689050034,
-0.1759994626,
0.1595033854,
0.0822277218,
-0.1964637637,
-0.1351795793,
0.081720002,
-0.0439850688,
-0.0049762018,
0.3328840137,
0.1656617373,
-0.050864324,
-0.1112073809,
-0.1176545918,
0.099425897,
0.1196711659,
-0.1047910228,
0.122210443,
-0.2279509008,
0.135080725,
-0.0081047192,
-0.0707653165,
-0.1330642849,
-0.1515103132,
-0.1862461865,
-0.0248102657,
0.2846746743,
-0.1325039119,
0.0450833514,
-0.1982469857,
-0.4388124049,
-0.07209526,
0.0953868926,
-0.46093297,
0.2318617404,
-0.2455287278,
-0.1252290159,
-0.4214310348,
-0.2600912452,
0.0442186482,
-0.1415375173,
0.2868055403,
-0.0417852737,
-0.3027784526,
-0.0875812098,
-0.5137752891,
0.678324163,
0.234379366,
0.151517421,
0.4663484991,
-0.0487826243,
0.1367243677,
-0.0199853275,
0.3645615876,
-0.2393356562,
-0.4498534799,
-0.1944305003,
0.0865532085,
-0.2527428269,
-0.044156149,
-0.3235746026,
0.1160066202,
0.3699187636,
0.3898535669,
0.0368694365,
0.0640152544,
0.3046593368,
0.4886602163,
-0.1422291249,
0.011884369,
0.1554078013,
-0.1388305426,
-0.0950958729,
0.0397461057,
0.0608252436,
-0.0051517859,
0.4857856035,
-0.2444619536,
-0.1724440455,
0.1839721799,
0.3422127664,
0.0825830251,
0.2498891056,
0.3170358837,
0.00229121,
-0.0581328496,
0.0759144202,
0.4048274755,
0.2555459142,
-0.1385142505,
-0.329158932,
-0.2433083355,
-0.4462718666,
0.7755659819,
-0.3907977045,
0.3191574514,
0.3719857037,
-0.2240993828,
-0.0369269885,
-0.4037374854,
0.1591904908,
0.1295941472,
0.1980760247,
-0.382671088,
-0.6550891399,
0.1126243398,
0.0173242986,
-0.022281073,
0.2155148089,
-0.2285444438,
-0.0145862978,
0.3182500601,
0.435949564,
0.624062717,
0.3476094007,
0.0405565314,
-0.0611749515,
-0.213931635,
0.3333137333,
-0.1115974188,
0.2151462734,
-0.0151038542,
-0.1331291497,
-0.0182747915,
0.0951512977,
-0.0188475102,
0.2144785672,
-0.0471988469,
0.2760601342,
-0.1295552552,
0.0813128576,
-0.0696475804,
0.0608043671,
0.2009565234,
-0.250506103,
-0.0092638489,
0.2317185551,
0.0416477472,
-0.3046417534,
-0.195914492,
-0.0213047136,
-0.0609896369,
0.1346797198,
-0.1553376913,
-0.0658602715,
-0.0760356635,
-0.0299910717,
0.3038130105,
-0.2288007736,
-0.1412007809,
-0.0339290015,
-0.0257027596,
0.4377288222,
0.0033880249,
0.0600699671,
0.1074738055,
0.1966540068,
-0.1127084047,
-0.0034190081,
0.2407531887,
0.1189407855,
-0.1846676916,
0.2388107032,
0.1455958784,
-0.4697572589,
-0.2768240869,
0.0003468934,
0.0107702166,
-0.3005549312,
-0.1240956336,
0.412163198,
0.0356794223,
-0.1533353627,
0.1705083698,
0.2669610679,
-0.3707011938,
0.3103792965,
0.1299421042,
-0.1879435182,
-0.0595058315,
0.0679805428,
0.0540505014,
-0.373644948,
0.4893710613,
-0.0558594838,
0.0053877383,
-0.1790041625,
-0.1076264381,
0.0915151536,
0.2114716768,
-0.2339438796,
0.0985868871,
0.1644649655,
0.198233068,
-0.1207280159,
0.1492049843,
0.0705932602,
-0.1806441098,
-0.3886055946,
-0.509319067,
0.2766163945,
0.3227668405,
0.2374881506,
0.1155329794,
0.0207693614,
-0.2241153717,
0.5227139592,
-0.3601152897,
0.0942511782,
0.3992100656,
0.177846238,
0.0366685838,
0.0398638807,
-0.1118738875,
-0.0668565854,
0.206897527,
-0.1160576195,
0.0647535026,
-0.2455609739,
-0.0262574181,
0.0453973264,
-0.0402680784,
0.0513610318,
-0.0631359071,
-0.0252774991,
0.0155977122,
-0.5234678984,
0.0147896558,
-0.1247652769,
-0.1039094031,
0.1025298163,
0.2808089256,
0.2882391512,
-0.1843799651,
0.2178686261,
-0.1010933965,
-0.0590313897,
0.0583568178,
0.0271071475,
0.2443361133,
-0.0623427518,
0.2635539174,
0.153941676,
0.318433255,
-0.2002065629,
0.0232458599,
0.1509006023,
0.0137543306,
-0.0927893072,
0.2279708683,
0.2638508976,
0.1314633638,
0.2674958408,
0.3891097903,
0.3625017703,
-0.210479483,
0.0550907776,
0.2448413074,
0.1726585925,
0.1529683769,
0.1774128973,
0.2189471424,
0.0491283834,
-0.0819100961,
-0.079971768,
0.0684906691,
-0.0467880741,
-0.028063599,
0.3850805759,
-0.1099333689,
-0.3174655139,
-0.0624714345,
-0.0103152283,
-0.0300273076,
0.0398955531,
0.033257775,
0.3949255347,
0.5789949298,
-0.2148536444,
-0.0597631298,
-0.2156556845,
0.1446568221,
0.295548439,
0.2111573219,
0.4773835242,
0.5241522789,
0.334281683,
0.0388524719,
-0.338642925,
-0.0191392936,
0.0598634258,
0.1324778944,
0.0130388886,
-0.0174242035,
-0.1390548795,
-0.2302509546,
-0.1648149788,
0.2870804965,
-0.3954574764,
0.0660755336,
-0.19788827,
-0.0959370211,
-0.1431286037,
0.1666707397,
0.2247415334,
0.1581087708,
-0.3085287809,
-0.076001592,
0.0208600685,
-0.099598363,
0.1876103133,
0.2136707604,
0.2148958147,
-0.0233281888,
-0.1248135045,
0.3304816484,
-0.2685584724,
-0.0725422949,
-0.1951675713,
-0.0014986005,
-0.0101772919,
-0.1138461232,
0.0031900778,
0.2585466206,
-0.1697764993,
0.2449408025,
-0.1240998805,
0.2383803129,
-0.458958596,
0.0838287026,
0.2679065466,
-0.481374234,
-0.0507756956,
-0.2813663483,
-0.1576602757,
-0.3973486423,
0.1848390698,
-0.4307298362,
-0.1620963812,
0.1841871887,
0.1441444457,
-0.1859394163,
0.5007234216,
0.7532906532,
0.2148449421,
0.1294789612,
-0.2797744572,
-0.3995545208,
0.1798865497,
-0.066640608,
-0.1061079055,
-0.0972599685,
-0.1658446044,
0.2976008058,
0.0156702418,
0.3528468907,
-0.059682712,
-0.2333123088,
0.0900559872,
-0.131596148,
0.2456475943,
-0.133249715,
0.3043702245,
0.1825483143,
0.0187441036,
-0.1065889075,
-0.0690151155,
0.1248450875,
-0.1145303398,
0.0239360407,
0.138707906,
-0.0179992206,
0.4528111815,
0.2902180552,
0.0922636613,
-0.4518585205,
0.0232944414,
-0.3329682946,
0.0347300619,
-0.3404894769,
0.3179113567,
-0.1197087318,
0.1195729673,
-0.0525700748,
-0.1263475418,
0.2401864827,
0.2379949689,
-0.0941948146,
-0.0937099755,
-0.2329600602,
0.1638816297,
-0.2874904275,
-0.2557799816,
-0.0693471283,
0.1223285645,
0.0813199878,
-0.0710070804,
0.0695212036,
0.0525320768,
-0.0644517243,
-0.1906769872,
-0.1212416142,
-0.5665040612,
-0.0719178766,
0.0426796451,
0.1491260678,
-0.3013896346,
-0.2243121266,
0.3422875702,
0.0864364728,
-0.0063538775,
0.4844030142,
-0.169726789,
-0.2994281054,
-0.153960526,
0.2351777703,
0.1029731035,
0.010391131,
-0.3394872844,
-0.3807589412
] |
https://github.com/huggingface/datasets/issues/365 | How to augment data ? | Or for non-batched samples, how about returning a tuple ?
```python
def aug(sample):
# Simply copy the existing data to have x2 amount of data
return sample, sample
dataset = dataset.map(aug)
```
It feels really natural and easy, but :
* it means the behavior with batched data is different
* I don't know how doable it is backend-wise
@lhoestq | Is there any clean way to augment data ?
For now my work-around is to use batched map, like this :
```python
def aug(samples):
# Simply copy the existing data to have x2 amount of data
for k, v in samples.items():
samples[k].extend(v)
return samples
dataset = dataset.map(aug, batched=True)
``` | 60 | How to augment data ?
Is there any clean way to augment data ?
For now my work-around is to use batched map, like this :
```python
def aug(samples):
# Simply copy the existing data to have x2 amount of data
for k, v in samples.items():
samples[k].extend(v)
return samples
dataset = dataset.map(aug, batched=True)
```
Or for non-batched samples, how about returning a tuple ?
```python
def aug(sample):
# Simply copy the existing data to have x2 amount of data
return sample, sample
dataset = dataset.map(aug)
```
It feels really natural and easy, but :
* it means the behavior with batched data is different
* I don't know how doable it is backend-wise
@lhoestq | [
-0.0632993877,
-0.055646807,
-0.2771684825,
-0.0368639939,
0.0604923964,
0.2008811533,
-0.0867592394,
0.3342858255,
0.2316300273,
0.1316545159,
-0.0439284034,
0.1579213589,
-0.0891118497,
0.2297117859,
0.1699340194,
-0.0823396221,
0.1174817085,
0.1052645296,
-0.2327548414,
0.137830317,
-0.1590788364,
-0.4287637472,
-0.0023523942,
-0.5560160875,
-0.0530021749,
-0.14001064,
-0.2512087226,
-0.1560887992,
-0.085892573,
-0.2709841132,
-0.1612510979,
-0.0034371237,
0.069106929,
0.2275176942,
-0.0001008931,
-0.1184826493,
0.1640574783,
-0.0095508285,
-0.3493941128,
0.3299858868,
0.1156730726,
-0.6480943561,
0.0277307183,
-0.1890930831,
-0.0795667395,
-0.3808267713,
0.0249032993,
-0.1372267157,
0.3346523643,
-0.2232284695,
0.2483514547,
0.0744489729,
0.2788705826,
-0.0202089641,
0.0942941606,
0.4097536504,
0.1738607585,
0.0109543651,
0.749884665,
0.1245981678,
0.2768812478,
0.1257329881,
-0.16573897,
-0.0216297861,
0.1608054042,
0.0382639542,
0.2337288111,
-0.3121773005,
0.0138913579,
0.0777554959,
0.2978189886,
0.1781381071,
-0.5725192428,
-0.273211062,
0.1189947128,
-0.1241752356,
-0.4445826411,
-0.0784589499,
0.0991722643,
0.0009635944,
-0.2592441738,
-0.1105474383,
-0.0711180419,
0.440238297,
0.0891344175,
0.4257204831,
0.0323689766,
-0.0025471337,
-0.1321628839,
-0.253195405,
-0.1832224131,
0.0975159854,
-0.1246485859,
0.4209004939,
-0.0579504967,
-0.126613602,
-0.0677434653,
-0.3055939078,
0.1858883798,
0.109973222,
0.1929393113,
0.2106940001,
-0.2272464633,
0.154216975,
0.2658586204,
-0.2425048649,
-0.0022898018,
0.2041573822,
-0.0758706033,
-0.1693225056,
0.2239777148,
-0.0477010682,
-0.0655767024,
-0.0060864277,
-0.026939813,
-0.0382165164,
-0.0631444529,
0.0974367708,
-0.1065987051,
0.0104913116,
-0.1787971556,
0.0322607681,
-0.04190097,
0.107041575,
-0.1549943984,
0.0590066053,
-0.154771775,
0.2281044424,
0.2352563143,
-0.2266713679,
-0.1633025408,
0.0801992193,
-0.0895976573,
-0.2012699544,
0.2189155668,
0.2489342839,
0.2741269767,
-0.0490847714,
0.1457115114,
-0.0827633888,
0.1349955797,
0.0380846113,
0.3588129282,
0.1116047353,
0.2421414554,
0.0051657334,
-0.1018318981,
0.1701469421,
-0.0962678343,
0.0845352486,
-0.3631030917,
-0.0655138344,
-0.3702997565,
0.2830747068,
0.0265309066,
-0.1139076352,
-0.2542051971,
0.3372010291,
0.188534826,
-0.1818661392,
0.0896436796,
0.0595283136,
0.1152425259,
-0.3669934571,
0.4468903542,
0.1134109348,
-0.3732807934,
0.0227275491,
-0.0959553421,
0.2931319475,
0.0677029938,
0.0707121715,
-0.0800485313,
0.1440457404,
-0.2160286456,
-0.0971203744,
0.4118098021,
-0.1938972175,
-0.3195028901,
-0.017013466,
0.1635001898,
0.1572091877,
-0.082836695,
0.2576361001,
0.3237346709,
-0.0105776191,
0.3484740555,
0.4347504377,
-0.1468312144,
-0.1505579948,
-0.0593649372,
-0.1252627671,
0.2915832698,
0.1138484329,
-0.1347660422,
-0.0784997344,
0.3138870001,
-0.4948128164,
0.2585174143,
-0.2050045729,
0.3731129467,
0.0273983292,
0.2850506604,
0.3254345655,
-0.0862021446,
-0.1755848229,
-0.3358180821,
-0.0384171829,
-0.187389046,
-0.2033320367,
0.1539625525,
-0.2810044885,
0.0203975067,
-0.0487803854,
0.0939455554,
-0.328169018,
0.2975736856,
-0.2360197604,
0.0740346238,
-0.480919838,
-0.0414198413,
-0.2468386143,
0.1729847491,
0.0421876237,
-0.2250712514,
-0.0013358369,
0.2824293077,
-0.3155223429,
-0.2743341625,
0.3438549042,
-0.1667286605,
-0.1599192172,
0.1341204941,
0.2437433004,
0.0334380381,
0.157735005,
0.2464084178,
0.1587112993,
-0.0070620505,
0.2250780761,
0.1397741288,
0.2573009729,
-0.1308218539,
-0.193028003,
-0.0539352484,
0.2313885391,
0.1118428111,
0.1938219219,
-0.2354970574,
0.2226426303,
0.2522434294,
-0.0014296919,
-0.1625967622,
-0.1034442857,
-0.2591074705,
0.0364794098,
0.3868322968,
-0.2824318707,
-0.0578860864,
0.0966756195,
-0.3447912931,
-0.1486642659,
-0.0739675015,
-0.224808991,
-0.4727673531,
-0.2004030794,
0.1041826308,
0.017495364,
-0.0523005277,
0.4373736084,
0.1997582018,
-0.095863387,
0.3652169108,
0.1758299023,
0.0071634464,
0.1341393292,
-0.0781100988,
0.0565465167,
0.4229615033,
0.1454012692,
0.1783400476,
0.0495877862,
0.040542759,
0.0778422356,
-0.1019480154,
-0.234796077,
-0.0607714541,
-0.1969968975,
0.0359812677,
-0.645763278,
-0.13880454,
-0.3514401317,
-0.0789290369,
0.2720775902,
-0.3246183991,
-0.0186639745,
0.0961515382,
0.094021596,
0.0681632236,
-0.2781264782,
0.0735721961,
0.2336939424,
0.029743243,
0.2181044817,
-0.0871242881,
0.0034384578,
0.5335657001,
0.1826736927,
0.1518416703,
-0.1639770567,
-0.4550441206,
-0.0837378651,
0.0782781467,
0.2234655619,
0.3338837624,
-0.0333236568,
-0.0305689573,
-0.2349003702,
0.012291979,
-0.0477759875,
0.0319388807,
-0.1580986679,
-0.0603867099,
-0.0506210476,
-0.2878414094,
0.0573041178,
-0.4049879909,
-0.2539073825,
0.0681860074,
0.2193064988,
0.1133341193,
-0.1974880397,
0.2885579169,
-0.0221007578,
0.1497108638,
-0.2128755748,
-0.2604113519,
-0.2132450044,
0.5349242091,
-0.3195922077,
0.0504669249,
-0.1254553497,
-0.3893169761,
0.2763388157,
0.2912281752,
0.0172550976,
-0.2947853804,
0.0436650962,
0.1051568091,
-0.1098922119,
0.2192496359,
0.2075726688,
-0.1153018922,
-0.168635264,
-0.0432936065,
0.0579322577,
0.0500367358,
0.373149097,
0.234238714,
-0.1522738039,
-0.146170482,
-0.0776288733,
0.1971176267,
0.0783794671,
-0.077452898,
0.1273074448,
-0.1476611346,
0.1118197888,
-0.0258346722,
-0.0768003538,
-0.1838397682,
-0.1954332143,
-0.2768785059,
-0.0051433854,
0.1864016503,
-0.0620649457,
0.0897915661,
-0.0901138335,
-0.4138376713,
-0.1433576047,
0.2293685377,
-0.4528872967,
0.1833263338,
-0.1798186004,
-0.0539081618,
-0.5003441572,
-0.0958311334,
-0.03210558,
-0.2795144022,
0.331474781,
-0.0826106071,
-0.4040455818,
0.0106440298,
-0.4854610562,
0.6610715389,
0.271807313,
0.0265720896,
0.5393339992,
-0.1853724122,
0.0325597115,
0.0023204871,
0.4078961611,
-0.2625853717,
-0.3478536308,
-0.1125152856,
0.0016584247,
-0.2887252867,
-0.0932435244,
-0.3349478841,
0.1229611933,
0.3708435893,
0.3897207975,
-0.0238390788,
0.1330491453,
0.2525304556,
0.4104084074,
-0.1656051725,
0.0772895366,
0.1077203453,
-0.0894365162,
-0.0334250815,
0.0357290804,
0.0311299711,
-0.0031650066,
0.4475530386,
-0.2872541845,
-0.1344518214,
0.1289484799,
0.2831685841,
0.100238502,
0.3788499832,
0.2231845558,
0.016169332,
-0.1264452487,
0.0592143759,
0.3904911578,
0.3411540985,
-0.253139317,
-0.2315784991,
-0.205869168,
-0.5123685002,
0.6896957159,
-0.2535872161,
0.2955572307,
0.3373088241,
-0.3510532975,
0.0188249107,
-0.340611428,
0.1701041162,
0.1007561609,
0.0842803419,
-0.3459069133,
-0.590957284,
0.0531343855,
-0.1161703616,
-0.0468521491,
0.1868207306,
-0.3011863232,
-0.1200273558,
0.425034076,
0.4480887651,
0.5949053764,
0.3401128054,
0.0870729238,
-0.0557732806,
-0.0333282501,
0.2986180186,
-0.0762588754,
0.1441031098,
-0.0258997083,
-0.0750056654,
0.0151065961,
0.0921253338,
-0.0761179626,
0.3233537376,
-0.0840925872,
0.1574979126,
-0.1557339132,
0.0077822446,
-0.111647442,
0.0539858639,
0.22075288,
-0.1985208988,
-0.0210074279,
0.2352900803,
0.0335561968,
-0.2614860535,
-0.1723608673,
-0.0704655796,
-0.1075225621,
0.030369699,
-0.0626311004,
-0.0471483245,
-0.1693162769,
0.0062610321,
0.3074279726,
-0.2784875333,
-0.2213050574,
-0.1035398766,
-0.0684425533,
0.4430475235,
0.047143355,
0.0354175679,
0.2193325758,
0.3094555736,
-0.064148657,
-0.0689176321,
0.2699545622,
0.1516635865,
-0.1144075096,
0.2225409597,
0.13024275,
-0.474619031,
-0.3539476097,
0.011416506,
-0.0010119565,
-0.4632716775,
-0.1342923641,
0.4919711053,
-0.0073935464,
-0.1561769694,
0.169960618,
0.210972935,
-0.4143811762,
0.3574541807,
0.1502197385,
-0.1569999158,
-0.0096388059,
0.0831008106,
0.1553246677,
-0.2740045786,
0.4114090204,
-0.0407930277,
0.0334748998,
-0.2200434506,
-0.2246533632,
0.1850558966,
0.0983284712,
-0.1128589362,
0.0988501459,
0.101062879,
0.115933165,
-0.001839513,
0.1043529212,
0.2066407204,
-0.1912950575,
-0.2985829711,
-0.5659023523,
0.3158523738,
0.3864017427,
0.2673152685,
0.0548994541,
0.1596598774,
-0.288972795,
0.5095252991,
-0.395359844,
0.0165907703,
0.3821216524,
0.2297485769,
0.0415966772,
-0.0119094756,
-0.0195814017,
-0.0496753044,
0.2320824862,
-0.0433300436,
-0.0343034193,
-0.2969153225,
-0.0451011211,
0.0337534994,
-0.0689406693,
0.1060495749,
-0.0016056672,
0.1331323534,
0.091170162,
-0.4856991768,
0.0786508694,
-0.0235217959,
-0.0783712566,
0.1418722421,
0.3187411726,
0.3381457925,
-0.1551585197,
0.2361301333,
-0.0927870125,
-0.0269698352,
0.0284734406,
0.0829201937,
0.1781566441,
-0.0896053165,
0.1978160143,
0.137151733,
0.2371111661,
-0.0130121559,
0.1360733211,
0.1671832949,
0.0137831271,
-0.1930579543,
0.2749157846,
0.2787076831,
0.0896207988,
0.204245463,
0.2675205767,
0.4182379842,
-0.222146377,
0.1189201176,
0.193121925,
0.0985131264,
0.1722991467,
0.2065150887,
0.1616923809,
0.0920294374,
0.019703107,
-0.0565988943,
0.1204199418,
-0.0441840515,
-0.0036642365,
0.4070055783,
-0.129193902,
-0.2746014297,
-0.1428504586,
-0.1386277825,
0.0112454444,
0.0462128557,
0.0505775362,
0.435741961,
0.5020400286,
-0.2215154767,
-0.0381134041,
-0.1822121739,
0.1833445877,
0.3443457484,
0.2033535838,
0.6369606256,
0.4767535925,
0.3960195184,
0.0190378465,
-0.3341275454,
-0.0228690989,
0.045594722,
0.0643715709,
0.0233126841,
-0.0558775812,
-0.1345078796,
-0.2604805529,
-0.1258264333,
0.1825301051,
-0.3170457482,
0.0932402834,
-0.2400182337,
-0.0976924598,
-0.2019862533,
0.1359673738,
0.0750066638,
0.1225427985,
-0.3271102905,
-0.005100932,
0.0715206638,
-0.0644685179,
0.1521444917,
0.2337119281,
0.1777091324,
0.0345666781,
-0.031332992,
0.2604063153,
-0.2468580455,
-0.0641295388,
-0.3413461447,
-0.1032401323,
-0.0292908736,
-0.142026782,
0.1172941253,
0.2845403254,
-0.2158598006,
0.2540853918,
-0.0543983951,
0.0278831348,
-0.322042346,
0.1123365313,
0.30168733,
-0.5159484148,
-0.108674407,
-0.2909238338,
-0.2737604976,
-0.4126060903,
0.0989284366,
-0.3885515928,
-0.0430592895,
0.1713316292,
0.1535684913,
-0.1431220174,
0.5102574825,
0.649214983,
0.1804954708,
-0.0139036532,
-0.2436195612,
-0.3587185144,
0.2236053348,
-0.0885428637,
-0.1090303808,
-0.145337835,
-0.0088955872,
0.3029864728,
0.0262527987,
0.2671390772,
-0.0504151247,
-0.3545336723,
0.1882063448,
-0.1807931662,
0.1738960296,
-0.187470898,
0.270786047,
0.2503412664,
-0.0993700698,
-0.1384286433,
0.0170481764,
0.1661051661,
-0.1552549303,
0.0161291361,
0.09091416,
0.1035415083,
0.482531786,
0.3226445019,
0.0563975386,
-0.4423958957,
-0.0505340919,
-0.3334940374,
0.0036296286,
-0.2995581329,
0.285417676,
-0.0547495186,
0.1813040823,
0.0267793462,
-0.1795475185,
0.1609041393,
0.2777337432,
-0.0023225844,
-0.1297564805,
-0.2278166115,
0.2474312186,
-0.2702027559,
-0.2676484287,
-0.1234764978,
0.1761463881,
0.0489292443,
-0.0092597231,
0.011043027,
-0.064698413,
0.0136623532,
-0.1957698166,
-0.1220624298,
-0.5525929332,
0.0290752314,
0.0659209937,
-0.0016191266,
-0.3800119758,
-0.2454474568,
0.3684582114,
0.1021548212,
-0.0117967129,
0.4022869468,
-0.169276461,
-0.2776992917,
-0.1890704036,
0.2403182238,
0.0850917548,
-0.0821238309,
-0.2569818795,
-0.4197183251
] |
https://github.com/huggingface/datasets/issues/365 | How to augment data ? | As we're working with arrow's columnar format we prefer to play with batches that are dictionaries instead of tuples.
If we have tuple it implies to re-format the data each time we want to write to arrow, which can lower the speed of map for example.
It's also a matter of coherence, as we don't want users to be confused whether they have to return dictionaries for some functions and tuples for others when they're doing batches. | Is there any clean way to augment data ?
For now my work-around is to use batched map, like this :
```python
def aug(samples):
# Simply copy the existing data to have x2 amount of data
for k, v in samples.items():
samples[k].extend(v)
return samples
dataset = dataset.map(aug, batched=True)
``` | 77 | How to augment data ?
Is there any clean way to augment data ?
For now my work-around is to use batched map, like this :
```python
def aug(samples):
# Simply copy the existing data to have x2 amount of data
for k, v in samples.items():
samples[k].extend(v)
return samples
dataset = dataset.map(aug, batched=True)
```
As we're working with arrow's columnar format we prefer to play with batches that are dictionaries instead of tuples.
If we have tuple it implies to re-format the data each time we want to write to arrow, which can lower the speed of map for example.
It's also a matter of coherence, as we don't want users to be confused whether they have to return dictionaries for some functions and tuples for others when they're doing batches. | [
-0.0449632518,
0.0315058231,
-0.2623604238,
-0.0620330237,
0.0712594688,
0.17408216,
-0.0435549282,
0.2856450677,
0.2927057147,
0.0688024536,
-0.0452283286,
0.2766705751,
-0.0615258403,
0.0991373062,
0.013435632,
-0.2535324693,
0.147367835,
0.1497775465,
-0.3047793508,
0.1889687926,
-0.1046197489,
-0.3813798726,
-0.0792351663,
-0.4454677105,
-0.1265063137,
-0.2560839057,
-0.137686193,
-0.2588271201,
-0.0291533247,
-0.4197900891,
-0.1189498678,
-0.106474176,
0.0321358852,
0.2190887034,
-0.0001070394,
-0.0777589679,
0.3182469606,
0.0758762583,
-0.3291757405,
0.2881885767,
0.0744250789,
-0.5883304477,
0.1895930469,
-0.1483375132,
0.0005676821,
-0.5663411617,
-0.0038558589,
-0.2213456929,
0.4242576063,
-0.1464166045,
0.2143067271,
-0.0009614453,
0.3605846167,
0.1151256934,
0.2499143779,
0.3350797594,
-0.0361368135,
0.0528885089,
0.635051012,
0.0297995806,
0.1589225382,
0.277067095,
-0.020318158,
-0.0861722529,
0.1291487366,
0.1219944954,
0.1845041513,
-0.2338158339,
0.0329685956,
0.1512701511,
0.4620938003,
0.1598395854,
-0.5492647886,
-0.1295825541,
0.0587236248,
-0.0840113834,
-0.2829309702,
-0.1689482629,
0.1015855223,
0.0041410797,
-0.0054872595,
-0.1655524671,
-0.0878733918,
0.4407986701,
0.1486133933,
0.4273612797,
0.064505741,
0.0699811876,
-0.099541381,
-0.2775317132,
-0.0916135833,
0.1496662945,
-0.1602429599,
0.4104996622,
-0.0713777095,
-0.0128856823,
-0.2568856478,
-0.3334087133,
0.0220547318,
0.1018835902,
0.3761999905,
0.1902012527,
-0.1630190611,
0.0982385203,
0.2746864855,
-0.2005935311,
0.0142444074,
0.2476574183,
-0.1037526727,
-0.2508895099,
0.2756492794,
-0.0562034324,
-0.0832764432,
-0.0784711391,
0.0706354529,
-0.174651891,
-0.2213663161,
0.0792391524,
0.0049043372,
0.0197239853,
-0.017555736,
0.0744813234,
-0.0832475722,
0.1453245431,
-0.0534715578,
0.2024697065,
-0.1878632307,
0.2492563725,
0.3035988212,
-0.0639065132,
-0.0625423715,
0.0752416551,
-0.2145077884,
-0.2098857164,
0.0772962719,
0.3709008992,
0.1855743825,
-0.0100021251,
0.0702607185,
-0.0770587102,
0.1091509834,
-0.1297928691,
0.4284985662,
0.0761953741,
0.0568465441,
0.0317526385,
-0.1038798541,
0.0815597177,
-0.0219880119,
0.1219733506,
-0.3230204582,
-0.041843988,
-0.4821150303,
0.1992633194,
0.1621778756,
-0.1413286328,
-0.2607135475,
0.2704461217,
0.1766419709,
-0.3363063931,
0.1516437829,
0.0775423795,
0.2024881691,
-0.4990918636,
0.3427675366,
0.0446179248,
-0.41701442,
0.0328527167,
-0.1063541546,
0.4234544337,
0.2125740945,
0.1393314302,
-0.1623224169,
0.034346547,
-0.0578218848,
-0.0136517733,
0.5873197317,
-0.2502159476,
-0.2744024694,
-0.0086097419,
0.1392570734,
0.1536215395,
-0.0692364946,
0.2453821301,
0.1563033313,
0.0249975137,
0.2388848364,
0.4077866673,
-0.0065614488,
-0.1438523233,
0.0002212897,
-0.0887070447,
0.114486523,
0.1512442827,
-0.2663126886,
-0.3306488097,
0.3042255044,
-0.6410692334,
0.2132043839,
-0.2068178952,
0.418577373,
0.0880037695,
0.2264767885,
0.3680987954,
0.0227472223,
-0.0148945004,
-0.383859396,
-0.0206499994,
-0.0569172725,
-0.2303417772,
-0.0467182919,
-0.2595002055,
0.0055367425,
0.0464918986,
0.1018628925,
-0.172216922,
0.213082999,
-0.20882608,
0.1028580219,
-0.4434618652,
-0.0221211687,
-0.219416365,
0.062004365,
0.0842282474,
-0.0593720712,
-0.0488725044,
0.2604752779,
-0.3671446443,
-0.2766017616,
0.3287087381,
-0.2676297724,
-0.0874427781,
0.006695617,
0.3033412397,
0.2157503963,
0.1685021073,
0.133420527,
0.1584982425,
-0.0353386179,
0.0663864911,
0.1497316957,
0.2639796436,
0.0453884862,
-0.1659340709,
-0.1654552519,
0.202157855,
0.0454255491,
0.3024062216,
-0.2025534511,
0.2945615053,
0.3530862629,
0.0562306419,
-0.1930910349,
-0.0953235552,
-0.2077766061,
-0.0979160443,
0.3189959526,
-0.2392760366,
-0.0645779818,
0.0109416954,
-0.2084863633,
0.0258282572,
0.0223985612,
-0.1927536428,
-0.5307369232,
-0.1057418138,
0.1869876534,
0.0848152041,
-0.1719257385,
0.3399725258,
0.1259014457,
-0.2647234499,
0.2518343627,
0.0908786952,
0.0777937621,
0.0999109894,
0.1562825441,
0.0097635472,
0.3862089515,
0.0888930261,
0.0986339822,
0.039276354,
0.0426650941,
0.0370285213,
-0.0083181486,
-0.1605688334,
0.0001100823,
-0.1803583801,
0.0516250394,
-0.6276807785,
-0.0828136355,
-0.3152193427,
-0.1116898283,
0.1336807758,
-0.3548228145,
0.0682942867,
0.0428553373,
0.0047918558,
0.0162834451,
-0.3871847093,
-0.0655824542,
0.056780532,
0.0432574749,
0.1481973231,
-0.0240253769,
-0.0951554179,
0.4585325718,
0.3018176556,
0.2761401534,
-0.0924380124,
-0.4389210343,
-0.077912569,
-0.0016339212,
-0.0425757244,
0.3088809848,
-0.0789650679,
-0.2523447275,
-0.1831152886,
-0.0105173141,
-0.1569568217,
0.0649121776,
-0.1248629391,
-0.0938960537,
-0.0743304342,
-0.2183417529,
-0.0330918171,
-0.3234648108,
-0.3384046853,
0.2372868508,
0.2095006406,
0.0771852434,
-0.3131403625,
0.3482192159,
0.0356434062,
-0.0219959579,
-0.1271119416,
-0.1488685012,
0.0672437996,
0.5090064406,
-0.2755545974,
-0.0019020811,
-0.0643551201,
-0.4245725274,
0.2866925597,
0.3556599617,
-0.0719247013,
-0.0999895409,
-0.1816031635,
0.0792024285,
-0.2332163751,
0.2640170455,
0.258115828,
0.093141526,
-0.1758953631,
-0.0197528005,
0.0001387075,
0.1556055844,
0.3379494548,
0.108887203,
-0.0048563518,
-0.0421651863,
-0.1415071636,
0.2414651662,
0.0386007503,
-0.0504021831,
0.0848740786,
-0.2094836831,
0.036474593,
-0.0294408761,
0.0693501458,
-0.14761509,
-0.1958067119,
-0.1011283025,
-0.0545557141,
0.1600605398,
-0.2452846617,
0.0490128323,
-0.0047935694,
-0.4095489979,
-0.0989037305,
0.439729929,
-0.5884212255,
0.2396433651,
-0.2576619983,
-0.1125565022,
-0.4354300499,
-0.1512354165,
0.0298306793,
-0.4478644431,
0.2770801485,
-0.1528018266,
-0.1997333169,
-0.0024503805,
-0.5094037652,
0.6173354983,
0.3407271802,
0.1416910887,
0.5109147429,
-0.2703468204,
0.0388933048,
-0.0224730857,
0.1445496678,
-0.3867681324,
-0.4822344184,
-0.1489627659,
0.0565243214,
-0.5446116328,
0.0453957245,
-0.4296464622,
0.0789372772,
0.175377965,
0.3766126037,
-0.1923596263,
0.0562489778,
0.1564024389,
0.2604748905,
-0.155416593,
0.120574519,
0.1243771538,
0.0046462938,
-0.1029448509,
0.0679115877,
0.1699337065,
-0.0474389791,
0.5780171156,
-0.2204653025,
-0.2604866624,
0.1671955734,
0.1181888878,
0.1209515482,
0.44115448,
0.1597184241,
-0.1065877676,
-0.068027392,
0.1769414693,
0.2869966626,
0.4402086437,
-0.1363719553,
-0.1719535589,
-0.271314919,
-0.4779586792,
0.7552838922,
-0.1796367615,
0.2490855753,
0.502630055,
-0.415093869,
-0.0819966495,
-0.1827350557,
0.0427164733,
0.2052189112,
0.1293449998,
-0.2690236866,
-0.5675094724,
0.1869135797,
0.0669860542,
-0.111222297,
0.4496650696,
0.0426338054,
-0.0253160037,
0.5850728154,
0.4780204296,
0.7165124416,
0.3173341155,
0.1846254915,
0.0463654473,
-0.3272404969,
0.4004526138,
0.0701661855,
0.0808077082,
-0.0547949076,
0.1025412232,
0.0009734258,
0.017970562,
-0.1384094357,
0.2876407802,
-0.1518887579,
0.1500277221,
-0.2367842644,
0.0100843329,
-0.1330458224,
0.0580243766,
0.1733931601,
-0.2823073864,
0.0491811149,
0.1456318945,
0.0023425957,
-0.4167022109,
-0.1246457398,
-0.0805626959,
-0.2426793277,
-0.0545362495,
-0.1380869895,
-0.0321415327,
-0.2830958366,
0.0215365104,
0.3141746223,
-0.3613502085,
-0.0451419502,
-0.0145279039,
-0.115065977,
0.3307727873,
0.0643190965,
0.0906219631,
0.2942410111,
0.1756629646,
-0.1249148399,
-0.0758659616,
0.2506099939,
0.0968922377,
-0.0730130821,
0.2433030605,
-0.0332549512,
-0.5641125441,
-0.2155824453,
0.0455955565,
0.0802174509,
-0.2566098571,
-0.1502011865,
0.4297658205,
-0.3009393811,
-0.0832198039,
0.1620204449,
0.1880553663,
-0.2602067292,
0.3336822391,
0.2605097592,
-0.2356593162,
0.0156475864,
-0.0450062267,
0.1454173625,
-0.246228531,
0.5600543022,
0.0048750788,
-0.0744183585,
-0.2285592854,
-0.3298818469,
0.3779737949,
-0.1600489914,
-0.1020260006,
0.036776837,
-0.0289919227,
0.1916473806,
0.0871226639,
0.2979387343,
0.3023320436,
-0.3340012431,
-0.2269845605,
-0.5539458394,
0.4804139435,
0.2971706986,
0.2122285664,
-0.0700753331,
-0.1323899627,
-0.2415797412,
0.5198344588,
-0.3649611473,
0.0541796759,
0.3694390953,
0.2712548077,
-0.0078909602,
0.0338668972,
0.129534781,
0.0011190921,
0.2268512547,
-0.0118248435,
0.0886298791,
-0.2576602697,
-0.0377601646,
0.0666367039,
-0.0706667081,
-0.0237444881,
-0.125617981,
-0.0510207266,
0.050598152,
-0.4686257243,
-0.0284207724,
-0.1368896812,
-0.2345693111,
0.096775651,
0.2378016114,
0.2897171378,
-0.1185135692,
0.2620231211,
-0.1800412089,
-0.0217493288,
0.006946519,
0.0462491959,
0.2865622044,
-0.1805451363,
0.3799671233,
0.1336238533,
0.1907666773,
-0.0546637587,
0.0108199883,
0.0726344138,
-0.0574466363,
-0.2792010903,
0.2909564972,
0.2643674612,
0.1183544546,
0.1086475477,
0.2221926451,
0.3442617357,
-0.2363184839,
-0.0017851479,
-0.1496382207,
0.1602111608,
0.232028231,
0.2347552478,
0.1550632268,
-0.0138554424,
-0.0915751606,
-0.0510035641,
-0.2042003423,
-0.2594507039,
-0.119117707,
0.4184328914,
-0.0561251491,
-0.3389956951,
-0.1105773821,
-0.0296590216,
0.0458420031,
-0.0077340072,
0.0287057105,
0.4061868787,
0.698499918,
-0.1252540052,
-0.1514199525,
-0.0195991397,
0.0624206066,
0.3148446977,
0.1865275502,
0.5614485741,
0.5762028098,
0.3474788964,
0.2870392501,
-0.3146398067,
-0.0132953972,
-0.1193246692,
0.0299679488,
-0.0644757524,
-0.111161299,
-0.0645014197,
-0.305588305,
-0.1894473732,
0.1012373418,
-0.1942656785,
0.3417071104,
-0.1086993068,
0.0547951907,
-0.2436424494,
0.2484980971,
0.1756335348,
0.3531357646,
-0.3195338249,
0.023314124,
0.0130954385,
-0.0288178846,
0.032507766,
0.3075969815,
0.178349793,
0.0284824967,
-0.1392767727,
0.2700140476,
-0.1918340474,
-0.111511901,
-0.1392234564,
0.1388923824,
0.1343432963,
-0.2207657695,
0.2025391459,
0.2486942261,
-0.1949062496,
0.2103408873,
-0.1208630204,
0.0523628965,
-0.196448341,
0.2150078565,
0.2053637505,
-0.5519221425,
-0.1238855422,
-0.1983912289,
-0.2035443038,
-0.3652026951,
0.2021931112,
-0.441975832,
-0.1564690024,
0.0877134874,
0.1127540171,
-0.0868226588,
0.6534006,
0.6501069665,
0.4077478051,
-0.0029832218,
-0.4474176168,
-0.260594368,
0.1022816226,
-0.3121052682,
-0.1471261978,
-0.0733869523,
0.0649349838,
0.3865472674,
0.1107751802,
0.3859181404,
0.070338957,
-0.3434289098,
0.2263901681,
-0.3226328194,
0.281047076,
0.1677541286,
0.2737782598,
0.1945689917,
-0.1446959376,
-0.1030599028,
0.1704746336,
0.1538925469,
-0.0958024189,
0.0370049179,
0.1521034837,
0.1813179106,
0.5217481256,
0.2050187886,
0.0396759845,
-0.3355917633,
-0.0860086009,
-0.3407740295,
-0.1025012881,
-0.2674383223,
0.3767378926,
0.0196103789,
0.2899916172,
-0.0036169142,
-0.076639019,
0.2338160574,
0.0461142622,
-0.1184457839,
-0.0311345868,
-0.1199416667,
0.1658703685,
-0.1964729577,
-0.2484063953,
-0.1983762234,
0.2559406161,
0.0955989063,
-0.0960784703,
0.0053157657,
-0.1152269319,
0.0523724481,
-0.0773532391,
-0.1800586581,
-0.2604094744,
0.0013359338,
0.2386950701,
0.0844916478,
-0.3445118368,
-0.2247288823,
0.2123768479,
0.134329915,
-0.1316024065,
0.2490271926,
-0.1184340864,
-0.1462396979,
-0.1720625162,
0.4722696841,
0.0154966898,
0.0196417943,
-0.4694658816,
-0.4412472248
] |
https://github.com/huggingface/datasets/issues/361 | 🐛 [Metrics] ROUGE is non-deterministic | > Hi, can you give a full self-contained example to reproduce this behavior?
There is a notebook in the post ;) | If I run the ROUGE metric 2 times, with same predictions / references, the scores are slightly different.
Refer to [this Colab notebook](https://colab.research.google.com/drive/1wRssNXgb9ldcp4ulwj-hMJn0ywhDOiDy?usp=sharing) for reproducing the problem.
Example of F-score for ROUGE-1, ROUGE-2, ROUGE-L in 2 differents run :
> ['0.3350', '0.1470', '0.2329']
['0.3358', '0.1451', '0.2332']
---
Why ROUGE is not deterministic ? | 21 | 🐛 [Metrics] ROUGE is non-deterministic
If I run the ROUGE metric 2 times, with same predictions / references, the scores are slightly different.
Refer to [this Colab notebook](https://colab.research.google.com/drive/1wRssNXgb9ldcp4ulwj-hMJn0ywhDOiDy?usp=sharing) for reproducing the problem.
Example of F-score for ROUGE-1, ROUGE-2, ROUGE-L in 2 differents run :
> ['0.3350', '0.1470', '0.2329']
['0.3358', '0.1451', '0.2332']
---
Why ROUGE is not deterministic ?
> Hi, can you give a full self-contained example to reproduce this behavior?
There is a notebook in the post ;) | [
-0.0729423761,
-0.4319975376,
-0.0746612549,
0.2472376972,
0.142458573,
-0.2991019785,
-0.0346640795,
-0.362223208,
-0.0423693061,
0.4704316556,
0.0269526169,
0.3044505715,
0.0302142203,
0.0872767344,
-0.2722608447,
0.0752438456,
0.0376886502,
0.0133033358,
0.0488783121,
-0.2914241552,
0.0159803778,
0.0995302051,
-0.2607533336,
-0.1770692915,
-0.1143432111,
0.0565368608,
-0.1556734443,
-0.0681023747,
-0.3433383107,
-0.0870002732,
0.0321292132,
0.3313091695,
-0.1052888483,
0.4939869642,
-0.000117025,
-0.4163562059,
-0.0219289698,
-0.1781866848,
0.3075723946,
-0.5136873722,
-0.2497314215,
0.3652492464,
0.0798636824,
-0.127442956,
-0.1293843091,
0.1144195646,
-0.3657514453,
0.014640227,
0.4840198457,
0.1275174022,
0.1668633521,
-0.1628428996,
-0.3187301159,
-0.3868791759,
0.0139951352,
0.0592610277,
-0.1181054413,
0.492339015,
-0.033063028,
0.1233149096,
-0.0663542002,
0.0778922811,
0.1746157706,
0.3484485447,
0.4598205686,
-0.1589018404,
0.2443424016,
-0.0628959164,
-0.0225946866,
0.3563774824,
0.2740358412,
-0.1160636544,
-0.1012610868,
0.2822776139,
0.2155551314,
-0.3651968837,
-0.0931865722,
-0.0739116371,
0.1439156234,
-0.1461344361,
-0.0108551756,
0.3827990592,
-0.0761183947,
-0.178084895,
0.2129088044,
-0.0751298591,
-0.018480923,
0.0697378293,
0.1373718381,
0.3848737478,
-0.123727791,
0.1314073205,
-0.411062628,
-0.1525682509,
-0.5036752224,
-0.0680446625,
-0.0418665223,
0.4301223159,
0.0287700295,
0.3245639503,
0.5289822221,
-0.1465086937,
-0.1225255579,
0.0420773625,
-0.0674972981,
0.3009234071,
-0.163722381,
0.0034656152,
0.0948856175,
-0.0217082873,
-0.1616703272,
0.0056091454,
0.3751334846,
-0.5000554919,
0.2849849761,
0.2503117621,
-0.1803474873,
-0.3356364071,
-0.6347413063,
-0.0664335787,
-0.4162105918,
-0.2036540508,
-0.0150855482,
0.2462235093,
-0.2712688148,
0.0718203038,
-0.2622615099,
0.2142349333,
-0.1250939071,
-0.0586311631,
-0.2955051959,
0.0800915137,
-0.5461650491,
-0.0126217995,
-0.3351668119,
0.1911018193,
0.1781327128,
0.4183346629,
0.0020134933,
-0.3315196633,
0.0598279163,
-0.4487572014,
0.0723656043,
-0.0718556866,
-0.0791174918,
0.0141066015,
0.0821316391,
-0.1971662045,
-0.1339938045,
-0.0057610124,
-0.1412924975,
0.2725314498,
0.4450806677,
0.0656629652,
-0.0854324326,
0.1210342869,
-0.1398104131,
0.1766983271,
-0.3170873523,
-0.0083277002,
0.2046125233,
-0.1841772199,
-0.316598326,
-0.3004755974,
-0.0015304536,
0.2072272003,
-0.0665687472,
0.1484945863,
0.6132833362,
0.1436501741,
0.2077411115,
0.5073766708,
0.0661424622,
0.0879927278,
-0.2220107019,
-0.5712296367,
0.445301652,
-0.444624126,
0.0846231356,
-0.0251812302,
-0.0575999059,
0.0062047839,
0.1305319816,
0.1785041094,
-0.2394029349,
-0.0235976577,
0.1534711123,
-0.2068716884,
0.0482670739,
-0.2135519683,
-0.0194638819,
0.0297448933,
0.3167253435,
-0.3030976057,
0.1502765566,
0.228377074,
-0.0114710778,
-0.1718246937,
0.3134986758,
0.20691441,
-0.3694642186,
0.0516024679,
0.1938418895,
0.30443874,
-0.0575996749,
-0.2001899928,
0.1571059972,
0.1491966099,
-0.5066498518,
-0.1957541853,
0.5925682783,
-0.2029520124,
-0.2326530218,
-0.1298024356,
0.0167076401,
-0.2094644755,
0.1213446632,
0.3131522238,
0.2446815819,
0.2755919099,
0.0435582548,
0.228371948,
-0.1787373573,
-0.1511546671,
-0.1725233942,
-0.10519889,
0.0018528895,
-0.1402862519,
0.083392188,
0.2186946124,
0.3086817861,
0.0139426179,
-0.1252153516,
0.3100953102,
0.5252618194,
-0.0263119265,
0.1189499795,
0.2512628436,
0.1599369794,
0.2055656761,
-0.1156128868,
0.4238217771,
0.1592493951,
-0.1148904338,
0.0598703399,
0.3031254411,
-0.4730481803,
0.0715667903,
-0.0767093897,
-0.02306059,
0.0747991428,
0.1003672332,
-0.1731091589,
-0.077129513,
0.3988669813,
0.0202209726,
0.3070413172,
0.0335895717,
-0.4082303643,
-0.1613552123,
0.106568709,
0.2213356793,
0.0364705771,
-0.1656695604,
0.1028542221,
0.0469975471,
-0.0295289457,
0.174822703,
0.2265617996,
0.0465117581,
-0.0839712173,
-0.0033864453,
-0.3627884686,
-0.3238304257,
-0.2000467479,
-0.1123356298,
0.2540785968,
0.3564978242,
0.2895347476,
0.2467269301,
-0.250434041,
-0.4256808758,
-0.0892739445,
0.0223558713,
0.0306769907,
0.3200017214,
-0.3778673112,
0.3741842508,
-0.0508992709,
-0.3276848197,
-0.0824535787,
-0.0896395594,
-0.0475589931,
0.3303893805,
0.3002759814,
-0.1265237033,
0.5133861303,
0.1238654852,
-0.0614107475,
0.2800593972,
-0.094736442,
-0.1490516365,
0.0418748707,
0.0614754409,
-0.1346150786,
0.0218223594,
0.2588361502,
-0.281208992,
-0.0097512268,
0.0195135511,
-0.2017589957,
-0.0430032685,
0.1012571901,
0.2257146686,
0.0627168864,
-0.495043695,
-0.2061864436,
0.4547215998,
0.3494849503,
-0.1335421056,
-0.1433507651,
0.0927430689,
-0.1561851352,
0.1136121824,
0.0649654716,
0.111512363,
0.0507350415,
0.0077124611,
0.4770753086,
0.0406520367,
-0.0323165655,
0.3786590397,
0.087484099,
-0.0692564324,
0.1745939255,
0.3019638658,
-0.3619595468,
-0.1703045964,
0.1534349769,
-0.3342144489,
-0.3372676373,
-0.0037974045,
0.2548954189,
0.0573144369,
0.0718999058,
-0.1600862592,
-0.5616258979,
-0.0084272353,
-0.1259207278,
-0.2945591807,
-0.2496601343,
0.5192810893,
-0.2608340979,
-0.167219609,
-0.0561701246,
0.1818184555,
0.1151713878,
0.0744684115,
0.3241337538,
-0.2724434435,
0.1425645053,
-0.1437832564,
0.0398103632,
0.4241261482,
-0.1063041985,
0.067980215,
-0.0478790998,
0.2415929139,
-0.4286981821,
0.0777274668,
0.3353777528,
0.0047694296,
-0.2590501904,
0.2845086157,
-0.1497372389,
0.6038031578,
-0.1270700991,
0.0989096016,
0.1798589528,
-0.0424421802,
-0.2053050995,
-0.3841388524,
-0.1888158023,
0.0148057118,
0.1447371542,
0.150626123,
0.0689900219,
0.1150012761,
0.1120624393,
0.2014238238,
0.0154254325,
0.0449067801,
0.0535327271,
-0.2599620223,
0.0311481282,
-0.168840304,
0.0394634493,
-0.1582558751,
0.1542321891,
0.1969505847,
-0.1055849493,
0.5462043881,
-0.3483906686,
0.2001511753,
0.0214274377,
-0.540780127,
-0.2420251518,
-0.2875944376,
-0.3703906536,
0.0820827186,
0.2013504207,
0.1170593724,
0.1116781831,
-0.1027880907,
-0.1129121408,
0.0102804825,
-0.0713435262,
-0.1393745393,
-0.5917124748,
0.166033417,
0.0199530274,
0.1845138967,
0.0796695277,
0.1231360361,
-0.1292867064,
-0.1786274463,
-0.3222107291,
-0.0605728552,
0.3907672167,
0.2007413656,
0.1498927176,
-0.0240554679,
-0.1971602142,
0.0285024047,
-0.1098368838,
-0.2267865837,
0.003175417,
0.198954463,
-0.5485669971,
0.212730974,
-0.1606101096,
-0.0469373912,
0.221484527,
-0.0933399647,
-0.097508505,
-0.6738173366,
0.3121766448,
-0.4528856874,
-0.1113974005,
0.474636972,
0.0105743371,
-0.0218152683,
-0.2490190417,
0.1142335087,
0.1261955053,
-0.4261642992,
0.2862328291,
-0.2654325068,
0.0386854187,
0.4411570132,
0.3684287965,
0.6875544786,
-0.1333996654,
-0.0636214614,
0.1431775391,
-0.1540894359,
0.224723354,
-0.2083000243,
-0.0265799984,
-0.2640283108,
-0.3276489973,
-0.048211772,
-0.0377444103,
0.1220279783,
-0.0377880037,
-0.0722161084,
0.335060358,
-0.1171618477,
0.2474178672,
-0.1141144037,
-0.1422785819,
0.3587922752,
0.2268888354,
0.3435053825,
0.1264493763,
0.1702568978,
0.2904885709,
-0.2271945179,
0.1309093535,
-0.2318706661,
0.1126539111,
-0.2502042055,
-0.1527740508,
-0.298824966,
0.1434078813,
-0.0602942891,
-0.4588409662,
-0.1070040464,
0.7968850136,
0.6291095614,
0.2359060943,
-0.0231774785,
0.2885488272,
0.0672375113,
0.1290569156,
-0.290057689,
-0.2482477129,
-0.1415718943,
0.0503366739,
-0.282974869,
0.0069703879,
0.2094931901,
-0.2150885761,
-0.3606830239,
0.2045871913,
-0.3005194664,
0.1903461516,
0.0454041511,
0.0197647624,
-0.032948982,
-0.1293004155,
0.0893403962,
0.034183871,
0.0398869365,
0.3000200987,
0.0702443048,
-0.39487499,
-0.139172703,
0.357736975,
-0.0664958283,
0.1350869834,
-0.2667112052,
-0.3262555301,
0.1047226936,
-0.3019203544,
-0.17992118,
-0.2614290118,
-0.1382795274,
0.1824706346,
-0.0564283803,
-0.0671339631,
0.2789306045,
0.6154510379,
0.1856500655,
0.2741474807,
0.2410753369,
-0.3023461401,
0.1398625225,
-0.0658833981,
0.2619777322,
0.010838801,
-0.2457009852,
0.1602038443,
0.0775501356,
0.4317094386,
-0.2948766351,
-0.1789626479,
-0.1434399039,
0.0270353891,
-0.6010740399,
-0.2214309573,
-0.1617846638,
0.205724895,
0.0024004988,
0.1748354584,
-0.2614101768,
-0.1284416467,
-0.2560679018,
0.1408541948,
-0.0465692803,
0.5226813555,
-0.1612803042,
0.0954842567,
-0.0471084267,
-0.2260112762,
0.1570689082,
0.3563845456,
0.2539891303,
0.0663861483,
-0.0365469828,
0.3187327683,
-0.0808604956,
-0.0889675021,
0.1430630684,
0.0676663965,
-0.1192599386,
-0.2296677977,
-0.0938555971,
-0.0814588815,
-0.6070908904,
-0.1350966245,
-0.0763914138,
-0.1567067355,
-0.1704012454,
0.1404923797,
0.4126687646,
-0.2225682437,
0.3149327636,
0.1584106237,
0.0117467195,
-0.2432765067,
-0.0636961386,
0.1181384847,
-0.2605796158,
0.2265069336,
-0.2292993218,
0.3252801895,
0.1200747266,
0.3787541687,
0.4270199537,
-0.1359658092,
-0.0122593604,
-0.1740571558,
-0.0483450219,
-0.2579520345,
0.1864400953,
-0.2596785128,
0.0819969475,
0.1029332876,
0.6461297274,
0.0085079614,
0.0106310546,
0.3853865564,
0.1674391627,
0.2143235356,
-0.2646901906,
0.123240687,
-0.1209506318,
0.0653528199,
-0.0654738545,
0.465151757,
0.077372171,
-0.1564272344,
-0.1243258193,
0.1073847786,
-0.2876578569,
-0.2792735994,
-0.4090043008,
-0.0871843696,
-0.0265638381,
-0.2319947779,
-0.2225253582,
-0.1401962936,
-0.1384879053,
0.0466157794,
0.0626091287,
0.4171893895,
0.3824374974,
0.075411655,
0.1739464998,
-0.1623552442,
-0.1418606937,
-0.0882284641,
0.4310381413,
-0.168032974,
0.0816465095,
0.0948939994,
0.348944813,
0.0578185692,
0.2674443722,
0.1616435051,
0.2786950767,
-0.2399485558,
0.1121963561,
-0.2485886216,
-0.0032200068,
0.1796887964,
0.244319886,
0.2036580443,
-0.4013036489,
0.3890460134,
0.0393903553,
-0.1451780945,
0.5418241024,
0.1110336781,
0.3921966255,
-0.2113576829,
0.4320449531,
0.1735885292,
0.3634890616,
-0.0001420341,
0.3181554079,
-0.3570290804,
0.1055055857,
-0.668985486,
-0.1713864058,
-0.0461661294,
-0.2048521936,
0.0514836684,
-0.0484856367,
0.1875863969,
-0.0160366222,
0.2722624838,
-0.1575936675,
-0.2405813634,
-0.4908545613,
0.1989634782,
-0.2409049869,
0.329377532,
-0.1476684511,
0.3971635699,
-0.412653327,
0.2178216577,
0.2038400769,
0.4500793219,
-0.1268351823,
0.4430067539,
-0.4771737456,
0.2912019491,
-0.3749241829,
-0.2154465616,
0.2228861451,
0.0904406905,
-0.0142697934,
-0.0556679331,
-0.0188207328,
0.1260992736,
-0.0845931917,
-0.0322502144,
0.6356543303,
0.5892746449,
0.0898814648,
0.1651602685,
-0.0616421774,
-0.2201287448,
0.0725354552,
-0.1212240383,
0.0976993442,
0.2772808969,
-0.0232311897,
-0.1421556026,
-0.1076293811,
0.1572177559,
0.0837739184,
0.6822969317,
0.153105244,
-0.0711381137,
-0.5956974626,
0.0260286406,
0.0386705995,
0.2575576603,
-0.3959361017,
0.4797007143,
0.0283335485,
0.328730911,
-0.1378917992,
-0.1104477048,
0.6011200547,
0.028539978,
0.0503990054,
-0.164754346,
0.3484908044,
0.3952531815,
-0.0488922,
-0.1494698375,
0.1269874424,
0.0697484091,
0.2653725743,
0.0776030719,
0.1911767721,
-0.3626297116,
0.0843725055,
-0.1014966518,
0.1728830338,
-0.0594973192,
-0.0220184177,
0.3068386316,
-0.2685056627
] |
https://github.com/huggingface/datasets/issues/361 | 🐛 [Metrics] ROUGE is non-deterministic | > If I run the ROUGE metric 2 times, with same predictions / references, the scores are slightly different.
>
> Refer to [this Colab notebook](https://colab.research.google.com/drive/1wRssNXgb9ldcp4ulwj-hMJn0ywhDOiDy?usp=sharing) for reproducing the problem.
>
> Example of F-score for ROUGE-1, ROUGE-2, ROUGE-L in 2 differents run :
>
> > ['0.3350', '0.1470', '0.2329']
> > ['0.3358', '0.1451', '0.2332']
>
> Why ROUGE is not deterministic ?
This is because of rouge's `BootstrapAggregator` that uses sampling to get confidence intervals (low, mid, high).
You can get deterministic scores per sentence pair by using
```python
score = rouge.compute(rouge_types=["rouge1", "rouge2", "rougeL"], use_agregator=False)
```
Or you can set numpy's random seed if you still want to use the aggregator. | If I run the ROUGE metric 2 times, with same predictions / references, the scores are slightly different.
Refer to [this Colab notebook](https://colab.research.google.com/drive/1wRssNXgb9ldcp4ulwj-hMJn0ywhDOiDy?usp=sharing) for reproducing the problem.
Example of F-score for ROUGE-1, ROUGE-2, ROUGE-L in 2 differents run :
> ['0.3350', '0.1470', '0.2329']
['0.3358', '0.1451', '0.2332']
---
Why ROUGE is not deterministic ? | 112 | 🐛 [Metrics] ROUGE is non-deterministic
If I run the ROUGE metric 2 times, with same predictions / references, the scores are slightly different.
Refer to [this Colab notebook](https://colab.research.google.com/drive/1wRssNXgb9ldcp4ulwj-hMJn0ywhDOiDy?usp=sharing) for reproducing the problem.
Example of F-score for ROUGE-1, ROUGE-2, ROUGE-L in 2 differents run :
> ['0.3350', '0.1470', '0.2329']
['0.3358', '0.1451', '0.2332']
---
Why ROUGE is not deterministic ?
> If I run the ROUGE metric 2 times, with same predictions / references, the scores are slightly different.
>
> Refer to [this Colab notebook](https://colab.research.google.com/drive/1wRssNXgb9ldcp4ulwj-hMJn0ywhDOiDy?usp=sharing) for reproducing the problem.
>
> Example of F-score for ROUGE-1, ROUGE-2, ROUGE-L in 2 differents run :
>
> > ['0.3350', '0.1470', '0.2329']
> > ['0.3358', '0.1451', '0.2332']
>
> Why ROUGE is not deterministic ?
This is because of rouge's `BootstrapAggregator` that uses sampling to get confidence intervals (low, mid, high).
You can get deterministic scores per sentence pair by using
```python
score = rouge.compute(rouge_types=["rouge1", "rouge2", "rougeL"], use_agregator=False)
```
Or you can set numpy's random seed if you still want to use the aggregator. | [
-0.0629728734,
-0.1342070699,
-0.0796852931,
0.0105743818,
0.1754827648,
-0.3666588366,
0.0312738419,
-0.2816159129,
-0.3356748521,
0.4649937749,
-0.1453200579,
0.3407981098,
-0.0238618366,
0.1076028049,
-0.289493829,
-0.0058362773,
-0.1367874295,
0.088307336,
0.0505806431,
-0.2794827223,
-0.0264888927,
0.2689062953,
-0.1446816325,
-0.1122000292,
-0.2301798314,
0.0439045355,
-0.1309633553,
0.1760575771,
-0.4420463741,
-0.1366116405,
0.0006491318,
0.5135992169,
-0.1335634589,
0.3453348875,
-0.0001090062,
-0.3026775122,
-0.0053827362,
-0.2721397579,
0.0684325248,
-0.5490510464,
-0.0850552246,
0.1678696871,
-0.0363742746,
-0.1538971364,
-0.2303875834,
0.1567345262,
-0.1324000359,
-0.2148978114,
0.6561847329,
0.3610712886,
0.2037741244,
-0.0275054462,
-0.1488345116,
-0.2112455964,
0.1747769415,
-0.0872879177,
-0.0166682191,
0.5573641658,
0.0314751677,
0.218893379,
-0.2464757413,
0.1858105063,
0.1527356952,
0.0676845312,
0.3688114882,
-0.1152092516,
0.1754816622,
-0.3695172369,
-0.1286009848,
0.3732661605,
0.2760193646,
-0.0519511215,
-0.4068125784,
0.172501862,
0.1947718561,
-0.2736439705,
-0.194459945,
-0.0175778177,
-0.0913496241,
-0.0652742833,
-0.0967804193,
0.4438830912,
-0.1332540959,
-0.138366878,
0.1420721412,
0.0766993165,
-0.008888578,
-0.0005143918,
0.3281321526,
0.1229602993,
-0.2245835364,
0.2116306424,
-0.2095911205,
0.0695715696,
-0.4204723835,
-0.1357263476,
0.1251076013,
0.2849911451,
0.1111521497,
0.4854750037,
0.3948627412,
-0.1147540659,
-0.0690452754,
0.0454535969,
0.0252646916,
0.1961715966,
0.0500495397,
0.0383881032,
0.1416103244,
-0.0029744059,
-0.0259300396,
0.0993315279,
0.3126787543,
-0.3156800568,
0.041401878,
0.2174889892,
-0.1523081809,
-0.172080636,
-0.5653682947,
-0.111486204,
-0.4781973958,
-0.1255738586,
-0.153540343,
0.3803395629,
-0.205917418,
0.1545048058,
-0.1938212812,
0.1907314062,
-0.1400551051,
-0.1622925848,
-0.2599924803,
0.1628428102,
-0.266071856,
-0.0745899901,
-0.1121095121,
0.0864351243,
0.1294142604,
0.1545473039,
0.1475837678,
-0.2458147556,
0.0382167473,
-0.4583489895,
-0.0825861394,
-0.1328947544,
-0.0913570002,
-0.0753937662,
0.0561135449,
-0.2839281559,
-0.1321663409,
-0.1213425621,
-0.1262935698,
0.1846187115,
0.3253518641,
0.1625864953,
0.0098104849,
-0.0861552879,
0.0743729919,
0.2732863426,
-0.3147984743,
0.155482471,
0.150241822,
-0.025994692,
-0.3226447999,
-0.2363420576,
0.0831079558,
0.2124178708,
-0.0027336404,
-0.1042993665,
0.5838003755,
0.1369999796,
0.1727110445,
0.5475629568,
0.1629823744,
0.1839774102,
-0.0027137771,
-0.3590966463,
0.4775165319,
-0.4854390025,
0.0683305264,
0.0602484755,
-0.0288143381,
0.1495354921,
0.2133647949,
0.1030387357,
-0.0766566992,
-0.043803215,
0.2398132086,
0.187002033,
0.133464247,
-0.2636553049,
-0.0209827498,
0.0908614695,
0.2314929217,
-0.1147616655,
0.0626325011,
0.0462600961,
-0.2069050074,
-0.3015891612,
0.3498267531,
-0.0088293198,
-0.3083658516,
0.2478796989,
0.0876595974,
0.1918271035,
0.0869460776,
-0.1816859245,
0.2812574506,
0.103598401,
-0.8122192025,
0.2431688309,
0.2177293897,
-0.2853503227,
-0.4512053728,
-0.1303162575,
0.144559443,
-0.3410880268,
0.1980885863,
0.1725722104,
0.2733028829,
0.2643555403,
-0.0477086827,
0.3236652017,
-0.1935337484,
-0.0180976819,
-0.2536088824,
-0.1986759603,
-0.0506711602,
-0.0811391696,
0.2211105824,
0.4466211796,
0.0897336602,
0.0987752974,
-0.0810163915,
0.4132423997,
0.4271888733,
-0.0247579105,
-0.0330941416,
-0.0327454805,
0.0773896277,
0.1873423457,
-0.2182706594,
0.556597352,
0.225764513,
-0.0682013482,
-0.1123132557,
0.385512799,
-0.4762594104,
0.0049161837,
0.0653223917,
0.0610579848,
0.1700087488,
0.1440416276,
-0.321056217,
-0.0902714431,
0.3082021475,
-0.02894154,
0.6414521933,
0.2357602417,
-0.2955439687,
-0.1263952553,
0.0865037143,
0.1140251383,
0.141073972,
-0.0957917571,
0.0867768824,
-0.0590303726,
-0.0750468671,
0.0270543844,
-0.0322186574,
0.2111776918,
-0.0056918096,
-0.0626980215,
-0.2837331593,
-0.2822373807,
-0.077549547,
-0.1384399533,
0.2882392406,
0.1391817629,
0.3164981604,
0.1880497187,
-0.2739828229,
-0.5686127543,
-0.3180909753,
-0.0363978148,
-0.1358697712,
0.127197817,
-0.2475138903,
-0.0630126745,
0.0696974099,
-0.2970943749,
-0.0642221719,
-0.209697634,
0.1557428092,
0.0802703649,
0.069358483,
-0.0306593962,
0.5392485261,
0.2734599411,
0.0119137764,
0.2975366414,
-0.101726532,
-0.2644331157,
0.0604702048,
0.2002765834,
-0.1333312988,
-0.0249791127,
0.1201737896,
-0.4248005152,
-0.0719187036,
0.1428781301,
-0.1266679615,
0.0757166147,
-0.0981826782,
0.2909097672,
0.1341506243,
-0.3271770775,
-0.328512162,
0.3417825401,
0.2961694896,
-0.0150599889,
-0.1789553761,
0.1072571427,
0.03554333,
0.0203545392,
0.0356847122,
-0.1194496825,
-0.246343106,
-0.1701467931,
0.5418915153,
0.2425845563,
-0.0166940652,
0.4519588351,
0.0108006038,
-0.0595275424,
0.1029752642,
0.4948757887,
-0.2613430917,
-0.2291276157,
0.3377357721,
-0.2354305238,
-0.4837260544,
-0.2980839014,
0.0887673944,
-0.0603662059,
0.0093465857,
0.1168930978,
-0.3563523293,
-0.0826550648,
-0.0415780023,
-0.2018304616,
-0.071032919,
0.4534029663,
-0.1728016287,
-0.2120852023,
-0.0440844037,
0.3471272886,
0.104552485,
0.1094750017,
0.1872493029,
-0.2009672225,
0.0722361505,
0.0548027456,
0.1274553835,
0.4970478714,
0.0237850938,
0.055596903,
-0.0792820677,
0.2268171012,
-0.2797746062,
0.05287572,
0.2462794036,
0.0764745325,
-0.2304572165,
0.2309367061,
-0.1129722595,
0.4178795218,
-0.257465601,
0.0388289392,
0.0287061557,
-0.0909334645,
-0.0192775764,
-0.3598273993,
-0.1379480362,
-0.0087425411,
0.1893772781,
0.1435692459,
0.0545648113,
0.1428653896,
-0.0493659526,
0.3422604203,
0.0329733938,
0.0365741849,
0.2057764232,
-0.35932827,
0.158112675,
0.0578164496,
-0.0561055616,
-0.0303860009,
0.0016273409,
0.0125826299,
-0.0291040726,
0.3670474887,
-0.3468731046,
-0.1255813688,
0.1208588928,
-0.2924032807,
-0.4044803977,
-0.028653428,
-0.5490262508,
-0.1081632376,
0.1691485047,
-0.12605685,
-0.1499749273,
0.0345650315,
0.1518109143,
-0.1971427202,
-0.0772145391,
-0.0292112641,
-0.4185016155,
0.0718784109,
-0.0767299309,
0.222526148,
0.0704555884,
0.2563610077,
-0.0424105786,
-0.1049351841,
-0.1720269471,
-0.0251969136,
0.4814114273,
0.2461595088,
0.1562115699,
-0.090397954,
-0.2662245333,
-0.1463945061,
-0.1505857259,
-0.1996051222,
0.1895070374,
0.0152617004,
-0.6571384668,
-0.0384224504,
-0.1666606069,
0.1685892195,
0.1548561752,
-0.1976622343,
-0.1159148961,
-0.5746038556,
0.2282320261,
-0.4392107725,
-0.0363521501,
0.3599653542,
0.0648713261,
0.1356103271,
-0.2745450139,
0.1723672897,
0.1712720245,
-0.3440082669,
-0.1223811507,
-0.2971180081,
-0.0006401166,
0.6353338957,
0.2008110881,
0.7802698612,
0.0081790453,
0.0361434929,
0.1069835126,
0.082719408,
0.3759540617,
-0.3120649457,
0.0499521792,
-0.0926079378,
-0.1861394942,
-0.1178762913,
0.1165539026,
0.0963099301,
0.2510380745,
-0.1902991235,
0.4400809407,
-0.0062456578,
0.0803439692,
0.0197493434,
-0.0302469954,
-0.0012805294,
-0.0020521898,
-0.026655823,
0.1806297302,
0.1246194616,
0.1315397769,
-0.1005439907,
0.1010198444,
-0.3447439075,
0.022789523,
-0.1532878429,
-0.1077465639,
-0.3275677264,
0.1785721481,
0.0154511184,
-0.3179486394,
-0.3211078644,
0.6958515048,
0.3500361145,
0.2806239724,
-0.0372619852,
0.1739682853,
0.0262517408,
0.1239001453,
0.0625125915,
-0.0658480525,
0.1633391529,
0.0229662359,
-0.1994065046,
0.0879434049,
0.1445676237,
-0.2599148154,
-0.0262711197,
-0.0026538931,
-0.3019388914,
0.1306397021,
-0.0025994591,
0.0868675932,
-0.1519222111,
-0.1816912144,
0.1379816979,
0.043066971,
-0.0688436851,
0.2233662456,
0.0550943539,
-0.2668168545,
-0.1722376645,
0.2863358259,
0.0703245401,
-0.1017249599,
-0.256213516,
-0.174577415,
-0.0864025652,
-0.299431026,
-0.0894371644,
-0.2981827557,
-0.1044157147,
0.377630949,
0.0189898014,
-0.1154137403,
0.0512113944,
0.6299237013,
0.2141920626,
0.3644081056,
0.1524916887,
-0.3336921036,
-0.1081480235,
0.1698486507,
0.3736405671,
-0.0335493013,
-0.0641353726,
0.0487426147,
0.2199577391,
0.4095643461,
-0.4029997587,
-0.3656336069,
-0.396477133,
-0.0816589892,
-0.4356086552,
-0.2211935371,
-0.1281735301,
0.0936491191,
0.0950350985,
0.2374954671,
-0.2286643982,
-0.24478513,
-0.1591932178,
0.0821183175,
-0.1456951499,
0.4021067023,
0.0413877368,
0.1853423268,
-0.1141620725,
-0.3821870089,
0.0746248066,
0.3171322346,
0.2551470101,
0.0177336149,
-0.0402400196,
0.2804535627,
-0.1135493964,
-0.137017101,
0.0539056361,
-0.0051347315,
-0.0932938308,
-0.0665029436,
-0.0675681382,
-0.0987473428,
-0.2189811468,
-0.0269001946,
0.1849090159,
-0.1214122325,
-0.1053616554,
0.0837506205,
0.0456282645,
-0.3730873466,
0.4326429367,
0.2211647332,
-0.0085236393,
-0.1985666007,
-0.133507669,
0.2194376439,
-0.458932519,
0.2654250562,
-0.2891061902,
0.156342268,
0.3173479736,
0.455688417,
0.2233207226,
-0.0649050698,
-0.067980662,
-0.0987006128,
-0.1383627653,
-0.1002940685,
0.0629331172,
-0.3096040487,
0.2589255273,
-0.0202682056,
0.4849736392,
-0.1121174991,
0.2652066946,
0.130978331,
-0.0034167133,
0.3194529414,
-0.1190055907,
0.196035862,
0.0193230752,
0.1845238358,
0.1401705742,
0.465949595,
0.1110081673,
0.0070331628,
0.0470275581,
0.2889148593,
-0.1265299767,
-0.1758517772,
-0.290635258,
0.0854663104,
0.0524402969,
-0.3401103318,
-0.2391037345,
-0.2276738882,
-0.4451781511,
-0.1638912559,
0.0658188835,
0.1539922953,
0.3426798284,
0.0251936018,
0.1911430955,
-0.2424501777,
-0.2109349072,
-0.2723113298,
0.5643004179,
-0.248436898,
0.1921277046,
0.1572179794,
0.3751192987,
0.1882610023,
0.4240936041,
0.2116142213,
0.1786781996,
-0.2010879219,
0.2564735115,
-0.3552727699,
-0.1552319825,
0.018965207,
0.2312573642,
0.1610186845,
-0.2643478811,
0.4957166314,
0.1359368265,
-0.2322769761,
0.4143297076,
0.0861593783,
0.4273021817,
-0.2493316382,
0.3634841144,
0.2400841266,
0.2938927114,
-0.0414933264,
0.1830851436,
-0.4155996442,
0.0779678971,
-0.6234220266,
-0.1174251735,
-0.1011873335,
-0.2356610894,
0.1084445789,
0.0924107134,
0.2051973939,
0.1181334555,
0.347684592,
-0.0357579067,
-0.1855499893,
-0.4065920413,
-0.0429200754,
-0.1452928632,
-0.0774551556,
-0.2424652278,
0.3812710941,
-0.0584684089,
0.5550363064,
0.0424529463,
0.5779340863,
-0.2886162698,
0.2897714376,
-0.544796288,
0.3275340199,
-0.3254657984,
-0.0551968813,
0.1837163419,
0.0911926925,
-0.0703218505,
-0.1465927213,
0.0699734241,
0.2719675303,
-0.3368915915,
0.2480898052,
0.3208193183,
0.3344043493,
0.1007984281,
0.1854650378,
-0.0619372576,
-0.1647573709,
0.019988019,
-0.1395958662,
-0.0411484018,
0.2344658077,
0.2039117813,
0.1925022602,
-0.0568337217,
0.0826730058,
0.1938955188,
0.7380521297,
0.1352981925,
-0.1584629267,
-0.3204585314,
0.0522535667,
0.0395433456,
0.021720849,
-0.5980476141,
0.3872764409,
-0.0852561444,
0.2723891437,
-0.0334619582,
-0.399261266,
0.4943169951,
0.0310681164,
0.0911915749,
-0.240509361,
0.2732807696,
0.2411661148,
-0.0841869414,
-0.3257413507,
0.0797030926,
0.0479561612,
0.3362012506,
0.0674580485,
0.1727022678,
-0.1792181432,
0.0896348208,
-0.3200746775,
0.0919145569,
-0.1244576275,
0.1173276082,
0.0839764476,
-0.4272244573
] |
https://github.com/huggingface/datasets/issues/361 | 🐛 [Metrics] ROUGE is non-deterministic | Now if you re-run the notebook, the two printed results are the same @colanim
```
['0.3356', '0.1466', '0.2318']
['0.3356', '0.1466', '0.2318']
```
However across sessions, the results may change (as numpy's random seed can be different). You can prevent that by setting your seed:
```python
rouge = nlp.load_metric('rouge', seed=42)
``` | If I run the ROUGE metric 2 times, with same predictions / references, the scores are slightly different.
Refer to [this Colab notebook](https://colab.research.google.com/drive/1wRssNXgb9ldcp4ulwj-hMJn0ywhDOiDy?usp=sharing) for reproducing the problem.
Example of F-score for ROUGE-1, ROUGE-2, ROUGE-L in 2 differents run :
> ['0.3350', '0.1470', '0.2329']
['0.3358', '0.1451', '0.2332']
---
Why ROUGE is not deterministic ? | 50 | 🐛 [Metrics] ROUGE is non-deterministic
If I run the ROUGE metric 2 times, with same predictions / references, the scores are slightly different.
Refer to [this Colab notebook](https://colab.research.google.com/drive/1wRssNXgb9ldcp4ulwj-hMJn0ywhDOiDy?usp=sharing) for reproducing the problem.
Example of F-score for ROUGE-1, ROUGE-2, ROUGE-L in 2 differents run :
> ['0.3350', '0.1470', '0.2329']
['0.3358', '0.1451', '0.2332']
---
Why ROUGE is not deterministic ?
Now if you re-run the notebook, the two printed results are the same @colanim
```
['0.3356', '0.1466', '0.2318']
['0.3356', '0.1466', '0.2318']
```
However across sessions, the results may change (as numpy's random seed can be different). You can prevent that by setting your seed:
```python
rouge = nlp.load_metric('rouge', seed=42)
``` | [
-0.1073284075,
-0.2159301937,
-0.0668013766,
0.1431298405,
0.1828391999,
-0.3188185692,
-0.1366636306,
-0.1566527486,
-0.081018582,
0.3942079544,
-0.095870167,
0.5732388496,
0.0757613182,
-0.0353059284,
-0.0049695317,
0.0457202755,
-0.0829766616,
0.1978806406,
-0.0148285478,
-0.358997941,
-0.2548870444,
0.1192236468,
-0.1512850225,
0.0347987488,
-0.1317693442,
-0.0622885004,
0.0263471082,
0.1554982215,
-0.4091151357,
-0.2266363353,
0.0821629241,
0.2336032689,
-0.1760026515,
0.2849853635,
-0.0001076949,
-0.2813827395,
0.1078294516,
-0.1169915646,
0.0769574642,
-0.4047331214,
-0.0405929498,
-0.0956257805,
0.1767806262,
-0.2945888042,
-0.0975639075,
0.1369189471,
-0.0897163749,
0.0338974595,
0.4158983231,
0.2269688249,
0.2249116749,
0.0455721468,
-0.2391412556,
-0.1621120572,
0.0426181667,
-0.0929487944,
-0.0321008414,
0.5454747081,
-0.1822019517,
-0.0067193545,
-0.1354898661,
0.1270417273,
0.1383432448,
0.2235367745,
0.4007500708,
0.0411151536,
0.3929460943,
-0.1358458847,
-0.2343787104,
0.2525839508,
-0.0129315145,
-0.0997708142,
-0.1324528009,
0.0841453522,
0.1587256491,
-0.6156044006,
-0.1732085645,
0.0440140665,
-0.1350554824,
-0.201269269,
-0.0508786999,
0.3788501322,
-0.0968495533,
0.1117188856,
-0.0043132976,
0.168087244,
0.0270763673,
0.1550634801,
0.1478290111,
0.2116185427,
-0.1319666356,
0.1222031191,
-0.2151375562,
-0.0598682091,
-0.3910146952,
-0.0947208479,
0.1377712339,
0.3519815505,
0.0234444067,
0.1232679114,
0.598110497,
0.0189319439,
-0.1684434414,
0.103467077,
-0.1521718949,
0.3907268643,
-0.0975615084,
0.0203453489,
0.2817371488,
0.0372949392,
-0.0406915061,
0.0754890293,
0.5044956207,
-0.4349456429,
0.2057795525,
0.2119952142,
-0.1122408509,
-0.2276437879,
-0.5611444116,
-0.043072097,
-0.2027511746,
-0.0193620361,
-0.100415051,
0.3319780231,
-0.3697907925,
0.1567451656,
-0.0824478567,
0.1941111982,
-0.2658007145,
-0.0755545944,
-0.3253020644,
0.063345477,
-0.5507811308,
-0.0057862159,
-0.1304558367,
0.2926284969,
0.2511181831,
0.2495183051,
0.032372117,
-0.1254930049,
0.0750739425,
-0.3315083385,
0.0869626403,
-0.049979873,
-0.1087683588,
-0.0286280438,
0.1192318052,
-0.2189496756,
-0.196574986,
-0.0809320807,
-0.0595902838,
0.235345155,
0.3346346021,
0.1933610886,
-0.1109469682,
0.0923797786,
-0.0715810955,
0.2088447362,
-0.3361067176,
-0.0010508671,
0.2094526142,
-0.2351085991,
-0.3856660724,
-0.2787615955,
0.0916535631,
0.144438684,
0.1349797994,
-0.0671070218,
0.4620255828,
0.0558445752,
0.144136712,
0.4726656675,
0.1237940937,
0.0034980383,
-0.0609255433,
-0.4403913319,
0.6245058775,
-0.4146524072,
-0.0412497073,
-0.1303750873,
-0.0703396052,
0.0291819572,
-0.0193940923,
0.2022103369,
-0.16690889,
0.0568866879,
0.4013471603,
0.1551740468,
0.1170736775,
-0.1946793795,
-0.2683938146,
0.0136912689,
0.2815439701,
-0.0744161159,
0.1742076576,
0.0707915872,
-0.0301677622,
-0.1171848103,
0.3711910248,
0.1120215207,
-0.4049769938,
0.0647222698,
0.0489664674,
0.114830777,
-0.0608991869,
-0.2330337912,
0.1366045773,
0.0972823203,
-0.6623626351,
0.105829291,
0.4025937021,
-0.1487613916,
-0.311352253,
-0.07095512,
0.0653428361,
-0.1784997582,
0.2433370352,
0.1851491034,
0.2427428365,
0.3561426103,
0.0626445264,
0.3224668503,
-0.2490847707,
-0.0847936124,
-0.3810078204,
-0.0408870168,
-0.028999744,
-0.1580855399,
0.1339617372,
0.4530844688,
0.3085568249,
0.07206925,
-0.141777575,
0.3126994371,
0.3389641345,
-0.0263897218,
-0.0527397133,
0.0680244416,
0.1982622296,
0.2358064055,
-0.040365532,
0.5818984509,
0.1609145999,
-0.0876303986,
0.0840420276,
0.4946382344,
-0.4532773793,
-0.0131184012,
-0.0674488172,
-0.0155319571,
0.1388319135,
0.0436687768,
-0.1320202053,
-0.1433890164,
0.445667237,
0.1765438914,
0.1647566557,
0.0733372793,
-0.3982079625,
-0.0734586269,
0.2575800419,
0.021703884,
0.1302787811,
-0.0767992213,
0.0549408495,
-0.102663219,
0.022917958,
0.0528385937,
0.3336084485,
0.1653775275,
-0.0692486167,
0.1218870953,
-0.4862628579,
-0.4011194706,
-0.1301842183,
-0.0406684019,
0.125700593,
0.268692255,
0.3928349018,
0.1780772805,
-0.3108202517,
-0.1725024283,
-0.178083539,
0.0028737318,
-0.0867992193,
0.2627741992,
-0.2829510868,
0.0638919175,
-0.1240320653,
-0.2499914616,
-0.2210532725,
-0.3301236331,
0.1189464033,
0.260782361,
0.1801374555,
-0.0213392638,
0.416526556,
0.1643577814,
-0.1106038243,
0.177942425,
-0.1152250394,
-0.2789513171,
-0.0980239511,
0.1053921282,
-0.2187727988,
0.2054290771,
0.2601990104,
-0.3080379069,
0.0203065872,
0.1796342432,
-0.2534663379,
-0.0686161816,
-0.002072169,
0.4098414779,
0.1068234891,
-0.3358049691,
-0.2656066716,
0.334767282,
0.3430612683,
-0.2291767001,
-0.1546252519,
0.1012240648,
-0.0897233039,
0.0792596191,
-0.0167216435,
-0.0430627801,
-0.2317105979,
-0.2127960622,
0.4316242933,
0.2908909321,
0.0083822543,
0.5002598763,
-0.0831680521,
-0.0073335879,
0.1379415691,
0.2961852252,
-0.4674461782,
-0.0331860483,
0.2939332724,
-0.3487681448,
-0.4366022944,
-0.2240986228,
0.0505909324,
0.0724683404,
0.0108171962,
-0.2337209582,
-0.5702821016,
0.0090031344,
-0.0026479289,
-0.1951964051,
-0.1662588269,
0.4672873318,
-0.26514709,
-0.2121558785,
0.0052438825,
0.0653484166,
-0.0029163994,
0.2327385694,
0.3163963258,
-0.3067881167,
0.2171619534,
-0.1260423362,
0.0643993393,
0.3522105515,
-0.1832673252,
0.1160770506,
-0.0247522909,
0.3117874861,
-0.3168743253,
0.0364080891,
0.2948444784,
0.0857053399,
-0.1949566007,
0.1709591746,
-0.1188683212,
0.2867118418,
-0.1773144603,
-0.0613702536,
0.1188720018,
-0.159252882,
-0.0122513073,
-0.2380355299,
-0.2204396874,
0.0803624392,
0.2464232743,
-0.0869602114,
-0.2009221911,
-0.0135544911,
0.0842461437,
0.0701996163,
0.0027534515,
-0.0103818327,
-0.0720057487,
-0.4640113413,
0.1893832386,
-0.1006591395,
0.1009136811,
-0.045642253,
0.0669934452,
0.1691399962,
-0.0566843376,
0.3666308522,
-0.2106125653,
0.0921636224,
0.1756333262,
-0.2941548228,
-0.4604095817,
-0.1159775406,
-0.3113108873,
0.0444864631,
0.2178644091,
0.2070883662,
-0.1083556935,
-0.0799205154,
-0.0648073703,
0.0359762907,
-0.1981048733,
-0.0415205359,
-0.6293359995,
-0.0046169758,
0.0181649253,
0.1143141761,
-0.0526502281,
0.2312362194,
0.0274745896,
-0.0094723403,
-0.2461322248,
-0.0133178383,
0.312168479,
0.4288462996,
0.2147684097,
0.0606806874,
-0.2728008628,
-0.0105386283,
-0.0225610957,
-0.3033390641,
0.0782159418,
0.1013694257,
-0.296246767,
0.0424456224,
-0.0132967271,
0.0357424766,
0.2210526466,
0.0138164088,
-0.1438024491,
-0.7564553618,
0.3295618892,
-0.3697874248,
0.1255401522,
0.3463998735,
-0.0126135983,
0.0129842795,
-0.3289075792,
0.3513902426,
0.1373823881,
-0.4095774889,
0.2780746222,
-0.3876503706,
-0.127439484,
0.4977778792,
0.4410947263,
0.8089748025,
-0.055402752,
0.2344988883,
0.3494743705,
-0.1319747865,
0.5014900565,
-0.2265451849,
0.1540484279,
-0.2458847314,
-0.1971988529,
0.0298116207,
0.0289451256,
-0.0411167443,
-0.0968401581,
-0.1022950336,
0.4249102473,
0.1097569913,
0.0189149622,
-0.0572138019,
0.0078090504,
0.2016163319,
-0.0173375253,
-0.1541359127,
0.2030906975,
-0.081894502,
0.1908835322,
-0.175274983,
0.0122952759,
-0.2148536444,
0.0576890782,
0.0145759135,
-0.1486008167,
-0.2444496453,
0.2113225758,
-0.0724926442,
-0.4159748554,
-0.3774954081,
0.5587133765,
0.4174336195,
0.1943918616,
0.0290064868,
0.2016826272,
0.0190362372,
0.1178580374,
-0.0588444471,
-0.0745101869,
0.1307758838,
-0.0487645753,
-0.2427682877,
0.0947327465,
0.1781245172,
-0.2563756108,
-0.2358667254,
0.1642469764,
-0.3935204148,
0.1428213418,
0.01313233,
-0.0823326111,
-0.0574945062,
-0.0706345886,
0.170870468,
0.0125716571,
-0.0627123043,
0.3557574153,
0.1462883353,
-0.5041587353,
-0.1616048068,
0.3129503131,
-0.0394812897,
0.0052436888,
-0.1337231696,
-0.3825682998,
0.0456731468,
-0.3021410108,
-0.1049309373,
-0.3436255455,
-0.0163991898,
0.2843947411,
0.0778478011,
-0.0667212605,
0.206727013,
0.6172462106,
0.2040032744,
0.2291588187,
0.2028276771,
-0.3756344616,
-0.1011357754,
0.026163701,
0.2002659142,
0.0270954706,
0.041011773,
0.2591666579,
0.044195503,
0.3328755796,
-0.4154180884,
-0.2112272382,
-0.2728556693,
0.0771254003,
-0.4033290148,
-0.2485918105,
-0.1983134896,
0.1788426638,
0.1068350971,
0.2859474421,
-0.3695856929,
-0.2480742335,
-0.1829581857,
0.0778273419,
-0.0146715669,
0.2568799853,
-0.1227299944,
0.0897887573,
0.028008081,
-0.2528815269,
0.0257888883,
0.2819305062,
0.1865691692,
0.1521971673,
-0.0954384729,
0.4118029773,
0.1898353696,
-0.0141280061,
0.0645367354,
0.0303328261,
-0.0923134536,
-0.0846866667,
-0.1575946063,
0.0199735239,
-0.4911458194,
-0.1587667465,
-0.1551731229,
-0.1030328423,
0.037731044,
0.0317361131,
0.1262184978,
-0.2419970632,
0.2969408035,
0.2501828969,
-0.0586196892,
-0.3473284245,
-0.0301838983,
0.2194413841,
-0.3312297761,
0.2263868749,
-0.0857332498,
0.246058315,
0.279009968,
0.4026722014,
0.2872609496,
-0.1761206537,
-0.0394819416,
-0.1349146217,
-0.0936425254,
-0.2637962103,
0.1667925268,
-0.174707219,
0.1136262342,
-0.0128396451,
0.6192076206,
0.0229771659,
0.1489235014,
0.3894221783,
0.1835260391,
0.3473848403,
-0.3537888825,
0.0347736105,
-0.1572967917,
0.1302667558,
-0.0962465852,
0.4951851964,
-0.0047521777,
0.057149969,
0.1610794365,
0.2370565385,
-0.3910465539,
-0.2623578608,
-0.380097568,
0.0447980277,
-0.0752816275,
-0.1696821749,
-0.2992704809,
-0.1049144715,
-0.2750799656,
-0.0137255117,
0.0598345958,
0.1909665763,
0.2889846265,
0.139664799,
-0.0436059088,
-0.1941469312,
-0.126456216,
0.0102857612,
0.4056712389,
-0.164521724,
0.0863614678,
0.0578821599,
0.217222169,
0.0415733159,
0.2197797745,
0.2097707093,
0.3153035045,
-0.356500864,
0.1037838161,
-0.192660138,
-0.0260034204,
-0.0689907968,
0.2319443673,
0.3385539949,
-0.1831486076,
0.4716708064,
0.1637119949,
-0.270642519,
0.4996533096,
0.1417887211,
0.3519831598,
-0.2614819407,
0.5389919281,
0.2331409007,
0.2311447561,
-0.088334173,
0.0677471906,
-0.446249485,
0.1519168019,
-0.5843313336,
-0.0335706696,
0.0321122818,
-0.3731010556,
0.1177595556,
-0.0533855483,
0.3991174698,
-0.1048741639,
0.1799817085,
-0.116692543,
-0.1933870614,
-0.6247976422,
0.1171363592,
-0.1192761585,
0.0117701069,
-0.1134246737,
0.2710291743,
-0.3030306697,
0.3159369528,
-0.0864443406,
0.5827922821,
-0.0794927478,
0.2144659609,
-0.5019687414,
0.2297378033,
-0.4718145728,
-0.1888469607,
0.1791080385,
-0.0297105834,
-0.0602135323,
-0.244448036,
0.1195141524,
0.0902113691,
-0.0805600956,
0.0156913027,
0.8752219677,
0.4947993755,
0.1753018051,
0.1983553469,
-0.1136669964,
-0.1404851824,
-0.0375552215,
-0.1914147884,
-0.0399723053,
0.1490693688,
0.0210788958,
0.122879222,
-0.0095519088,
0.1311475039,
0.0100224726,
0.7477490902,
0.1075142324,
-0.2883641124,
-0.1580868959,
0.1112048253,
0.0338589996,
0.095197767,
-0.3561345339,
0.5702242851,
-0.006234087,
0.3806045949,
-0.1571123004,
-0.3438034654,
0.5270278454,
-0.153601259,
-0.055810526,
-0.0444959626,
0.2838687897,
0.1997015327,
-0.095543094,
-0.3783439398,
0.070342198,
0.1069684029,
0.0896179602,
0.0172649845,
0.2902808487,
-0.248746857,
-0.0887807608,
-0.1904657334,
0.1322315931,
-0.0104808556,
-0.089554362,
0.3145933747,
-0.343269825
] |
https://github.com/huggingface/datasets/issues/360 | [Feature request] Add dataset.ragged_map() function for many-to-many transformations | Actually `map(batched=True)` can already change the size of the dataset.
It can accept examples of length `N` and returns a batch of length `M` (can be null or greater than `N`).
I'll make that explicit in the doc that I'm currently writing. | `dataset.map()` enables one-to-one transformations. Input one example and output one example. This is helpful for tokenizing and cleaning individual lines.
`dataset.filter()` enables one-to-(one-or-none) transformations. Input one example and output either zero/one example. This is helpful for removing portions from the dataset.
However, some dataset transformations are many-to-many. Consider constructing BERT training examples from a dataset of sentences, where you map `["a", "b", "c"] -> ["a[SEP]b", "a[SEP]c", "b[SEP]c", "c[SEP]b", ...]`
I propose a more general `ragged_map()` method that takes in a batch of examples of length `N` and return a batch of examples `M`. This is different from the `map(batched=True)` method, which takes examples of length `N` and returns a batch of length `N`, processing individual examples in parallel. I don't have a clear vision of how this would be implemented efficiently and lazily, but would love to hear the community's feedback on this.
My specific use case is creating an end-to-end ELECTRA data pipeline. I would like to take the raw WikiText data and generate training examples from this using the `ragged_map()` method, then export to TFRecords and train quickly. This would be a reproducible pipeline with no bash scripts. Currently I'm relying on scripts like https://github.com/google-research/electra/blob/master/build_pretraining_dataset.py, which are less general.
| 42 | [Feature request] Add dataset.ragged_map() function for many-to-many transformations
`dataset.map()` enables one-to-one transformations. Input one example and output one example. This is helpful for tokenizing and cleaning individual lines.
`dataset.filter()` enables one-to-(one-or-none) transformations. Input one example and output either zero/one example. This is helpful for removing portions from the dataset.
However, some dataset transformations are many-to-many. Consider constructing BERT training examples from a dataset of sentences, where you map `["a", "b", "c"] -> ["a[SEP]b", "a[SEP]c", "b[SEP]c", "c[SEP]b", ...]`
I propose a more general `ragged_map()` method that takes in a batch of examples of length `N` and return a batch of examples `M`. This is different from the `map(batched=True)` method, which takes examples of length `N` and returns a batch of length `N`, processing individual examples in parallel. I don't have a clear vision of how this would be implemented efficiently and lazily, but would love to hear the community's feedback on this.
My specific use case is creating an end-to-end ELECTRA data pipeline. I would like to take the raw WikiText data and generate training examples from this using the `ragged_map()` method, then export to TFRecords and train quickly. This would be a reproducible pipeline with no bash scripts. Currently I'm relying on scripts like https://github.com/google-research/electra/blob/master/build_pretraining_dataset.py, which are less general.
Actually `map(batched=True)` can already change the size of the dataset.
It can accept examples of length `N` and returns a batch of length `M` (can be null or greater than `N`).
I'll make that explicit in the doc that I'm currently writing. | [
-0.5117926002,
-0.0649433285,
0.0467377976,
-0.212776795,
-0.0525976606,
-0.0972508788,
0.2488032579,
0.3504045904,
-0.2492750883,
0.0586385094,
0.1931721866,
0.4199869633,
-0.420835793,
-0.118523106,
0.3404657543,
-0.2591932118,
0.1204847395,
-0.0718681067,
-0.0588384941,
-0.0770464987,
-0.3946817815,
-0.0967777148,
-0.2518251836,
-0.0019551925,
-0.0170705914,
-0.0299001541,
-0.1776050627,
-0.3150986731,
0.1913707554,
-0.0266354419,
0.1828670055,
0.3647990227,
-0.0834426805,
0.1984165311,
-0.0001292811,
-0.1904084682,
0.0921220481,
-0.038571246,
-0.224856928,
-0.1235295534,
-0.0980346352,
-0.1194365174,
-0.1217389479,
-0.1869544983,
0.167625621,
0.0402922891,
0.2579860985,
-0.3276602626,
0.4382553697,
0.1333800554,
-0.0588072576,
0.031622,
-0.094925791,
0.0337900445,
0.5097753406,
0.4657484889,
-0.0328055099,
-0.2857996821,
0.5987884998,
-0.2376437038,
-0.0481918007,
0.311527878,
-0.0568305701,
-0.0095254686,
0.296394974,
-0.0102195498,
-0.1644731164,
-0.2860159874,
-0.1781575978,
0.6859875917,
-0.1074633598,
-0.3305651248,
-0.5636531115,
-0.3081479073,
0.1056260616,
-0.2365753055,
-0.4840699136,
0.0316821858,
-0.1258301586,
-0.0466932431,
-0.8150778413,
-0.1063042879,
-0.3973289132,
0.3978863358,
-0.1625312567,
0.1373668313,
0.256899029,
0.2220886052,
0.1073889583,
-0.2615981996,
-0.1022022665,
-0.1448865235,
0.2572752833,
0.4562515914,
-0.0917666778,
-0.3255053759,
0.0890362859,
-0.0486533791,
0.5503165126,
0.0820572078,
-0.0035313722,
0.1841465235,
-0.2206216753,
-0.0259342305,
-0.028433241,
-0.0053631067,
0.0318875015,
0.5232825875,
0.1720313132,
-0.0607999861,
-0.0620665252,
0.3738222122,
-0.0533120446,
-0.1968527436,
-0.1862695813,
0.2287457585,
-0.1539469361,
0.1261387616,
-0.0783336535,
-0.2251608819,
-0.2609086633,
-0.0259204768,
0.0960607827,
0.113773644,
-0.0592958629,
-0.0202016383,
0.1481966674,
0.1180832461,
0.034574762,
-0.0761321336,
0.0366139635,
-0.1324020773,
-0.3662853837,
0.1333998144,
0.3161872029,
0.1634277403,
0.0357799158,
-0.090066798,
0.0493337214,
0.3958721459,
0.031780988,
-0.1015293151,
0.4242264628,
-0.106307134,
-0.3029842377,
0.0902887061,
0.0502144918,
0.2103306353,
-0.3275678158,
0.178711921,
-0.5758723617,
-0.5673734546,
0.2367749512,
0.0075080181,
0.0883104429,
-0.0259558093,
-0.1396823227,
0.4832125604,
0.3983256221,
-0.3995803595,
-0.0187348425,
-0.4631465375,
-0.3660461307,
-0.0446322486,
0.1977970004,
0.3899155557,
-0.0647999197,
-0.1040579826,
-0.1227672845,
0.2528775036,
0.2617073655,
0.2549602091,
-0.3634382784,
0.3214166164,
-0.0104308613,
0.0024099052,
0.5380625725,
-0.1634081304,
-0.0462383442,
0.4684033692,
-0.0806682184,
0.1257240623,
0.0206972677,
-0.0552749373,
0.6303876638,
-0.2714836001,
0.548294425,
0.4955847263,
-0.2449004203,
0.2318511158,
0.1040632576,
-0.2603808045,
0.1129258871,
0.1038385332,
0.158151269,
-0.1579866111,
-0.091963999,
0.1619399339,
0.2925557494,
-0.3035009503,
0.1494297832,
-0.2504132092,
-0.2802056074,
0.0837859958,
-0.1690109223,
-0.2650310993,
-0.4043861926,
-0.0532114841,
-0.1862904429,
-0.1181835756,
0.3396582305,
-0.3409476876,
0.3310182095,
-0.0361084454,
0.1190068275,
0.0143992119,
-0.0951025039,
0.076922074,
0.0848623812,
0.014127247,
-0.1435786933,
-0.3389591277,
-0.0538140163,
0.1589297056,
0.00723961,
0.0650212094,
0.3833913505,
0.0107546709,
-0.2258306146,
0.229962334,
-0.0129866321,
-0.2821637094,
0.2307549715,
0.2818349302,
0.1516555399,
-0.0679396018,
-0.1761771888,
0.3548891842,
0.428188175,
0.1057400703,
0.1138771847,
0.2418981642,
0.1026606411,
-0.2012153864,
-0.5654885173,
0.3278261721,
0.0159297362,
0.5668687224,
0.2172817886,
0.0367181376,
-0.2614702284,
0.0843572468,
-0.3924776018,
-0.1233016327,
0.0642561466,
-0.0924336761,
0.0619219318,
-0.177986443,
-0.1098277494,
0.1385017633,
0.3341232538,
-0.062313173,
0.016042633,
0.4599881172,
-0.0083589517,
-0.1453415155,
-0.142670095,
0.074156031,
0.2954389751,
0.192978397,
0.0457331352,
-0.1567016691,
0.033073999,
0.0837344304,
0.2152985185,
0.1570752412,
0.0650496781,
0.1256736964,
0.1853108257,
0.1826386154,
0.0090828314,
-0.5682792664,
0.188254714,
-0.0079581868,
-0.2539592385,
0.1310596466,
-0.0517421886,
-0.0749284625,
-0.3282672167,
-0.3806487918,
0.2121576667,
-0.2187448442,
0.2884815037,
-0.1282153875,
-0.2969518006,
0.2772271037,
0.436925739,
0.4191141129,
0.0573173016,
-0.2148326188,
-0.0691947713,
-0.2195560634,
-0.0100066215,
-0.1027996466,
0.0953417122,
-0.2313012779,
0.3172836006,
0.0528559834,
-0.0300485604,
-0.4030622244,
-0.3596817851,
-0.0422483124,
-0.1454543769,
-0.0949647054,
0.4797690809,
0.0653491989,
-0.0845197961,
-0.2374873459,
0.0989022106,
-0.3198264837,
0.0672240555,
-0.0130903795,
0.0672868192,
0.0276808143,
-0.0035388842,
-0.1749518514,
-0.0653907284,
-0.1445049047,
0.2854900658,
-0.2513404191,
0.1826521754,
0.041083023,
0.2352615744,
-0.0113291889,
-0.0986150354,
-0.1638326347,
0.3204431534,
-0.0722718313,
0.1216054484,
-0.2969000936,
-0.0577402003,
-0.384801656,
0.0147549659,
-0.4168525636,
0.8833580613,
-0.2570570707,
0.0653383657,
-0.0109648276,
0.1144483835,
-0.0286808461,
0.1144719869,
0.459435761,
0.1734047234,
0.0842865184,
-0.0753117651,
0.0018323064,
0.0628123879,
0.0764713213,
-0.0132883936,
0.1676450223,
0.3107931614,
0.1382337511,
1.036278367,
0.4065804183,
-0.1977276206,
-0.123777017,
-0.0955226794,
-0.1306507587,
-0.0942158625,
-0.0773933232,
0.2284003794,
-0.1027044281,
0.0158005878,
0.2640627027,
0.0193351135,
-0.2913357317,
0.0927305669,
0.2628008723,
-0.0629935861,
-0.3514674902,
0.4311907589,
-0.2534627914,
0.3162636161,
-0.0628937781,
-0.0218243673,
-0.4590002894,
-0.0450874493,
0.1393496841,
0.0284786634,
0.4992494881,
0.0089775175,
-0.1856808811,
-0.1942510456,
-0.1743839979,
0.2592369914,
0.3169304729,
-0.1696094871,
-0.0471475385,
-0.270478338,
-0.1804649085,
0.0408408977,
0.6683760881,
-0.404258877,
-0.0944761336,
-0.0640059486,
-0.1411258727,
-0.3563019037,
0.031246759,
-0.2481981516,
0.0697446987,
-0.0198519807,
0.4948210418,
-0.3880447745,
-0.1199446321,
0.5387394428,
0.2025346011,
0.0707614273,
0.2278277129,
0.3494004011,
0.0512493625,
-0.2930173278,
0.0461539291,
0.0083862767,
-0.1381509453,
-0.0573399961,
-0.1563094854,
-0.2667964697,
0.1851994693,
0.1792493165,
0.0469416603,
0.0365431346,
0.1741309315,
0.2474832237,
-0.1948192418,
-0.0388813913,
0.5333440304,
-0.0232819989,
-0.5298106074,
-0.2901961803,
-0.2957296968,
0.0934869647,
0.4838528633,
0.3759440482,
0.1037957668,
-0.2002666891,
0.0990793258,
0.3444660306,
-0.1938919127,
0.3590350449,
0.238507241,
-0.004601527,
-0.2231173515,
-0.6674752831,
0.2885187268,
0.3396401107,
-0.1539262682,
0.4999474585,
-0.1128190979,
-0.4338573813,
0.4376759231,
0.2138666958,
0.8605989218,
-0.0930363983,
0.4288921952,
0.0714297891,
0.2922269404,
0.0355977789,
-0.3562482595,
0.1745381504,
-0.0388240069,
0.0377969295,
-0.0339288786,
0.0631569028,
-0.0656372458,
0.353382349,
-0.3637480438,
0.1785398722,
0.1664641201,
0.0536408797,
-0.1254018843,
-0.1496278942,
0.123134762,
-0.454520613,
0.1960608661,
-0.0737137273,
0.1805971265,
-0.0163818914,
-0.064432539,
-0.217046693,
0.0175486431,
-0.1197944283,
-0.4037566185,
-0.1684030443,
-0.4634839892,
0.118083626,
-0.1645261496,
-0.3696551621,
0.1360816211,
0.3140818775,
-0.0894627124,
0.260681361,
-0.0109712975,
-0.0849465877,
0.0531751029,
0.1234386042,
-0.1126029938,
-0.4361712337,
0.4604464471,
0.0241078585,
0.0635960996,
0.1180091724,
-0.0135915801,
0.0203638598,
-0.2320085168,
-0.1347921938,
0.6238188148,
-0.1697425842,
0.08116211,
0.4407754242,
-0.2101943046,
-0.1649960428,
-0.081839785,
-0.0821778551,
-0.0403971821,
0.4395233691,
-0.1777649075,
-0.0196165591,
0.0887479484,
0.1774640232,
-0.1430028677,
-0.2058620304,
0.2194249332,
0.034709543,
0.001706861,
-0.214319244,
0.4186758697,
0.3412621319,
-0.5785903931,
0.2002493292,
-0.0755245835,
0.1383101046,
0.192677483,
0.4940735698,
0.0020639072,
0.2198424637,
-0.1051295772,
-0.1493912488,
-0.0877567381,
0.0988130718,
0.09802939,
0.3579156101,
-0.264395386,
0.0938263312,
0.1101919338,
0.2262542397,
-0.1430222094,
0.1302987188,
0.1500338018,
0.3245945573,
-0.1469015032,
0.1860021949,
-0.3450327814,
0.120413281,
-0.145729661,
0.0248903036,
-0.0870721638,
-0.0339143127,
-0.1341606081,
0.2138228416,
0.0136193968,
-0.012630485,
0.2662873864,
-0.0065076202,
-0.2293901145,
-0.4863310456,
0.4170767367,
-0.0988722965,
-0.1932521015,
0.0323350653,
0.2872152925,
0.1487860084,
0.0434738994,
0.2304134518,
0.1464756131,
0.1685270965,
-0.1405679882,
0.1705088019,
0.0516400822,
-0.3247896433,
0.0742112249,
0.2445794642,
0.4982961714,
0.167056635,
0.3701967001,
-0.0455543399,
-0.2654013634,
0.2559411228,
0.0607976913,
0.3003191352,
-0.2145723552,
0.0891187266,
0.2506809831,
0.0432812795,
-0.1449577808,
0.0008063987,
0.1159374118,
-0.1271289885,
0.1409296542,
0.1531625986,
-0.3267055154,
-0.1371105313,
-0.0099200644,
-0.1005179286,
-0.0054875463,
-0.2498062998,
0.1589379013,
0.5841218233,
-0.0964712501,
0.005484065,
-0.3491957486,
0.209393397,
0.3079667985,
-0.1342759728,
0.0624685958,
0.7259109616,
0.1867705733,
0.044511348,
0.3982730508,
-0.2389345765,
0.037958622,
0.1182681024,
0.0814307034,
0.4266918302,
0.2245123237,
0.0289225727,
-0.0516347922,
-0.222333461,
-0.1780668199,
0.3308289349,
0.2070913613,
-0.2560722232,
-0.1284087598,
-0.1608005315,
0.1912705898,
-0.0682938471,
-0.228255868,
-0.012185894,
0.63964957,
0.189458102,
0.4283136427,
0.0356013551,
-0.2567309439,
-0.2338406295,
0.4714783132,
-0.2450587302,
-0.1183260083,
0.1864341348,
-0.1090714112,
-0.0430828221,
0.3037451804,
0.3738417625,
0.2554518878,
-0.2062004358,
0.3856815994,
-0.3402119577,
0.1566358209,
0.0453632101,
0.1711401641,
0.0649496466,
-0.2425819188,
0.279863894,
-0.1120093688,
-0.0136455465,
0.1677276641,
-0.1319574267,
-0.0159592461,
-0.2207805216,
0.0914256126,
0.2969559431,
-0.2220666409,
-0.0637009442,
0.1455152631,
-0.0826903582,
0.1635770053,
0.2586447895,
-0.3232420683,
0.0181080773,
0.2209971249,
-0.0079622958,
0.0785276741,
0.4866628945,
0.0731781721,
0.0823514014,
-0.3261427879,
-0.3485642374,
-0.0445370227,
-0.223714456,
-0.1492240727,
0.078230992,
-0.0020912029,
0.0520902872,
0.1542300284,
0.3146729171,
-0.0017993972,
-0.7042710781,
-0.1145154685,
0.5776193142,
-0.1748532504,
-0.1160904765,
0.1270684302,
0.1364874989,
0.1195358261,
-0.3580104113,
0.126615569,
-0.2097090334,
-0.1929228008,
-0.0605746992,
0.1572683007,
0.3012135625,
0.0756622702,
0.1441113353,
0.1144429594,
0.1108202338,
0.0371249169,
0.2231858373,
-0.1126600057,
0.1721079499,
-0.0361603126,
0.2040280104,
0.1006088331,
0.0013340339,
-0.2895725965,
-0.3310927153,
-0.041956313,
-0.3831174374,
0.2911996245,
0.019023478,
-0.1299677193,
-0.0623693503,
-0.0453004912,
-0.0445540696,
0.1269277036,
0.4295781255,
-0.1205238923,
-0.2004199326,
0.0462111831,
-0.2601970136,
0.39552477,
-0.4662590921,
-0.3204607964,
-0.479596287,
0.1678975224,
-0.414601475,
0.2287062556,
-0.4381659031,
-0.1076836288,
0.4040953815,
-0.0032028612,
-0.4082674384,
0.2361125946,
0.1241551638,
-0.2943825722,
-0.255400002,
0.3656479716,
0.0122954268,
-0.2283164561,
-0.1586784422,
-0.6390987039
] |
https://github.com/huggingface/datasets/issues/360 | [Feature request] Add dataset.ragged_map() function for many-to-many transformations | You're two steps ahead of me :) In my testing, it also works if `M` < `N`.
A batched map of different length seems to work if you directly overwrite all of the original keys, but fails if any of the original keys are preserved.
For example,
```python
# Create a dummy dataset
dset = load_dataset("wikitext", "wikitext-2-raw-v1")["test"]
dset = dset.map(lambda ex: {"length": len(ex["text"]), "foo": 1})
# Do an allreduce on each batch, overwriting both keys
dset.map(lambda batch: {"length": [sum(batch["length"])], "foo": [1]})
# Dataset(schema: {'length': 'int64', 'foo': 'int64'}, num_rows: 5)
# Now attempt an allreduce without touching the `foo` key
dset.map(lambda batch: {"length": [sum(batch["length"])]})
# This fails with the error message below
```
```bash
File "/path/to/nlp/src/nlp/arrow_dataset.py", line 728, in map
arrow_schema = pa.Table.from_pydict(test_output).schema
File "pyarrow/io.pxi", line 1532, in pyarrow.lib.Codec.detect
File "pyarrow/table.pxi", line 1503, in pyarrow.lib.Table.from_arrays
File "pyarrow/public-api.pxi", line 390, in pyarrow.lib.pyarrow_wrap_table
File "pyarrow/error.pxi", line 85, in pyarrow.lib.check_status
pyarrow.lib.ArrowInvalid: Column 1 named foo expected length 1 but got length 2
```
Adding the `remove_columns=["length", "foo"]` argument to `map()` solves the issue. Leaving the above error for future visitors. Perfect, thank you! | `dataset.map()` enables one-to-one transformations. Input one example and output one example. This is helpful for tokenizing and cleaning individual lines.
`dataset.filter()` enables one-to-(one-or-none) transformations. Input one example and output either zero/one example. This is helpful for removing portions from the dataset.
However, some dataset transformations are many-to-many. Consider constructing BERT training examples from a dataset of sentences, where you map `["a", "b", "c"] -> ["a[SEP]b", "a[SEP]c", "b[SEP]c", "c[SEP]b", ...]`
I propose a more general `ragged_map()` method that takes in a batch of examples of length `N` and return a batch of examples `M`. This is different from the `map(batched=True)` method, which takes examples of length `N` and returns a batch of length `N`, processing individual examples in parallel. I don't have a clear vision of how this would be implemented efficiently and lazily, but would love to hear the community's feedback on this.
My specific use case is creating an end-to-end ELECTRA data pipeline. I would like to take the raw WikiText data and generate training examples from this using the `ragged_map()` method, then export to TFRecords and train quickly. This would be a reproducible pipeline with no bash scripts. Currently I'm relying on scripts like https://github.com/google-research/electra/blob/master/build_pretraining_dataset.py, which are less general.
| 179 | [Feature request] Add dataset.ragged_map() function for many-to-many transformations
`dataset.map()` enables one-to-one transformations. Input one example and output one example. This is helpful for tokenizing and cleaning individual lines.
`dataset.filter()` enables one-to-(one-or-none) transformations. Input one example and output either zero/one example. This is helpful for removing portions from the dataset.
However, some dataset transformations are many-to-many. Consider constructing BERT training examples from a dataset of sentences, where you map `["a", "b", "c"] -> ["a[SEP]b", "a[SEP]c", "b[SEP]c", "c[SEP]b", ...]`
I propose a more general `ragged_map()` method that takes in a batch of examples of length `N` and return a batch of examples `M`. This is different from the `map(batched=True)` method, which takes examples of length `N` and returns a batch of length `N`, processing individual examples in parallel. I don't have a clear vision of how this would be implemented efficiently and lazily, but would love to hear the community's feedback on this.
My specific use case is creating an end-to-end ELECTRA data pipeline. I would like to take the raw WikiText data and generate training examples from this using the `ragged_map()` method, then export to TFRecords and train quickly. This would be a reproducible pipeline with no bash scripts. Currently I'm relying on scripts like https://github.com/google-research/electra/blob/master/build_pretraining_dataset.py, which are less general.
You're two steps ahead of me :) In my testing, it also works if `M` < `N`.
A batched map of different length seems to work if you directly overwrite all of the original keys, but fails if any of the original keys are preserved.
For example,
```python
# Create a dummy dataset
dset = load_dataset("wikitext", "wikitext-2-raw-v1")["test"]
dset = dset.map(lambda ex: {"length": len(ex["text"]), "foo": 1})
# Do an allreduce on each batch, overwriting both keys
dset.map(lambda batch: {"length": [sum(batch["length"])], "foo": [1]})
# Dataset(schema: {'length': 'int64', 'foo': 'int64'}, num_rows: 5)
# Now attempt an allreduce without touching the `foo` key
dset.map(lambda batch: {"length": [sum(batch["length"])]})
# This fails with the error message below
```
```bash
File "/path/to/nlp/src/nlp/arrow_dataset.py", line 728, in map
arrow_schema = pa.Table.from_pydict(test_output).schema
File "pyarrow/io.pxi", line 1532, in pyarrow.lib.Codec.detect
File "pyarrow/table.pxi", line 1503, in pyarrow.lib.Table.from_arrays
File "pyarrow/public-api.pxi", line 390, in pyarrow.lib.pyarrow_wrap_table
File "pyarrow/error.pxi", line 85, in pyarrow.lib.check_status
pyarrow.lib.ArrowInvalid: Column 1 named foo expected length 1 but got length 2
```
Adding the `remove_columns=["length", "foo"]` argument to `map()` solves the issue. Leaving the above error for future visitors. Perfect, thank you! | [
-0.5140849352,
-0.0638850182,
0.0467356108,
-0.227182135,
-0.0690645725,
-0.0551059991,
0.2775114477,
0.3193073869,
-0.2335920632,
0.0517761186,
0.1853372306,
0.4330137968,
-0.3891703486,
-0.1567607969,
0.3206686974,
-0.2123528123,
0.138025552,
-0.0705325752,
-0.0471089259,
-0.0676657856,
-0.4131713212,
-0.081382513,
-0.3076459169,
-0.0193035118,
0.0158392228,
-0.0517237037,
-0.1688472331,
-0.3216548264,
0.1985129416,
-0.0572382733,
0.1546299905,
0.3466905057,
-0.0777746737,
0.202463612,
-0.0001282075,
-0.183033362,
0.0852342546,
-0.0660537332,
-0.2778267264,
-0.1043352485,
-0.1222464293,
-0.092177026,
-0.1874970198,
-0.1921696663,
0.1732086837,
0.0139109455,
0.2294356972,
-0.3430963755,
0.4886729419,
0.1127874553,
-0.0509736538,
0.0658144355,
-0.0822368264,
0.0404131487,
0.47337538,
0.4220069349,
-0.0335140266,
-0.2560856938,
0.5853218436,
-0.2236127555,
-0.0561208539,
0.31670174,
-0.0640675277,
-0.0125537422,
0.2690359354,
0.0069322735,
-0.1276350319,
-0.2782158256,
-0.1596966684,
0.6687788963,
-0.1796214134,
-0.3169802129,
-0.5546559691,
-0.3592832386,
0.0945754796,
-0.2510690689,
-0.4691945612,
0.0308719948,
-0.1524644792,
-0.0594956391,
-0.8480561972,
-0.0725239292,
-0.3502871394,
0.3833610117,
-0.1656908989,
0.1573260427,
0.2363447398,
0.2193863541,
0.1254207045,
-0.2635752261,
-0.1169260144,
-0.1893375665,
0.2012734264,
0.4865551591,
-0.0621960759,
-0.3287472725,
0.0657368377,
-0.0454894863,
0.5274834633,
0.0178332031,
0.0014930926,
0.1767750084,
-0.1448726505,
-0.0563268103,
-0.0290259738,
0.0129231364,
0.0860022753,
0.5244882107,
0.1836900115,
-0.0710850582,
-0.0734397769,
0.376155287,
0.001037471,
-0.1939126551,
-0.1375450343,
0.2832211256,
-0.153954491,
0.1606366038,
-0.0712326914,
-0.2117685378,
-0.2780435383,
-0.0161031783,
0.0704890937,
0.1073949635,
-0.0445262566,
-0.1205077469,
0.1225226671,
0.104326725,
0.0342733189,
-0.0758774653,
0.0335375406,
-0.1791586578,
-0.3669874668,
0.112220034,
0.3516444266,
0.1253016293,
0.0558127463,
-0.091467917,
0.0226246566,
0.3612658381,
-0.0332890637,
-0.0695663989,
0.4820078909,
-0.1084306911,
-0.2738677859,
0.113699019,
0.0654223412,
0.1628777981,
-0.3124418855,
0.1807007045,
-0.5805318952,
-0.4811041057,
0.3143532574,
0.0241200067,
0.0556707233,
-0.0127375294,
-0.2111569494,
0.4394823313,
0.3932484984,
-0.3599757552,
0.0097454265,
-0.4304399192,
-0.3189180195,
-0.040207576,
0.198399812,
0.4012483358,
-0.0779253691,
-0.1391838491,
-0.0653008446,
0.2619437575,
0.2537104189,
0.2722930908,
-0.3692958951,
0.3295792937,
-0.0330144241,
0.0141651034,
0.5044759512,
-0.1357090473,
-0.0761543587,
0.4683812857,
-0.1021963879,
0.1658275276,
-0.0335431173,
-0.0839251727,
0.6721914411,
-0.3023914695,
0.5716998577,
0.4612063169,
-0.2615792453,
0.2165630758,
0.0959385484,
-0.2506915331,
0.0571707971,
0.0597372055,
0.178098768,
-0.1654476821,
-0.1107607856,
0.1469747722,
0.285900116,
-0.2964671552,
0.1687086523,
-0.2055946738,
-0.3021272421,
0.0792603642,
-0.1763589382,
-0.2184638381,
-0.4042705297,
-0.0012164116,
-0.226648435,
-0.1566906124,
0.2583780885,
-0.3116948605,
0.3473117352,
-0.0253705382,
0.052837342,
-0.0055870293,
-0.0706905723,
0.033575207,
0.1224454269,
0.0577410012,
-0.1151438132,
-0.3456276357,
0.0082594529,
0.1561136693,
0.0033239126,
0.0503490642,
0.3568119109,
0.0058247373,
-0.2318895459,
0.2177129686,
0.029840719,
-0.3160479963,
0.232010603,
0.2861754298,
0.1013382822,
-0.0644033849,
-0.2576492131,
0.331679225,
0.4543640912,
0.1182984859,
0.0973233059,
0.2350212336,
0.119103834,
-0.2146910429,
-0.5587955713,
0.3671114743,
0.002650436,
0.579678297,
0.1737110168,
0.0429743528,
-0.2740182877,
0.0838132724,
-0.4269851446,
-0.1542908549,
0.0699476302,
-0.1255005896,
0.0179765522,
-0.1776825935,
-0.0578423366,
0.1229691207,
0.2958963811,
-0.0865251124,
0.0253412537,
0.3899828494,
-0.055760175,
-0.1243670508,
-0.1621278524,
0.0794297755,
0.2992252111,
0.1775404215,
0.0780117735,
-0.1708123833,
0.0283876956,
0.0630375445,
0.2288247794,
0.1442822963,
0.0305292755,
0.1563626677,
0.1670928895,
0.1781272292,
-0.0295907855,
-0.507416904,
0.2409528494,
-0.0365326032,
-0.2441271991,
0.1146547124,
-0.0737814903,
-0.078759253,
-0.3204548955,
-0.3741786182,
0.2363277972,
-0.2455087602,
0.2917231619,
-0.093758896,
-0.2794336677,
0.328877449,
0.4729543626,
0.3735399842,
0.0670036897,
-0.2365325689,
-0.0940210968,
-0.2538487315,
-0.0075250794,
-0.0984293967,
0.0669918209,
-0.2963274121,
0.3102850318,
0.0491147414,
-0.0590430833,
-0.4437866509,
-0.3047179878,
-0.0312406681,
-0.1708153188,
-0.0816819668,
0.4561350942,
0.0946934074,
-0.1012774035,
-0.2439613938,
0.1165832281,
-0.2921507061,
0.0331078172,
0.0019351617,
0.0883975625,
-0.0165855177,
-0.0104008839,
-0.1024869978,
-0.0310776681,
-0.1095344499,
0.2773323059,
-0.303809315,
0.1510037482,
0.1006519347,
0.2372594774,
-0.0402251408,
-0.1226481199,
-0.2176588476,
0.2773084939,
-0.0570497662,
0.164492771,
-0.3148435652,
-0.080429092,
-0.355879128,
0.0080241263,
-0.4721955955,
0.8751978874,
-0.2329043001,
0.0979560241,
0.0061032325,
0.1651859432,
0.0104062054,
0.1134643331,
0.4450582266,
0.1565901339,
0.0744688213,
-0.0869630128,
0.0531912521,
0.0861226767,
0.0463442914,
0.0251020752,
0.1552982628,
0.3127290308,
0.1483410746,
1.0749418736,
0.4066048861,
-0.2169663906,
-0.1586940587,
-0.1032632515,
-0.1172733307,
-0.1119469106,
-0.1229795888,
0.1862340122,
-0.1086738855,
0.0446406677,
0.2721088827,
-0.0108471364,
-0.3270235062,
0.1042990461,
0.3022094369,
-0.069652915,
-0.393106997,
0.4112079442,
-0.2923820615,
0.3231612742,
-0.0093753263,
0.0182359964,
-0.4317820668,
-0.052766148,
0.1772794276,
-0.0218272582,
0.5039940476,
-0.0004376918,
-0.2170689404,
-0.1989745051,
-0.2317492962,
0.2421084791,
0.3034308851,
-0.10310027,
-0.0184444487,
-0.2629832029,
-0.1854945719,
0.0444023795,
0.6822599173,
-0.4207908809,
-0.0235354956,
-0.058704935,
-0.1007906571,
-0.3538383543,
-0.0056989044,
-0.2146227062,
0.061452847,
-0.0185948871,
0.5420700908,
-0.369638741,
-0.1054530144,
0.4996540546,
0.201598078,
0.0292030573,
0.2182334363,
0.3442280889,
0.0626823232,
-0.2690503597,
0.0428278111,
0.0618407279,
-0.1242794096,
-0.037653096,
-0.1252586395,
-0.2955960333,
0.1893563122,
0.1836908162,
0.0336561203,
0.0484157689,
0.2226522863,
0.3056958914,
-0.1597017348,
-0.0187753141,
0.5131603479,
-0.0489235893,
-0.5048874021,
-0.2913342118,
-0.3084585369,
0.0604869276,
0.4303064644,
0.3761098385,
0.0962696522,
-0.1676415652,
0.100034982,
0.3084871769,
-0.2345801592,
0.2947364748,
0.1828979254,
0.0257243924,
-0.2415444851,
-0.6020065546,
0.2622420192,
0.3142391443,
-0.186329931,
0.4721349776,
-0.1496135294,
-0.4798114002,
0.4604501426,
0.215608269,
0.7913639545,
-0.0752828717,
0.4272466302,
0.0521435365,
0.3219878674,
0.0058774427,
-0.3096725047,
0.1915816516,
-0.0336149186,
0.0491669625,
-0.0364146754,
0.0795576572,
-0.0201456398,
0.3469964266,
-0.3440819979,
0.1437398344,
0.1949300766,
0.0461237468,
-0.1402459145,
-0.1863614619,
0.146587193,
-0.4494157135,
0.2331823409,
-0.0641706288,
0.2282531857,
0.0323421806,
-0.0666131228,
-0.1915912926,
-0.0098838285,
-0.1579100192,
-0.4218659401,
-0.1853286326,
-0.4894331694,
0.1597472578,
-0.150001809,
-0.3506148458,
0.1016644016,
0.3187217414,
-0.0347139724,
0.2399651408,
-0.0003745761,
-0.090228796,
0.1099751592,
0.1146918386,
-0.1349404007,
-0.4417131245,
0.389644146,
0.0380556285,
0.1116052568,
0.1235312596,
-0.0229667574,
0.0129075572,
-0.2519736886,
-0.0973590091,
0.5527213812,
-0.1518056095,
0.0738601536,
0.4275226593,
-0.20104222,
-0.1576441228,
-0.0879362971,
-0.0958958715,
-0.0440956056,
0.485101223,
-0.1949035525,
-0.024870798,
0.0959990174,
0.2647048235,
-0.176614359,
-0.2013469189,
0.2617540359,
0.0356634557,
-0.0086547434,
-0.2109425068,
0.4334565103,
0.3232331574,
-0.5678309798,
0.1925441027,
-0.122836262,
0.1622714847,
0.2148342878,
0.5561856627,
0.0189169981,
0.1946834922,
-0.0793146119,
-0.1670255065,
-0.0647184402,
0.0995928645,
0.1461920738,
0.3351038396,
-0.2218914032,
0.1050135866,
0.1111058071,
0.2339681089,
-0.1464441717,
0.153761819,
0.1523098946,
0.3649277091,
-0.169505164,
0.157708317,
-0.3202653825,
0.099403277,
-0.1308971643,
0.0763148814,
-0.0747134387,
-0.0521823727,
-0.1478396058,
0.1980328411,
-0.013221357,
-0.0067335479,
0.2309437394,
-0.0070656836,
-0.1956614256,
-0.4530232549,
0.4037020802,
-0.0532204919,
-0.1667293757,
0.0213417858,
0.3260835707,
0.1886414438,
0.0462094322,
0.2146921456,
0.0915465504,
0.1807407886,
-0.1452658176,
0.16208601,
0.0465800129,
-0.2829182744,
0.0381366052,
0.2388539314,
0.4492776394,
0.1272953004,
0.4130896032,
-0.1120686382,
-0.2644169331,
0.2797033191,
0.0649409145,
0.3199543953,
-0.2408000827,
0.0406461731,
0.2759257853,
0.0551874563,
-0.1661801636,
-0.004198011,
0.119432658,
-0.1092993617,
0.1878080517,
0.1554253399,
-0.3166792095,
-0.1522835195,
-0.0354222432,
-0.1164302528,
0.0390456282,
-0.2255424112,
0.1427634507,
0.5783990622,
-0.025698036,
0.003585862,
-0.3377913535,
0.2078516483,
0.3080684543,
-0.1513800472,
0.031784188,
0.6774337292,
0.2314912975,
0.0745764375,
0.3520646095,
-0.2667869329,
0.0436638035,
0.1050196141,
0.0488186926,
0.4545574784,
0.2442038655,
0.0040773042,
-0.0732303709,
-0.2370634079,
-0.1540700346,
0.3648965359,
0.176733613,
-0.3124365211,
-0.1710824966,
-0.161744982,
0.2002429068,
-0.0611119121,
-0.2140653729,
-0.0100788735,
0.630512774,
0.1756515652,
0.4212464988,
0.0368882418,
-0.2943111956,
-0.2349814475,
0.4713166058,
-0.2673819065,
-0.1262578666,
0.1309455782,
-0.078108348,
-0.0403152816,
0.318655014,
0.368219018,
0.2398971021,
-0.1970649809,
0.4103488624,
-0.3622781038,
0.1330967247,
0.0303982943,
0.2129997313,
0.066005446,
-0.2545666993,
0.3269316554,
-0.0984082967,
-0.0080634169,
0.1757560968,
-0.0643042028,
-0.0321882926,
-0.1354919225,
0.0698092654,
0.2563368082,
-0.2120690346,
-0.011336267,
0.1224327236,
-0.0456155464,
0.1632277071,
0.2427408844,
-0.3365351558,
0.0506394096,
0.2127824128,
-0.0005314685,
0.0612338819,
0.5081928968,
0.1196384132,
0.0469738245,
-0.3565030694,
-0.3246794343,
-0.0701638237,
-0.2811758518,
-0.2140504122,
0.0895976201,
-0.0327570066,
0.09002617,
0.1760789156,
0.3353977799,
-0.0176708326,
-0.650146246,
-0.1359867752,
0.6674084663,
-0.1539066285,
-0.0999753177,
0.1910434365,
0.1651742011,
0.0985714346,
-0.3816351295,
0.149269402,
-0.1842806637,
-0.1660044193,
-0.0539836697,
0.1433784962,
0.2851290703,
0.0482205115,
0.1643350124,
0.1412636638,
0.0911537111,
0.0603117272,
0.2097206414,
-0.1240129545,
0.1957071722,
0.001656808,
0.1437957138,
0.1497963965,
0.0080002099,
-0.3051390946,
-0.3161023855,
-0.0174159985,
-0.3985346556,
0.3030868769,
0.0144699365,
-0.1911915839,
-0.0300500616,
-0.0384284705,
-0.0068733245,
0.1197871193,
0.4581580758,
-0.132655561,
-0.1447972208,
0.044707194,
-0.2986310422,
0.3907764554,
-0.5670873523,
-0.3139786124,
-0.4490801096,
0.1355700046,
-0.367990762,
0.2406047434,
-0.375025332,
-0.1169380993,
0.4249219,
-0.052497264,
-0.3907631636,
0.1969013065,
0.1074797213,
-0.2897548676,
-0.2804971635,
0.3630029857,
0.0619707555,
-0.2455330044,
-0.1476061046,
-0.6292203665
] |
https://github.com/huggingface/datasets/issues/359 | ArrowBasedBuilder _prepare_split parse_schema breaks on nested structures | Hi, it depends on what it is in your `dataset_builder.py` file. Can you share it?
If you are just loading `json` files, you can also directly use the `json` script (which will find the schema/features from your JSON structure):
```python
from nlp import load_dataset
ds = load_dataset("json", data_files=rel_datafiles)
``` | I tried using the Json dataloader to load some JSON lines files. but get an exception in the parse_schema function.
```
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-23-9aecfbee53bd> in <module>
55 from nlp import load_dataset
56
---> 57 ds = load_dataset("../text2struct/model/dataset_builder.py", data_files=rel_datafiles)
58
59
~/.virtualenvs/inv-text2struct/lib/python3.6/site-packages/nlp/load.py in load_dataset(path, name, version, data_dir, data_files, split, cache_dir, download_config, download_mode, ignore_verifications, save_infos, **config_kwargs)
522 download_mode=download_mode,
523 ignore_verifications=ignore_verifications,
--> 524 save_infos=save_infos,
525 )
526
~/.virtualenvs/inv-text2struct/lib/python3.6/site-packages/nlp/builder.py in download_and_prepare(self, download_config, download_mode, ignore_verifications, save_infos, try_from_hf_gcs, dl_manager, **download_and_prepare_kwargs)
430 verify_infos = not save_infos and not ignore_verifications
431 self._download_and_prepare(
--> 432 dl_manager=dl_manager, verify_infos=verify_infos, **download_and_prepare_kwargs
433 )
434 # Sync info
~/.virtualenvs/inv-text2struct/lib/python3.6/site-packages/nlp/builder.py in _download_and_prepare(self, dl_manager, verify_infos, **prepare_split_kwargs)
481 try:
482 # Prepare split will record examples associated to the split
--> 483 self._prepare_split(split_generator, **prepare_split_kwargs)
484 except OSError:
485 raise OSError("Cannot find data file. " + (self.manual_download_instructions or ""))
~/.virtualenvs/inv-text2struct/lib/python3.6/site-packages/nlp/builder.py in _prepare_split(self, split_generator)
736 schema_dict[field.name] = Value(str(field.type))
737
--> 738 parse_schema(writer.schema, features)
739 self.info.features = Features(features)
740
~/.virtualenvs/inv-text2struct/lib/python3.6/site-packages/nlp/builder.py in parse_schema(schema, schema_dict)
734 parse_schema(field.type.value_type, schema_dict[field.name])
735 else:
--> 736 schema_dict[field.name] = Value(str(field.type))
737
738 parse_schema(writer.schema, features)
<string> in __init__(self, dtype, id, _type)
~/.virtualenvs/inv-text2struct/lib/python3.6/site-packages/nlp/features.py in __post_init__(self)
55
56 def __post_init__(self):
---> 57 self.pa_type = string_to_arrow(self.dtype)
58
59 def __call__(self):
~/.virtualenvs/inv-text2struct/lib/python3.6/site-packages/nlp/features.py in string_to_arrow(type_str)
32 if str(type_str + "_") not in pa.__dict__:
33 raise ValueError(
---> 34 f"Neither {type_str} nor {type_str + '_'} seems to be a pyarrow data type. "
35 f"Please make sure to use a correct data type, see: "
36 f"https://arrow.apache.org/docs/python/api/datatypes.html#factory-functions"
ValueError: Neither list<item: string> nor list<item: string>_ seems to be a pyarrow data type. Please make sure to use a correct data type, see: https://arrow.apache.org/docs/python/api/datatypes.html#factory-functions
```
If I create the dataset imperatively, using a pyarrow table, the dataset is created correctly. If I override the `_prepare_split` method to avoid calling the validate schema, the dataset can load as well. | 49 | ArrowBasedBuilder _prepare_split parse_schema breaks on nested structures
I tried using the Json dataloader to load some JSON lines files. but get an exception in the parse_schema function.
```
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-23-9aecfbee53bd> in <module>
55 from nlp import load_dataset
56
---> 57 ds = load_dataset("../text2struct/model/dataset_builder.py", data_files=rel_datafiles)
58
59
~/.virtualenvs/inv-text2struct/lib/python3.6/site-packages/nlp/load.py in load_dataset(path, name, version, data_dir, data_files, split, cache_dir, download_config, download_mode, ignore_verifications, save_infos, **config_kwargs)
522 download_mode=download_mode,
523 ignore_verifications=ignore_verifications,
--> 524 save_infos=save_infos,
525 )
526
~/.virtualenvs/inv-text2struct/lib/python3.6/site-packages/nlp/builder.py in download_and_prepare(self, download_config, download_mode, ignore_verifications, save_infos, try_from_hf_gcs, dl_manager, **download_and_prepare_kwargs)
430 verify_infos = not save_infos and not ignore_verifications
431 self._download_and_prepare(
--> 432 dl_manager=dl_manager, verify_infos=verify_infos, **download_and_prepare_kwargs
433 )
434 # Sync info
~/.virtualenvs/inv-text2struct/lib/python3.6/site-packages/nlp/builder.py in _download_and_prepare(self, dl_manager, verify_infos, **prepare_split_kwargs)
481 try:
482 # Prepare split will record examples associated to the split
--> 483 self._prepare_split(split_generator, **prepare_split_kwargs)
484 except OSError:
485 raise OSError("Cannot find data file. " + (self.manual_download_instructions or ""))
~/.virtualenvs/inv-text2struct/lib/python3.6/site-packages/nlp/builder.py in _prepare_split(self, split_generator)
736 schema_dict[field.name] = Value(str(field.type))
737
--> 738 parse_schema(writer.schema, features)
739 self.info.features = Features(features)
740
~/.virtualenvs/inv-text2struct/lib/python3.6/site-packages/nlp/builder.py in parse_schema(schema, schema_dict)
734 parse_schema(field.type.value_type, schema_dict[field.name])
735 else:
--> 736 schema_dict[field.name] = Value(str(field.type))
737
738 parse_schema(writer.schema, features)
<string> in __init__(self, dtype, id, _type)
~/.virtualenvs/inv-text2struct/lib/python3.6/site-packages/nlp/features.py in __post_init__(self)
55
56 def __post_init__(self):
---> 57 self.pa_type = string_to_arrow(self.dtype)
58
59 def __call__(self):
~/.virtualenvs/inv-text2struct/lib/python3.6/site-packages/nlp/features.py in string_to_arrow(type_str)
32 if str(type_str + "_") not in pa.__dict__:
33 raise ValueError(
---> 34 f"Neither {type_str} nor {type_str + '_'} seems to be a pyarrow data type. "
35 f"Please make sure to use a correct data type, see: "
36 f"https://arrow.apache.org/docs/python/api/datatypes.html#factory-functions"
ValueError: Neither list<item: string> nor list<item: string>_ seems to be a pyarrow data type. Please make sure to use a correct data type, see: https://arrow.apache.org/docs/python/api/datatypes.html#factory-functions
```
If I create the dataset imperatively, using a pyarrow table, the dataset is created correctly. If I override the `_prepare_split` method to avoid calling the validate schema, the dataset can load as well.
Hi, it depends on what it is in your `dataset_builder.py` file. Can you share it?
If you are just loading `json` files, you can also directly use the `json` script (which will find the schema/features from your JSON structure):
```python
from nlp import load_dataset
ds = load_dataset("json", data_files=rel_datafiles)
``` | [
-0.3260454237,
0.3610107005,
-0.0600551106,
0.548700273,
0.0407028086,
-0.1400740296,
0.343112886,
0.4284073412,
0.2143318057,
-0.1139702797,
-0.0436314642,
0.333270669,
0.2364399135,
0.058703281,
-0.2658622861,
-0.165615797,
-0.0196322128,
0.293722868,
-0.1246239915,
0.3482965827,
-0.2225887179,
0.4523975551,
-0.1000254601,
0.1312666088,
0.0139916427,
-0.0840231776,
0.0551256463,
0.3630203307,
-0.1661054939,
-0.5221457481,
0.261677146,
-0.2975644469,
-0.107112959,
0.4265523553,
-0.0001121765,
0.2836856842,
0.2796025574,
-0.1050380766,
-0.3678911328,
-0.056319654,
0.0219083279,
-0.1897958815,
0.0807164535,
-0.1802358478,
0.2029782087,
-0.2733664215,
-0.3524165154,
-0.1409692168,
0.5280257463,
0.103697598,
0.1615074128,
-0.1449669003,
0.307852298,
-0.008729849,
0.0976146162,
-0.0128850006,
-0.134184137,
0.3496534824,
-0.2746610045,
0.1606747657,
-0.1773141325,
0.033971183,
-0.1473901868,
-0.0363855585,
0.0670261383,
0.0353455842,
0.1572591662,
0.0242218003,
0.0062474757,
-0.0083958823,
0.1443328559,
-0.127688542,
-0.0759728774,
-0.2398122251,
-0.2881833315,
-0.3098752797,
0.2149095684,
0.1042351276,
-0.0598927736,
0.101757504,
0.3165931702,
-0.2579515278,
-0.1195937246,
0.0087800091,
0.0931572169,
0.3294773102,
-0.0843711048,
0.0652882159,
0.2218033522,
-0.0210188404,
0.2137235254,
-0.0134952562,
-0.5275074244,
0.069325693,
-0.0279790685,
0.0091239586,
-0.1933579594,
-0.6268093586,
-0.008878842,
0.1031662822,
0.5481146574,
-0.0142837623,
0.1519876719,
0.4092027545,
0.2554834485,
-0.1661252826,
0.264388442,
-0.0303025879,
0.0417523123,
0.2514637411,
0.1111457571,
-0.1434713006,
-0.0249576494,
-0.1038493514,
-0.3425201178,
-0.0681295097,
0.1332850307,
0.0181019008,
-0.2350534797,
0.0447583422,
-0.4381091893,
-0.1038777977,
0.2934702039,
0.2456232458,
0.2248571068,
0.233176142,
0.1868969798,
0.2919614613,
0.0202707723,
-0.202633217,
-0.1242303848,
0.1052501798,
-0.1044749692,
0.1108415127,
0.213198185,
0.1113539487,
0.2996941209,
0.1288214922,
-0.342015624,
-0.3404205739,
0.1220167726,
-0.2721668482,
0.0283040181,
0.2411937416,
0.0798236504,
-0.1810227334,
0.1847562492,
-0.2773362398,
-0.0575833693,
0.0720745176,
-0.3603481352,
-0.3543906212,
-0.1715968847,
0.1504697204,
0.0036926195,
0.1574963778,
-0.4513111115,
-0.0426096916,
0.2559913695,
-0.3391981721,
0.1138054132,
-0.1639286429,
-0.180462718,
-0.1676000804,
0.124031812,
0.0814562663,
-0.179603219,
-0.0717223287,
-0.2841578424,
-0.0085384212,
0.2089586556,
0.1984402984,
-0.1502620429,
0.5191944242,
-0.2032294571,
0.5580467582,
0.5535883904,
-0.1875400841,
-0.2054161727,
0.5373874307,
0.1265777498,
-0.0352941267,
0.1371377558,
-0.4054442942,
0.2556641698,
-0.1492993683,
0.0239111818,
0.4544432163,
0.1228782609,
-0.0366677307,
-0.0533075072,
0.0591707379,
0.0945710465,
-0.0533152148,
-0.4166417122,
-0.2638633847,
-0.1177739352,
0.3790182173,
0.2506230474,
-0.0887018591,
-0.0387291424,
0.1767891943,
0.0014022677,
0.0067824367,
-0.0009073094,
-0.084204711,
-0.5144615769,
0.0251904726,
-0.3117556274,
-0.0911140591,
-0.3747563958,
0.1402050108,
-0.1032431722,
0.3250383139,
-0.0609509051,
-0.2853426337,
0.2218149751,
0.0576821044,
-0.2218000591,
-0.3171214163,
-0.0351766348,
0.0971564054,
-0.0542956404,
0.36261186,
-0.0993168801,
0.4648388028,
0.0869146883,
-0.2966180146,
0.046638757,
0.1641554832,
0.0355113298,
-0.2589478493,
-0.180991143,
0.4646165371,
0.4503346086,
-0.1478161067,
-0.3648444712,
-0.3587810695,
0.006905457,
0.1058967039,
0.0639767274,
0.0289982334,
0.1435212344,
-0.3214045167,
0.0080421362,
0.3127244115,
-0.0123357605,
0.451916337,
0.0811968371,
-0.0262393542,
0.197717011,
-0.021795176,
0.1612604111,
-0.3399371505,
-0.1020608023,
-0.0194322541,
-0.0510121249,
0.1063094884,
0.0067980811,
0.066716522,
0.3158480525,
0.1552186459,
0.1025183946,
-0.0363591276,
-0.0600491166,
-0.1964570284,
0.1785122156,
0.0889555514,
0.4353642166,
0.0364247784,
-0.0735301822,
0.0425672755,
0.1256315708,
-0.0914050788,
0.3548736572,
0.0301692951,
0.4449595213,
0.3242438436,
0.2033969015,
-0.0742958784,
-0.3939169645,
-0.3832826912,
0.0276443362,
0.1182153076,
-0.2580773234,
0.2396309376,
-0.2732922137,
0.1311366856,
-0.0723115578,
-0.0315209776,
-0.1027372777,
-0.3991472721,
-0.2967225313,
0.3699501753,
-0.2913791537,
0.0173462965,
-0.127198562,
0.0827426463,
0.1297948658,
-0.1101023182,
-0.3194958568,
-0.1922740787,
-0.1088828146,
0.0139108598,
0.3567507863,
0.2639363706,
-0.1311803758,
0.2827695906,
-0.045186609,
-0.048970826,
-0.3095546365,
0.3275256157,
-0.2431074381,
-0.2856102586,
0.2199109942,
0.1815671623,
0.1619450748,
-0.6107792854,
0.185319066,
0.0088886693,
-0.2933405042,
0.2972556055,
0.223001346,
-0.0029807352,
-0.1525842249,
-0.1341145933,
-0.1398984492,
-0.5762495399,
0.4581656158,
0.1357263029,
0.2581650019,
-0.0825648978,
-0.0690139532,
0.0106097795,
-0.2777140737,
-0.0837052315,
0.0277053639,
0.1249314025,
0.1002967954,
-0.3619613647,
0.0575925224,
0.0255034044,
0.0281640515,
0.5084941387,
-0.1329765916,
-0.422197938,
0.44984743,
0.1196183637,
-0.0777380764,
-0.176227808,
-0.3853222728,
0.0696588904,
0.3960431814,
-0.0083335675,
-0.1137980521,
0.083860077,
0.2298502028,
-0.0317387208,
0.1729093343,
-0.1163408607,
0.5597537756,
-0.0800674707,
0.2650152743,
0.056766443,
0.0075936103,
0.2237433791,
0.0908615291,
-0.0370968096,
-0.2848673165,
-0.1019058973,
-0.1746465266,
-0.2492515892,
0.072104387,
0.1653674245,
-0.0519330055,
-0.2720277011,
-0.0721120238,
-0.1612119228,
-0.1755963564,
-0.3624182642,
0.3011763096,
-0.3059145212,
0.0879906714,
-0.3111081123,
-0.0841155648,
0.0438528284,
0.0580728985,
-0.0536612496,
-0.277751863,
0.0659914091,
-0.1160642356,
0.0500688255,
0.1661203802,
-0.2029539049,
0.1418601573,
-0.0379833505,
0.2989364266,
0.0233656764,
-0.1710151881,
-0.0642993897,
-0.1698567867,
0.1479855478,
0.0392505527,
0.2059400231,
0.2348196507,
-0.116416432,
-0.2022814453,
-0.0036496967,
-0.2349403501,
0.4400176406,
0.5935143828,
0.3597706258,
-0.3515000939,
-0.1708198786,
0.3545522988,
-0.1483628452,
-0.0955265537,
-0.1216840968,
0.0697268248,
-0.2168034464,
-0.2290595472,
0.0502099693,
0.2537952363,
0.3231960535,
0.1532001942,
-0.1422909498,
-0.2310125232,
-0.4477602541,
-0.0806005299,
0.1426685154,
0.1965823174,
-0.5051640868,
0.1015679985,
-0.1520385891,
0.2174490988,
0.4984900355,
0.7618781924,
0.285230577,
-0.2908281386,
0.2480543256,
-0.0173352137,
0.4242436588,
0.1194378957,
-0.1531619132,
0.1303173602,
-0.2092983723,
0.0522415414,
0.1517798454,
-0.2608375847,
0.3953027427,
-0.1686440259,
-0.2760578394,
-0.2417638153,
0.4991042614,
-0.0435558222,
-0.0124946386,
-0.0739122853,
-0.2426339239,
-0.3518016636,
0.6364928484,
0.088994965,
0.5242312551,
0.4776633382,
0.0604505241,
0.5830125213,
-0.1552411914,
0.2822135985,
-0.7763890624,
-0.0235232245,
-0.3103725314,
0.1324635744,
-0.0217108727,
-0.2295861542,
0.2328009456,
0.3454684019,
-0.244989574,
0.0065116957,
0.0266156644,
0.0639142543,
-0.0325965136,
0.3628291488,
-0.1441188157,
-0.2786217332,
-0.4063239694,
0.1032003015,
0.0568544008,
-0.3126541376,
0.0303324759,
-0.3509736955,
-0.0865489021,
-0.2357483208,
-0.2639683783,
0.4338125587,
-0.0716569722,
0.3886191547,
0.2239570469,
-0.0562002212,
0.3615512252,
-0.0991532877,
-0.1680012941,
-0.0753623769,
0.02919822,
0.1506629288,
-0.0272612087,
-0.274391979,
-0.0218238309,
0.1191584021,
0.1346259117,
-0.1488003135,
0.0384192467,
-0.0248725228,
-0.1394095421,
-0.3718872368,
0.2763093412,
0.2076301724,
-0.4314105511,
-0.3709970117,
-0.1943298578,
0.115633145,
-0.1496698707,
-0.0934758931,
0.1180914938,
-0.0015495103,
-0.2765601575,
-0.3599806726,
-0.0708586276,
-0.2900590599,
0.0538642257,
0.3544166088,
0.2216333747,
0.043161422,
0.6239026785,
0.2414466441,
-0.0021352023,
-0.3211767077,
0.0817212164,
0.3431162834,
-0.4442775846,
0.3989855051,
-0.2075764984,
-0.1646199673,
0.1220540181,
0.091997534,
0.2259002328,
0.1671587378,
-0.2459680885,
-0.5066787601,
-0.092028372,
0.3302327394,
-0.2621886432,
-0.0244904719,
-0.137858972,
0.220898807,
-0.3556536734,
0.2872294188,
-0.2434158176,
0.2291274369,
-0.0172620043,
-0.048538018,
-0.0581630021,
-0.1316033155,
0.1055704802,
0.0473978259,
0.1401482224,
0.1752714068,
0.0176035762,
-0.1623850167,
-0.1138045862,
0.1333758235,
0.1678049266,
0.1552290916,
-0.2986268997,
0.1163601205,
-0.1770163476,
0.0377225168,
0.1328800023,
-0.3939383626,
-0.0549998693,
0.137435779,
0.4441270232,
0.2775044143,
-0.0967663527,
0.1493072808,
-0.123972252,
0.4012765288,
-0.0929720849,
0.2098112404,
-0.1530314982,
0.0011429712,
0.0350743122,
0.1986971349,
-0.0442554913,
0.0952135324,
0.5684462786,
-0.1944070607,
-0.0607280619,
-0.508490026,
0.2955585718,
0.521907568,
-0.0011159815,
-0.0422698893,
-0.2038500309,
0.1671244949,
-0.1614582837,
-0.0393572152,
0.3196540773,
0.0164183751,
-0.0983285233,
0.2596960068,
0.0950075909,
-0.0378498882,
-0.2987874746,
0.1304664761,
0.1833291054,
0.0727176592,
0.2018178552,
0.6401523948,
-0.325771451,
0.0498722829,
0.3796495497,
0.1183044836,
0.6063776016,
0.2897161543,
0.1244285256,
0.0713097453,
0.4207837582,
0.0520858616,
0.0774491206,
-0.2015172541,
-0.4815186858,
0.0902982727,
0.291235894,
-0.142429024,
-0.1119096428,
0.3422732949,
0.144144699,
-0.1292783171,
-0.2035946846,
0.3980276883,
-0.1603070647,
-0.2040880322,
-0.2676360011,
-0.1337144375,
-0.6331003904,
-0.1815864444,
-0.0812521651,
-0.0243734121,
-0.0915034637,
0.1115612239,
0.0836269706,
-0.2546156943,
0.1198745072,
0.0494740605,
-0.0678949878,
-0.2596525848,
0.4679682553,
0.0913945585,
0.0372753367,
0.0409076624,
0.1487786621,
0.4960682392,
0.2502405643,
-0.263514936,
-0.2182384282,
-0.1987067908,
-0.147084713,
-0.017943494,
0.2585285902,
0.0494269654,
0.1489408761,
0.3585207462,
0.1141108572,
-0.1599736214,
0.0438395888,
0.1822641194,
0.0814701542,
0.1857504845,
0.6384842396,
-0.047794193,
-0.1213486642,
0.224306643,
-0.1319788992,
-0.25100559,
-0.6355652809,
0.2918817103,
0.0026243292,
0.1969861388,
0.0760706961,
0.0750237703,
0.1019890979,
0.6383273005,
0.058627557,
0.0899370536,
-0.1036299914,
-0.1408050358,
-0.0365859941,
-0.0300197639,
-0.373028487,
0.0104073808,
0.1738446355,
0.0966817811,
0.1679893732,
0.2986498773,
-0.0251648724,
0.2913758159,
-0.219756633,
-0.1188329607,
-0.4843565524,
0.0687587336,
0.2037039697,
0.092805922,
-0.1202128679,
-0.147621572,
0.0684484467,
0.2533196807,
0.0239623711,
0.090376392,
-0.2485010028,
0.1168628931,
-0.3223130703,
0.1750454009,
0.0504133254,
0.1140336767,
-0.0494047962,
-0.1896673739,
-0.1887530088,
-0.5733939409,
-0.1219350994,
0.468667686,
0.128410399,
0.2680284977,
-0.1597730517,
0.1188100278,
-0.2943055928,
0.1210636646,
-0.4128639102,
0.0388881415,
-0.3458371162,
0.2615271509,
-0.1557045877,
0.2354155481,
-0.1095619649,
-0.0678943396,
-0.2019299865,
0.0950916037,
-0.207477659,
-0.3111887276,
0.376058042,
0.1088027507,
-0.232853353,
0.4643299878,
0.1188009977,
0.1165843904,
0.2316484004,
-0.3983219862,
-0.0301202908,
0.25434497,
-0.1892001629,
-0.3222724497,
-0.0306953676,
0.1550979316,
-0.1384549439,
-0.0962279886,
0.1503657401,
0.0437867157,
-0.1663367003,
-0.1757201552,
0.0138161257
] |
https://github.com/huggingface/datasets/issues/359 | ArrowBasedBuilder _prepare_split parse_schema breaks on nested structures | The behavior I'm seeing is from the `json` script.
I hacked this together to overcome the error with the `JSON` dataloader
```
class DatasetBuilder(hf_nlp.ArrowBasedBuilder):
BUILDER_CONFIG_CLASS = BuilderConfig
def _info(self):
return DatasetInfo()
def _split_generators(self, dl_manager):
""" We handle string, list and dicts in datafiles
"""
if isinstance(self.config.data_files, (str, list, tuple)):
files = self.config.data_files
if isinstance(files, str):
files = [files]
return [SplitGenerator(name=Split.TRAIN, gen_kwargs={"files": files})]
splits = []
for split_name in [Split.TRAIN, Split.VALIDATION, Split.TEST]:
if split_name in self.config.data_files:
files = self.config.data_files[split_name]
if isinstance(files, str):
files = [files]
splits.append(SplitGenerator(name=split_name, gen_kwargs={"files": files}))
return splits
def _prepare_split(self, split_generator):
fname = "{}-{}.arrow".format(self.name, split_generator.name)
fpath = os.path.join(self._cache_dir, fname)
writer = ArrowWriter(path=fpath)
generator = self._generate_tables(**split_generator.gen_kwargs)
for key, table in utils.tqdm(generator, unit=" tables", leave=False):
writer.write_table(table)
num_examples, num_bytes = writer.finalize()
split_generator.split_info.num_examples = num_examples
split_generator.split_info.num_bytes = num_bytes
# this is where the error is coming from
# def parse_schema(schema, schema_dict):
# for field in schema:
# if pa.types.is_struct(field.type):
# schema_dict[field.name] = {}
# parse_schema(field.type, schema_dict[field.name])
# elif pa.types.is_list(field.type) and pa.types.is_struct(field.type.value_type):
# schema_dict[field.name] = {}
# parse_schema(field.type.value_type, schema_dict[field.name])
# else:
# schema_dict[field.name] = Value(str(field.type))
#
# parse_schema(writer.schema, features)
# self.info.features = Features(features)
def _generate_tables(self, files):
for i, file in enumerate(files):
pa_table = paj.read_json(
file
)
yield i, pa_table
```
So I basically just don't populate the `self.info.features` though this doesn't seem to cause any problems in my downstream applications.
The other workaround I was doing was to just use pyarrow.json to build a table and then to create the Dataset with its constructor or from_table methods. `load_dataset` has nice split logic, so I'd prefer to use that.
| I tried using the Json dataloader to load some JSON lines files. but get an exception in the parse_schema function.
```
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-23-9aecfbee53bd> in <module>
55 from nlp import load_dataset
56
---> 57 ds = load_dataset("../text2struct/model/dataset_builder.py", data_files=rel_datafiles)
58
59
~/.virtualenvs/inv-text2struct/lib/python3.6/site-packages/nlp/load.py in load_dataset(path, name, version, data_dir, data_files, split, cache_dir, download_config, download_mode, ignore_verifications, save_infos, **config_kwargs)
522 download_mode=download_mode,
523 ignore_verifications=ignore_verifications,
--> 524 save_infos=save_infos,
525 )
526
~/.virtualenvs/inv-text2struct/lib/python3.6/site-packages/nlp/builder.py in download_and_prepare(self, download_config, download_mode, ignore_verifications, save_infos, try_from_hf_gcs, dl_manager, **download_and_prepare_kwargs)
430 verify_infos = not save_infos and not ignore_verifications
431 self._download_and_prepare(
--> 432 dl_manager=dl_manager, verify_infos=verify_infos, **download_and_prepare_kwargs
433 )
434 # Sync info
~/.virtualenvs/inv-text2struct/lib/python3.6/site-packages/nlp/builder.py in _download_and_prepare(self, dl_manager, verify_infos, **prepare_split_kwargs)
481 try:
482 # Prepare split will record examples associated to the split
--> 483 self._prepare_split(split_generator, **prepare_split_kwargs)
484 except OSError:
485 raise OSError("Cannot find data file. " + (self.manual_download_instructions or ""))
~/.virtualenvs/inv-text2struct/lib/python3.6/site-packages/nlp/builder.py in _prepare_split(self, split_generator)
736 schema_dict[field.name] = Value(str(field.type))
737
--> 738 parse_schema(writer.schema, features)
739 self.info.features = Features(features)
740
~/.virtualenvs/inv-text2struct/lib/python3.6/site-packages/nlp/builder.py in parse_schema(schema, schema_dict)
734 parse_schema(field.type.value_type, schema_dict[field.name])
735 else:
--> 736 schema_dict[field.name] = Value(str(field.type))
737
738 parse_schema(writer.schema, features)
<string> in __init__(self, dtype, id, _type)
~/.virtualenvs/inv-text2struct/lib/python3.6/site-packages/nlp/features.py in __post_init__(self)
55
56 def __post_init__(self):
---> 57 self.pa_type = string_to_arrow(self.dtype)
58
59 def __call__(self):
~/.virtualenvs/inv-text2struct/lib/python3.6/site-packages/nlp/features.py in string_to_arrow(type_str)
32 if str(type_str + "_") not in pa.__dict__:
33 raise ValueError(
---> 34 f"Neither {type_str} nor {type_str + '_'} seems to be a pyarrow data type. "
35 f"Please make sure to use a correct data type, see: "
36 f"https://arrow.apache.org/docs/python/api/datatypes.html#factory-functions"
ValueError: Neither list<item: string> nor list<item: string>_ seems to be a pyarrow data type. Please make sure to use a correct data type, see: https://arrow.apache.org/docs/python/api/datatypes.html#factory-functions
```
If I create the dataset imperatively, using a pyarrow table, the dataset is created correctly. If I override the `_prepare_split` method to avoid calling the validate schema, the dataset can load as well. | 254 | ArrowBasedBuilder _prepare_split parse_schema breaks on nested structures
I tried using the Json dataloader to load some JSON lines files. but get an exception in the parse_schema function.
```
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-23-9aecfbee53bd> in <module>
55 from nlp import load_dataset
56
---> 57 ds = load_dataset("../text2struct/model/dataset_builder.py", data_files=rel_datafiles)
58
59
~/.virtualenvs/inv-text2struct/lib/python3.6/site-packages/nlp/load.py in load_dataset(path, name, version, data_dir, data_files, split, cache_dir, download_config, download_mode, ignore_verifications, save_infos, **config_kwargs)
522 download_mode=download_mode,
523 ignore_verifications=ignore_verifications,
--> 524 save_infos=save_infos,
525 )
526
~/.virtualenvs/inv-text2struct/lib/python3.6/site-packages/nlp/builder.py in download_and_prepare(self, download_config, download_mode, ignore_verifications, save_infos, try_from_hf_gcs, dl_manager, **download_and_prepare_kwargs)
430 verify_infos = not save_infos and not ignore_verifications
431 self._download_and_prepare(
--> 432 dl_manager=dl_manager, verify_infos=verify_infos, **download_and_prepare_kwargs
433 )
434 # Sync info
~/.virtualenvs/inv-text2struct/lib/python3.6/site-packages/nlp/builder.py in _download_and_prepare(self, dl_manager, verify_infos, **prepare_split_kwargs)
481 try:
482 # Prepare split will record examples associated to the split
--> 483 self._prepare_split(split_generator, **prepare_split_kwargs)
484 except OSError:
485 raise OSError("Cannot find data file. " + (self.manual_download_instructions or ""))
~/.virtualenvs/inv-text2struct/lib/python3.6/site-packages/nlp/builder.py in _prepare_split(self, split_generator)
736 schema_dict[field.name] = Value(str(field.type))
737
--> 738 parse_schema(writer.schema, features)
739 self.info.features = Features(features)
740
~/.virtualenvs/inv-text2struct/lib/python3.6/site-packages/nlp/builder.py in parse_schema(schema, schema_dict)
734 parse_schema(field.type.value_type, schema_dict[field.name])
735 else:
--> 736 schema_dict[field.name] = Value(str(field.type))
737
738 parse_schema(writer.schema, features)
<string> in __init__(self, dtype, id, _type)
~/.virtualenvs/inv-text2struct/lib/python3.6/site-packages/nlp/features.py in __post_init__(self)
55
56 def __post_init__(self):
---> 57 self.pa_type = string_to_arrow(self.dtype)
58
59 def __call__(self):
~/.virtualenvs/inv-text2struct/lib/python3.6/site-packages/nlp/features.py in string_to_arrow(type_str)
32 if str(type_str + "_") not in pa.__dict__:
33 raise ValueError(
---> 34 f"Neither {type_str} nor {type_str + '_'} seems to be a pyarrow data type. "
35 f"Please make sure to use a correct data type, see: "
36 f"https://arrow.apache.org/docs/python/api/datatypes.html#factory-functions"
ValueError: Neither list<item: string> nor list<item: string>_ seems to be a pyarrow data type. Please make sure to use a correct data type, see: https://arrow.apache.org/docs/python/api/datatypes.html#factory-functions
```
If I create the dataset imperatively, using a pyarrow table, the dataset is created correctly. If I override the `_prepare_split` method to avoid calling the validate schema, the dataset can load as well.
The behavior I'm seeing is from the `json` script.
I hacked this together to overcome the error with the `JSON` dataloader
```
class DatasetBuilder(hf_nlp.ArrowBasedBuilder):
BUILDER_CONFIG_CLASS = BuilderConfig
def _info(self):
return DatasetInfo()
def _split_generators(self, dl_manager):
""" We handle string, list and dicts in datafiles
"""
if isinstance(self.config.data_files, (str, list, tuple)):
files = self.config.data_files
if isinstance(files, str):
files = [files]
return [SplitGenerator(name=Split.TRAIN, gen_kwargs={"files": files})]
splits = []
for split_name in [Split.TRAIN, Split.VALIDATION, Split.TEST]:
if split_name in self.config.data_files:
files = self.config.data_files[split_name]
if isinstance(files, str):
files = [files]
splits.append(SplitGenerator(name=split_name, gen_kwargs={"files": files}))
return splits
def _prepare_split(self, split_generator):
fname = "{}-{}.arrow".format(self.name, split_generator.name)
fpath = os.path.join(self._cache_dir, fname)
writer = ArrowWriter(path=fpath)
generator = self._generate_tables(**split_generator.gen_kwargs)
for key, table in utils.tqdm(generator, unit=" tables", leave=False):
writer.write_table(table)
num_examples, num_bytes = writer.finalize()
split_generator.split_info.num_examples = num_examples
split_generator.split_info.num_bytes = num_bytes
# this is where the error is coming from
# def parse_schema(schema, schema_dict):
# for field in schema:
# if pa.types.is_struct(field.type):
# schema_dict[field.name] = {}
# parse_schema(field.type, schema_dict[field.name])
# elif pa.types.is_list(field.type) and pa.types.is_struct(field.type.value_type):
# schema_dict[field.name] = {}
# parse_schema(field.type.value_type, schema_dict[field.name])
# else:
# schema_dict[field.name] = Value(str(field.type))
#
# parse_schema(writer.schema, features)
# self.info.features = Features(features)
def _generate_tables(self, files):
for i, file in enumerate(files):
pa_table = paj.read_json(
file
)
yield i, pa_table
```
So I basically just don't populate the `self.info.features` though this doesn't seem to cause any problems in my downstream applications.
The other workaround I was doing was to just use pyarrow.json to build a table and then to create the Dataset with its constructor or from_table methods. `load_dataset` has nice split logic, so I'd prefer to use that.
| [
-0.3260454237,
0.3610107005,
-0.0600551106,
0.548700273,
0.0407028086,
-0.1400740296,
0.343112886,
0.4284073412,
0.2143318057,
-0.1139702797,
-0.0436314642,
0.333270669,
0.2364399135,
0.058703281,
-0.2658622861,
-0.165615797,
-0.0196322128,
0.293722868,
-0.1246239915,
0.3482965827,
-0.2225887179,
0.4523975551,
-0.1000254601,
0.1312666088,
0.0139916427,
-0.0840231776,
0.0551256463,
0.3630203307,
-0.1661054939,
-0.5221457481,
0.261677146,
-0.2975644469,
-0.107112959,
0.4265523553,
-0.0001121765,
0.2836856842,
0.2796025574,
-0.1050380766,
-0.3678911328,
-0.056319654,
0.0219083279,
-0.1897958815,
0.0807164535,
-0.1802358478,
0.2029782087,
-0.2733664215,
-0.3524165154,
-0.1409692168,
0.5280257463,
0.103697598,
0.1615074128,
-0.1449669003,
0.307852298,
-0.008729849,
0.0976146162,
-0.0128850006,
-0.134184137,
0.3496534824,
-0.2746610045,
0.1606747657,
-0.1773141325,
0.033971183,
-0.1473901868,
-0.0363855585,
0.0670261383,
0.0353455842,
0.1572591662,
0.0242218003,
0.0062474757,
-0.0083958823,
0.1443328559,
-0.127688542,
-0.0759728774,
-0.2398122251,
-0.2881833315,
-0.3098752797,
0.2149095684,
0.1042351276,
-0.0598927736,
0.101757504,
0.3165931702,
-0.2579515278,
-0.1195937246,
0.0087800091,
0.0931572169,
0.3294773102,
-0.0843711048,
0.0652882159,
0.2218033522,
-0.0210188404,
0.2137235254,
-0.0134952562,
-0.5275074244,
0.069325693,
-0.0279790685,
0.0091239586,
-0.1933579594,
-0.6268093586,
-0.008878842,
0.1031662822,
0.5481146574,
-0.0142837623,
0.1519876719,
0.4092027545,
0.2554834485,
-0.1661252826,
0.264388442,
-0.0303025879,
0.0417523123,
0.2514637411,
0.1111457571,
-0.1434713006,
-0.0249576494,
-0.1038493514,
-0.3425201178,
-0.0681295097,
0.1332850307,
0.0181019008,
-0.2350534797,
0.0447583422,
-0.4381091893,
-0.1038777977,
0.2934702039,
0.2456232458,
0.2248571068,
0.233176142,
0.1868969798,
0.2919614613,
0.0202707723,
-0.202633217,
-0.1242303848,
0.1052501798,
-0.1044749692,
0.1108415127,
0.213198185,
0.1113539487,
0.2996941209,
0.1288214922,
-0.342015624,
-0.3404205739,
0.1220167726,
-0.2721668482,
0.0283040181,
0.2411937416,
0.0798236504,
-0.1810227334,
0.1847562492,
-0.2773362398,
-0.0575833693,
0.0720745176,
-0.3603481352,
-0.3543906212,
-0.1715968847,
0.1504697204,
0.0036926195,
0.1574963778,
-0.4513111115,
-0.0426096916,
0.2559913695,
-0.3391981721,
0.1138054132,
-0.1639286429,
-0.180462718,
-0.1676000804,
0.124031812,
0.0814562663,
-0.179603219,
-0.0717223287,
-0.2841578424,
-0.0085384212,
0.2089586556,
0.1984402984,
-0.1502620429,
0.5191944242,
-0.2032294571,
0.5580467582,
0.5535883904,
-0.1875400841,
-0.2054161727,
0.5373874307,
0.1265777498,
-0.0352941267,
0.1371377558,
-0.4054442942,
0.2556641698,
-0.1492993683,
0.0239111818,
0.4544432163,
0.1228782609,
-0.0366677307,
-0.0533075072,
0.0591707379,
0.0945710465,
-0.0533152148,
-0.4166417122,
-0.2638633847,
-0.1177739352,
0.3790182173,
0.2506230474,
-0.0887018591,
-0.0387291424,
0.1767891943,
0.0014022677,
0.0067824367,
-0.0009073094,
-0.084204711,
-0.5144615769,
0.0251904726,
-0.3117556274,
-0.0911140591,
-0.3747563958,
0.1402050108,
-0.1032431722,
0.3250383139,
-0.0609509051,
-0.2853426337,
0.2218149751,
0.0576821044,
-0.2218000591,
-0.3171214163,
-0.0351766348,
0.0971564054,
-0.0542956404,
0.36261186,
-0.0993168801,
0.4648388028,
0.0869146883,
-0.2966180146,
0.046638757,
0.1641554832,
0.0355113298,
-0.2589478493,
-0.180991143,
0.4646165371,
0.4503346086,
-0.1478161067,
-0.3648444712,
-0.3587810695,
0.006905457,
0.1058967039,
0.0639767274,
0.0289982334,
0.1435212344,
-0.3214045167,
0.0080421362,
0.3127244115,
-0.0123357605,
0.451916337,
0.0811968371,
-0.0262393542,
0.197717011,
-0.021795176,
0.1612604111,
-0.3399371505,
-0.1020608023,
-0.0194322541,
-0.0510121249,
0.1063094884,
0.0067980811,
0.066716522,
0.3158480525,
0.1552186459,
0.1025183946,
-0.0363591276,
-0.0600491166,
-0.1964570284,
0.1785122156,
0.0889555514,
0.4353642166,
0.0364247784,
-0.0735301822,
0.0425672755,
0.1256315708,
-0.0914050788,
0.3548736572,
0.0301692951,
0.4449595213,
0.3242438436,
0.2033969015,
-0.0742958784,
-0.3939169645,
-0.3832826912,
0.0276443362,
0.1182153076,
-0.2580773234,
0.2396309376,
-0.2732922137,
0.1311366856,
-0.0723115578,
-0.0315209776,
-0.1027372777,
-0.3991472721,
-0.2967225313,
0.3699501753,
-0.2913791537,
0.0173462965,
-0.127198562,
0.0827426463,
0.1297948658,
-0.1101023182,
-0.3194958568,
-0.1922740787,
-0.1088828146,
0.0139108598,
0.3567507863,
0.2639363706,
-0.1311803758,
0.2827695906,
-0.045186609,
-0.048970826,
-0.3095546365,
0.3275256157,
-0.2431074381,
-0.2856102586,
0.2199109942,
0.1815671623,
0.1619450748,
-0.6107792854,
0.185319066,
0.0088886693,
-0.2933405042,
0.2972556055,
0.223001346,
-0.0029807352,
-0.1525842249,
-0.1341145933,
-0.1398984492,
-0.5762495399,
0.4581656158,
0.1357263029,
0.2581650019,
-0.0825648978,
-0.0690139532,
0.0106097795,
-0.2777140737,
-0.0837052315,
0.0277053639,
0.1249314025,
0.1002967954,
-0.3619613647,
0.0575925224,
0.0255034044,
0.0281640515,
0.5084941387,
-0.1329765916,
-0.422197938,
0.44984743,
0.1196183637,
-0.0777380764,
-0.176227808,
-0.3853222728,
0.0696588904,
0.3960431814,
-0.0083335675,
-0.1137980521,
0.083860077,
0.2298502028,
-0.0317387208,
0.1729093343,
-0.1163408607,
0.5597537756,
-0.0800674707,
0.2650152743,
0.056766443,
0.0075936103,
0.2237433791,
0.0908615291,
-0.0370968096,
-0.2848673165,
-0.1019058973,
-0.1746465266,
-0.2492515892,
0.072104387,
0.1653674245,
-0.0519330055,
-0.2720277011,
-0.0721120238,
-0.1612119228,
-0.1755963564,
-0.3624182642,
0.3011763096,
-0.3059145212,
0.0879906714,
-0.3111081123,
-0.0841155648,
0.0438528284,
0.0580728985,
-0.0536612496,
-0.277751863,
0.0659914091,
-0.1160642356,
0.0500688255,
0.1661203802,
-0.2029539049,
0.1418601573,
-0.0379833505,
0.2989364266,
0.0233656764,
-0.1710151881,
-0.0642993897,
-0.1698567867,
0.1479855478,
0.0392505527,
0.2059400231,
0.2348196507,
-0.116416432,
-0.2022814453,
-0.0036496967,
-0.2349403501,
0.4400176406,
0.5935143828,
0.3597706258,
-0.3515000939,
-0.1708198786,
0.3545522988,
-0.1483628452,
-0.0955265537,
-0.1216840968,
0.0697268248,
-0.2168034464,
-0.2290595472,
0.0502099693,
0.2537952363,
0.3231960535,
0.1532001942,
-0.1422909498,
-0.2310125232,
-0.4477602541,
-0.0806005299,
0.1426685154,
0.1965823174,
-0.5051640868,
0.1015679985,
-0.1520385891,
0.2174490988,
0.4984900355,
0.7618781924,
0.285230577,
-0.2908281386,
0.2480543256,
-0.0173352137,
0.4242436588,
0.1194378957,
-0.1531619132,
0.1303173602,
-0.2092983723,
0.0522415414,
0.1517798454,
-0.2608375847,
0.3953027427,
-0.1686440259,
-0.2760578394,
-0.2417638153,
0.4991042614,
-0.0435558222,
-0.0124946386,
-0.0739122853,
-0.2426339239,
-0.3518016636,
0.6364928484,
0.088994965,
0.5242312551,
0.4776633382,
0.0604505241,
0.5830125213,
-0.1552411914,
0.2822135985,
-0.7763890624,
-0.0235232245,
-0.3103725314,
0.1324635744,
-0.0217108727,
-0.2295861542,
0.2328009456,
0.3454684019,
-0.244989574,
0.0065116957,
0.0266156644,
0.0639142543,
-0.0325965136,
0.3628291488,
-0.1441188157,
-0.2786217332,
-0.4063239694,
0.1032003015,
0.0568544008,
-0.3126541376,
0.0303324759,
-0.3509736955,
-0.0865489021,
-0.2357483208,
-0.2639683783,
0.4338125587,
-0.0716569722,
0.3886191547,
0.2239570469,
-0.0562002212,
0.3615512252,
-0.0991532877,
-0.1680012941,
-0.0753623769,
0.02919822,
0.1506629288,
-0.0272612087,
-0.274391979,
-0.0218238309,
0.1191584021,
0.1346259117,
-0.1488003135,
0.0384192467,
-0.0248725228,
-0.1394095421,
-0.3718872368,
0.2763093412,
0.2076301724,
-0.4314105511,
-0.3709970117,
-0.1943298578,
0.115633145,
-0.1496698707,
-0.0934758931,
0.1180914938,
-0.0015495103,
-0.2765601575,
-0.3599806726,
-0.0708586276,
-0.2900590599,
0.0538642257,
0.3544166088,
0.2216333747,
0.043161422,
0.6239026785,
0.2414466441,
-0.0021352023,
-0.3211767077,
0.0817212164,
0.3431162834,
-0.4442775846,
0.3989855051,
-0.2075764984,
-0.1646199673,
0.1220540181,
0.091997534,
0.2259002328,
0.1671587378,
-0.2459680885,
-0.5066787601,
-0.092028372,
0.3302327394,
-0.2621886432,
-0.0244904719,
-0.137858972,
0.220898807,
-0.3556536734,
0.2872294188,
-0.2434158176,
0.2291274369,
-0.0172620043,
-0.048538018,
-0.0581630021,
-0.1316033155,
0.1055704802,
0.0473978259,
0.1401482224,
0.1752714068,
0.0176035762,
-0.1623850167,
-0.1138045862,
0.1333758235,
0.1678049266,
0.1552290916,
-0.2986268997,
0.1163601205,
-0.1770163476,
0.0377225168,
0.1328800023,
-0.3939383626,
-0.0549998693,
0.137435779,
0.4441270232,
0.2775044143,
-0.0967663527,
0.1493072808,
-0.123972252,
0.4012765288,
-0.0929720849,
0.2098112404,
-0.1530314982,
0.0011429712,
0.0350743122,
0.1986971349,
-0.0442554913,
0.0952135324,
0.5684462786,
-0.1944070607,
-0.0607280619,
-0.508490026,
0.2955585718,
0.521907568,
-0.0011159815,
-0.0422698893,
-0.2038500309,
0.1671244949,
-0.1614582837,
-0.0393572152,
0.3196540773,
0.0164183751,
-0.0983285233,
0.2596960068,
0.0950075909,
-0.0378498882,
-0.2987874746,
0.1304664761,
0.1833291054,
0.0727176592,
0.2018178552,
0.6401523948,
-0.325771451,
0.0498722829,
0.3796495497,
0.1183044836,
0.6063776016,
0.2897161543,
0.1244285256,
0.0713097453,
0.4207837582,
0.0520858616,
0.0774491206,
-0.2015172541,
-0.4815186858,
0.0902982727,
0.291235894,
-0.142429024,
-0.1119096428,
0.3422732949,
0.144144699,
-0.1292783171,
-0.2035946846,
0.3980276883,
-0.1603070647,
-0.2040880322,
-0.2676360011,
-0.1337144375,
-0.6331003904,
-0.1815864444,
-0.0812521651,
-0.0243734121,
-0.0915034637,
0.1115612239,
0.0836269706,
-0.2546156943,
0.1198745072,
0.0494740605,
-0.0678949878,
-0.2596525848,
0.4679682553,
0.0913945585,
0.0372753367,
0.0409076624,
0.1487786621,
0.4960682392,
0.2502405643,
-0.263514936,
-0.2182384282,
-0.1987067908,
-0.147084713,
-0.017943494,
0.2585285902,
0.0494269654,
0.1489408761,
0.3585207462,
0.1141108572,
-0.1599736214,
0.0438395888,
0.1822641194,
0.0814701542,
0.1857504845,
0.6384842396,
-0.047794193,
-0.1213486642,
0.224306643,
-0.1319788992,
-0.25100559,
-0.6355652809,
0.2918817103,
0.0026243292,
0.1969861388,
0.0760706961,
0.0750237703,
0.1019890979,
0.6383273005,
0.058627557,
0.0899370536,
-0.1036299914,
-0.1408050358,
-0.0365859941,
-0.0300197639,
-0.373028487,
0.0104073808,
0.1738446355,
0.0966817811,
0.1679893732,
0.2986498773,
-0.0251648724,
0.2913758159,
-0.219756633,
-0.1188329607,
-0.4843565524,
0.0687587336,
0.2037039697,
0.092805922,
-0.1202128679,
-0.147621572,
0.0684484467,
0.2533196807,
0.0239623711,
0.090376392,
-0.2485010028,
0.1168628931,
-0.3223130703,
0.1750454009,
0.0504133254,
0.1140336767,
-0.0494047962,
-0.1896673739,
-0.1887530088,
-0.5733939409,
-0.1219350994,
0.468667686,
0.128410399,
0.2680284977,
-0.1597730517,
0.1188100278,
-0.2943055928,
0.1210636646,
-0.4128639102,
0.0388881415,
-0.3458371162,
0.2615271509,
-0.1557045877,
0.2354155481,
-0.1095619649,
-0.0678943396,
-0.2019299865,
0.0950916037,
-0.207477659,
-0.3111887276,
0.376058042,
0.1088027507,
-0.232853353,
0.4643299878,
0.1188009977,
0.1165843904,
0.2316484004,
-0.3983219862,
-0.0301202908,
0.25434497,
-0.1892001629,
-0.3222724497,
-0.0306953676,
0.1550979316,
-0.1384549439,
-0.0962279886,
0.1503657401,
0.0437867157,
-0.1663367003,
-0.1757201552,
0.0138161257
] |
https://github.com/huggingface/datasets/issues/359 | ArrowBasedBuilder _prepare_split parse_schema breaks on nested structures | Also noticed that if you for example in a loader script
```
from nlp import ArrowBasedBuilder
class MyBuilder(ArrowBasedBuilder):
...
```
and use that in the subclass, it will be on the module's __dict__ and will be selected before the `MyBuilder` subclass, and it will raise `NotImplementedError` on its `_generate_examples` method... In the code it check for abstract classes but Builder and ArrowBasedBuilder aren't abstract classes, they're regular classes with `@abstract_methods`. | I tried using the Json dataloader to load some JSON lines files. but get an exception in the parse_schema function.
```
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-23-9aecfbee53bd> in <module>
55 from nlp import load_dataset
56
---> 57 ds = load_dataset("../text2struct/model/dataset_builder.py", data_files=rel_datafiles)
58
59
~/.virtualenvs/inv-text2struct/lib/python3.6/site-packages/nlp/load.py in load_dataset(path, name, version, data_dir, data_files, split, cache_dir, download_config, download_mode, ignore_verifications, save_infos, **config_kwargs)
522 download_mode=download_mode,
523 ignore_verifications=ignore_verifications,
--> 524 save_infos=save_infos,
525 )
526
~/.virtualenvs/inv-text2struct/lib/python3.6/site-packages/nlp/builder.py in download_and_prepare(self, download_config, download_mode, ignore_verifications, save_infos, try_from_hf_gcs, dl_manager, **download_and_prepare_kwargs)
430 verify_infos = not save_infos and not ignore_verifications
431 self._download_and_prepare(
--> 432 dl_manager=dl_manager, verify_infos=verify_infos, **download_and_prepare_kwargs
433 )
434 # Sync info
~/.virtualenvs/inv-text2struct/lib/python3.6/site-packages/nlp/builder.py in _download_and_prepare(self, dl_manager, verify_infos, **prepare_split_kwargs)
481 try:
482 # Prepare split will record examples associated to the split
--> 483 self._prepare_split(split_generator, **prepare_split_kwargs)
484 except OSError:
485 raise OSError("Cannot find data file. " + (self.manual_download_instructions or ""))
~/.virtualenvs/inv-text2struct/lib/python3.6/site-packages/nlp/builder.py in _prepare_split(self, split_generator)
736 schema_dict[field.name] = Value(str(field.type))
737
--> 738 parse_schema(writer.schema, features)
739 self.info.features = Features(features)
740
~/.virtualenvs/inv-text2struct/lib/python3.6/site-packages/nlp/builder.py in parse_schema(schema, schema_dict)
734 parse_schema(field.type.value_type, schema_dict[field.name])
735 else:
--> 736 schema_dict[field.name] = Value(str(field.type))
737
738 parse_schema(writer.schema, features)
<string> in __init__(self, dtype, id, _type)
~/.virtualenvs/inv-text2struct/lib/python3.6/site-packages/nlp/features.py in __post_init__(self)
55
56 def __post_init__(self):
---> 57 self.pa_type = string_to_arrow(self.dtype)
58
59 def __call__(self):
~/.virtualenvs/inv-text2struct/lib/python3.6/site-packages/nlp/features.py in string_to_arrow(type_str)
32 if str(type_str + "_") not in pa.__dict__:
33 raise ValueError(
---> 34 f"Neither {type_str} nor {type_str + '_'} seems to be a pyarrow data type. "
35 f"Please make sure to use a correct data type, see: "
36 f"https://arrow.apache.org/docs/python/api/datatypes.html#factory-functions"
ValueError: Neither list<item: string> nor list<item: string>_ seems to be a pyarrow data type. Please make sure to use a correct data type, see: https://arrow.apache.org/docs/python/api/datatypes.html#factory-functions
```
If I create the dataset imperatively, using a pyarrow table, the dataset is created correctly. If I override the `_prepare_split` method to avoid calling the validate schema, the dataset can load as well. | 70 | ArrowBasedBuilder _prepare_split parse_schema breaks on nested structures
I tried using the Json dataloader to load some JSON lines files. but get an exception in the parse_schema function.
```
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-23-9aecfbee53bd> in <module>
55 from nlp import load_dataset
56
---> 57 ds = load_dataset("../text2struct/model/dataset_builder.py", data_files=rel_datafiles)
58
59
~/.virtualenvs/inv-text2struct/lib/python3.6/site-packages/nlp/load.py in load_dataset(path, name, version, data_dir, data_files, split, cache_dir, download_config, download_mode, ignore_verifications, save_infos, **config_kwargs)
522 download_mode=download_mode,
523 ignore_verifications=ignore_verifications,
--> 524 save_infos=save_infos,
525 )
526
~/.virtualenvs/inv-text2struct/lib/python3.6/site-packages/nlp/builder.py in download_and_prepare(self, download_config, download_mode, ignore_verifications, save_infos, try_from_hf_gcs, dl_manager, **download_and_prepare_kwargs)
430 verify_infos = not save_infos and not ignore_verifications
431 self._download_and_prepare(
--> 432 dl_manager=dl_manager, verify_infos=verify_infos, **download_and_prepare_kwargs
433 )
434 # Sync info
~/.virtualenvs/inv-text2struct/lib/python3.6/site-packages/nlp/builder.py in _download_and_prepare(self, dl_manager, verify_infos, **prepare_split_kwargs)
481 try:
482 # Prepare split will record examples associated to the split
--> 483 self._prepare_split(split_generator, **prepare_split_kwargs)
484 except OSError:
485 raise OSError("Cannot find data file. " + (self.manual_download_instructions or ""))
~/.virtualenvs/inv-text2struct/lib/python3.6/site-packages/nlp/builder.py in _prepare_split(self, split_generator)
736 schema_dict[field.name] = Value(str(field.type))
737
--> 738 parse_schema(writer.schema, features)
739 self.info.features = Features(features)
740
~/.virtualenvs/inv-text2struct/lib/python3.6/site-packages/nlp/builder.py in parse_schema(schema, schema_dict)
734 parse_schema(field.type.value_type, schema_dict[field.name])
735 else:
--> 736 schema_dict[field.name] = Value(str(field.type))
737
738 parse_schema(writer.schema, features)
<string> in __init__(self, dtype, id, _type)
~/.virtualenvs/inv-text2struct/lib/python3.6/site-packages/nlp/features.py in __post_init__(self)
55
56 def __post_init__(self):
---> 57 self.pa_type = string_to_arrow(self.dtype)
58
59 def __call__(self):
~/.virtualenvs/inv-text2struct/lib/python3.6/site-packages/nlp/features.py in string_to_arrow(type_str)
32 if str(type_str + "_") not in pa.__dict__:
33 raise ValueError(
---> 34 f"Neither {type_str} nor {type_str + '_'} seems to be a pyarrow data type. "
35 f"Please make sure to use a correct data type, see: "
36 f"https://arrow.apache.org/docs/python/api/datatypes.html#factory-functions"
ValueError: Neither list<item: string> nor list<item: string>_ seems to be a pyarrow data type. Please make sure to use a correct data type, see: https://arrow.apache.org/docs/python/api/datatypes.html#factory-functions
```
If I create the dataset imperatively, using a pyarrow table, the dataset is created correctly. If I override the `_prepare_split` method to avoid calling the validate schema, the dataset can load as well.
Also noticed that if you for example in a loader script
```
from nlp import ArrowBasedBuilder
class MyBuilder(ArrowBasedBuilder):
...
```
and use that in the subclass, it will be on the module's __dict__ and will be selected before the `MyBuilder` subclass, and it will raise `NotImplementedError` on its `_generate_examples` method... In the code it check for abstract classes but Builder and ArrowBasedBuilder aren't abstract classes, they're regular classes with `@abstract_methods`. | [
-0.3260454237,
0.3610107005,
-0.0600551106,
0.548700273,
0.0407028086,
-0.1400740296,
0.343112886,
0.4284073412,
0.2143318057,
-0.1139702797,
-0.0436314642,
0.333270669,
0.2364399135,
0.058703281,
-0.2658622861,
-0.165615797,
-0.0196322128,
0.293722868,
-0.1246239915,
0.3482965827,
-0.2225887179,
0.4523975551,
-0.1000254601,
0.1312666088,
0.0139916427,
-0.0840231776,
0.0551256463,
0.3630203307,
-0.1661054939,
-0.5221457481,
0.261677146,
-0.2975644469,
-0.107112959,
0.4265523553,
-0.0001121765,
0.2836856842,
0.2796025574,
-0.1050380766,
-0.3678911328,
-0.056319654,
0.0219083279,
-0.1897958815,
0.0807164535,
-0.1802358478,
0.2029782087,
-0.2733664215,
-0.3524165154,
-0.1409692168,
0.5280257463,
0.103697598,
0.1615074128,
-0.1449669003,
0.307852298,
-0.008729849,
0.0976146162,
-0.0128850006,
-0.134184137,
0.3496534824,
-0.2746610045,
0.1606747657,
-0.1773141325,
0.033971183,
-0.1473901868,
-0.0363855585,
0.0670261383,
0.0353455842,
0.1572591662,
0.0242218003,
0.0062474757,
-0.0083958823,
0.1443328559,
-0.127688542,
-0.0759728774,
-0.2398122251,
-0.2881833315,
-0.3098752797,
0.2149095684,
0.1042351276,
-0.0598927736,
0.101757504,
0.3165931702,
-0.2579515278,
-0.1195937246,
0.0087800091,
0.0931572169,
0.3294773102,
-0.0843711048,
0.0652882159,
0.2218033522,
-0.0210188404,
0.2137235254,
-0.0134952562,
-0.5275074244,
0.069325693,
-0.0279790685,
0.0091239586,
-0.1933579594,
-0.6268093586,
-0.008878842,
0.1031662822,
0.5481146574,
-0.0142837623,
0.1519876719,
0.4092027545,
0.2554834485,
-0.1661252826,
0.264388442,
-0.0303025879,
0.0417523123,
0.2514637411,
0.1111457571,
-0.1434713006,
-0.0249576494,
-0.1038493514,
-0.3425201178,
-0.0681295097,
0.1332850307,
0.0181019008,
-0.2350534797,
0.0447583422,
-0.4381091893,
-0.1038777977,
0.2934702039,
0.2456232458,
0.2248571068,
0.233176142,
0.1868969798,
0.2919614613,
0.0202707723,
-0.202633217,
-0.1242303848,
0.1052501798,
-0.1044749692,
0.1108415127,
0.213198185,
0.1113539487,
0.2996941209,
0.1288214922,
-0.342015624,
-0.3404205739,
0.1220167726,
-0.2721668482,
0.0283040181,
0.2411937416,
0.0798236504,
-0.1810227334,
0.1847562492,
-0.2773362398,
-0.0575833693,
0.0720745176,
-0.3603481352,
-0.3543906212,
-0.1715968847,
0.1504697204,
0.0036926195,
0.1574963778,
-0.4513111115,
-0.0426096916,
0.2559913695,
-0.3391981721,
0.1138054132,
-0.1639286429,
-0.180462718,
-0.1676000804,
0.124031812,
0.0814562663,
-0.179603219,
-0.0717223287,
-0.2841578424,
-0.0085384212,
0.2089586556,
0.1984402984,
-0.1502620429,
0.5191944242,
-0.2032294571,
0.5580467582,
0.5535883904,
-0.1875400841,
-0.2054161727,
0.5373874307,
0.1265777498,
-0.0352941267,
0.1371377558,
-0.4054442942,
0.2556641698,
-0.1492993683,
0.0239111818,
0.4544432163,
0.1228782609,
-0.0366677307,
-0.0533075072,
0.0591707379,
0.0945710465,
-0.0533152148,
-0.4166417122,
-0.2638633847,
-0.1177739352,
0.3790182173,
0.2506230474,
-0.0887018591,
-0.0387291424,
0.1767891943,
0.0014022677,
0.0067824367,
-0.0009073094,
-0.084204711,
-0.5144615769,
0.0251904726,
-0.3117556274,
-0.0911140591,
-0.3747563958,
0.1402050108,
-0.1032431722,
0.3250383139,
-0.0609509051,
-0.2853426337,
0.2218149751,
0.0576821044,
-0.2218000591,
-0.3171214163,
-0.0351766348,
0.0971564054,
-0.0542956404,
0.36261186,
-0.0993168801,
0.4648388028,
0.0869146883,
-0.2966180146,
0.046638757,
0.1641554832,
0.0355113298,
-0.2589478493,
-0.180991143,
0.4646165371,
0.4503346086,
-0.1478161067,
-0.3648444712,
-0.3587810695,
0.006905457,
0.1058967039,
0.0639767274,
0.0289982334,
0.1435212344,
-0.3214045167,
0.0080421362,
0.3127244115,
-0.0123357605,
0.451916337,
0.0811968371,
-0.0262393542,
0.197717011,
-0.021795176,
0.1612604111,
-0.3399371505,
-0.1020608023,
-0.0194322541,
-0.0510121249,
0.1063094884,
0.0067980811,
0.066716522,
0.3158480525,
0.1552186459,
0.1025183946,
-0.0363591276,
-0.0600491166,
-0.1964570284,
0.1785122156,
0.0889555514,
0.4353642166,
0.0364247784,
-0.0735301822,
0.0425672755,
0.1256315708,
-0.0914050788,
0.3548736572,
0.0301692951,
0.4449595213,
0.3242438436,
0.2033969015,
-0.0742958784,
-0.3939169645,
-0.3832826912,
0.0276443362,
0.1182153076,
-0.2580773234,
0.2396309376,
-0.2732922137,
0.1311366856,
-0.0723115578,
-0.0315209776,
-0.1027372777,
-0.3991472721,
-0.2967225313,
0.3699501753,
-0.2913791537,
0.0173462965,
-0.127198562,
0.0827426463,
0.1297948658,
-0.1101023182,
-0.3194958568,
-0.1922740787,
-0.1088828146,
0.0139108598,
0.3567507863,
0.2639363706,
-0.1311803758,
0.2827695906,
-0.045186609,
-0.048970826,
-0.3095546365,
0.3275256157,
-0.2431074381,
-0.2856102586,
0.2199109942,
0.1815671623,
0.1619450748,
-0.6107792854,
0.185319066,
0.0088886693,
-0.2933405042,
0.2972556055,
0.223001346,
-0.0029807352,
-0.1525842249,
-0.1341145933,
-0.1398984492,
-0.5762495399,
0.4581656158,
0.1357263029,
0.2581650019,
-0.0825648978,
-0.0690139532,
0.0106097795,
-0.2777140737,
-0.0837052315,
0.0277053639,
0.1249314025,
0.1002967954,
-0.3619613647,
0.0575925224,
0.0255034044,
0.0281640515,
0.5084941387,
-0.1329765916,
-0.422197938,
0.44984743,
0.1196183637,
-0.0777380764,
-0.176227808,
-0.3853222728,
0.0696588904,
0.3960431814,
-0.0083335675,
-0.1137980521,
0.083860077,
0.2298502028,
-0.0317387208,
0.1729093343,
-0.1163408607,
0.5597537756,
-0.0800674707,
0.2650152743,
0.056766443,
0.0075936103,
0.2237433791,
0.0908615291,
-0.0370968096,
-0.2848673165,
-0.1019058973,
-0.1746465266,
-0.2492515892,
0.072104387,
0.1653674245,
-0.0519330055,
-0.2720277011,
-0.0721120238,
-0.1612119228,
-0.1755963564,
-0.3624182642,
0.3011763096,
-0.3059145212,
0.0879906714,
-0.3111081123,
-0.0841155648,
0.0438528284,
0.0580728985,
-0.0536612496,
-0.277751863,
0.0659914091,
-0.1160642356,
0.0500688255,
0.1661203802,
-0.2029539049,
0.1418601573,
-0.0379833505,
0.2989364266,
0.0233656764,
-0.1710151881,
-0.0642993897,
-0.1698567867,
0.1479855478,
0.0392505527,
0.2059400231,
0.2348196507,
-0.116416432,
-0.2022814453,
-0.0036496967,
-0.2349403501,
0.4400176406,
0.5935143828,
0.3597706258,
-0.3515000939,
-0.1708198786,
0.3545522988,
-0.1483628452,
-0.0955265537,
-0.1216840968,
0.0697268248,
-0.2168034464,
-0.2290595472,
0.0502099693,
0.2537952363,
0.3231960535,
0.1532001942,
-0.1422909498,
-0.2310125232,
-0.4477602541,
-0.0806005299,
0.1426685154,
0.1965823174,
-0.5051640868,
0.1015679985,
-0.1520385891,
0.2174490988,
0.4984900355,
0.7618781924,
0.285230577,
-0.2908281386,
0.2480543256,
-0.0173352137,
0.4242436588,
0.1194378957,
-0.1531619132,
0.1303173602,
-0.2092983723,
0.0522415414,
0.1517798454,
-0.2608375847,
0.3953027427,
-0.1686440259,
-0.2760578394,
-0.2417638153,
0.4991042614,
-0.0435558222,
-0.0124946386,
-0.0739122853,
-0.2426339239,
-0.3518016636,
0.6364928484,
0.088994965,
0.5242312551,
0.4776633382,
0.0604505241,
0.5830125213,
-0.1552411914,
0.2822135985,
-0.7763890624,
-0.0235232245,
-0.3103725314,
0.1324635744,
-0.0217108727,
-0.2295861542,
0.2328009456,
0.3454684019,
-0.244989574,
0.0065116957,
0.0266156644,
0.0639142543,
-0.0325965136,
0.3628291488,
-0.1441188157,
-0.2786217332,
-0.4063239694,
0.1032003015,
0.0568544008,
-0.3126541376,
0.0303324759,
-0.3509736955,
-0.0865489021,
-0.2357483208,
-0.2639683783,
0.4338125587,
-0.0716569722,
0.3886191547,
0.2239570469,
-0.0562002212,
0.3615512252,
-0.0991532877,
-0.1680012941,
-0.0753623769,
0.02919822,
0.1506629288,
-0.0272612087,
-0.274391979,
-0.0218238309,
0.1191584021,
0.1346259117,
-0.1488003135,
0.0384192467,
-0.0248725228,
-0.1394095421,
-0.3718872368,
0.2763093412,
0.2076301724,
-0.4314105511,
-0.3709970117,
-0.1943298578,
0.115633145,
-0.1496698707,
-0.0934758931,
0.1180914938,
-0.0015495103,
-0.2765601575,
-0.3599806726,
-0.0708586276,
-0.2900590599,
0.0538642257,
0.3544166088,
0.2216333747,
0.043161422,
0.6239026785,
0.2414466441,
-0.0021352023,
-0.3211767077,
0.0817212164,
0.3431162834,
-0.4442775846,
0.3989855051,
-0.2075764984,
-0.1646199673,
0.1220540181,
0.091997534,
0.2259002328,
0.1671587378,
-0.2459680885,
-0.5066787601,
-0.092028372,
0.3302327394,
-0.2621886432,
-0.0244904719,
-0.137858972,
0.220898807,
-0.3556536734,
0.2872294188,
-0.2434158176,
0.2291274369,
-0.0172620043,
-0.048538018,
-0.0581630021,
-0.1316033155,
0.1055704802,
0.0473978259,
0.1401482224,
0.1752714068,
0.0176035762,
-0.1623850167,
-0.1138045862,
0.1333758235,
0.1678049266,
0.1552290916,
-0.2986268997,
0.1163601205,
-0.1770163476,
0.0377225168,
0.1328800023,
-0.3939383626,
-0.0549998693,
0.137435779,
0.4441270232,
0.2775044143,
-0.0967663527,
0.1493072808,
-0.123972252,
0.4012765288,
-0.0929720849,
0.2098112404,
-0.1530314982,
0.0011429712,
0.0350743122,
0.1986971349,
-0.0442554913,
0.0952135324,
0.5684462786,
-0.1944070607,
-0.0607280619,
-0.508490026,
0.2955585718,
0.521907568,
-0.0011159815,
-0.0422698893,
-0.2038500309,
0.1671244949,
-0.1614582837,
-0.0393572152,
0.3196540773,
0.0164183751,
-0.0983285233,
0.2596960068,
0.0950075909,
-0.0378498882,
-0.2987874746,
0.1304664761,
0.1833291054,
0.0727176592,
0.2018178552,
0.6401523948,
-0.325771451,
0.0498722829,
0.3796495497,
0.1183044836,
0.6063776016,
0.2897161543,
0.1244285256,
0.0713097453,
0.4207837582,
0.0520858616,
0.0774491206,
-0.2015172541,
-0.4815186858,
0.0902982727,
0.291235894,
-0.142429024,
-0.1119096428,
0.3422732949,
0.144144699,
-0.1292783171,
-0.2035946846,
0.3980276883,
-0.1603070647,
-0.2040880322,
-0.2676360011,
-0.1337144375,
-0.6331003904,
-0.1815864444,
-0.0812521651,
-0.0243734121,
-0.0915034637,
0.1115612239,
0.0836269706,
-0.2546156943,
0.1198745072,
0.0494740605,
-0.0678949878,
-0.2596525848,
0.4679682553,
0.0913945585,
0.0372753367,
0.0409076624,
0.1487786621,
0.4960682392,
0.2502405643,
-0.263514936,
-0.2182384282,
-0.1987067908,
-0.147084713,
-0.017943494,
0.2585285902,
0.0494269654,
0.1489408761,
0.3585207462,
0.1141108572,
-0.1599736214,
0.0438395888,
0.1822641194,
0.0814701542,
0.1857504845,
0.6384842396,
-0.047794193,
-0.1213486642,
0.224306643,
-0.1319788992,
-0.25100559,
-0.6355652809,
0.2918817103,
0.0026243292,
0.1969861388,
0.0760706961,
0.0750237703,
0.1019890979,
0.6383273005,
0.058627557,
0.0899370536,
-0.1036299914,
-0.1408050358,
-0.0365859941,
-0.0300197639,
-0.373028487,
0.0104073808,
0.1738446355,
0.0966817811,
0.1679893732,
0.2986498773,
-0.0251648724,
0.2913758159,
-0.219756633,
-0.1188329607,
-0.4843565524,
0.0687587336,
0.2037039697,
0.092805922,
-0.1202128679,
-0.147621572,
0.0684484467,
0.2533196807,
0.0239623711,
0.090376392,
-0.2485010028,
0.1168628931,
-0.3223130703,
0.1750454009,
0.0504133254,
0.1140336767,
-0.0494047962,
-0.1896673739,
-0.1887530088,
-0.5733939409,
-0.1219350994,
0.468667686,
0.128410399,
0.2680284977,
-0.1597730517,
0.1188100278,
-0.2943055928,
0.1210636646,
-0.4128639102,
0.0388881415,
-0.3458371162,
0.2615271509,
-0.1557045877,
0.2354155481,
-0.1095619649,
-0.0678943396,
-0.2019299865,
0.0950916037,
-0.207477659,
-0.3111887276,
0.376058042,
0.1088027507,
-0.232853353,
0.4643299878,
0.1188009977,
0.1165843904,
0.2316484004,
-0.3983219862,
-0.0301202908,
0.25434497,
-0.1892001629,
-0.3222724497,
-0.0306953676,
0.1550979316,
-0.1384549439,
-0.0962279886,
0.1503657401,
0.0437867157,
-0.1663367003,
-0.1757201552,
0.0138161257
] |
https://github.com/huggingface/datasets/issues/359 | ArrowBasedBuilder _prepare_split parse_schema breaks on nested structures | Indeed this is part of a more general limitation which is the fact that we should generate and update the `features` from the auto-inferred Arrow schema when they are not provided (also happen when a user change the schema using `map()`, the features should be auto-generated and guessed as much as possible to keep the `features` synced with the underlying Arrow table schema).
We will try to solve this soon. | I tried using the Json dataloader to load some JSON lines files. but get an exception in the parse_schema function.
```
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-23-9aecfbee53bd> in <module>
55 from nlp import load_dataset
56
---> 57 ds = load_dataset("../text2struct/model/dataset_builder.py", data_files=rel_datafiles)
58
59
~/.virtualenvs/inv-text2struct/lib/python3.6/site-packages/nlp/load.py in load_dataset(path, name, version, data_dir, data_files, split, cache_dir, download_config, download_mode, ignore_verifications, save_infos, **config_kwargs)
522 download_mode=download_mode,
523 ignore_verifications=ignore_verifications,
--> 524 save_infos=save_infos,
525 )
526
~/.virtualenvs/inv-text2struct/lib/python3.6/site-packages/nlp/builder.py in download_and_prepare(self, download_config, download_mode, ignore_verifications, save_infos, try_from_hf_gcs, dl_manager, **download_and_prepare_kwargs)
430 verify_infos = not save_infos and not ignore_verifications
431 self._download_and_prepare(
--> 432 dl_manager=dl_manager, verify_infos=verify_infos, **download_and_prepare_kwargs
433 )
434 # Sync info
~/.virtualenvs/inv-text2struct/lib/python3.6/site-packages/nlp/builder.py in _download_and_prepare(self, dl_manager, verify_infos, **prepare_split_kwargs)
481 try:
482 # Prepare split will record examples associated to the split
--> 483 self._prepare_split(split_generator, **prepare_split_kwargs)
484 except OSError:
485 raise OSError("Cannot find data file. " + (self.manual_download_instructions or ""))
~/.virtualenvs/inv-text2struct/lib/python3.6/site-packages/nlp/builder.py in _prepare_split(self, split_generator)
736 schema_dict[field.name] = Value(str(field.type))
737
--> 738 parse_schema(writer.schema, features)
739 self.info.features = Features(features)
740
~/.virtualenvs/inv-text2struct/lib/python3.6/site-packages/nlp/builder.py in parse_schema(schema, schema_dict)
734 parse_schema(field.type.value_type, schema_dict[field.name])
735 else:
--> 736 schema_dict[field.name] = Value(str(field.type))
737
738 parse_schema(writer.schema, features)
<string> in __init__(self, dtype, id, _type)
~/.virtualenvs/inv-text2struct/lib/python3.6/site-packages/nlp/features.py in __post_init__(self)
55
56 def __post_init__(self):
---> 57 self.pa_type = string_to_arrow(self.dtype)
58
59 def __call__(self):
~/.virtualenvs/inv-text2struct/lib/python3.6/site-packages/nlp/features.py in string_to_arrow(type_str)
32 if str(type_str + "_") not in pa.__dict__:
33 raise ValueError(
---> 34 f"Neither {type_str} nor {type_str + '_'} seems to be a pyarrow data type. "
35 f"Please make sure to use a correct data type, see: "
36 f"https://arrow.apache.org/docs/python/api/datatypes.html#factory-functions"
ValueError: Neither list<item: string> nor list<item: string>_ seems to be a pyarrow data type. Please make sure to use a correct data type, see: https://arrow.apache.org/docs/python/api/datatypes.html#factory-functions
```
If I create the dataset imperatively, using a pyarrow table, the dataset is created correctly. If I override the `_prepare_split` method to avoid calling the validate schema, the dataset can load as well. | 70 | ArrowBasedBuilder _prepare_split parse_schema breaks on nested structures
I tried using the Json dataloader to load some JSON lines files. but get an exception in the parse_schema function.
```
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-23-9aecfbee53bd> in <module>
55 from nlp import load_dataset
56
---> 57 ds = load_dataset("../text2struct/model/dataset_builder.py", data_files=rel_datafiles)
58
59
~/.virtualenvs/inv-text2struct/lib/python3.6/site-packages/nlp/load.py in load_dataset(path, name, version, data_dir, data_files, split, cache_dir, download_config, download_mode, ignore_verifications, save_infos, **config_kwargs)
522 download_mode=download_mode,
523 ignore_verifications=ignore_verifications,
--> 524 save_infos=save_infos,
525 )
526
~/.virtualenvs/inv-text2struct/lib/python3.6/site-packages/nlp/builder.py in download_and_prepare(self, download_config, download_mode, ignore_verifications, save_infos, try_from_hf_gcs, dl_manager, **download_and_prepare_kwargs)
430 verify_infos = not save_infos and not ignore_verifications
431 self._download_and_prepare(
--> 432 dl_manager=dl_manager, verify_infos=verify_infos, **download_and_prepare_kwargs
433 )
434 # Sync info
~/.virtualenvs/inv-text2struct/lib/python3.6/site-packages/nlp/builder.py in _download_and_prepare(self, dl_manager, verify_infos, **prepare_split_kwargs)
481 try:
482 # Prepare split will record examples associated to the split
--> 483 self._prepare_split(split_generator, **prepare_split_kwargs)
484 except OSError:
485 raise OSError("Cannot find data file. " + (self.manual_download_instructions or ""))
~/.virtualenvs/inv-text2struct/lib/python3.6/site-packages/nlp/builder.py in _prepare_split(self, split_generator)
736 schema_dict[field.name] = Value(str(field.type))
737
--> 738 parse_schema(writer.schema, features)
739 self.info.features = Features(features)
740
~/.virtualenvs/inv-text2struct/lib/python3.6/site-packages/nlp/builder.py in parse_schema(schema, schema_dict)
734 parse_schema(field.type.value_type, schema_dict[field.name])
735 else:
--> 736 schema_dict[field.name] = Value(str(field.type))
737
738 parse_schema(writer.schema, features)
<string> in __init__(self, dtype, id, _type)
~/.virtualenvs/inv-text2struct/lib/python3.6/site-packages/nlp/features.py in __post_init__(self)
55
56 def __post_init__(self):
---> 57 self.pa_type = string_to_arrow(self.dtype)
58
59 def __call__(self):
~/.virtualenvs/inv-text2struct/lib/python3.6/site-packages/nlp/features.py in string_to_arrow(type_str)
32 if str(type_str + "_") not in pa.__dict__:
33 raise ValueError(
---> 34 f"Neither {type_str} nor {type_str + '_'} seems to be a pyarrow data type. "
35 f"Please make sure to use a correct data type, see: "
36 f"https://arrow.apache.org/docs/python/api/datatypes.html#factory-functions"
ValueError: Neither list<item: string> nor list<item: string>_ seems to be a pyarrow data type. Please make sure to use a correct data type, see: https://arrow.apache.org/docs/python/api/datatypes.html#factory-functions
```
If I create the dataset imperatively, using a pyarrow table, the dataset is created correctly. If I override the `_prepare_split` method to avoid calling the validate schema, the dataset can load as well.
Indeed this is part of a more general limitation which is the fact that we should generate and update the `features` from the auto-inferred Arrow schema when they are not provided (also happen when a user change the schema using `map()`, the features should be auto-generated and guessed as much as possible to keep the `features` synced with the underlying Arrow table schema).
We will try to solve this soon. | [
-0.3260454237,
0.3610107005,
-0.0600551106,
0.548700273,
0.0407028086,
-0.1400740296,
0.343112886,
0.4284073412,
0.2143318057,
-0.1139702797,
-0.0436314642,
0.333270669,
0.2364399135,
0.058703281,
-0.2658622861,
-0.165615797,
-0.0196322128,
0.293722868,
-0.1246239915,
0.3482965827,
-0.2225887179,
0.4523975551,
-0.1000254601,
0.1312666088,
0.0139916427,
-0.0840231776,
0.0551256463,
0.3630203307,
-0.1661054939,
-0.5221457481,
0.261677146,
-0.2975644469,
-0.107112959,
0.4265523553,
-0.0001121765,
0.2836856842,
0.2796025574,
-0.1050380766,
-0.3678911328,
-0.056319654,
0.0219083279,
-0.1897958815,
0.0807164535,
-0.1802358478,
0.2029782087,
-0.2733664215,
-0.3524165154,
-0.1409692168,
0.5280257463,
0.103697598,
0.1615074128,
-0.1449669003,
0.307852298,
-0.008729849,
0.0976146162,
-0.0128850006,
-0.134184137,
0.3496534824,
-0.2746610045,
0.1606747657,
-0.1773141325,
0.033971183,
-0.1473901868,
-0.0363855585,
0.0670261383,
0.0353455842,
0.1572591662,
0.0242218003,
0.0062474757,
-0.0083958823,
0.1443328559,
-0.127688542,
-0.0759728774,
-0.2398122251,
-0.2881833315,
-0.3098752797,
0.2149095684,
0.1042351276,
-0.0598927736,
0.101757504,
0.3165931702,
-0.2579515278,
-0.1195937246,
0.0087800091,
0.0931572169,
0.3294773102,
-0.0843711048,
0.0652882159,
0.2218033522,
-0.0210188404,
0.2137235254,
-0.0134952562,
-0.5275074244,
0.069325693,
-0.0279790685,
0.0091239586,
-0.1933579594,
-0.6268093586,
-0.008878842,
0.1031662822,
0.5481146574,
-0.0142837623,
0.1519876719,
0.4092027545,
0.2554834485,
-0.1661252826,
0.264388442,
-0.0303025879,
0.0417523123,
0.2514637411,
0.1111457571,
-0.1434713006,
-0.0249576494,
-0.1038493514,
-0.3425201178,
-0.0681295097,
0.1332850307,
0.0181019008,
-0.2350534797,
0.0447583422,
-0.4381091893,
-0.1038777977,
0.2934702039,
0.2456232458,
0.2248571068,
0.233176142,
0.1868969798,
0.2919614613,
0.0202707723,
-0.202633217,
-0.1242303848,
0.1052501798,
-0.1044749692,
0.1108415127,
0.213198185,
0.1113539487,
0.2996941209,
0.1288214922,
-0.342015624,
-0.3404205739,
0.1220167726,
-0.2721668482,
0.0283040181,
0.2411937416,
0.0798236504,
-0.1810227334,
0.1847562492,
-0.2773362398,
-0.0575833693,
0.0720745176,
-0.3603481352,
-0.3543906212,
-0.1715968847,
0.1504697204,
0.0036926195,
0.1574963778,
-0.4513111115,
-0.0426096916,
0.2559913695,
-0.3391981721,
0.1138054132,
-0.1639286429,
-0.180462718,
-0.1676000804,
0.124031812,
0.0814562663,
-0.179603219,
-0.0717223287,
-0.2841578424,
-0.0085384212,
0.2089586556,
0.1984402984,
-0.1502620429,
0.5191944242,
-0.2032294571,
0.5580467582,
0.5535883904,
-0.1875400841,
-0.2054161727,
0.5373874307,
0.1265777498,
-0.0352941267,
0.1371377558,
-0.4054442942,
0.2556641698,
-0.1492993683,
0.0239111818,
0.4544432163,
0.1228782609,
-0.0366677307,
-0.0533075072,
0.0591707379,
0.0945710465,
-0.0533152148,
-0.4166417122,
-0.2638633847,
-0.1177739352,
0.3790182173,
0.2506230474,
-0.0887018591,
-0.0387291424,
0.1767891943,
0.0014022677,
0.0067824367,
-0.0009073094,
-0.084204711,
-0.5144615769,
0.0251904726,
-0.3117556274,
-0.0911140591,
-0.3747563958,
0.1402050108,
-0.1032431722,
0.3250383139,
-0.0609509051,
-0.2853426337,
0.2218149751,
0.0576821044,
-0.2218000591,
-0.3171214163,
-0.0351766348,
0.0971564054,
-0.0542956404,
0.36261186,
-0.0993168801,
0.4648388028,
0.0869146883,
-0.2966180146,
0.046638757,
0.1641554832,
0.0355113298,
-0.2589478493,
-0.180991143,
0.4646165371,
0.4503346086,
-0.1478161067,
-0.3648444712,
-0.3587810695,
0.006905457,
0.1058967039,
0.0639767274,
0.0289982334,
0.1435212344,
-0.3214045167,
0.0080421362,
0.3127244115,
-0.0123357605,
0.451916337,
0.0811968371,
-0.0262393542,
0.197717011,
-0.021795176,
0.1612604111,
-0.3399371505,
-0.1020608023,
-0.0194322541,
-0.0510121249,
0.1063094884,
0.0067980811,
0.066716522,
0.3158480525,
0.1552186459,
0.1025183946,
-0.0363591276,
-0.0600491166,
-0.1964570284,
0.1785122156,
0.0889555514,
0.4353642166,
0.0364247784,
-0.0735301822,
0.0425672755,
0.1256315708,
-0.0914050788,
0.3548736572,
0.0301692951,
0.4449595213,
0.3242438436,
0.2033969015,
-0.0742958784,
-0.3939169645,
-0.3832826912,
0.0276443362,
0.1182153076,
-0.2580773234,
0.2396309376,
-0.2732922137,
0.1311366856,
-0.0723115578,
-0.0315209776,
-0.1027372777,
-0.3991472721,
-0.2967225313,
0.3699501753,
-0.2913791537,
0.0173462965,
-0.127198562,
0.0827426463,
0.1297948658,
-0.1101023182,
-0.3194958568,
-0.1922740787,
-0.1088828146,
0.0139108598,
0.3567507863,
0.2639363706,
-0.1311803758,
0.2827695906,
-0.045186609,
-0.048970826,
-0.3095546365,
0.3275256157,
-0.2431074381,
-0.2856102586,
0.2199109942,
0.1815671623,
0.1619450748,
-0.6107792854,
0.185319066,
0.0088886693,
-0.2933405042,
0.2972556055,
0.223001346,
-0.0029807352,
-0.1525842249,
-0.1341145933,
-0.1398984492,
-0.5762495399,
0.4581656158,
0.1357263029,
0.2581650019,
-0.0825648978,
-0.0690139532,
0.0106097795,
-0.2777140737,
-0.0837052315,
0.0277053639,
0.1249314025,
0.1002967954,
-0.3619613647,
0.0575925224,
0.0255034044,
0.0281640515,
0.5084941387,
-0.1329765916,
-0.422197938,
0.44984743,
0.1196183637,
-0.0777380764,
-0.176227808,
-0.3853222728,
0.0696588904,
0.3960431814,
-0.0083335675,
-0.1137980521,
0.083860077,
0.2298502028,
-0.0317387208,
0.1729093343,
-0.1163408607,
0.5597537756,
-0.0800674707,
0.2650152743,
0.056766443,
0.0075936103,
0.2237433791,
0.0908615291,
-0.0370968096,
-0.2848673165,
-0.1019058973,
-0.1746465266,
-0.2492515892,
0.072104387,
0.1653674245,
-0.0519330055,
-0.2720277011,
-0.0721120238,
-0.1612119228,
-0.1755963564,
-0.3624182642,
0.3011763096,
-0.3059145212,
0.0879906714,
-0.3111081123,
-0.0841155648,
0.0438528284,
0.0580728985,
-0.0536612496,
-0.277751863,
0.0659914091,
-0.1160642356,
0.0500688255,
0.1661203802,
-0.2029539049,
0.1418601573,
-0.0379833505,
0.2989364266,
0.0233656764,
-0.1710151881,
-0.0642993897,
-0.1698567867,
0.1479855478,
0.0392505527,
0.2059400231,
0.2348196507,
-0.116416432,
-0.2022814453,
-0.0036496967,
-0.2349403501,
0.4400176406,
0.5935143828,
0.3597706258,
-0.3515000939,
-0.1708198786,
0.3545522988,
-0.1483628452,
-0.0955265537,
-0.1216840968,
0.0697268248,
-0.2168034464,
-0.2290595472,
0.0502099693,
0.2537952363,
0.3231960535,
0.1532001942,
-0.1422909498,
-0.2310125232,
-0.4477602541,
-0.0806005299,
0.1426685154,
0.1965823174,
-0.5051640868,
0.1015679985,
-0.1520385891,
0.2174490988,
0.4984900355,
0.7618781924,
0.285230577,
-0.2908281386,
0.2480543256,
-0.0173352137,
0.4242436588,
0.1194378957,
-0.1531619132,
0.1303173602,
-0.2092983723,
0.0522415414,
0.1517798454,
-0.2608375847,
0.3953027427,
-0.1686440259,
-0.2760578394,
-0.2417638153,
0.4991042614,
-0.0435558222,
-0.0124946386,
-0.0739122853,
-0.2426339239,
-0.3518016636,
0.6364928484,
0.088994965,
0.5242312551,
0.4776633382,
0.0604505241,
0.5830125213,
-0.1552411914,
0.2822135985,
-0.7763890624,
-0.0235232245,
-0.3103725314,
0.1324635744,
-0.0217108727,
-0.2295861542,
0.2328009456,
0.3454684019,
-0.244989574,
0.0065116957,
0.0266156644,
0.0639142543,
-0.0325965136,
0.3628291488,
-0.1441188157,
-0.2786217332,
-0.4063239694,
0.1032003015,
0.0568544008,
-0.3126541376,
0.0303324759,
-0.3509736955,
-0.0865489021,
-0.2357483208,
-0.2639683783,
0.4338125587,
-0.0716569722,
0.3886191547,
0.2239570469,
-0.0562002212,
0.3615512252,
-0.0991532877,
-0.1680012941,
-0.0753623769,
0.02919822,
0.1506629288,
-0.0272612087,
-0.274391979,
-0.0218238309,
0.1191584021,
0.1346259117,
-0.1488003135,
0.0384192467,
-0.0248725228,
-0.1394095421,
-0.3718872368,
0.2763093412,
0.2076301724,
-0.4314105511,
-0.3709970117,
-0.1943298578,
0.115633145,
-0.1496698707,
-0.0934758931,
0.1180914938,
-0.0015495103,
-0.2765601575,
-0.3599806726,
-0.0708586276,
-0.2900590599,
0.0538642257,
0.3544166088,
0.2216333747,
0.043161422,
0.6239026785,
0.2414466441,
-0.0021352023,
-0.3211767077,
0.0817212164,
0.3431162834,
-0.4442775846,
0.3989855051,
-0.2075764984,
-0.1646199673,
0.1220540181,
0.091997534,
0.2259002328,
0.1671587378,
-0.2459680885,
-0.5066787601,
-0.092028372,
0.3302327394,
-0.2621886432,
-0.0244904719,
-0.137858972,
0.220898807,
-0.3556536734,
0.2872294188,
-0.2434158176,
0.2291274369,
-0.0172620043,
-0.048538018,
-0.0581630021,
-0.1316033155,
0.1055704802,
0.0473978259,
0.1401482224,
0.1752714068,
0.0176035762,
-0.1623850167,
-0.1138045862,
0.1333758235,
0.1678049266,
0.1552290916,
-0.2986268997,
0.1163601205,
-0.1770163476,
0.0377225168,
0.1328800023,
-0.3939383626,
-0.0549998693,
0.137435779,
0.4441270232,
0.2775044143,
-0.0967663527,
0.1493072808,
-0.123972252,
0.4012765288,
-0.0929720849,
0.2098112404,
-0.1530314982,
0.0011429712,
0.0350743122,
0.1986971349,
-0.0442554913,
0.0952135324,
0.5684462786,
-0.1944070607,
-0.0607280619,
-0.508490026,
0.2955585718,
0.521907568,
-0.0011159815,
-0.0422698893,
-0.2038500309,
0.1671244949,
-0.1614582837,
-0.0393572152,
0.3196540773,
0.0164183751,
-0.0983285233,
0.2596960068,
0.0950075909,
-0.0378498882,
-0.2987874746,
0.1304664761,
0.1833291054,
0.0727176592,
0.2018178552,
0.6401523948,
-0.325771451,
0.0498722829,
0.3796495497,
0.1183044836,
0.6063776016,
0.2897161543,
0.1244285256,
0.0713097453,
0.4207837582,
0.0520858616,
0.0774491206,
-0.2015172541,
-0.4815186858,
0.0902982727,
0.291235894,
-0.142429024,
-0.1119096428,
0.3422732949,
0.144144699,
-0.1292783171,
-0.2035946846,
0.3980276883,
-0.1603070647,
-0.2040880322,
-0.2676360011,
-0.1337144375,
-0.6331003904,
-0.1815864444,
-0.0812521651,
-0.0243734121,
-0.0915034637,
0.1115612239,
0.0836269706,
-0.2546156943,
0.1198745072,
0.0494740605,
-0.0678949878,
-0.2596525848,
0.4679682553,
0.0913945585,
0.0372753367,
0.0409076624,
0.1487786621,
0.4960682392,
0.2502405643,
-0.263514936,
-0.2182384282,
-0.1987067908,
-0.147084713,
-0.017943494,
0.2585285902,
0.0494269654,
0.1489408761,
0.3585207462,
0.1141108572,
-0.1599736214,
0.0438395888,
0.1822641194,
0.0814701542,
0.1857504845,
0.6384842396,
-0.047794193,
-0.1213486642,
0.224306643,
-0.1319788992,
-0.25100559,
-0.6355652809,
0.2918817103,
0.0026243292,
0.1969861388,
0.0760706961,
0.0750237703,
0.1019890979,
0.6383273005,
0.058627557,
0.0899370536,
-0.1036299914,
-0.1408050358,
-0.0365859941,
-0.0300197639,
-0.373028487,
0.0104073808,
0.1738446355,
0.0966817811,
0.1679893732,
0.2986498773,
-0.0251648724,
0.2913758159,
-0.219756633,
-0.1188329607,
-0.4843565524,
0.0687587336,
0.2037039697,
0.092805922,
-0.1202128679,
-0.147621572,
0.0684484467,
0.2533196807,
0.0239623711,
0.090376392,
-0.2485010028,
0.1168628931,
-0.3223130703,
0.1750454009,
0.0504133254,
0.1140336767,
-0.0494047962,
-0.1896673739,
-0.1887530088,
-0.5733939409,
-0.1219350994,
0.468667686,
0.128410399,
0.2680284977,
-0.1597730517,
0.1188100278,
-0.2943055928,
0.1210636646,
-0.4128639102,
0.0388881415,
-0.3458371162,
0.2615271509,
-0.1557045877,
0.2354155481,
-0.1095619649,
-0.0678943396,
-0.2019299865,
0.0950916037,
-0.207477659,
-0.3111887276,
0.376058042,
0.1088027507,
-0.232853353,
0.4643299878,
0.1188009977,
0.1165843904,
0.2316484004,
-0.3983219862,
-0.0301202908,
0.25434497,
-0.1892001629,
-0.3222724497,
-0.0306953676,
0.1550979316,
-0.1384549439,
-0.0962279886,
0.1503657401,
0.0437867157,
-0.1663367003,
-0.1757201552,
0.0138161257
] |
https://github.com/huggingface/datasets/issues/355 | can't load SNLI dataset | I just added the processed files of `snli` on our google storage, so that when you do `load_dataset` it can download the processed files from there :)
We are thinking about having available those processed files for more datasets in the future, because sometimes files aren't available (like for `snli`), or the download speed is too slow, or sometimes the files take time to be processed. | `nlp` seems to load `snli` from some URL based on nlp.stanford.edu. This subdomain is frequently down -- including right now, when I'd like to load `snli` in a Colab notebook, but can't.
Is there a plan to move these datasets to huggingface servers for a more stable solution?
Btw, here's the stack trace:
```
File "/content/nlp/src/nlp/builder.py", line 432, in download_and_prepare
dl_manager=dl_manager, verify_infos=verify_infos, **download_and_prepare_kwargs
File "/content/nlp/src/nlp/builder.py", line 466, in _download_and_prepare
split_generators = self._split_generators(dl_manager, **split_generators_kwargs)
File "/content/nlp/src/nlp/datasets/snli/e417f6f2e16254938d977a17ed32f3998f5b23e4fcab0f6eb1d28784f23ea60d/snli.py", line 76, in _split_generators
dl_dir = dl_manager.download_and_extract(_DATA_URL)
File "/content/nlp/src/nlp/utils/download_manager.py", line 217, in download_and_extract
return self.extract(self.download(url_or_urls))
File "/content/nlp/src/nlp/utils/download_manager.py", line 156, in download
lambda url: cached_path(url, download_config=self._download_config,), url_or_urls,
File "/content/nlp/src/nlp/utils/py_utils.py", line 190, in map_nested
return function(data_struct)
File "/content/nlp/src/nlp/utils/download_manager.py", line 156, in <lambda>
lambda url: cached_path(url, download_config=self._download_config,), url_or_urls,
File "/content/nlp/src/nlp/utils/file_utils.py", line 198, in cached_path
local_files_only=download_config.local_files_only,
File "/content/nlp/src/nlp/utils/file_utils.py", line 356, in get_from_cache
raise ConnectionError("Couldn't reach {}".format(url))
ConnectionError: Couldn't reach https://nlp.stanford.edu/projects/snli/snli_1.0.zip
``` | 66 | can't load SNLI dataset
`nlp` seems to load `snli` from some URL based on nlp.stanford.edu. This subdomain is frequently down -- including right now, when I'd like to load `snli` in a Colab notebook, but can't.
Is there a plan to move these datasets to huggingface servers for a more stable solution?
Btw, here's the stack trace:
```
File "/content/nlp/src/nlp/builder.py", line 432, in download_and_prepare
dl_manager=dl_manager, verify_infos=verify_infos, **download_and_prepare_kwargs
File "/content/nlp/src/nlp/builder.py", line 466, in _download_and_prepare
split_generators = self._split_generators(dl_manager, **split_generators_kwargs)
File "/content/nlp/src/nlp/datasets/snli/e417f6f2e16254938d977a17ed32f3998f5b23e4fcab0f6eb1d28784f23ea60d/snli.py", line 76, in _split_generators
dl_dir = dl_manager.download_and_extract(_DATA_URL)
File "/content/nlp/src/nlp/utils/download_manager.py", line 217, in download_and_extract
return self.extract(self.download(url_or_urls))
File "/content/nlp/src/nlp/utils/download_manager.py", line 156, in download
lambda url: cached_path(url, download_config=self._download_config,), url_or_urls,
File "/content/nlp/src/nlp/utils/py_utils.py", line 190, in map_nested
return function(data_struct)
File "/content/nlp/src/nlp/utils/download_manager.py", line 156, in <lambda>
lambda url: cached_path(url, download_config=self._download_config,), url_or_urls,
File "/content/nlp/src/nlp/utils/file_utils.py", line 198, in cached_path
local_files_only=download_config.local_files_only,
File "/content/nlp/src/nlp/utils/file_utils.py", line 356, in get_from_cache
raise ConnectionError("Couldn't reach {}".format(url))
ConnectionError: Couldn't reach https://nlp.stanford.edu/projects/snli/snli_1.0.zip
```
I just added the processed files of `snli` on our google storage, so that when you do `load_dataset` it can download the processed files from there :)
We are thinking about having available those processed files for more datasets in the future, because sometimes files aren't available (like for `snli`), or the download speed is too slow, or sometimes the files take time to be processed. | [
0.1304478347,
-0.0483652204,
0.0597936958,
0.4217784107,
0.1687608063,
-0.2157384157,
0.2670188248,
0.0161335245,
-0.0244344622,
-0.1066376194,
-0.38732481,
-0.0008522011,
0.1453942209,
0.4104740024,
0.3283265233,
-0.08485201,
0.1194740087,
-0.0357170328,
0.0139390975,
-0.1574850082,
-0.3483363092,
0.3196727037,
-0.3757364154,
0.0969097093,
-0.0297649577,
0.0196625497,
-0.2143003196,
0.262280941,
-0.1611684561,
-0.1393924206,
0.4381101429,
0.164498806,
0.3262891173,
0.0996375382,
-0.000117559,
0.0295297056,
0.1056617796,
-0.08709497,
-0.5640885234,
0.0936509222,
-0.324842751,
-0.2369278669,
-0.041226998,
-0.0553939715,
-0.2117432803,
-0.0341282636,
0.0878442898,
-0.1338446736,
0.2620659471,
0.2927173972,
0.1312161386,
0.4570207298,
-0.521548748,
0.0837669373,
0.0226056743,
-0.1075959504,
-0.1660804152,
0.2811186314,
0.0594209805,
-0.2348735929,
0.1584095657,
0.1544827074,
-0.3054078817,
-0.391025722,
0.185843125,
0.0251872987,
-0.052470874,
-0.0781480521,
0.1044321358,
0.2801418602,
0.0698984563,
0.1527643353,
-0.2861178517,
-0.3133836985,
0.0973004699,
-0.0441063419,
0.1898169518,
0.1714378893,
0.1277592629,
0.3028594851,
-0.0501639955,
-0.2644032836,
-0.0007004887,
0.2948255241,
-0.1543983519,
0.6570665836,
-0.1417785436,
0.1334460676,
0.343195647,
-0.0286405273,
0.0854432881,
-0.0099409092,
0.0727776736,
0.1083642319,
-0.3882720768,
0.0951078236,
-0.1398564875,
0.3578725159,
0.0217694566,
0.3268410563,
0.2466691583,
-0.0482892059,
0.0075825453,
0.1901655346,
0.0771293715,
0.1908453852,
0.0269668344,
-0.2320130765,
0.5072239041,
0.2394815832,
0.2719383836,
0.0962707251,
-0.2195156217,
-0.2679288983,
-0.5367234349,
-0.3278502226,
0.0782074109,
-0.2093336582,
-0.1450172961,
-0.1577032954,
-0.0719770193,
0.1155304313,
0.1822851598,
0.2834398448,
-0.0627144277,
0.5076026917,
0.1111340523,
0.1902716756,
-0.2350014746,
-0.2010625601,
-0.1571722627,
0.0150191039,
-0.3410455585,
0.3710555434,
0.1181916595,
-0.3645628095,
0.1672879755,
-0.0471498519,
-0.146789521,
0.1659797281,
-0.1471504867,
0.301015079,
-0.0339036994,
0.1608226448,
-0.0406754427,
0.1551697552,
-0.0281717554,
-0.1401584893,
-0.1304617077,
-0.1663202345,
-0.1513632834,
-0.3299479485,
-0.085727863,
0.0310141109,
-0.3338062763,
-0.2495880723,
-0.4519360065,
0.0037014876,
0.0267701261,
-0.1050220653,
-0.0672886521,
-0.0789621025,
-0.2387856692,
-0.1213367134,
0.3064861894,
0.5235174894,
0.2027136832,
-0.3623386025,
-0.2355786413,
0.0376872681,
0.1617934555,
0.6364001632,
-0.1188414693,
-0.4001252055,
-0.1824987531,
0.1775020808,
0.2002280354,
-0.17948699,
-0.3256949782,
0.2752827108,
-0.3613670766,
-0.143998459,
0.2223536223,
0.1931888312,
-0.1639110744,
-0.0499503277,
0.1892512739,
0.6330446601,
0.1260435432,
-0.085613355,
-0.4507155418,
-0.364087522,
0.0047562663,
0.2229625285,
0.11327748,
-0.0371182673,
-0.1291669905,
0.2309274375,
0.2957028151,
-0.1445366442,
0.0546411127,
-0.0628841668,
0.2287711203,
0.2753061354,
-0.0180239379,
0.1458812058,
-0.3736087382,
0.1601791382,
-0.0156621113,
0.4346557558,
0.0774688348,
0.04048381,
-0.1789981723,
-0.0094731525,
-0.1319321245,
-0.1548577994,
-0.0453126244,
0.3207745552,
0.2329057157,
0.1456717402,
-0.2976047695,
0.2277683318,
-0.2371031344,
0.2496474832,
-0.5744194388,
0.5656716824,
0.117758736,
0.2276493609,
-0.0114133731,
0.3198731542,
0.0307087395,
-0.1356555521,
0.1645551324,
0.0994904488,
-0.3558298051,
0.2359799594,
0.4676787555,
0.0875539109,
0.2638020217,
-0.2606596649,
0.4226088524,
-0.0008729286,
-0.0566704944,
0.0165115595,
0.1377948672,
0.5027772188,
-0.121088326,
0.4202392995,
0.2470626384,
0.2384272218,
0.4183701873,
-0.0620678253,
-0.0541546978,
-0.0759215951,
0.20869039,
0.243683219,
0.4183529317,
0.4291173518,
-0.4238770604,
0.1012034565,
0.0573862903,
-0.2955074906,
0.037507955,
0.030592503,
-0.3085518777,
-0.2286908329,
0.3273907304,
0.4721654952,
0.2052295655,
0.0524366163,
-0.0489891581,
-0.0664651245,
-0.1507891864,
-0.5673172474,
0.3456599116,
-0.0326572731,
-0.0688785166,
-0.0018094163,
0.2520258427,
-0.0300829336,
-0.6293236613,
-0.030429516,
-0.0839675218,
-0.0329370573,
-0.2263216376,
0.197623089,
-0.359218359,
-0.6340146661,
-0.537874341,
0.0821896642,
-0.3298072517,
-0.5116076469,
0.0921255946,
0.1828791201,
0.0226492658,
-0.0634734109,
-0.0067481995,
0.6645889282,
-0.4301494956,
-0.0604207143,
-0.1470170021,
-0.5190834403,
-0.3770623207,
0.0634476393,
0.3587058187,
0.2007728368,
0.1039772406,
-0.2691945434,
-0.1576092243,
-0.3166332543,
-0.4544117451,
0.0933534577,
-0.0087031927,
0.0978787243,
-0.0349690281,
0.359762311,
0.1173562482,
-0.1316225082,
0.2207649499,
-0.1457942128,
0.1616683602,
0.3093686998,
-0.1411332041,
-0.0629480928,
0.0991664752,
-0.1920922995,
-0.3986884952,
-0.2858090103,
0.1582440138,
-0.470893532,
-0.0865266174,
0.4178462923,
-0.1209964156,
0.1282299459,
-0.0140492339,
-0.1653677821,
-0.0069052503,
-0.1221963093,
0.3401517272,
-0.0845438391,
-0.1688058674,
-0.0179715157,
0.1193799675,
0.2667139173,
-0.0978105217,
-0.58586514,
-0.0070255361,
-0.0959326997,
0.0875685811,
0.394523561,
-0.0622656196,
-0.0200652443,
-0.1766351163,
0.0149215236,
0.1136289239,
-0.1519598067,
-0.0434900746,
0.1634538025,
0.3132615685,
0.1599599421,
0.2865488529,
-0.0055424497,
0.4817101955,
0.1003506333,
-0.1031534374,
0.4657754898,
0.1412282586,
0.1298271865,
0.0549873263,
-0.4065543413,
0.1902963519,
0.0333690271,
-0.3419715166,
0.4272549748,
0.1819271743,
0.1205515936,
-0.3684726954,
-0.2022226751,
0.1697646976,
-0.2676970661,
0.0530468598,
0.2985782027,
0.0603095554,
0.0972269326,
-0.1055051908,
-0.0377931893,
-0.158501789,
-0.0520999692,
0.4101314545,
0.0977637321,
0.0250486918,
-0.2611634731,
-0.0920042545,
-0.5408343077,
0.315805912,
0.0527635738,
0.2028035223,
-0.0810776502,
-0.0301084518,
0.2543749809,
0.0679181963,
0.2663496733,
-0.1048047245,
0.1423965991,
0.0410781428,
-0.0973922759,
-0.4929030836,
0.0652063489,
0.1237915978,
-0.0717308,
0.4792834222,
0.3520561457,
-0.0394818857,
-0.2428179681,
0.1453230083,
0.2305195034,
-0.2435871512,
0.0669353008,
-0.1930082738,
-0.5233623981,
-0.1967769861,
-0.1565241218,
-0.1726042181,
0.0737293363,
-0.0955602676,
0.0560564101,
0.0631451383,
-0.1865678281,
0.1151103303,
0.3434086442,
0.0233110525,
0.2734470367,
-0.1275288463,
0.0795080885,
0.3538229764,
0.1347269416,
0.7317376733,
-0.1766162068,
-0.3419303894,
0.1424735188,
0.3091101944,
0.425991267,
0.5515432954,
0.0122105069,
-0.0027422532,
0.2469418943,
0.1691743135,
-0.0710202754,
0.0248557739,
0.1896539181,
-0.0271578263,
-0.2438093573,
-0.3387823701,
0.6757813692,
0.1753599048,
-0.0686709806,
-0.0196812972,
0.187979877,
-0.199747026,
0.3174859583,
0.1963850558,
1.1126022339,
-0.3865783215,
0.2527160645,
0.4754591286,
0.1300273836,
0.7861911058,
-0.0476482697,
0.0393131934,
-0.1757760197,
-0.0386878476,
-0.0158698298,
0.1026389748,
-0.2545429468,
0.0931007862,
0.1193126962,
0.3765716851,
0.146259442,
0.1244840026,
0.1772323549,
0.4552798271,
-0.0149790905,
-0.1715274751,
-0.9147064686,
0.0899304077,
-0.0443627164,
0.1974336803,
-0.1149677485,
-0.1363940984,
-0.1437603831,
0.2531205118,
-0.0640763342,
0.3095707893,
0.0926274136,
0.2168547064,
-0.309812665,
-0.0930678397,
-0.1108040065,
0.21110484,
0.4911544621,
-0.1463086009,
-0.2870131433,
0.0100247525,
-0.2619128227,
-0.1846573055,
-0.0040822029,
0.1146588773,
0.256847024,
0.0299449116,
-0.0322143883,
-0.0952627808,
0.2902308106,
-0.2916542292,
-0.3434289992,
-0.1409877688,
-0.3479576409,
-0.0593656786,
0.1842230409,
0.170466736,
0.0988733247,
-0.1592893898,
0.0438035131,
0.0201065335,
0.139715001,
-0.3530650735,
0.1558364928,
-0.2608717084,
-0.0902477279,
0.4224776626,
-0.1290143132,
0.2367502749,
0.2137132734,
0.2999237776,
0.041607745,
-0.14435637,
-0.204025805,
-0.1250774115,
-0.349347055,
0.2267750055,
0.0269725136,
-0.2679871321,
-0.1560673118,
0.4593497515,
0.2066570967,
-0.3265988827,
-0.1299116015,
-0.4308767915,
0.0066579878,
0.3610091507,
-0.0963616371,
0.0311282799,
0.3280963302,
0.0480951369,
-0.0867449492,
-0.1157346144,
-0.2161811739,
0.0298733339,
-0.2376492918,
-0.0058724396,
0.3596523106,
-0.1470707953,
0.196218878,
0.1221148074,
-0.0142044947,
-0.2798118889,
0.0494473949,
-0.0729347765,
-0.1754333228,
0.1707997173,
0.258507669,
-0.2010317445,
-0.168140918,
-0.2821449041,
0.0648472235,
-0.2887361944,
0.0232704654,
0.0604455918,
0.0497077554,
0.1475992948,
-0.1680618525,
-0.2170599848,
-0.0324634761,
0.4655559659,
0.0711520165,
-0.0806487575,
0.2655052841,
0.1415582597,
0.2142723948,
-0.0884355903,
-0.1847551465,
0.0475328341,
0.045064263,
0.0056978595,
0.2424158901,
-0.2242480665,
-0.1804599762,
0.2852202952,
0.0655077249,
0.6470023394,
0.2247959226,
0.0137373507,
-0.0031781867,
0.0066327672,
-0.1387800723,
-0.0193505976,
0.3327870965,
0.069987312,
-0.2775741816,
0.2848499417,
0.3158893585,
-0.2858684361,
0.092802465,
-0.0361050814,
0.2029640377,
0.1325013191,
0.2233761996,
0.2039149851,
0.2522878051,
0.1598997116,
0.0533147752,
-0.0269814506,
0.3574564457,
-0.0929630995,
-0.2084434927,
0.2846871912,
-0.4164143205,
0.3620054722,
0.181437403,
-0.0925892517,
-0.1739552617,
0.2266274989,
-0.1083588749,
-0.023672469,
0.0493291393,
0.8438773155,
-0.3339233398,
-0.2409929931,
-0.3582422733,
0.6556246877,
-0.2454178035,
-0.2910165489,
-0.5016086698,
-0.1364714354,
-0.1797758639,
0.2041596621,
-0.3215113282,
-0.2917788327,
0.2884030044,
0.2090783864,
-0.0305054784,
-0.6123156548,
-0.1765325069,
0.3434596658,
0.1124516353,
-0.1138050333,
0.3136470616,
0.0580067001,
-0.2041257769,
0.1188611686,
0.0968803838,
0.3500441313,
0.2010903955,
-0.0146967787,
-0.047713194,
0.1254768521,
-0.0012669563,
-0.2866493464,
0.1265266538,
-0.0653261691,
0.2059824914,
0.2354420573,
0.0774263442,
-0.0531416684,
0.0560037903,
-0.0051431144,
0.1339711547,
-0.2393789589,
0.2333392203,
0.0041834563,
-0.0370770618,
-0.3344922066,
0.0534911826,
-0.3265330195,
0.1424583346,
0.1018856615,
-0.2222623676,
0.0846442431,
-0.1736568958,
0.0138783865,
0.1851197332,
0.7972928286,
0.3956442773,
0.002844431,
-0.2536243796,
-0.3362242579,
-0.7480278611,
-0.0303406939,
-0.0455267653,
0.0314100906,
-0.0989699364,
0.0264583156,
0.0147552546,
0.0864960998,
-0.5139566064,
0.3119205832,
0.0454296172,
-0.1438584328,
-0.2488621026,
-0.0460014567,
0.0006250609,
-0.1093421578,
-0.0308333933,
-0.1851890832,
0.1970300376,
-0.0995513499,
-0.1593065858,
0.0405900404,
0.1372341514,
-0.1498678625,
-0.1960589588,
0.3116007149,
0.2188538164,
0.2902204096,
0.0941515118,
-0.1532393396,
-0.3999745548,
-0.3762970269,
-0.2154212445,
-0.0351466201,
-0.1620053053,
-0.0105527043,
-0.0265233126,
0.3910282254,
-0.269816488,
0.1867967099,
0.1291772723,
0.1626282632,
-0.2214718461,
-0.1415458918,
-0.2822155654,
0.0769394189,
0.1828293502,
0.3219568133,
-0.1019817367,
-0.1648566723,
-0.0388853773,
-0.2984730005,
0.3104023933,
-0.6674919724,
-0.0051826686,
0.2318100184,
0.1003698856,
0.1905431598,
-0.0044608414,
-0.280320704,
0.0216778964,
-0.0402310044,
0.0536144599,
-0.0572233051,
0.2559002638,
0.2245050669,
-0.2706511021,
-0.2282408625,
-0.2176369727,
0.2312410176,
-0.3037877977,
0.1339835227,
-0.3156904876
] |
https://github.com/huggingface/datasets/issues/353 | [Dataset requests] New datasets for Text Classification | - `nlp` has MR! It's called `rotten_tomatoes`
- SST is part of GLUE, or is that just SST-2?
- `nlp` also has `ag_news`, a popular news classification dataset
I'd also like to see:
- the Yahoo Answers topic classification dataset
- the Kaggle Fake News classification dataset | We are missing a few datasets for Text Classification which is an important field.
Namely, it would be really nice to add:
- TREC-6 dataset (see here for instance: https://pytorchnlp.readthedocs.io/en/latest/source/torchnlp.datasets.html#torchnlp.datasets.trec_dataset) **[done]**
- Yelp-5
- Movie review (Movie Review (MR) dataset [156]) **[done (same as rotten_tomatoes)]**
- SST (Stanford Sentiment Treebank) **[include in glue]**
- Multi-Perspective Question Answering (MPQA) dataset **[require authentication (indeed manual download)]**
- Amazon. This is a popular corpus of product reviews collected from the Amazon website [159]. It contains labels for both binary classification and multi-class (5-class) classification
- 20 Newsgroups. The 20 Newsgroups dataset **[done]**
- Sogou News dataset **[done]**
- Reuters news. The Reuters-21578 dataset [165] **[done]**
- DBpedia. The DBpedia dataset [170]
- Ohsumed. The Ohsumed collection [171] is a subset of the MEDLINE database
- EUR-Lex. The EUR-Lex dataset
- WOS. The Web Of Science (WOS) dataset **[done]**
- PubMed. PubMed [173]
- TREC-QA. TREC-QA
- Quora. The Quora dataset [180]
All these datasets are cited in https://arxiv.org/abs/2004.03705 | 47 | [Dataset requests] New datasets for Text Classification
We are missing a few datasets for Text Classification which is an important field.
Namely, it would be really nice to add:
- TREC-6 dataset (see here for instance: https://pytorchnlp.readthedocs.io/en/latest/source/torchnlp.datasets.html#torchnlp.datasets.trec_dataset) **[done]**
- Yelp-5
- Movie review (Movie Review (MR) dataset [156]) **[done (same as rotten_tomatoes)]**
- SST (Stanford Sentiment Treebank) **[include in glue]**
- Multi-Perspective Question Answering (MPQA) dataset **[require authentication (indeed manual download)]**
- Amazon. This is a popular corpus of product reviews collected from the Amazon website [159]. It contains labels for both binary classification and multi-class (5-class) classification
- 20 Newsgroups. The 20 Newsgroups dataset **[done]**
- Sogou News dataset **[done]**
- Reuters news. The Reuters-21578 dataset [165] **[done]**
- DBpedia. The DBpedia dataset [170]
- Ohsumed. The Ohsumed collection [171] is a subset of the MEDLINE database
- EUR-Lex. The EUR-Lex dataset
- WOS. The Web Of Science (WOS) dataset **[done]**
- PubMed. PubMed [173]
- TREC-QA. TREC-QA
- Quora. The Quora dataset [180]
All these datasets are cited in https://arxiv.org/abs/2004.03705
- `nlp` has MR! It's called `rotten_tomatoes`
- SST is part of GLUE, or is that just SST-2?
- `nlp` also has `ag_news`, a popular news classification dataset
I'd also like to see:
- the Yahoo Answers topic classification dataset
- the Kaggle Fake News classification dataset | [
0.0527628064,
0.1770243645,
-0.1492283046,
0.2923184335,
0.1770987362,
0.2543236613,
0.2225596905,
0.1188268363,
-0.1443083435,
-0.1214149743,
-0.1536752284,
0.0564631708,
-0.1662920713,
0.1704210937,
0.0837511718,
-0.2406845987,
0.0514727756,
-0.0587841868,
-0.0951606929,
-0.2292533517,
-0.1327493191,
0.2470686883,
-0.1144926473,
-0.2490833402,
-0.3917070627,
-0.0300810654,
-0.1971090436,
0.0825113952,
-0.2330876142,
-0.5466544032,
0.1298061609,
0.1312665492,
0.2001407146,
0.3561388552,
-0.0001037212,
-0.2407377064,
0.0268518683,
-0.0144626945,
-0.171426326,
-0.1655450761,
-0.2061449736,
-0.5361247063,
-0.0227512214,
-0.0801115334,
-0.1275689602,
0.0410607569,
0.0543384403,
-0.2447411567,
-0.0130653754,
0.3233344257,
0.2447052151,
-0.0661868975,
-0.0584241301,
-0.1412222385,
0.2988785803,
0.55123353,
-0.3106319308,
-0.0630630255,
0.5326184034,
0.1365835816,
-0.0013362207,
0.3090867698,
-0.2009136975,
-0.0890440941,
0.1607447267,
0.2195888311,
-0.2908791602,
-0.3853917718,
0.0384693183,
0.3302031755,
0.7269297242,
-0.2991446555,
-0.4356440604,
-0.2929209471,
0.1790418774,
-0.209169358,
-0.176298365,
0.2850813568,
-0.0127935745,
0.1451200545,
-0.147439152,
-0.2335705608,
-0.2125960141,
0.2384116054,
0.299706161,
0.0945865959,
0.0134552568,
-0.1983969659,
-0.0950291753,
0.1280199587,
0.3503780961,
-0.3807171583,
0.2048947215,
-0.0010360628,
-0.1995959133,
-0.2089159489,
-0.0466030948,
0.0258894097,
-0.065074794,
0.0100434925,
-0.2320325226,
0.085395813,
-0.1917663664,
-0.082085222,
0.0305849127,
-0.1031991467,
0.2131821811,
0.3429120183,
0.1036157459,
-0.2787934542,
0.1565494239,
0.0335343294,
-0.1759022176,
0.2272802591,
-0.0201549344,
0.0545119233,
-0.1334670186,
-0.2294959873,
0.0464146808,
-0.1172539294,
0.0202060044,
-0.1066797227,
-0.1993537247,
-0.0666342825,
-0.0499969795,
0.1499419659,
-0.19128263,
0.2406199574,
0.0035727769,
-0.4072592258,
-0.1258369684,
-0.0520174876,
-0.1064223945,
0.1718491912,
0.6023262143,
-0.1670334488,
0.1791896671,
-0.1379180402,
-0.168137908,
0.1534095407,
-0.0766610503,
0.0061889142,
0.0636816099,
0.1282594055,
-0.1471480727,
0.1247722879,
0.155098632,
0.1334679723,
-0.203255862,
0.2613936663,
-0.0514775701,
-0.2116402686,
-0.242607832,
0.2461384684,
-0.0127630122,
-0.5387883186,
-0.1642750651,
0.6117176414,
-0.0340468809,
-0.1151471883,
0.1698568016,
-0.0192076825,
-0.0849991813,
-0.1658168435,
-0.0492004603,
0.4430482686,
-0.4810699224,
-0.2499635667,
-0.3836504221,
0.135889858,
0.1784738749,
0.1647047848,
-0.1955977827,
0.0349019654,
0.0822532922,
0.0167149752,
0.2063206285,
-0.0245060921,
-0.2242672741,
-0.0916347653,
0.0819615424,
-0.1140099019,
0.1038505435,
0.3170541823,
0.113360472,
-0.0756834745,
-0.1596258581,
0.1264418364,
-0.2982210815,
-0.0488293394,
-0.1245086491,
-0.0446395054,
0.2099894285,
0.4207591414,
0.4951864481,
-0.085214965,
0.0735038519,
-0.2081890106,
0.0925954878,
0.0692981929,
0.2265699208,
0.0930778384,
0.1255871356,
0.2216483504,
0.0558075868,
-0.3216333985,
-0.2000430226,
0.0503138304,
0.3117820024,
0.3458416164,
0.0033859834,
-0.1304204315,
-0.1460154355,
-0.1206994653,
0.0435250476,
-0.0300354473,
0.1596376002,
-0.1221903712,
0.1188417971,
0.1875603795,
-0.3006014228,
0.2069494724,
-0.321477443,
0.3590740561,
0.1875852346,
0.3283415437,
-0.0352601036,
-0.0059969146,
0.1668465137,
0.3152218461,
-0.0311226845,
0.0017884597,
0.0115213394,
-0.0421963297,
-0.1521205604,
-0.0378041118,
0.352979809,
0.3763911128,
0.3767841756,
-0.5228681564,
0.2861687541,
-0.0594802685,
0.0689433664,
-0.1887092292,
-0.0736835152,
0.3114968538,
-0.0839343518,
0.0817982927,
-0.0040461048,
0.051479131,
-0.025648009,
-0.0040908083,
0.0368914604,
0.111127235,
0.2754784822,
-0.1613613069,
0.1710828245,
0.0034512803,
-0.126317516,
0.2079488337,
0.2214200795,
-0.0540878102,
0.1790336967,
0.2693894506,
-0.4363264441,
-0.0446641669,
-0.0360019952,
0.1678315848,
0.3374678791,
0.4586303532,
-0.0075570866,
-0.0921161994,
0.100088723,
-0.3318986893,
0.0539446212,
0.3946703076,
0.0238215402,
0.0016801804,
0.2778208852,
0.2433682233,
-0.2611654103,
-0.1199082285,
0.1832583994,
-0.0790405944,
0.041570276,
-0.0527033582,
-0.0734098256,
-0.3831562996,
-0.0118778944,
-0.0608395785,
-0.0911126137,
-0.2869117558,
0.2335094362,
-0.281265527,
0.1054871902,
0.0937797576,
-0.3011013865,
0.4749560356,
-0.2583186328,
0.0935938582,
-0.0809929818,
-0.2227910012,
-0.2262818515,
0.2644130588,
0.0643131211,
-0.0026944503,
0.4211890399,
-0.0927984715,
0.3203361928,
-0.2678385377,
-0.4691827893,
-0.0161219258,
-0.2101108879,
-0.0101743806,
-0.150981769,
-0.1415693164,
0.0148123205,
-0.131461978,
0.0011892766,
-0.1384778619,
-0.1376017332,
-0.0223239027,
-0.2006471455,
-0.191731602,
-0.0129955113,
-0.6513698697,
-0.5205703378,
-0.0659395233,
0.0964547098,
0.0098317415,
-0.0208403654,
0.3068899512,
-0.1584121138,
-0.094894439,
-0.1482902914,
0.0830029175,
-0.072687611,
-0.3189512789,
0.1442460716,
-0.145678401,
-0.196796,
-0.0786525682,
-0.0412982702,
-0.107043691,
-0.0746236667,
-0.5309436321,
0.1441848576,
-0.2685202956,
0.1819952875,
0.1227803826,
-0.1149690375,
0.4368272126,
0.2920848131,
-0.1208612174,
0.0626670644,
-0.170107156,
-0.1198518723,
0.055591438,
0.1654337347,
-0.2778555453,
0.1061426252,
0.2385754734,
0.5572983027,
0.0877769887,
-0.1116386876,
0.090394184,
0.2851229012,
0.3834932148,
0.0125234872,
-0.4623266757,
0.2260669768,
-0.2044539154,
0.1779326499,
0.2970432639,
0.2645267844,
-0.3142874241,
-0.2004948556,
0.1137504429,
-0.2948043942,
-0.0459503718,
0.1783656925,
-0.1388090849,
0.2812417448,
0.0573978275,
-0.1314415038,
-0.2332428396,
-0.4535067677,
-0.1118652225,
0.3031826615,
0.2348780632,
-0.1552289575,
-0.646165669,
0.0382985808,
-0.4787887633,
0.0893905535,
0.1747154295,
-0.078137055,
-0.1947270334,
0.2404090464,
-0.1146249771,
0.4444721341,
0.0193655416,
-0.4512851834,
-0.3338705599,
0.2409871817,
0.0585488975,
-0.0943009928,
0.1333487034,
-0.3841446638,
-0.0655912608,
0.2734684348,
-0.0731277019,
0.0967718661,
-0.0122113191,
0.4771538675,
-0.0117731206,
-0.0001745746,
-0.3162121475,
0.3753697872,
0.1242553815,
-0.1765608937,
-0.2105775177,
0.075004749,
0.0364505127,
-0.2372230589,
-0.0196511,
0.1807060242,
0.0154318735,
0.3284830749,
-0.2906270921,
-0.2960875034,
0.2343973368,
0.2130176276,
0.0700454116,
-0.0419208519,
0.2807825208,
0.5084699988,
-0.2091923207,
-0.5425738692,
-0.016092293,
-0.1136774272,
0.5346785188,
0.2124388516,
0.2784397602,
0.234202683,
-0.1407706439,
-0.1889598668,
-0.1410024166,
0.2169254273,
0.1151646078,
-0.0961547568,
-0.4878029227,
-0.319453299,
0.3196595907,
-0.0789462253,
-0.1006026417,
-0.0245126598,
0.237921834,
-0.1844979674,
0.1345094144,
-0.1880148947,
0.8308113813,
-0.0646936297,
0.1224526539,
-0.3462644815,
0.0034013614,
0.5688191056,
-0.2504187822,
0.1834023297,
-0.0013321564,
-0.2832995355,
-0.0686311722,
-0.0549052283,
0.0099680237,
0.4351370931,
0.097328797,
0.2558714747,
0.189792484,
0.2015054524,
0.0624805763,
0.1596847475,
0.0927689746,
-0.3814063668,
0.0425375402,
0.2434985638,
0.0195029695,
0.3009161651,
-0.0174937509,
0.088347435,
-0.2239393592,
0.1797341704,
-0.737860024,
-0.1611164212,
-0.1183720455,
0.0995338261,
-0.0112908771,
-0.3718677163,
0.4561331868,
0.3514235914,
0.568269372,
0.064914465,
-0.2017301023,
0.0309521332,
-0.2211617082,
-0.1586837471,
0.1518946886,
-0.1231954098,
0.241723001,
0.0153144747,
-0.2222802341,
0.1778394431,
0.0042783692,
-0.2087233663,
-0.4498825967,
-0.3305296302,
0.2800060809,
-0.3033124804,
0.3471176624,
0.1718562841,
0.062668249,
-0.3116728961,
0.1967437714,
0.2942277193,
0.3189515471,
0.1205538735,
0.2112025023,
-0.0315544978,
-0.4240738451,
0.173775062,
0.2421080321,
-0.2807992399,
0.412732929,
0.4719041884,
-0.1487906128,
-0.2214157432,
0.2455910891,
0.1872136593,
-0.2705712914,
-0.0741960704,
-0.148835212,
-0.0331290215,
0.1928811073,
0.3041180372,
0.3911816478,
-0.2794888616,
0.0188928843,
-0.2333872169,
-0.0565881729,
0.1764000803,
-0.1373323351,
0.0951538533,
-0.2373583615,
0.1373424381,
0.0938089192,
0.2622425258,
-0.3498085141,
0.1299265027,
0.1491360813,
0.0551437251,
0.2374935448,
0.0251934193,
0.1273244172,
-0.2558549643,
0.034981057,
0.0103956107,
0.0395615995,
-0.2490552366,
0.0759654939,
0.1310136467,
0.0141822193,
0.0220442526,
-0.0599600635,
0.1174068004,
-0.1217669398,
-0.0285258088,
-0.1022375673,
0.1260848492,
0.0579904467,
0.5187696218,
-0.1874865144,
-0.0399884582,
0.1310339868,
0.0602214001,
-0.2783370316,
0.4006111622,
0.3284611106,
0.1202046126,
0.476023823,
0.0949271023,
-0.2307255715,
0.1763987839,
0.0927719921,
-0.0878394097,
0.6063156128,
-0.2409614772,
0.2653622925,
0.4911391437,
0.0821073279,
-0.2604221702,
-0.0842224807,
0.1215369105,
-0.0134149771,
0.2712398767,
-0.3505735695,
-0.2042549253,
0.0193937011,
0.2798810601,
0.0451726317,
0.195576176,
0.2910688519,
0.0367103964,
0.2092919201,
0.1125173569,
0.4954879284,
-0.0687464774,
0.3932676315,
-0.0535321832,
0.1863024831,
-0.0916725248,
0.2409769297,
0.1088314652,
-0.0160723925,
0.2082692683,
0.0718137771,
0.4569135904,
-0.1139340401,
0.1205672845,
0.3959605694,
-0.1470080167,
0.3860010803,
0.2909432054,
-0.1010907143,
0.1179049462,
-0.0907839984,
0.2581422031,
-0.2204213887,
0.00175092,
-0.1554177403,
-0.0773873776,
-0.0504074097,
0.0852243155,
0.1088255644,
-0.3221071959,
0.0587653294,
-0.1575819403,
-0.2597852051,
-0.3441851735,
0.2395994514,
-0.1194174215,
-0.2106214464,
-0.6339172721,
0.1954018772,
0.1309529245,
0.3912185729,
-0.1357331723,
-0.0747173727,
0.0918055475,
-0.2612677813,
0.2775427699,
0.5547751188,
0.1446852386,
-0.1552883834,
0.0057851449,
0.0479366705,
-0.2726133168,
-0.2029708773,
0.1911281347,
0.2833505869,
0.3340111375,
0.1013446078,
-0.0617237426,
0.1865951121,
-0.0430021472,
0.0830177516,
0.0884815305,
0.0046225339,
-0.3006362617,
0.1651792377,
0.0795321018,
-0.2540397644,
-0.1077443659,
-0.0441868007,
-0.2126710713,
-0.2024779618,
0.5217412114,
-0.1249364763,
0.0119944066,
-0.1216104925,
0.1276409626,
-0.1510778368,
0.1781787425,
0.3320966363,
-0.2001382113,
-0.2637597024,
-0.1479518861,
-0.0320386738,
-0.1874037087,
0.1445920616,
0.1973627508,
-0.2097580284,
0.0329249427,
0.2578450441,
0.2460879982,
-0.3451772034,
-0.0985841304,
-0.0980996788,
-0.0235281028,
-0.5865003467,
-0.134186253,
0.1548184752,
0.2323825061,
-0.0127065219,
0.1974987388,
-0.0983117074,
-0.0172119141,
0.0223833695,
-0.3528051376,
0.1500775218,
0.2342924476,
0.1128521189,
0.1448770165,
0.108250238,
0.4487559795,
0.0312773883,
-0.1258469373,
-0.09535449,
-0.4393796325,
-0.0311773643,
0.3536724746,
-0.0399167761,
0.3450667262,
-0.3038221896,
-0.2439207733,
0.3059533536,
0.056005884,
0.0972971767,
-0.1216287091,
-0.52627033,
0.0174825191,
-0.0159532055,
-0.0718268901,
0.2164772302,
-0.02366025,
0.0369965434,
-0.1227626204,
-0.0397367626,
-0.3579164147,
0.0555738285,
-0.0923437327,
0.1185163856,
-0.2445088178,
0.0620124862,
0.354439795,
0.266433537,
-0.6245586872,
-0.0098275095,
0.5481738448,
-0.1670347303,
0.031550467,
0.4038208127,
0.114975594,
-0.0515666083,
-0.0985537916,
0.3903352618,
-0.2673247457,
-0.2338879555,
-0.1389212161,
-0.1567140818
] |
https://github.com/huggingface/datasets/issues/353 | [Dataset requests] New datasets for Text Classification | Thanks @jxmorris12 for pointing this out.
In glue we only have SST-2 maybe we can add separately SST-1.
| We are missing a few datasets for Text Classification which is an important field.
Namely, it would be really nice to add:
- TREC-6 dataset (see here for instance: https://pytorchnlp.readthedocs.io/en/latest/source/torchnlp.datasets.html#torchnlp.datasets.trec_dataset) **[done]**
- Yelp-5
- Movie review (Movie Review (MR) dataset [156]) **[done (same as rotten_tomatoes)]**
- SST (Stanford Sentiment Treebank) **[include in glue]**
- Multi-Perspective Question Answering (MPQA) dataset **[require authentication (indeed manual download)]**
- Amazon. This is a popular corpus of product reviews collected from the Amazon website [159]. It contains labels for both binary classification and multi-class (5-class) classification
- 20 Newsgroups. The 20 Newsgroups dataset **[done]**
- Sogou News dataset **[done]**
- Reuters news. The Reuters-21578 dataset [165] **[done]**
- DBpedia. The DBpedia dataset [170]
- Ohsumed. The Ohsumed collection [171] is a subset of the MEDLINE database
- EUR-Lex. The EUR-Lex dataset
- WOS. The Web Of Science (WOS) dataset **[done]**
- PubMed. PubMed [173]
- TREC-QA. TREC-QA
- Quora. The Quora dataset [180]
All these datasets are cited in https://arxiv.org/abs/2004.03705 | 18 | [Dataset requests] New datasets for Text Classification
We are missing a few datasets for Text Classification which is an important field.
Namely, it would be really nice to add:
- TREC-6 dataset (see here for instance: https://pytorchnlp.readthedocs.io/en/latest/source/torchnlp.datasets.html#torchnlp.datasets.trec_dataset) **[done]**
- Yelp-5
- Movie review (Movie Review (MR) dataset [156]) **[done (same as rotten_tomatoes)]**
- SST (Stanford Sentiment Treebank) **[include in glue]**
- Multi-Perspective Question Answering (MPQA) dataset **[require authentication (indeed manual download)]**
- Amazon. This is a popular corpus of product reviews collected from the Amazon website [159]. It contains labels for both binary classification and multi-class (5-class) classification
- 20 Newsgroups. The 20 Newsgroups dataset **[done]**
- Sogou News dataset **[done]**
- Reuters news. The Reuters-21578 dataset [165] **[done]**
- DBpedia. The DBpedia dataset [170]
- Ohsumed. The Ohsumed collection [171] is a subset of the MEDLINE database
- EUR-Lex. The EUR-Lex dataset
- WOS. The Web Of Science (WOS) dataset **[done]**
- PubMed. PubMed [173]
- TREC-QA. TREC-QA
- Quora. The Quora dataset [180]
All these datasets are cited in https://arxiv.org/abs/2004.03705
Thanks @jxmorris12 for pointing this out.
In glue we only have SST-2 maybe we can add separately SST-1.
| [
0.0815412402,
0.0239063054,
-0.1260787845,
0.253736943,
0.2022431642,
0.1909447312,
0.2313452661,
0.1288254708,
-0.0196942613,
-0.0524677858,
-0.2371734381,
0.0281864218,
-0.0793610662,
0.228471607,
0.1158256233,
-0.334722966,
0.0327520408,
-0.0278217234,
-0.2127433717,
-0.1855585575,
-0.1148792058,
0.3360117078,
-0.0453988388,
-0.2311265171,
-0.442538321,
-0.0575628355,
-0.2063389421,
0.0668694749,
-0.2878912985,
-0.4556582868,
0.0428927541,
0.1286987215,
0.2520890236,
0.249238953,
-0.0001037809,
-0.2161204219,
0.0536000878,
-0.0913086236,
-0.0742767379,
-0.0727212429,
-0.1487202346,
-0.4849986732,
-0.0241379738,
-0.1006158814,
-0.2236713171,
0.2096852213,
0.0609343499,
-0.2331153154,
0.037548624,
0.2961032689,
0.2434537411,
-0.0123441778,
-0.0020558536,
-0.1590740532,
0.4260739386,
0.3211228549,
-0.3257284462,
0.0370840728,
0.6237726808,
0.066368781,
-0.0005359724,
0.3617646396,
-0.2438281029,
-0.0247032698,
0.175616309,
0.2001560926,
-0.2193981409,
-0.4464470446,
0.0715355352,
0.3973947465,
0.6543511152,
-0.2877072394,
-0.3910399675,
-0.3127829432,
0.1366221756,
-0.0791727826,
-0.0994485915,
0.1954575628,
0.0398402885,
0.2265114486,
-0.0492472574,
-0.2457196265,
-0.1470467448,
0.2701328397,
0.3945717812,
0.0568463318,
-0.0370777771,
-0.1775100827,
-0.0003603781,
0.179885149,
0.1766577363,
-0.2836074829,
0.1341857761,
-0.0177957974,
-0.2663387954,
-0.1773579717,
-0.0541214161,
-0.0193152688,
-0.0840963721,
0.0844805315,
-0.2451306134,
0.1030393094,
-0.0586197749,
-0.0488161184,
-0.0176191665,
-0.0382053331,
0.2564456165,
0.3307933807,
0.0510781519,
-0.3528573215,
0.1201031059,
0.0050097313,
-0.1631533802,
0.135076642,
-0.065948844,
0.041873917,
-0.2124111801,
-0.1809256971,
0.038179554,
-0.1414324492,
-0.0032429323,
-0.0555859916,
-0.2538172603,
-0.0165538415,
0.0661201775,
0.1161913872,
-0.1412743926,
0.2230421305,
-0.019348681,
-0.4236037433,
-0.1252015978,
0.0979866534,
-0.160269931,
0.1528870463,
0.5480712652,
-0.2299818397,
0.1155240685,
-0.218568787,
-0.2966977656,
0.1594122946,
-0.1556195468,
-0.0610740185,
0.0852684081,
0.2059716284,
-0.1045297459,
0.1281835735,
0.1077970862,
0.0212760419,
-0.204640761,
0.155788064,
-0.03856216,
-0.3110812902,
-0.3726725876,
0.2138153166,
-0.1005916148,
-0.4864226282,
-0.1874149293,
0.5722740889,
-0.0236890577,
-0.0310171768,
0.2205073237,
-0.0103250649,
-0.1518808454,
-0.1902372837,
0.0116471052,
0.4308131933,
-0.4707915187,
-0.230744049,
-0.3453295827,
0.023516532,
0.0336856842,
0.2410042286,
-0.0922272354,
0.0245776903,
0.014025569,
0.1602309644,
0.2162275612,
-0.0687094182,
-0.2146435976,
-0.0753490701,
0.0846204162,
-0.1966257095,
0.1634407192,
0.3142950833,
0.2429362535,
0.0132587589,
-0.1556190252,
0.172123313,
-0.2283508331,
-0.033617422,
-0.1966412216,
-0.136406824,
0.1465033293,
0.3985641301,
0.4805238247,
-0.130569905,
0.0689396188,
-0.3062629104,
-0.0355405584,
0.1058143675,
0.2744995952,
0.1641730368,
0.2053439319,
0.2714705169,
0.1024117172,
-0.4187617898,
-0.2145661116,
0.0550114438,
0.3147023022,
0.4139360487,
0.0726571158,
-0.1219886392,
-0.1317265481,
-0.191378504,
0.0834057778,
-0.0476077944,
0.1372490823,
-0.1788128614,
0.1703272462,
0.1093634516,
-0.2658057213,
0.2994685471,
-0.2152720988,
0.4264624715,
0.2125780731,
0.375965327,
-0.0918562487,
-0.1134921163,
0.1790642738,
0.346680671,
-0.0683497563,
-0.0561636761,
0.0313503258,
0.1406042874,
-0.2134629786,
-0.0584961958,
0.2669737339,
0.3660675287,
0.3261840045,
-0.5137337446,
0.1703121215,
-0.0794895664,
0.071654126,
-0.1760178804,
0.0449972451,
0.1891444027,
0.0367132686,
0.1446839273,
0.005855903,
0.1148122847,
-0.1064945012,
-0.0820763186,
-0.0027087629,
0.1102704927,
0.3042794764,
-0.2344646454,
0.3341110945,
0.0095605627,
-0.077527374,
0.2798496187,
0.1818882823,
-0.0192012303,
0.2518852651,
0.2147261202,
-0.5472896099,
-0.0057124272,
0.0321519375,
0.2584819198,
0.3475610018,
0.5090732574,
-0.0490460321,
-0.1478248537,
0.0817445368,
-0.310418576,
0.076117456,
0.3464796245,
-0.031837061,
-0.0022072718,
0.2686339021,
0.1926964819,
-0.2491728067,
0.0267812461,
0.0885099396,
-0.0470764786,
-0.0210078284,
-0.1603132486,
-0.0493501239,
-0.4877554774,
0.0125796311,
0.0661214143,
-0.105272226,
-0.2437973022,
0.2872220278,
-0.3143339157,
0.02838438,
0.0965956002,
-0.1657502055,
0.4271810055,
-0.2522675395,
0.0750088543,
-0.0557898395,
-0.1706415415,
-0.2362038791,
0.2360297441,
0.0335208625,
0.0894509554,
0.496158272,
-0.0915070623,
0.3037362993,
-0.2775153518,
-0.5079554319,
0.0609963611,
-0.2328942269,
-0.0041524228,
-0.0171501487,
-0.159496218,
0.1356654018,
-0.2140609473,
0.0266100913,
-0.2283363938,
-0.0827753395,
-0.0041486882,
-0.2452598214,
-0.2524433732,
-0.1303008646,
-0.657120049,
-0.5468478799,
-0.1074696779,
0.1612108946,
-0.0874642953,
-0.0005498715,
0.1316720992,
-0.1874059886,
0.0237712376,
-0.2829131782,
0.0646606609,
-0.0692201108,
-0.2697476149,
0.1288059056,
-0.1303966045,
-0.2666117251,
-0.0889952034,
-0.0791964456,
-0.1633373648,
-0.1946294755,
-0.4564135373,
-0.0327098258,
-0.3555342853,
0.1456098258,
0.1329136193,
0.0244400222,
0.4918688536,
0.2438689023,
-0.1384392679,
0.0291558728,
-0.2249148488,
0.0785070285,
0.0840616524,
0.2012486458,
-0.2755502164,
0.1582756639,
0.2967655063,
0.4924667478,
0.0400805995,
-0.1015747339,
0.1274573207,
0.1824348271,
0.3775157034,
-0.0146984048,
-0.4498076737,
0.2699254155,
-0.2119079679,
0.2726050615,
0.3029665351,
0.3241713345,
-0.2568629384,
-0.2055160999,
0.133416459,
-0.25365448,
-0.1615065783,
0.1577550173,
-0.0627447218,
0.2349365354,
0.0184646249,
-0.2019221187,
-0.2235523462,
-0.4408804178,
-0.0064140186,
0.2707578242,
0.2093400657,
-0.0464638993,
-0.6493403316,
0.0434538946,
-0.4677714407,
0.1304819584,
0.2208281904,
-0.1084983796,
-0.1914461553,
0.1372616589,
-0.0909464359,
0.4632475078,
0.1011895388,
-0.5415428877,
-0.3169795871,
0.2783178091,
0.0771071315,
-0.205855757,
0.0643496513,
-0.4311167002,
-0.1318766475,
0.4279149175,
0.0110962577,
-0.011673905,
-0.0630825758,
0.5058274865,
-0.0420792513,
0.0455504432,
-0.3159421384,
0.3045090437,
0.180504173,
-0.223169148,
-0.1821767539,
0.1421313584,
0.0341132656,
-0.0992965251,
-0.0157809108,
0.2213720828,
-0.1403505057,
0.3071537912,
-0.3063748479,
-0.2161123753,
0.1517286897,
0.2439230978,
0.1034973562,
0.0296992902,
0.0617579669,
0.5007277727,
-0.285571903,
-0.376599133,
0.0341982692,
-0.1609440595,
0.5179303885,
0.1911657304,
0.2609316111,
0.2677950561,
-0.209759891,
-0.1387264729,
-0.0905203819,
0.2293333709,
0.0915510431,
0.0061897226,
-0.4028664231,
-0.1746911108,
0.3463868201,
-0.0790268406,
-0.0670975819,
-0.0885520428,
0.3795877099,
-0.2153224051,
0.164438352,
-0.2758262157,
0.969950676,
-0.1210296527,
0.0756632388,
-0.3877992034,
-0.1119087562,
0.5903331041,
-0.2048416138,
0.0601718128,
-0.0335947201,
-0.3451657891,
-0.0255096853,
-0.0025066882,
0.0242287442,
0.3962247968,
0.0290651545,
0.3269213438,
0.283774823,
0.2704975605,
0.088313967,
0.2414002717,
0.1021609455,
-0.3811486363,
0.1328649521,
0.2328423709,
0.0009433264,
0.3418912888,
0.0296666659,
0.0648417026,
-0.1240689829,
0.1012330055,
-0.757784009,
-0.2139420658,
-0.3507165015,
0.0436203405,
0.0502852611,
-0.2678443789,
0.4461224377,
0.2037585825,
0.5095023513,
0.1625567675,
-0.2427160591,
-0.0011156984,
-0.0816870928,
-0.2073994726,
0.2016287446,
-0.051399298,
0.2647677362,
0.0047984272,
-0.186339736,
0.1751134396,
0.0388050303,
-0.3161412776,
-0.44128263,
-0.3561671972,
0.2335521132,
-0.3172683716,
0.2348842621,
0.2059266865,
0.0166882128,
-0.3014272451,
0.1950973868,
0.2835125625,
0.2865533531,
0.1362302005,
0.0921959728,
-0.05796507,
-0.3824463487,
0.2452121079,
0.0822054744,
-0.1998978257,
0.2826633453,
0.4651039243,
-0.1968360543,
-0.2266627699,
0.1099111587,
0.1775453985,
-0.2984183431,
-0.0382847525,
-0.1456107497,
-0.2014147639,
0.1186607629,
0.2720454931,
0.4747985601,
-0.2090720534,
-0.0033034459,
-0.1260496676,
-0.0483526476,
0.245523721,
-0.0699733198,
0.1024827138,
-0.2855116129,
0.2113357633,
0.1137871891,
0.3128365874,
-0.3668057024,
0.1842241436,
0.1234312057,
0.0576564111,
0.4841401577,
-0.0431312509,
0.1186824739,
-0.2519411445,
0.0317796953,
0.0443168581,
0.0200936645,
-0.2575845122,
0.0291399956,
0.1194110364,
-0.0032426501,
0.0531212762,
0.071493037,
0.03189224,
-0.108583115,
-0.0181497708,
-0.0095390268,
0.0798341483,
-0.0294699296,
0.4629040658,
-0.1698636711,
-0.1433872581,
0.1254794747,
0.1680785269,
-0.3947419226,
0.345217526,
0.2613272369,
0.0968922824,
0.4265041649,
0.0820403993,
-0.1390732378,
0.1200962812,
0.1277491152,
-0.0818487629,
0.4949886799,
-0.1090952307,
0.1605896652,
0.4223470688,
0.1340919733,
-0.3808860183,
-0.1047187895,
0.1454267353,
0.005387675,
0.265599668,
-0.3391370773,
-0.1223411411,
-0.0475141555,
0.1903774291,
0.1569345146,
0.1819954813,
0.3001348376,
0.1519843638,
0.2274171114,
0.1167026609,
0.5631715059,
-0.0346524268,
0.2836723328,
-0.0869765431,
0.2064460069,
-0.1356346011,
0.2207374722,
-0.0661067218,
-0.0283747688,
0.0988644809,
0.0660902262,
0.4115753174,
0.0296089575,
0.1415602267,
0.4603033662,
-0.0387731157,
0.3335842788,
0.2953755558,
-0.0643002838,
0.1179010719,
-0.0899085253,
0.4574873745,
-0.2523854673,
0.0063300468,
-0.0677309409,
0.052508086,
-0.0469505787,
-0.00370498,
0.1858673841,
-0.2191385478,
-0.0752635002,
-0.1628287286,
-0.293946147,
-0.3484771848,
0.403144002,
-0.0179530755,
-0.1454977095,
-0.5478562713,
0.0214936845,
0.0940943956,
0.3775736988,
-0.1377043724,
0.0390170291,
0.0065057576,
-0.2297264189,
0.2765108943,
0.6441016793,
0.1741456091,
-0.2020914853,
-0.0557714775,
-0.0002707317,
-0.2083179802,
-0.192558378,
0.1811538339,
0.265217036,
0.2910471559,
0.0529157519,
0.0059722923,
0.1664625406,
-0.0909041613,
-0.0215367023,
0.0012129201,
-0.0027709957,
-0.3021706045,
0.2089511454,
0.0820144713,
-0.2682291269,
-0.1788060069,
0.0007871203,
-0.3088906705,
-0.1856471449,
0.4646787047,
-0.1991603374,
0.0024085417,
-0.1707443595,
0.1247432828,
-0.1156490147,
0.2756519914,
0.3615758717,
-0.1205010489,
-0.2004090846,
-0.171334967,
-0.0457233042,
-0.24279809,
0.1364400089,
0.1231557652,
-0.2247141302,
0.0433404148,
0.2629947662,
0.2088836879,
-0.267911315,
0.0609810911,
-0.1202195287,
-0.103746593,
-0.5572155118,
-0.0213993397,
0.2087286115,
0.1916581243,
0.0820418298,
0.0517552644,
-0.0353427939,
0.0049039423,
0.0223936662,
-0.2996782959,
0.1943834722,
0.2767236829,
0.0230525397,
0.2054884136,
0.0334663168,
0.4271260798,
-0.0015181601,
-0.0768612102,
-0.0870775506,
-0.4335412979,
-0.1251794994,
0.2828864455,
0.0304234289,
0.3439725041,
-0.3293582499,
-0.2667041421,
0.2854602933,
0.0275787748,
0.0840165466,
0.0823160559,
-0.5688412189,
-0.0122404434,
0.0258424878,
-0.063624084,
0.1642417908,
-0.0145259164,
0.0040571839,
-0.1538855135,
-0.104584232,
-0.5019509196,
0.0492036492,
-0.0985215157,
0.1341042966,
-0.2396980822,
0.1752552986,
0.5417267084,
0.2522424459,
-0.6720556021,
-0.1178066581,
0.478379041,
-0.0441263244,
-0.0649470165,
0.5287405849,
0.2061232626,
-0.0119465739,
-0.0930265933,
0.2641490996,
-0.1595570743,
-0.216247946,
-0.1624890119,
-0.2623986602
] |
https://github.com/huggingface/datasets/issues/353 | [Dataset requests] New datasets for Text Classification | This is the homepage for the Amazon dataset: https://www.kaggle.com/datafiniti/consumer-reviews-of-amazon-products
Is there an easy way to download kaggle datasets programmatically? If so, I can add this one! | We are missing a few datasets for Text Classification which is an important field.
Namely, it would be really nice to add:
- TREC-6 dataset (see here for instance: https://pytorchnlp.readthedocs.io/en/latest/source/torchnlp.datasets.html#torchnlp.datasets.trec_dataset) **[done]**
- Yelp-5
- Movie review (Movie Review (MR) dataset [156]) **[done (same as rotten_tomatoes)]**
- SST (Stanford Sentiment Treebank) **[include in glue]**
- Multi-Perspective Question Answering (MPQA) dataset **[require authentication (indeed manual download)]**
- Amazon. This is a popular corpus of product reviews collected from the Amazon website [159]. It contains labels for both binary classification and multi-class (5-class) classification
- 20 Newsgroups. The 20 Newsgroups dataset **[done]**
- Sogou News dataset **[done]**
- Reuters news. The Reuters-21578 dataset [165] **[done]**
- DBpedia. The DBpedia dataset [170]
- Ohsumed. The Ohsumed collection [171] is a subset of the MEDLINE database
- EUR-Lex. The EUR-Lex dataset
- WOS. The Web Of Science (WOS) dataset **[done]**
- PubMed. PubMed [173]
- TREC-QA. TREC-QA
- Quora. The Quora dataset [180]
All these datasets are cited in https://arxiv.org/abs/2004.03705 | 26 | [Dataset requests] New datasets for Text Classification
We are missing a few datasets for Text Classification which is an important field.
Namely, it would be really nice to add:
- TREC-6 dataset (see here for instance: https://pytorchnlp.readthedocs.io/en/latest/source/torchnlp.datasets.html#torchnlp.datasets.trec_dataset) **[done]**
- Yelp-5
- Movie review (Movie Review (MR) dataset [156]) **[done (same as rotten_tomatoes)]**
- SST (Stanford Sentiment Treebank) **[include in glue]**
- Multi-Perspective Question Answering (MPQA) dataset **[require authentication (indeed manual download)]**
- Amazon. This is a popular corpus of product reviews collected from the Amazon website [159]. It contains labels for both binary classification and multi-class (5-class) classification
- 20 Newsgroups. The 20 Newsgroups dataset **[done]**
- Sogou News dataset **[done]**
- Reuters news. The Reuters-21578 dataset [165] **[done]**
- DBpedia. The DBpedia dataset [170]
- Ohsumed. The Ohsumed collection [171] is a subset of the MEDLINE database
- EUR-Lex. The EUR-Lex dataset
- WOS. The Web Of Science (WOS) dataset **[done]**
- PubMed. PubMed [173]
- TREC-QA. TREC-QA
- Quora. The Quora dataset [180]
All these datasets are cited in https://arxiv.org/abs/2004.03705
This is the homepage for the Amazon dataset: https://www.kaggle.com/datafiniti/consumer-reviews-of-amazon-products
Is there an easy way to download kaggle datasets programmatically? If so, I can add this one! | [
-0.1458345652,
0.0658525527,
-0.1481414586,
0.1902454197,
0.3451894224,
0.3538248539,
0.1370040774,
0.0737791508,
-0.1220622957,
-0.0394351035,
-0.250200808,
0.2587281168,
-0.1631074101,
0.421138376,
0.0899189562,
-0.1647980809,
-0.0227951854,
-0.0886516422,
0.135984078,
-0.143017441,
-0.1249989569,
0.1028075293,
-0.0912281126,
-0.2270241827,
-0.1792384088,
-0.3646232188,
-0.1602798998,
-0.1030356809,
-0.3790994883,
-0.3690577447,
0.3359173238,
0.1774009168,
0.2373437434,
0.1500302553,
-0.0001078193,
-0.3248599172,
0.0003603399,
-0.1197957993,
-0.3088076711,
-0.1295691133,
-0.1039340198,
-0.507353127,
-0.0890804976,
-0.2598696351,
0.0910555944,
-0.035464488,
0.0495944023,
-0.2475446165,
-0.0602007136,
0.2949465811,
0.2045824528,
0.0185293779,
0.0701868758,
-0.1878491491,
0.3340869844,
0.482971102,
-0.2553502321,
0.0124022216,
0.4633092582,
0.2070603222,
0.185656324,
0.2027296424,
-0.3064490557,
-0.1065171361,
0.2755380571,
0.1125843823,
-0.3106136918,
-0.4856227338,
0.1785596162,
0.4579696059,
0.9703217745,
-0.4533037841,
-0.5060071945,
-0.3497487903,
0.2375040054,
-0.1525404304,
-0.3129492998,
0.5556718111,
-0.078491196,
0.0007061946,
-0.1585119963,
-0.4362516403,
-0.1533347666,
0.166537717,
0.2362735271,
0.3287395537,
0.0704032853,
-0.2436541468,
0.0811757669,
-0.0162671842,
0.5947260857,
-0.3934558034,
0.1303328276,
0.0336793438,
-0.2174788415,
-0.2010198832,
-0.1059348285,
-0.0421091281,
0.062214911,
0.0863994509,
0.0007820781,
0.1940431297,
-0.1398470551,
-0.1695521474,
0.0122074485,
0.0201015957,
0.2767165303,
0.3368700445,
0.0530989058,
-0.0473926552,
0.2718043327,
0.022645101,
-0.3008704185,
0.1779800653,
-0.0927953348,
0.009504281,
-0.2158108652,
-0.1667107791,
-0.1336225867,
-0.2264618278,
-0.1438033283,
-0.0931729972,
-0.289228797,
0.1214968488,
-0.1194735467,
0.0921549425,
-0.0870980918,
0.2747785449,
-0.1070149317,
-0.3732473254,
-0.0636871159,
0.1015964448,
0.2123429477,
0.0125100091,
0.3886566758,
-0.307810992,
0.2903836966,
-0.2664627135,
-0.0588190146,
0.068107307,
0.0345644504,
0.055917643,
-0.3313590884,
0.1262031347,
0.0896906704,
0.0198182315,
-0.0611537844,
0.0645943955,
-0.2371141464,
0.2297895402,
-0.0074012913,
-0.2494549453,
-0.1083725691,
0.1898382455,
-0.0466045514,
-0.6931467056,
-0.344630748,
0.4325675964,
-0.0215862021,
-0.0997876823,
0.1143115312,
0.0151210427,
-0.0687840432,
-0.2183512449,
0.0221006274,
0.4878206551,
-0.4603777528,
-0.2505888045,
-0.243082881,
0.0543341301,
0.0991811305,
0.0070487522,
-0.0971061662,
0.3354075551,
0.0367299467,
0.0289714485,
0.4266471565,
-0.1561398059,
-0.2334921062,
0.0047493242,
-0.0274882391,
-0.1572910398,
0.154243812,
0.4053140581,
0.0540758148,
0.0954790413,
-0.1891800016,
0.2154070288,
-0.1470282972,
-0.0636373162,
-0.0311038829,
-0.2104399651,
0.1887796372,
0.4533604383,
0.5115644336,
-0.1417906582,
0.1126803309,
-0.0789698958,
0.2047274262,
-0.0264049731,
0.1127468422,
0.1084837019,
0.1476401985,
0.2481898516,
0.0519466847,
-0.1844957471,
-0.3535894156,
0.1882292628,
0.1195324063,
0.1798560023,
-0.1976392567,
-0.2929626703,
-0.1732514799,
-0.0184198655,
-0.0598590896,
0.0343754515,
0.0665084869,
-0.1729311645,
0.2459306419,
0.2049804032,
-0.0696806014,
0.2434431612,
-0.2629668117,
0.3557042181,
-0.0191289261,
0.1765371412,
0.0324238539,
0.1675957292,
0.1569018662,
0.1811334193,
0.0304621272,
0.0196963549,
0.0671712309,
0.0794845298,
-0.0288241692,
0.2057452202,
0.3982348442,
0.2409587353,
0.3269946277,
-0.3789919615,
0.3036177456,
0.0010742247,
0.1522790194,
-0.1356868446,
-0.2688926458,
0.357221961,
0.0751191229,
0.0856950209,
0.0338316336,
0.1737847626,
0.0815224424,
0.1841051579,
0.2052221596,
0.1305986941,
0.2918300331,
-0.2030844688,
0.311668396,
-0.213322565,
-0.2172531486,
0.3556894362,
0.1185146123,
-0.1999641955,
0.1966109127,
0.1007309109,
-0.3290807605,
0.0510095581,
0.1607094854,
0.1727671772,
0.1420185119,
0.4380433559,
-0.007387815,
-0.0723127946,
0.1096048504,
-0.2723277211,
0.0723107606,
0.3957448006,
0.1148918644,
0.0230932906,
0.214934662,
0.1084585041,
-0.2109976113,
-0.0760429427,
0.1719284803,
-0.0094922371,
-0.0051255077,
-0.1017903686,
-0.0998297036,
-0.3285651505,
-0.1100290194,
0.152197957,
0.0331785604,
-0.3579835892,
0.1127663255,
-0.1880218983,
0.0209956393,
-0.0725443512,
-0.3703675568,
0.5109134912,
-0.2676706612,
-0.1653886586,
-0.0368972868,
-0.3092894256,
-0.1858092993,
0.196437493,
0.249201864,
-0.0065035112,
0.4684089124,
-0.1205241904,
0.4063920379,
-0.4003464878,
-0.4549332261,
-0.0711321235,
-0.0402047075,
-0.1495887339,
-0.0947708786,
0.0039899684,
-0.0539059602,
-0.1878837794,
-0.1421693563,
-0.0577221774,
-0.1958383173,
-0.0704629123,
-0.055023782,
-0.3058833778,
0.0188404471,
-0.7203143239,
-0.5714179277,
-0.0859818906,
0.1243749037,
0.0709804595,
0.0216840319,
0.019950252,
-0.0857782438,
0.0222124048,
-0.1208946854,
0.17384395,
0.117401734,
-0.0295296982,
0.2599438429,
-0.0651600361,
-0.3358578086,
0.0561506227,
-0.058956489,
-0.1528324485,
0.1433834732,
-0.6533875465,
0.278791815,
-0.1593822688,
0.2507081032,
0.0915819407,
0.0094199702,
0.3900662065,
0.325974077,
-0.0046841688,
0.0481490791,
-0.2004249543,
-0.066440016,
0.0186326839,
0.1881431341,
-0.2580966651,
0.1479080021,
0.2330840528,
0.7644214034,
0.1004631072,
-0.039600227,
0.0041067768,
0.1000654474,
0.2880666852,
0.1741344631,
-0.3623057306,
0.0765024573,
-0.2538995147,
0.1947877109,
0.2485782802,
0.2329379618,
-0.4174834192,
-0.3761482537,
0.0852969736,
-0.3985085487,
-0.0593183935,
0.0200703871,
-0.1571808755,
0.2500104606,
0.1569015384,
0.1980460733,
-0.30670771,
-0.3829734921,
-0.0076113492,
0.0950429067,
0.0403237045,
-0.0855693147,
-0.6600491405,
0.0852119327,
-0.454672873,
0.35003075,
0.2858998477,
-0.013933355,
0.0228565931,
0.096873641,
-0.012958087,
0.1042200923,
0.3377256393,
-0.4176978469,
-0.1463476717,
0.1085480303,
0.1544067264,
-0.2899880111,
0.0166515037,
-0.4218192399,
0.0120442733,
0.1763531417,
-0.1067231297,
-0.1369766891,
0.1208309829,
0.1174423769,
0.0953433067,
-0.1275434345,
-0.1310063154,
0.260982424,
-0.1921809614,
-0.2475024462,
-0.1067177504,
-0.1915421784,
0.135109514,
-0.2206449211,
0.1119874716,
0.087113969,
0.1021277383,
0.2077432126,
-0.3882970512,
-0.1546431035,
0.3388710022,
0.2146314979,
-0.0203533135,
-0.0908815861,
0.2794800699,
0.7352374196,
-0.2495373935,
-0.6877534986,
-0.2033217996,
-0.059338063,
0.3713299036,
0.2866715193,
0.3106376529,
0.1781736612,
0.0452677198,
-0.1820602119,
-0.0866231173,
0.2527273297,
0.1468856335,
-0.2068832517,
-0.4491501153,
-0.451135993,
0.4768798351,
-0.0468299985,
-0.0066021383,
-0.0308260433,
0.0884355307,
-0.1857965589,
0.0796733499,
0.033479318,
0.8832523823,
-0.09655191,
0.1206950545,
-0.2108298391,
-0.2397921532,
0.6575300694,
-0.3693645,
0.1451692879,
-0.0319658071,
-0.1078590304,
-0.1583985686,
-0.0057650506,
-0.0660471171,
0.2764970362,
0.0986421406,
0.2545514703,
0.1750445366,
0.2646405995,
0.1889281273,
0.267670691,
-0.2133770287,
-0.3211890459,
-0.0217804108,
0.207297191,
-0.0450462922,
0.3466684818,
-0.0601665005,
-0.0404975899,
-0.2185209244,
0.0740630776,
-0.6114406586,
0.0503233224,
-0.1113559306,
0.2592779994,
-0.1681749821,
-0.3132203221,
0.3115785718,
0.3959932327,
0.4740005136,
0.154555127,
-0.2781148255,
0.0338786505,
-0.1677888036,
-0.2845947146,
0.2685400844,
-0.11717695,
0.2070043385,
-0.0916294828,
-0.1466665715,
0.1773540974,
0.0102861822,
-0.0936313495,
-0.2707796395,
-0.2812494934,
0.0278405417,
-0.2544703782,
0.0718578845,
0.2199274153,
0.0607451797,
-0.2442301214,
0.1158014387,
0.2720436752,
0.3126240075,
0.1492729336,
0.1311454922,
0.0426632762,
-0.403629005,
0.3365066051,
0.0537924916,
-0.2013225257,
0.3659548461,
0.3573600948,
-0.2291145176,
-0.1734787822,
0.2591620088,
-0.015189562,
-0.255202949,
-0.0624836683,
-0.1510734409,
0.1275450438,
-0.0006346442,
0.2954428792,
0.3267216384,
-0.2449731529,
0.0683487728,
-0.2670618296,
-0.0456876159,
0.3528864384,
-0.0263611712,
0.1615923196,
-0.0568493456,
-0.0070584565,
0.0637390837,
0.168400228,
-0.295126766,
0.2014486492,
0.0457096174,
-0.1295147687,
0.1684549302,
0.1904903948,
-0.0736701936,
-0.1628784388,
-0.0309056733,
0.0137712602,
-0.1415178925,
-0.1543599069,
0.0864758193,
0.1561499834,
0.0004630126,
0.0615990981,
-0.0054316297,
-0.1991831958,
-0.1987436563,
-0.0280100517,
-0.0401111245,
0.0799317881,
-0.0388808623,
0.280090481,
-0.0518556833,
0.2226857245,
-0.1991782784,
0.1217425019,
-0.213631779,
0.1685871929,
0.3860096633,
0.1973820329,
0.4179413319,
0.142214179,
0.0235009976,
0.0975435674,
0.2849411666,
-0.2350791693,
0.686784327,
-0.2889362574,
0.2592449188,
0.3534522653,
0.0812408924,
0.0852923393,
-0.1868266165,
0.2281636745,
0.234226346,
0.1856687665,
-0.5083347559,
-0.351414144,
-0.0117297014,
0.2154448628,
-0.0015337095,
0.1440445185,
0.3221589923,
0.0514777154,
0.1890986413,
0.1879584193,
0.4547485411,
-0.0768008903,
0.4784497023,
0.2017872632,
0.1357191503,
-0.0542969964,
0.1197221652,
0.2849611044,
-0.0193884932,
0.2118201256,
-0.0686848909,
0.5396165252,
-0.1689623296,
0.1156089753,
0.3625091314,
-0.4359865785,
0.3034901321,
0.2183664739,
-0.0631245524,
0.1779619902,
0.0134650692,
0.3344652057,
-0.2260024548,
0.0742389709,
-0.2706796825,
0.023093665,
-0.0754789859,
0.1115899235,
-0.0258199163,
-0.4800800979,
0.1415523291,
0.0542166233,
-0.0710734278,
-0.6137166023,
0.0098595917,
-0.1722028852,
-0.1956641078,
-0.4460479617,
0.1265334189,
0.0475830287,
0.4512729943,
-0.2456588894,
-0.2158624828,
0.228833735,
-0.2907605767,
0.031813968,
0.4591098726,
0.2172702551,
-0.0518819839,
-0.1536592394,
0.0496250167,
-0.0833990723,
-0.1502198875,
0.2596857846,
0.3501441777,
0.3649341464,
-0.0309639983,
0.2239758968,
0.1064255238,
-0.0772901326,
0.2208940238,
0.2014786452,
0.0658397079,
-0.2684997916,
0.145618245,
-0.00970372,
-0.2128191292,
-0.1392195672,
0.0354053229,
-0.2620568275,
-0.1173944771,
0.3134700656,
-0.048290655,
0.0353491195,
-0.1118343696,
0.1048951596,
-0.0433285311,
0.3734108806,
0.3794988692,
0.0498739034,
-0.1925765127,
-0.0144011378,
-0.1483945251,
-0.2592770457,
0.1028718352,
0.0508900285,
-0.1302157342,
-0.0016710311,
0.2697881758,
0.2477406412,
-0.3533950746,
0.0241535828,
0.2377676517,
0.1335593313,
-0.5316683054,
-0.1569875479,
0.3332624435,
0.085175842,
0.0234204382,
-0.0445229299,
0.022355359,
-0.2352217138,
-0.0853209496,
-0.2908898294,
0.1221310571,
0.1611091048,
-0.0532050021,
0.3564681709,
-0.2169415504,
0.5409759283,
0.018423073,
-0.0958153009,
-0.144296512,
-0.2210030854,
0.0111721084,
0.2358666211,
0.154903695,
0.2718775272,
-0.3232609928,
-0.1143454164,
0.35959059,
-0.0222018268,
0.1469312012,
0.0603662841,
-0.4647150636,
-0.1330140382,
-0.257071048,
-0.1377786994,
0.2574694455,
0.0037061055,
-0.045511283,
-0.214829877,
-0.1155495271,
-0.3864071071,
0.1926058084,
0.0864061713,
0.1266182512,
-0.2853850424,
-0.0096451715,
0.3591630459,
0.2550024092,
-0.4740019441,
0.2204046994,
0.4707943797,
-0.192309767,
0.1209469885,
0.4455161095,
-0.007618282,
-0.112206012,
-0.1521122754,
0.5035298467,
-0.2934397161,
-0.2272110879,
-0.2597517967,
-0.248033002
] |
https://github.com/huggingface/datasets/issues/353 | [Dataset requests] New datasets for Text Classification | Hi @jxmorris12 for now I think our `dl_manager` does not download from Kaggle.
@thomwolf , @lhoestq | We are missing a few datasets for Text Classification which is an important field.
Namely, it would be really nice to add:
- TREC-6 dataset (see here for instance: https://pytorchnlp.readthedocs.io/en/latest/source/torchnlp.datasets.html#torchnlp.datasets.trec_dataset) **[done]**
- Yelp-5
- Movie review (Movie Review (MR) dataset [156]) **[done (same as rotten_tomatoes)]**
- SST (Stanford Sentiment Treebank) **[include in glue]**
- Multi-Perspective Question Answering (MPQA) dataset **[require authentication (indeed manual download)]**
- Amazon. This is a popular corpus of product reviews collected from the Amazon website [159]. It contains labels for both binary classification and multi-class (5-class) classification
- 20 Newsgroups. The 20 Newsgroups dataset **[done]**
- Sogou News dataset **[done]**
- Reuters news. The Reuters-21578 dataset [165] **[done]**
- DBpedia. The DBpedia dataset [170]
- Ohsumed. The Ohsumed collection [171] is a subset of the MEDLINE database
- EUR-Lex. The EUR-Lex dataset
- WOS. The Web Of Science (WOS) dataset **[done]**
- PubMed. PubMed [173]
- TREC-QA. TREC-QA
- Quora. The Quora dataset [180]
All these datasets are cited in https://arxiv.org/abs/2004.03705 | 16 | [Dataset requests] New datasets for Text Classification
We are missing a few datasets for Text Classification which is an important field.
Namely, it would be really nice to add:
- TREC-6 dataset (see here for instance: https://pytorchnlp.readthedocs.io/en/latest/source/torchnlp.datasets.html#torchnlp.datasets.trec_dataset) **[done]**
- Yelp-5
- Movie review (Movie Review (MR) dataset [156]) **[done (same as rotten_tomatoes)]**
- SST (Stanford Sentiment Treebank) **[include in glue]**
- Multi-Perspective Question Answering (MPQA) dataset **[require authentication (indeed manual download)]**
- Amazon. This is a popular corpus of product reviews collected from the Amazon website [159]. It contains labels for both binary classification and multi-class (5-class) classification
- 20 Newsgroups. The 20 Newsgroups dataset **[done]**
- Sogou News dataset **[done]**
- Reuters news. The Reuters-21578 dataset [165] **[done]**
- DBpedia. The DBpedia dataset [170]
- Ohsumed. The Ohsumed collection [171] is a subset of the MEDLINE database
- EUR-Lex. The EUR-Lex dataset
- WOS. The Web Of Science (WOS) dataset **[done]**
- PubMed. PubMed [173]
- TREC-QA. TREC-QA
- Quora. The Quora dataset [180]
All these datasets are cited in https://arxiv.org/abs/2004.03705
Hi @jxmorris12 for now I think our `dl_manager` does not download from Kaggle.
@thomwolf , @lhoestq | [
0.0363271907,
0.1208187193,
-0.1671025455,
0.2490487248,
0.2784865797,
0.2174419761,
0.291826725,
0.0586765818,
-0.0694198087,
0.0894206539,
-0.0749870092,
0.2429373562,
-0.2216520607,
0.1872978359,
0.1075436324,
-0.2674972415,
-0.0024414062,
-0.0645568594,
-0.0585646406,
-0.1949669421,
-0.1161490381,
0.2323863208,
-0.1021067426,
-0.298800379,
-0.3894094825,
-0.1188439205,
-0.1741246879,
0.203107208,
-0.3696796596,
-0.5515013933,
0.0710656345,
0.110871613,
0.2446144074,
0.3044230342,
-0.000100496,
-0.2866237164,
0.1290526092,
-0.0962060168,
-0.2718330026,
-0.1548327059,
-0.1398430169,
-0.5224167109,
-0.0034971535,
-0.1702829003,
-0.0646548346,
0.096062094,
-0.0102262422,
-0.1524554193,
0.0233403817,
0.3746048212,
0.2843890488,
0.0045375042,
-0.009125635,
-0.3068841398,
0.3988084197,
0.3493151069,
-0.2872604728,
0.0362686329,
0.625110507,
0.1298021078,
-0.0595828295,
0.3732941747,
-0.2840685844,
-0.0756154805,
0.1847100705,
0.1710985005,
-0.0633505881,
-0.4465402067,
0.1536752582,
0.3627843857,
0.8537474275,
-0.3193743825,
-0.2965323627,
-0.3729112148,
0.1825646758,
-0.2185401917,
-0.0184799992,
0.1393242478,
-0.0681616068,
0.0716141239,
-0.0426274985,
-0.244466722,
-0.1498306841,
0.2160184979,
0.0402439088,
0.3208631575,
-0.0304150879,
-0.3652466834,
0.0909145102,
0.1313058734,
0.4276683927,
-0.2541505098,
0.0599307381,
-0.001519978,
-0.2455900759,
-0.1704475284,
-0.0023831576,
-0.1185171306,
-0.0255969912,
0.1150280535,
-0.1519061923,
0.1014920101,
-0.1292255968,
-0.1060266942,
-0.0125244353,
0.1141977236,
0.1958246678,
0.3053247929,
0.1475718319,
-0.0988141149,
0.1847093701,
0.0457951017,
-0.2336812317,
0.1358572692,
-0.0357335061,
0.095223397,
-0.283182621,
-0.0848113224,
-0.0323267132,
-0.0517274663,
-0.0495888479,
-0.1634262353,
-0.2022053748,
0.1117959842,
-0.0234020203,
0.1728327274,
-0.1526251733,
0.2224623561,
0.043359071,
-0.3606480956,
-0.1383421421,
-0.0274213515,
-0.0917267352,
-0.001423806,
0.5291512012,
-0.1442969441,
0.2326457053,
-0.2287690938,
-0.1358252466,
0.164144218,
-0.0226339139,
0.0378939956,
-0.0145487748,
0.2572909594,
-0.0061303154,
0.1331599653,
0.0336545929,
-0.0673394799,
-0.2038238049,
0.2830096185,
0.0436703339,
-0.3164168596,
-0.2934396565,
0.2884789109,
0.0269854665,
-0.5546087623,
-0.1763257682,
0.5332195759,
-0.0657948405,
-0.0989342332,
0.2336565256,
0.0619950294,
0.0190878883,
-0.1440945864,
0.0625899285,
0.3794981837,
-0.4466326237,
-0.15560399,
-0.3843359351,
0.0678206235,
0.1779550314,
0.1370633245,
-0.141297698,
0.1038009971,
0.0061648712,
0.0018524379,
0.3576290309,
-0.2106909454,
-0.259744972,
-0.0973090827,
-0.032531552,
-0.1417056322,
0.2275725305,
0.2446392626,
0.2304919958,
0.0032837242,
-0.2420409471,
0.1514582336,
-0.2314138561,
0.0088746101,
-0.1517030895,
-0.126657933,
0.173882708,
0.4673375785,
0.5211061835,
-0.2039028704,
0.0964090228,
-0.1027056128,
0.1300779134,
0.0645818338,
0.1819981635,
0.1078508273,
0.0502416156,
0.2105703503,
0.1069570482,
-0.2524811625,
-0.3206236064,
0.0419504642,
0.2923545837,
0.4220077693,
0.0574041083,
-0.1772574186,
-0.2055796385,
-0.0860821381,
-0.0594477281,
-0.1151983887,
0.1802355051,
-0.1373229623,
0.0746805072,
0.2228441536,
-0.2554360628,
0.119609125,
-0.2633060515,
0.3440309763,
0.1384393871,
0.1995769143,
-0.1859367192,
0.0385999978,
0.1123187393,
0.3069335818,
-0.0818976238,
0.0136686191,
0.0554980673,
-0.045796819,
-0.1088722348,
-0.0359767787,
0.380327791,
0.3463965654,
0.4430670142,
-0.3643416464,
0.256474942,
0.0166178681,
0.1205732822,
-0.1962997764,
-0.1523724496,
0.1953104734,
0.1451337934,
0.1179495603,
0.0073435828,
0.0682803914,
0.0312687159,
-0.0739849508,
0.1388146877,
0.0883894488,
0.3093251288,
-0.1635050327,
0.206869185,
-0.0220920295,
-0.1827761829,
0.2687956989,
0.2085868418,
-0.1141014695,
0.2883540392,
0.1803229451,
-0.4136097431,
0.0028619841,
0.0334146097,
0.1817579418,
0.1602045,
0.4741149843,
0.071528025,
-0.1295447797,
0.1909535825,
-0.4396857917,
0.0570932142,
0.3365571201,
0.077942051,
0.1949091554,
0.2889698744,
0.1609757692,
-0.2529124022,
-0.0739215836,
0.1869309843,
-0.062105,
0.0964877456,
-0.122891441,
-0.1473364979,
-0.4734417796,
0.0098393448,
-0.0316351131,
-0.2634122372,
-0.3572675288,
0.2397591174,
-0.1863235831,
-0.0097322688,
0.1090917215,
-0.2038612366,
0.4440690875,
-0.3063392043,
0.0034323093,
-0.1450701207,
-0.2510152757,
-0.2677838206,
0.288826108,
0.1671512425,
-0.0761386529,
0.4527227879,
-0.1395814121,
0.3039372861,
-0.2922319174,
-0.502699852,
0.0818642005,
-0.1006456986,
-0.1514423043,
-0.0796729401,
-0.2038020492,
0.0558106154,
-0.1321373582,
-0.0117889084,
-0.1040631309,
-0.1461095065,
-0.1323851794,
-0.1588017046,
-0.1699041277,
-0.0905093923,
-0.6321281791,
-0.4981150627,
-0.1765127182,
-0.0205676407,
0.0031173825,
0.0394999571,
0.0527024679,
-0.2293876559,
-0.0312615819,
-0.1561789215,
0.1062038392,
-0.0379837938,
-0.1608325541,
0.1060853824,
-0.1881790608,
-0.2769783735,
-0.013944529,
-0.0938121155,
-0.0592464767,
-0.2440547496,
-0.57755059,
0.0116819218,
-0.1460653841,
0.135050565,
0.082344301,
0.0149559733,
0.4460032284,
0.3186326325,
-0.1670173109,
0.0728072003,
-0.1841628253,
-0.0408816859,
0.0871326625,
0.3037727475,
-0.3289528191,
0.1120522767,
0.1990930289,
0.6252946258,
-0.0762831345,
0.0286293235,
0.1277465373,
0.1458064169,
0.3261948526,
0.000927981,
-0.3885498643,
0.2392316908,
-0.1540061533,
0.1448471993,
0.3402163982,
0.2440495491,
-0.411326766,
-0.3100478947,
0.0058301762,
-0.3088419735,
-0.1392025352,
0.2457526177,
-0.1219132915,
0.1020707488,
0.0751668811,
0.0301390365,
-0.1549418718,
-0.411021173,
-0.0093676001,
0.3312242627,
0.070569694,
-0.158574909,
-0.5272673368,
0.0967198089,
-0.5372107625,
0.1099710912,
0.2433338165,
-0.1414558291,
-0.1414813101,
0.067424953,
-0.0124095716,
0.2497188747,
0.2316856533,
-0.3759276867,
-0.3057525158,
0.2944364548,
0.0295409858,
-0.0160265788,
0.0980089307,
-0.419567585,
-0.1425144672,
0.3507795036,
-0.2209928483,
0.0498564541,
-0.0149004962,
0.375294745,
-0.0834888518,
-0.0421894342,
-0.2808257043,
0.2156102508,
-0.012106441,
-0.3490277231,
-0.092570439,
-0.0554536693,
0.1127369776,
-0.2458267957,
-0.0381896943,
0.2279598862,
-0.0590565167,
0.2579515278,
-0.2162372768,
-0.2635133564,
0.2018699348,
0.1389270127,
0.1079140082,
0.1332261413,
0.3016782403,
0.5075217485,
-0.2157353312,
-0.3669584095,
0.035263408,
-0.1764232516,
0.4428982139,
0.2902784944,
0.3332871199,
0.2164189667,
-0.1570174545,
-0.1707201004,
-0.1184296012,
0.1177887917,
0.1813749522,
-0.1047723591,
-0.4715121984,
-0.2676586211,
0.4235585034,
-0.0750060603,
-0.0745221078,
-0.0366298258,
0.1526161581,
-0.2258867323,
0.0945144445,
-0.0756774992,
0.9857671261,
-0.0546135642,
0.197314471,
-0.2663497925,
-0.0489395112,
0.535959959,
-0.3048810661,
0.2788439989,
-0.1173875481,
-0.134115994,
-0.0623152107,
0.0381365865,
-0.0863124058,
0.2807737589,
0.0571569353,
0.2046220601,
0.1323183328,
0.2306624204,
0.0560075641,
0.2629808784,
-0.1214092076,
-0.4137178957,
-0.0063284785,
0.2581973076,
0.1662628353,
0.3738595843,
-0.0688863695,
0.0217227079,
-0.2274915874,
0.0718558431,
-0.61996907,
-0.0948183089,
-0.2102095187,
0.0355347209,
-0.063357152,
-0.3951873183,
0.3602657914,
0.2881465852,
0.4655897915,
0.0671773255,
-0.1785434037,
0.1044785678,
-0.1090022624,
-0.1447926313,
0.248645097,
-0.0874030888,
0.2993196249,
-0.1255788505,
-0.1634187847,
0.2403904945,
0.0138765983,
-0.204007268,
-0.3762982488,
-0.198723495,
0.1692379415,
-0.1861863434,
0.3645672798,
0.1886490583,
0.0109084696,
-0.2813081145,
0.2248247415,
0.2207089663,
0.2425476313,
0.1298388988,
0.0734992325,
-0.0061553568,
-0.4221655726,
0.2767052054,
0.1592307389,
-0.2599050701,
0.3653330207,
0.4951322675,
-0.1639518738,
-0.307043463,
0.176765427,
0.1588031203,
-0.1803541481,
0.0462114736,
-0.137041986,
-0.1898178458,
0.1539032906,
0.4831223488,
0.4475255013,
-0.2244650275,
-0.0222324654,
-0.154166773,
-0.1365887821,
0.2057544291,
-0.1310406923,
0.0642393678,
-0.3104791641,
0.1135816723,
0.1106721237,
0.2138182521,
-0.4183431864,
0.105785206,
-0.0026914701,
-0.0010269359,
0.2698206306,
0.037161611,
0.1687712073,
-0.1148048341,
0.0779275224,
-0.0281157326,
-0.0769268498,
-0.2974215746,
0.0503069609,
0.0981893539,
0.0278769024,
0.0624202639,
0.0130274333,
-0.0557432547,
-0.1584129632,
0.0195387155,
0.0429113135,
0.0156409517,
0.0653071404,
0.3806164265,
-0.1765002608,
-0.0038351882,
0.0767052174,
0.1506213546,
-0.2631675601,
0.3517304957,
0.2140643597,
0.1563254148,
0.4049958885,
0.1145723462,
0.101835832,
0.1170219928,
0.0556377023,
-0.1151009798,
0.57201612,
-0.1836515516,
0.2140286416,
0.5334522128,
0.1297413409,
-0.1990557015,
-0.1963353455,
0.0876707435,
0.1470393389,
0.3044624627,
-0.3589921892,
-0.2522808313,
-0.075388141,
0.2254799455,
0.0856962204,
0.1171590984,
0.376024127,
0.0447907895,
0.1790893376,
0.2037140578,
0.4474937618,
-0.0895670056,
0.3262722492,
-0.0159413405,
0.0945713967,
-0.0161841772,
0.2691628933,
0.0805521905,
0.0295746624,
0.2775474787,
0.0727244467,
0.5338804722,
-0.104064472,
0.1475656778,
0.4043247104,
-0.2420401871,
0.3320990503,
0.2094639242,
-0.0561634973,
0.1176555976,
-0.0231848247,
0.3225649595,
-0.2496718466,
0.0185770504,
-0.2316114604,
0.0487242863,
-0.1139770821,
0.1500732452,
-0.0096636936,
-0.3767279088,
0.0208675787,
-0.0294172503,
-0.2372243553,
-0.3354695439,
0.151286602,
-0.075034976,
-0.264296174,
-0.537863791,
-0.0051315231,
0.0171668641,
0.3859815001,
-0.2130106091,
-0.0802974775,
0.2222642004,
-0.2817745805,
0.2070705742,
0.5161464214,
0.2406761348,
-0.0650210008,
-0.1272562295,
-0.1005327404,
-0.2148470283,
-0.1743793786,
0.1005883515,
0.3649819791,
0.4146255553,
0.0134759806,
0.0421176665,
0.1669243276,
-0.1491860747,
0.0155161116,
0.2422216833,
-0.0947972238,
-0.0975519195,
0.1830943227,
0.1417446584,
-0.2188385725,
-0.2323552668,
0.0394624211,
-0.3943840861,
-0.0144924689,
0.423203975,
-0.0835351944,
0.0879914016,
-0.19666408,
0.1408359408,
-0.0525407493,
0.3778322935,
0.3114270866,
-0.061615333,
-0.128860265,
-0.183722496,
-0.1686691493,
-0.1467706263,
0.168423295,
0.168329522,
-0.1748133302,
-0.006379243,
0.226581648,
0.2520142794,
-0.2523544729,
0.0136282183,
0.1262561083,
0.0143533228,
-0.5593926311,
-0.0895802751,
0.2098473907,
0.0673223212,
-0.0537847616,
0.0548974425,
0.0260827187,
-0.2426676154,
0.0431409851,
-0.3713622987,
0.2435300499,
0.2112377584,
0.1630856544,
0.2539024353,
0.0116875824,
0.4366324842,
-0.0334256589,
-0.1314096004,
-0.0681054816,
-0.2330938876,
-0.15691787,
0.1507695019,
0.1977438033,
0.2544566989,
-0.2499747127,
-0.101616092,
0.2324192822,
0.2099463791,
0.0980765298,
0.091635108,
-0.6198497415,
-0.0849127173,
0.0384931862,
-0.1675665081,
0.2878287435,
0.0637845844,
0.0505589209,
-0.2314166129,
-0.2736487389,
-0.4273026586,
0.0600479916,
-0.0545653515,
0.1208737642,
-0.4299779534,
0.0572424755,
0.4172290266,
0.3035706282,
-0.6652129889,
0.0371346921,
0.3935830295,
-0.1419791579,
0.0052054226,
0.3796031773,
0.1705806851,
-0.0874248445,
-0.1887239665,
0.2291713059,
-0.1860614717,
-0.2594028115,
-0.251785934,
-0.2236281782
] |
https://github.com/huggingface/datasets/issues/353 | [Dataset requests] New datasets for Text Classification | Great list. Any idea if Amazon Reviews has been added?
- ~40 GB of text (sadly no emoji)
- popular MLM pre-training dataset before bigger datasets like WebText https://arxiv.org/abs/1808.01371
- turns out that binarizing the 1-5 star rating leads to great Pos/Neg/Neutral dataset, T5 paper claims to get very high accuracy (98%!) on this with small amount of finetuning https://arxiv.org/abs/2004.14546
Apologies if it's been included (great to see where) and if not, it's one of the better medium/large NLP dataset for semi-supervised learning, albeit a bit out of date.
Thanks!!
cc @sshleifer | We are missing a few datasets for Text Classification which is an important field.
Namely, it would be really nice to add:
- TREC-6 dataset (see here for instance: https://pytorchnlp.readthedocs.io/en/latest/source/torchnlp.datasets.html#torchnlp.datasets.trec_dataset) **[done]**
- Yelp-5
- Movie review (Movie Review (MR) dataset [156]) **[done (same as rotten_tomatoes)]**
- SST (Stanford Sentiment Treebank) **[include in glue]**
- Multi-Perspective Question Answering (MPQA) dataset **[require authentication (indeed manual download)]**
- Amazon. This is a popular corpus of product reviews collected from the Amazon website [159]. It contains labels for both binary classification and multi-class (5-class) classification
- 20 Newsgroups. The 20 Newsgroups dataset **[done]**
- Sogou News dataset **[done]**
- Reuters news. The Reuters-21578 dataset [165] **[done]**
- DBpedia. The DBpedia dataset [170]
- Ohsumed. The Ohsumed collection [171] is a subset of the MEDLINE database
- EUR-Lex. The EUR-Lex dataset
- WOS. The Web Of Science (WOS) dataset **[done]**
- PubMed. PubMed [173]
- TREC-QA. TREC-QA
- Quora. The Quora dataset [180]
All these datasets are cited in https://arxiv.org/abs/2004.03705 | 92 | [Dataset requests] New datasets for Text Classification
We are missing a few datasets for Text Classification which is an important field.
Namely, it would be really nice to add:
- TREC-6 dataset (see here for instance: https://pytorchnlp.readthedocs.io/en/latest/source/torchnlp.datasets.html#torchnlp.datasets.trec_dataset) **[done]**
- Yelp-5
- Movie review (Movie Review (MR) dataset [156]) **[done (same as rotten_tomatoes)]**
- SST (Stanford Sentiment Treebank) **[include in glue]**
- Multi-Perspective Question Answering (MPQA) dataset **[require authentication (indeed manual download)]**
- Amazon. This is a popular corpus of product reviews collected from the Amazon website [159]. It contains labels for both binary classification and multi-class (5-class) classification
- 20 Newsgroups. The 20 Newsgroups dataset **[done]**
- Sogou News dataset **[done]**
- Reuters news. The Reuters-21578 dataset [165] **[done]**
- DBpedia. The DBpedia dataset [170]
- Ohsumed. The Ohsumed collection [171] is a subset of the MEDLINE database
- EUR-Lex. The EUR-Lex dataset
- WOS. The Web Of Science (WOS) dataset **[done]**
- PubMed. PubMed [173]
- TREC-QA. TREC-QA
- Quora. The Quora dataset [180]
All these datasets are cited in https://arxiv.org/abs/2004.03705
Great list. Any idea if Amazon Reviews has been added?
- ~40 GB of text (sadly no emoji)
- popular MLM pre-training dataset before bigger datasets like WebText https://arxiv.org/abs/1808.01371
- turns out that binarizing the 1-5 star rating leads to great Pos/Neg/Neutral dataset, T5 paper claims to get very high accuracy (98%!) on this with small amount of finetuning https://arxiv.org/abs/2004.14546
Apologies if it's been included (great to see where) and if not, it's one of the better medium/large NLP dataset for semi-supervised learning, albeit a bit out of date.
Thanks!!
cc @sshleifer | [
0.0099563971,
0.1201290786,
-0.1890823543,
0.2179348022,
0.2128588706,
0.2180951238,
0.2061846554,
0.1419544965,
-0.1860566884,
-0.1030762643,
-0.1535794735,
-0.0204461515,
-0.1454025358,
0.2192624062,
0.0605061576,
-0.180707261,
0.0125585832,
-0.0416301936,
-0.0774125382,
-0.2203578353,
-0.1637410223,
0.1607872248,
-0.0990081355,
-0.1870863438,
-0.3995812833,
-0.1154437959,
-0.1499628574,
0.0827761889,
-0.2747661173,
-0.4816744328,
0.0328999087,
0.0766899437,
0.1454464495,
0.3482025862,
-0.0000977496,
-0.2388427705,
0.0384173654,
-0.0287116468,
-0.236861676,
-0.2248949558,
-0.0512604117,
-0.4016396999,
-0.0896614417,
-0.1259750277,
-0.133645162,
0.0372291878,
0.0565928519,
-0.1836147904,
0.0036870949,
0.3463908136,
0.3029762208,
-0.0283139907,
-0.0866741687,
-0.123358041,
0.2595642805,
0.5216811299,
-0.3470137417,
-0.1082493663,
0.5796983838,
0.1141715497,
-0.0773808509,
0.3088274598,
-0.2269607782,
-0.1091126576,
0.1848833561,
0.1643170416,
-0.1449455917,
-0.3419857323,
0.056964945,
0.3712536991,
0.6867114902,
-0.284593612,
-0.4477043748,
-0.3079707623,
0.1604132354,
-0.291341275,
-0.164108485,
0.2534988523,
-0.0334706306,
0.1641042233,
-0.1707697064,
-0.2218763232,
-0.1847559214,
0.1945414841,
0.2576346695,
0.0969121158,
-0.0571925901,
-0.2658848166,
-0.0637664795,
0.1105752736,
0.2781269252,
-0.3594802022,
0.1945617497,
0.0019449443,
-0.1968544126,
-0.3035462499,
0.0432978533,
-0.0020646229,
-0.0313552655,
0.0415119864,
-0.1057240069,
0.1028998047,
-0.1994988024,
-0.1225188524,
0.0027354099,
-0.1741220951,
0.2056174129,
0.2162728161,
0.0856301188,
-0.1431401372,
0.1288760304,
0.0778541714,
-0.0992792845,
0.1666502357,
-0.1030003056,
-0.0183249339,
-0.1320112348,
-0.25421229,
-0.0467151552,
-0.0375109278,
-0.0053704605,
-0.0627387986,
-0.1830398142,
0.0345914736,
-0.0360737815,
0.1088378578,
-0.1634373665,
0.2397163957,
-0.0484839752,
-0.4128636718,
-0.1474093497,
-0.0148841208,
-0.1394735724,
0.0897449404,
0.6010736823,
-0.084356077,
0.1415130347,
-0.1657430977,
-0.1212155893,
0.1633105278,
-0.0195766389,
-0.1055761129,
0.0884214044,
0.1080306843,
-0.140591234,
0.071951367,
0.080187209,
0.1892982423,
-0.2042858452,
0.2494802922,
0.014789395,
-0.2428175807,
-0.1787459701,
0.3136511445,
-0.0418704376,
-0.5465004444,
-0.0762108564,
0.6240941286,
-0.0148736276,
-0.0354615897,
0.1351903975,
-0.0337277055,
-0.1267390251,
-0.1285329312,
-0.0070464313,
0.3449833393,
-0.431805253,
-0.1866946816,
-0.3239616156,
0.1120490432,
0.1348622143,
0.2293366194,
-0.175404653,
0.0672391579,
0.1419584006,
0.0284111872,
0.2154879272,
0.0268195122,
-0.2289342135,
-0.0001928508,
-0.0042732954,
-0.1134463176,
0.0808870345,
0.2780288756,
0.1063638777,
-0.0669074431,
-0.1142903566,
0.1946757436,
-0.2612954974,
-0.0444032624,
-0.2252386063,
-0.1810872257,
0.1740025431,
0.4263752103,
0.45750314,
-0.2117215097,
0.0510217287,
-0.1381462365,
0.0895141065,
-0.0357858427,
0.2193818241,
0.1367525458,
0.1556398124,
0.1583778411,
0.0518692359,
-0.2809581459,
-0.1513508856,
-0.0058424994,
0.243633002,
0.3482485712,
-0.0044398978,
-0.0971556529,
-0.0817780793,
-0.1140728593,
0.0308290105,
-0.1058607548,
0.2170850635,
-0.1768061966,
0.0776405632,
0.1714373976,
-0.2573437691,
0.2146838903,
-0.3896971345,
0.3276171088,
0.1842178404,
0.2867546678,
-0.0657102913,
-0.0608384497,
0.1710824817,
0.3616930842,
-0.150044173,
0.011408519,
0.0230691545,
-0.0033255666,
-0.2483471334,
-0.0362365097,
0.2523277998,
0.392321229,
0.3120623231,
-0.4238719344,
0.2985503972,
-0.0272490717,
0.0875369608,
-0.1284647733,
-0.1620542407,
0.4090010226,
-0.0216232724,
0.0647429079,
0.006024383,
-0.0517210551,
-0.0408728458,
-0.0209088475,
0.0589908957,
0.1096346825,
0.3607464433,
-0.1972749531,
0.2059568763,
0.0017743949,
-0.1617478132,
0.1815607697,
0.1853685826,
-0.0686453581,
0.2047094703,
0.2270731926,
-0.362662077,
-0.141624853,
-0.0496311411,
0.0105184764,
0.279979229,
0.5136609077,
-0.0318665393,
-0.1047909856,
0.0550831966,
-0.3672752082,
0.0804234147,
0.3299197555,
0.0532735921,
0.0742290169,
0.2775608897,
0.2161091119,
-0.2416412681,
-0.1270564198,
0.1679585427,
-0.0353841744,
-0.0167418718,
-0.1019515544,
-0.0277995393,
-0.3347746134,
0.0467792116,
0.0481051579,
-0.0874385685,
-0.2642140985,
0.2252804488,
-0.2067920864,
0.0417873487,
0.0604248047,
-0.3150881529,
0.5391521454,
-0.2429106534,
0.0756279752,
-0.0991197824,
-0.2081798762,
-0.2126779556,
0.3141339123,
0.0941994935,
-0.0847783983,
0.4556825161,
-0.0665523931,
0.2534090281,
-0.1913885027,
-0.5189397931,
-0.0148551445,
-0.1665453315,
-0.0432559662,
-0.1463809162,
-0.164710924,
0.0170950666,
-0.1085617766,
-0.0551759936,
-0.1354308873,
-0.1729182452,
-0.0820490047,
-0.1282363683,
-0.2330132574,
-0.0639265329,
-0.6488698721,
-0.3751606941,
-0.0966442823,
0.1201147437,
0.024350442,
-0.0177140124,
0.2662028074,
-0.0593328886,
0.0211566091,
-0.1397209466,
0.1283469796,
-0.0776318759,
-0.2690486312,
0.1993800104,
-0.1055579931,
-0.2119161785,
-0.1357290298,
-0.0527597293,
-0.0643499345,
-0.0682600215,
-0.5273971558,
0.1693694592,
-0.1972026378,
0.1870901287,
0.1181498021,
-0.0900439173,
0.3759340644,
0.2685986757,
-0.1958194077,
0.0663097352,
-0.0772468299,
-0.0818638355,
0.0512129627,
0.2883864343,
-0.3087561131,
0.1018722057,
0.2857590616,
0.5518405437,
0.037003912,
-0.1277290136,
0.0581871904,
0.2767518461,
0.3315047026,
-0.0084971227,
-0.3893319666,
0.2839774489,
-0.1347842515,
0.1779323518,
0.323938936,
0.1873804182,
-0.3543052077,
-0.2062397003,
0.0417385772,
-0.272487253,
-0.0839294642,
0.2441463023,
-0.1769729555,
0.2626495957,
0.0470928475,
-0.0891998857,
-0.2200293094,
-0.4361050427,
-0.1354858726,
0.1896086037,
0.160781458,
-0.1956531256,
-0.6076632142,
0.2148035914,
-0.4611174464,
0.106519565,
0.1472973526,
-0.0778759718,
-0.1626665443,
0.1421454698,
-0.1019607186,
0.3258801401,
0.1027676314,
-0.4636116028,
-0.3247771859,
0.2446567267,
0.0299684256,
-0.0822089165,
0.1484399736,
-0.4467481375,
0.0217907876,
0.2362398952,
0.0361281484,
0.104946211,
-0.0590051226,
0.4637441039,
-0.0272752773,
0.0316437483,
-0.287812829,
0.2964060605,
0.0648154169,
-0.1597723961,
-0.02879145,
0.0629827753,
0.0637435541,
-0.1971364319,
0.0318071321,
0.1918148845,
0.0667747185,
0.3971684277,
-0.2791353166,
-0.3446132541,
0.1628170013,
0.2187757194,
0.067048192,
0.0086490735,
0.3463254869,
0.4330372214,
-0.1477715969,
-0.5273459554,
-0.049402386,
-0.1409040391,
0.4833731353,
0.342931807,
0.3617252111,
0.2523904741,
-0.1165615171,
-0.1228625625,
-0.0720190257,
0.2508352697,
0.127061069,
-0.0357371718,
-0.5171095729,
-0.3428186774,
0.3212038875,
-0.0887968913,
-0.0528661981,
-0.037181776,
0.1858058423,
-0.1782038361,
0.1393807679,
-0.0054330453,
0.9393486977,
-0.0167497434,
0.2177586406,
-0.2964959443,
-0.1543393582,
0.4936575294,
-0.286714524,
0.1672137231,
-0.0426427275,
-0.1965600252,
-0.0001620613,
-0.0425067581,
0.0105465986,
0.3882579207,
0.1059509963,
0.2221494615,
0.2518792152,
0.1419558078,
0.0797019526,
0.170551762,
0.0826379284,
-0.4323706031,
0.0679335892,
0.289198786,
0.0313086212,
0.2347819954,
-0.0014483668,
0.0132838823,
-0.1919446588,
0.1294080913,
-0.6016507149,
-0.0803750157,
-0.1888516545,
0.0674075931,
0.0226123296,
-0.4113131762,
0.5069012642,
0.2674864531,
0.4851579964,
0.1461801827,
-0.2111538202,
0.0121581666,
-0.2298673391,
-0.0999069363,
0.2072235048,
-0.1449709833,
0.3241987228,
-0.0038157478,
-0.2325268239,
0.1667744964,
0.0671093911,
-0.134679392,
-0.4355968833,
-0.3422698975,
0.2398144603,
-0.3440448046,
0.2265375108,
0.2108396441,
-0.0073699802,
-0.2803477645,
0.2544867992,
0.2258090377,
0.2485796958,
0.1272222698,
0.1870502681,
-0.0966893584,
-0.3992342353,
0.2455761135,
0.1889496297,
-0.2624403834,
0.3753581047,
0.4487672746,
-0.2225976735,
-0.3211377859,
0.2563748062,
0.2719465792,
-0.23475191,
-0.0509392694,
-0.1291606128,
-0.0731909648,
0.1580409557,
0.2855266333,
0.3492251337,
-0.2070112377,
0.0567536503,
-0.1386404932,
-0.0904973745,
0.2378676236,
-0.0784674287,
0.0557266809,
-0.1956430972,
0.1426938921,
0.073302716,
0.1949747652,
-0.4472539425,
0.1631423235,
0.1436946094,
0.0508332103,
0.2079169005,
-0.0913315043,
0.1202334166,
-0.2043103278,
0.1457258165,
0.0205734111,
-0.0671783239,
-0.3357700408,
-0.0075487532,
0.1071918085,
0.0622839071,
-0.0503345504,
0.0278251842,
0.117808722,
-0.169654727,
-0.1041067988,
-0.1119067967,
0.0892318413,
0.1002389789,
0.3928531408,
-0.2086254954,
0.0107551347,
0.0919551477,
0.0781636685,
-0.3490189016,
0.3264138699,
0.2692593932,
0.1559085846,
0.4530671239,
0.0773400366,
-0.1119282916,
0.1587598026,
0.1464136541,
-0.0920318514,
0.6272503138,
-0.2160810679,
0.2297981232,
0.4485687912,
0.1351353377,
-0.1592939794,
-0.1255428046,
-0.0036730729,
0.0795668662,
0.341350317,
-0.3197435439,
-0.1428834498,
-0.0598407425,
0.1881299615,
0.0759577081,
0.2066176236,
0.2478872091,
0.0535619259,
0.2319906205,
0.0826103389,
0.5046772361,
-0.1222790033,
0.2788363397,
-0.0128223728,
0.1634681076,
-0.1063462347,
0.2626693845,
0.1599369645,
0.0391114838,
0.2669234574,
0.0883877724,
0.458147198,
-0.13923949,
0.2407556325,
0.2345953584,
-0.1436108351,
0.3404219747,
0.2780049145,
-0.12572442,
0.220505774,
-0.0631452799,
0.2299710065,
-0.1750207394,
0.0492614917,
-0.1364423931,
-0.0477988571,
-0.1134299412,
0.0578447394,
-0.035177473,
-0.3497604132,
-0.0415521488,
-0.1292924732,
-0.2964369059,
-0.3324360549,
0.1411337852,
-0.06286221,
-0.189195171,
-0.5732409358,
0.2355664819,
0.1159092039,
0.4328241348,
-0.2088290751,
-0.0516190156,
0.1438403875,
-0.1780404449,
0.1907115579,
0.4758202434,
0.2004233003,
-0.171905756,
-0.1040593684,
0.1188343167,
-0.2416639924,
-0.1992034316,
0.177010566,
0.2362861931,
0.3595469594,
0.1639281511,
0.0058339685,
0.2157751173,
-0.1195165664,
0.1666228175,
0.1374996006,
-0.0744857639,
-0.2650488019,
0.0808216184,
0.1331866086,
-0.2794406116,
-0.1732407957,
-0.0223395973,
-0.22704117,
-0.2063816786,
0.4948807657,
-0.1400982291,
0.0367837213,
-0.0952352881,
0.1659815907,
-0.1450922638,
0.2787548006,
0.3749409318,
-0.2043955624,
-0.1946484447,
-0.0743003711,
-0.0456002392,
-0.1837635189,
0.1418144107,
0.2079697847,
-0.2435239255,
0.0404482484,
0.2586272359,
0.2225129902,
-0.3685131371,
-0.0740941465,
-0.1136292815,
0.0377682596,
-0.5360794663,
-0.0562279075,
0.1630549729,
0.2559029162,
-0.0167484358,
0.1442199349,
-0.1042818129,
-0.0879721418,
0.0968449414,
-0.4222561419,
0.106496498,
0.1884109974,
0.1729869545,
0.1173985004,
0.0587841868,
0.3530173302,
-0.0459755547,
-0.117947191,
-0.0879016668,
-0.288590163,
-0.0794681162,
0.3862178624,
0.0675956458,
0.336640656,
-0.2556753457,
-0.3060521185,
0.2978150249,
0.0483827889,
0.020998098,
-0.1510127485,
-0.4657729268,
-0.0059741177,
0.0238204002,
-0.0556562766,
0.1521777213,
0.0178645197,
0.0192329902,
-0.1478468478,
-0.1118667722,
-0.3519077003,
0.0722220242,
-0.0022423454,
0.1285910606,
-0.3013215363,
0.1177308112,
0.3662576377,
0.2721978724,
-0.58006531,
0.012166366,
0.4983741939,
-0.1462720335,
-0.0521158352,
0.4400005341,
0.185311377,
-0.0742068738,
-0.1611200869,
0.2752126455,
-0.2585214376,
-0.2241857946,
-0.1401054114,
-0.2096579373
] |
https://github.com/huggingface/datasets/issues/353 | [Dataset requests] New datasets for Text Classification | On the Amazon Reviews dataset, the original UCSD website has noted these are now updated to include product reviews through 2018 -- actually quite recent compared to many other datasets. Almost certainly the largest NLP dataset out there with labels!
https://jmcauley.ucsd.edu/data/amazon/
Any chance someone has time to onboard this dataset in a HF way?
cc @sshleifer | We are missing a few datasets for Text Classification which is an important field.
Namely, it would be really nice to add:
- TREC-6 dataset (see here for instance: https://pytorchnlp.readthedocs.io/en/latest/source/torchnlp.datasets.html#torchnlp.datasets.trec_dataset) **[done]**
- Yelp-5
- Movie review (Movie Review (MR) dataset [156]) **[done (same as rotten_tomatoes)]**
- SST (Stanford Sentiment Treebank) **[include in glue]**
- Multi-Perspective Question Answering (MPQA) dataset **[require authentication (indeed manual download)]**
- Amazon. This is a popular corpus of product reviews collected from the Amazon website [159]. It contains labels for both binary classification and multi-class (5-class) classification
- 20 Newsgroups. The 20 Newsgroups dataset **[done]**
- Sogou News dataset **[done]**
- Reuters news. The Reuters-21578 dataset [165] **[done]**
- DBpedia. The DBpedia dataset [170]
- Ohsumed. The Ohsumed collection [171] is a subset of the MEDLINE database
- EUR-Lex. The EUR-Lex dataset
- WOS. The Web Of Science (WOS) dataset **[done]**
- PubMed. PubMed [173]
- TREC-QA. TREC-QA
- Quora. The Quora dataset [180]
All these datasets are cited in https://arxiv.org/abs/2004.03705 | 56 | [Dataset requests] New datasets for Text Classification
We are missing a few datasets for Text Classification which is an important field.
Namely, it would be really nice to add:
- TREC-6 dataset (see here for instance: https://pytorchnlp.readthedocs.io/en/latest/source/torchnlp.datasets.html#torchnlp.datasets.trec_dataset) **[done]**
- Yelp-5
- Movie review (Movie Review (MR) dataset [156]) **[done (same as rotten_tomatoes)]**
- SST (Stanford Sentiment Treebank) **[include in glue]**
- Multi-Perspective Question Answering (MPQA) dataset **[require authentication (indeed manual download)]**
- Amazon. This is a popular corpus of product reviews collected from the Amazon website [159]. It contains labels for both binary classification and multi-class (5-class) classification
- 20 Newsgroups. The 20 Newsgroups dataset **[done]**
- Sogou News dataset **[done]**
- Reuters news. The Reuters-21578 dataset [165] **[done]**
- DBpedia. The DBpedia dataset [170]
- Ohsumed. The Ohsumed collection [171] is a subset of the MEDLINE database
- EUR-Lex. The EUR-Lex dataset
- WOS. The Web Of Science (WOS) dataset **[done]**
- PubMed. PubMed [173]
- TREC-QA. TREC-QA
- Quora. The Quora dataset [180]
All these datasets are cited in https://arxiv.org/abs/2004.03705
On the Amazon Reviews dataset, the original UCSD website has noted these are now updated to include product reviews through 2018 -- actually quite recent compared to many other datasets. Almost certainly the largest NLP dataset out there with labels!
https://jmcauley.ucsd.edu/data/amazon/
Any chance someone has time to onboard this dataset in a HF way?
cc @sshleifer | [
-0.0198357031,
0.1645355225,
-0.1285864711,
0.1226925701,
0.1399306506,
0.2225343138,
0.1768299043,
0.0815879181,
0.0018180311,
-0.1834152043,
-0.2986066341,
-0.0017469302,
-0.2310987115,
0.2553617656,
0.1400382817,
-0.2117388546,
-0.020114921,
-0.0759112462,
-0.124643378,
-0.2163358331,
-0.1675651073,
0.2093164623,
-0.0892352164,
-0.244480744,
-0.3734586835,
-0.129722327,
-0.1804073304,
0.1245356798,
-0.2303670496,
-0.5034517646,
0.1528971791,
0.2555030286,
0.2345859408,
0.3584260941,
-0.0001047258,
-0.3163301945,
0.0129641071,
-0.0361248627,
-0.2524426877,
-0.2285140604,
0.0480056852,
-0.4326215982,
-0.1093344241,
-0.011556223,
-0.0414829329,
-0.0352775007,
0.0633286908,
-0.0734608173,
-0.0728206336,
0.2706286907,
0.2498830855,
-0.0968181267,
-0.0141122192,
-0.1115364209,
0.4056474268,
0.5342847109,
-0.2694161236,
-0.0557013899,
0.5810776949,
-0.0698631853,
-0.1388195753,
0.280479908,
-0.2075153589,
-0.1526286304,
0.3274661303,
0.0953848362,
-0.1789129376,
-0.3495910764,
-0.0063553401,
0.3909527063,
0.7599868178,
-0.2851525843,
-0.4934871495,
-0.3570118546,
0.120449841,
-0.2448965013,
-0.165516749,
0.2134288847,
-0.02702583,
0.0201326702,
-0.1747704148,
-0.2600164711,
-0.2148727477,
0.296145618,
0.327444762,
0.3037994802,
-0.0029601157,
-0.2268946171,
0.0062389495,
0.0804794431,
0.3732759953,
-0.2820253074,
0.1854220927,
0.0842641816,
-0.2543907464,
-0.2538294792,
0.0419816002,
-0.0419491641,
0.0082060173,
0.0299476869,
-0.2754575312,
0.0522342212,
-0.2359440029,
-0.0820203424,
-0.0114371646,
-0.104495734,
0.1859625429,
0.2776843607,
-0.0064375345,
-0.1476680934,
0.1175473779,
0.0522242598,
-0.1956690252,
0.179993704,
-0.1484035254,
-0.1301528364,
-0.3069110811,
-0.3268982172,
-0.0546192564,
-0.0930701345,
-0.0276658088,
-0.037200667,
-0.1610668749,
0.1006104723,
-0.0305315685,
0.1423638463,
-0.0749845356,
0.2043557316,
-0.0643114075,
-0.2759669423,
-0.1067781299,
-0.013269214,
-0.0978113934,
0.1325535774,
0.5589259863,
0.0023388173,
0.1266877502,
-0.2371994555,
-0.0930319279,
0.1769452393,
-0.1804190874,
-0.0499143004,
0.0144961365,
0.123701483,
-0.0877869353,
0.0635392368,
0.0813058764,
0.1484272778,
-0.2187972963,
0.1358944923,
0.0126359425,
-0.1809809953,
-0.2063609064,
0.2547239959,
0.0151915401,
-0.5899581909,
-0.1809224486,
0.5644587874,
-0.0478292592,
-0.1022185385,
0.1412488073,
-0.0144037595,
-0.1507673264,
-0.0756463856,
-0.1472387314,
0.3579088748,
-0.4638133049,
-0.286850512,
-0.3036379814,
0.178958416,
0.1972147077,
0.1546199322,
-0.1420155615,
0.1414173692,
0.0884596333,
0.0173452795,
0.1978501379,
-0.0281156786,
-0.2213231027,
0.0716078877,
-0.0373299718,
-0.2037149072,
0.1091812253,
0.3472162485,
0.1259889603,
-0.1429603547,
0.0136766676,
0.1798773408,
-0.1910176724,
-0.0351376906,
-0.2234782726,
-0.1538221538,
0.1330547482,
0.4792046845,
0.5008532405,
-0.1846707165,
0.0178317465,
-0.0566970631,
0.1833344996,
0.0148106767,
0.1735475361,
0.2245545387,
0.1589925289,
0.3652985692,
0.0200955272,
-0.3260863721,
-0.1582815647,
-0.0368315764,
0.1321995258,
0.3238746822,
0.0837290436,
-0.129998073,
-0.1620241851,
-0.0727361143,
0.0639775172,
-0.0884792805,
0.1685641706,
-0.1823874563,
0.0802147016,
0.0695329532,
-0.2511686981,
0.2445217222,
-0.3218908906,
0.3489342928,
0.2296546847,
0.3098437786,
-0.063830182,
0.0823659301,
0.2734518647,
0.4851836562,
-0.0561850704,
-0.0047938637,
0.0865126774,
-0.0507349707,
-0.331142664,
-0.0520033129,
0.4012407064,
0.34061867,
0.2171980888,
-0.4308606982,
0.2395129204,
-0.0908188969,
0.070235461,
-0.2257074416,
-0.1770806909,
0.3826262355,
-0.0643695667,
0.1074864268,
0.0163399875,
0.0191109031,
-0.0575711317,
-0.0584996045,
0.1567185372,
0.1226612106,
0.477445215,
-0.240242213,
0.2156095505,
-0.056074366,
-0.1531547755,
0.3102395535,
0.2410908639,
-0.0261271149,
0.1495762169,
0.3112009466,
-0.3767236769,
-0.1238451451,
-0.0405463427,
0.0679407567,
0.2094610631,
0.5444111824,
-0.0162582919,
-0.0429847091,
-0.0633232296,
-0.2928967178,
0.003945969,
0.2457318455,
0.1017830521,
0.0940496847,
0.3382118642,
0.2782357335,
-0.3023326397,
-0.257551223,
0.1384814084,
-0.020799024,
0.0421209708,
-0.0394283347,
-0.0457466282,
-0.4623198807,
-0.0133942217,
-0.0140034445,
-0.1270574778,
-0.3637329936,
0.3001459837,
-0.0999474674,
0.0934823304,
0.0719559863,
-0.3957874477,
0.5337896943,
-0.3382837772,
-0.0312037021,
-0.0873489007,
-0.2671611011,
-0.2508143485,
0.2313466966,
0.1402769387,
-0.0088541694,
0.4727495015,
0.0387484133,
0.2326542288,
-0.1457146704,
-0.5765917301,
-0.0559279807,
-0.1253764629,
-0.1209647432,
-0.1876252592,
-0.215500325,
0.0479628444,
-0.167370677,
-0.1397537589,
-0.1203830168,
-0.1475426257,
-0.0329844654,
-0.249317944,
-0.1951201856,
-0.0326807648,
-0.5112286806,
-0.3697475493,
-0.1461065263,
0.1025941521,
0.0358287543,
0.0933143795,
0.268509388,
-0.2643092573,
0.0148303248,
-0.1242643744,
0.0666402429,
-0.0374446698,
-0.1886550784,
0.1413716674,
-0.1202241927,
-0.2281951904,
-0.1240064353,
-0.0967824683,
-0.0756764114,
-0.10281533,
-0.667473197,
0.2082008868,
-0.1985079199,
0.1226018071,
0.1556162983,
-0.1405585706,
0.406668365,
0.2476305366,
-0.1814629436,
-0.0203109533,
-0.1293234974,
-0.0327687748,
0.0750854686,
0.371226579,
-0.3001052141,
0.0803214535,
0.2399804145,
0.5578199029,
0.0438776612,
-0.0351224579,
0.1014532,
0.3303008974,
0.2996342182,
0.0231630579,
-0.4512146711,
0.286590755,
-0.1416733265,
0.2059864402,
0.3343003988,
0.2041309327,
-0.4348143339,
-0.1071692035,
0.1427899748,
-0.2731652558,
-0.0399806164,
0.2332309783,
-0.2175332457,
0.2240016311,
0.1042257324,
-0.1819125116,
-0.3055630624,
-0.5037223697,
-0.1082320809,
0.2369357198,
0.1736888587,
-0.0743043497,
-0.6273702979,
0.2053290755,
-0.3945928812,
0.1400630176,
0.1463169605,
0.0674418658,
-0.2749200463,
0.2281351686,
-0.082759276,
0.2678700686,
0.128472805,
-0.4005751014,
-0.2270064205,
0.2957069874,
0.1561955065,
-0.0684423521,
0.1542136073,
-0.3768275976,
0.0599437691,
0.2813211679,
0.0173198357,
0.0865546316,
-0.0921223909,
0.4317035377,
-0.0573154464,
0.0095435381,
-0.2893532217,
0.3814586401,
0.0226723701,
-0.1425519884,
-0.0904993862,
-0.0130272955,
0.1536349952,
-0.2646357119,
0.0852350295,
0.1945632994,
0.0428823456,
0.3212282062,
-0.4165339172,
-0.3929338455,
0.2106628269,
0.1838888824,
0.011394687,
0.0309398063,
0.2688942552,
0.5306915641,
-0.1769510657,
-0.4539091587,
0.0367107652,
-0.0552648939,
0.4870547056,
0.345284909,
0.4270689487,
0.3030509949,
-0.0884713531,
-0.0477684848,
-0.118552357,
0.1891391724,
0.0697002485,
-0.0332249776,
-0.5455819368,
-0.2410627902,
0.4245167673,
-0.0938085839,
-0.0524286181,
-0.0012591565,
0.2747277617,
-0.1869431734,
0.2298604697,
-0.0704731196,
0.9891272783,
-0.0320348069,
0.2314076424,
-0.3351996839,
-0.1499942392,
0.5273062587,
-0.3390080035,
0.1651446819,
-0.1366243958,
-0.0622485019,
-0.0773580149,
0.0059617087,
-0.1355396509,
0.4320209622,
0.2012408972,
0.2437460721,
0.3407816589,
0.0423565023,
0.1266354173,
0.2039077282,
0.0389913917,
-0.5060492754,
0.0213226788,
0.2347000986,
-0.0364864953,
0.3667465746,
-0.004176937,
-0.0057185479,
-0.1408800632,
0.1594285071,
-0.7354981899,
-0.0673656613,
-0.1063630581,
0.1266797632,
0.0681761205,
-0.3045451343,
0.5246518254,
0.1131883338,
0.443544656,
0.0865086541,
-0.2198756635,
-0.0272048861,
-0.2468964159,
-0.1631072462,
0.2093584538,
-0.117196992,
0.3968866765,
-0.0255736038,
-0.1978738606,
0.0845590085,
0.0637759119,
-0.2301932871,
-0.3948073387,
-0.3200413585,
0.1908968389,
-0.2362113297,
0.258821249,
0.3226073384,
-0.0108895525,
-0.3071138263,
0.1961591542,
0.1634348184,
0.2605302036,
0.0353924781,
0.2692895532,
-0.0035229325,
-0.3461028039,
0.2194707394,
0.1676371694,
-0.1958141625,
0.3862885833,
0.5314844847,
-0.2508364916,
-0.2816473544,
0.1999552995,
0.1823791265,
-0.3813151717,
-0.1412219703,
-0.0811862871,
-0.0609696656,
0.2064901888,
0.3244879544,
0.3847548962,
-0.2580206096,
0.0251592249,
-0.3177655339,
-0.1207532287,
0.3003715277,
-0.2548670173,
0.0546793528,
-0.1722332388,
0.225954175,
0.0648070574,
0.3074399531,
-0.3720639944,
0.1942457557,
0.0546495169,
0.009455841,
0.130403474,
-0.0732257366,
0.1413397938,
-0.2162865102,
0.0447177961,
0.022611551,
-0.0884639025,
-0.2534923553,
-0.094813779,
0.1510846317,
0.1035928428,
0.0487663746,
-0.0773819387,
0.06003654,
-0.1753800809,
0.0145293549,
-0.0607479848,
0.0962485969,
0.1225073785,
0.4448111653,
-0.1451951712,
0.0026811175,
0.0493396297,
0.0958279222,
-0.1530479491,
0.3397254944,
0.2522170246,
0.1069645733,
0.375848949,
0.1319260597,
-0.2536734343,
0.2059228718,
0.1825123578,
-0.2143226862,
0.6236367226,
-0.3106364906,
0.3434370756,
0.4052034318,
0.1811952293,
-0.1900017709,
-0.038114734,
0.0210202858,
0.2060127705,
0.2469581366,
-0.3663805127,
-0.2355709225,
-0.0632306337,
0.1820345223,
0.0496906638,
0.159910202,
0.3251378238,
0.0974357277,
0.3078377843,
0.1186229885,
0.4503091872,
-0.14878802,
0.1708051562,
-0.1072044522,
0.1341326237,
-0.0072138179,
0.284710288,
0.2316283435,
0.0425444096,
0.2432038635,
0.1988579929,
0.4407489896,
-0.1563290358,
0.1626000106,
0.2973189354,
-0.2611614466,
0.258197844,
0.2804410458,
0.0506995842,
0.1864681542,
-0.1658569723,
0.3415146172,
-0.2284856439,
-0.0036578812,
-0.0194138736,
0.0028680963,
-0.0493482873,
-0.0062726028,
0.0534829497,
-0.2535125017,
-0.1139499396,
-0.1281632632,
-0.2739525139,
-0.4175280631,
0.1384992898,
-0.1058554053,
-0.1620156765,
-0.7215716243,
0.1422510296,
0.1325695813,
0.44187814,
-0.1659160256,
-0.0574468002,
0.0515810177,
-0.1537545323,
0.1801450104,
0.4200519025,
0.1736368835,
-0.2005616874,
-0.12332277,
0.0051050298,
-0.2862403989,
-0.1789835095,
0.175208956,
0.3023532629,
0.45474419,
0.0118458793,
0.1499174833,
0.1575319171,
-0.0640635937,
0.2059068531,
0.1363329291,
-0.0830259323,
-0.1092211604,
0.2585864663,
0.1475927234,
-0.2569754124,
-0.197755903,
-0.0123414248,
-0.2303879857,
-0.236763984,
0.4216784239,
-0.1355619282,
0.0850250125,
-0.1042156816,
0.1350457668,
-0.0826165378,
0.3175185323,
0.4432279468,
-0.1441829503,
-0.1165919304,
-0.0728255287,
-0.0408161357,
-0.2165641189,
0.0911087543,
0.10532967,
-0.1427566707,
0.0306992829,
0.2910804152,
0.1708276123,
-0.3768723607,
-0.1190773174,
-0.0612900853,
0.0696207732,
-0.4864191413,
0.0100394879,
0.1854382753,
0.2585155368,
-0.0504089519,
0.1169507802,
-0.1581366062,
-0.0232278369,
0.0155782253,
-0.389649868,
0.1958056837,
0.2118861675,
0.1357302666,
0.0224184748,
-0.0431520268,
0.4692186713,
0.0124555826,
-0.0873519853,
-0.1607505381,
-0.3508631289,
-0.087844789,
0.2033870667,
-0.0014766608,
0.4487059116,
-0.261857301,
-0.2969007492,
0.3471092582,
-0.0083513446,
-0.01225169,
-0.0826239884,
-0.4484744072,
0.0859546438,
-0.1286577135,
-0.0025238954,
0.2685825825,
0.1318814754,
0.1355551481,
-0.1389170438,
-0.0911825746,
-0.3851819634,
0.1371690482,
-0.0214328915,
0.1109302565,
-0.1378244907,
0.1309031844,
0.4573970735,
0.1223888174,
-0.6342871785,
-0.0298266634,
0.429725647,
-0.1390912384,
0.075290367,
0.4732364416,
0.0454108715,
-0.0811371058,
-0.1597829014,
0.2771235108,
-0.316470325,
-0.2770518959,
-0.240664646,
-0.1742230803
] |
https://github.com/huggingface/datasets/issues/347 | 'cp950' codec error from load_dataset('xtreme', 'tydiqa') | This is probably a Windows issue, we need to specify the encoding when `load_dataset()` reads the original CSV file.
Try to find the `open()` statement called by `load_dataset()` and add an `encoding='utf-8'` parameter.
See issues #242 and #307 | ![image](https://user-images.githubusercontent.com/50871412/86744744-67481680-c06c-11ea-8612-b77eba92a392.png)
I guess the error is related to python source encoding issue that my PC is trying to decode the source code with wrong encoding-decoding tools, perhaps :
https://www.python.org/dev/peps/pep-0263/
I guess the error was triggered by the code " module = importlib.import_module(module_path)" at line 57 in the source code: nlp/src/nlp/load.py / (https://github.com/huggingface/nlp/blob/911d5596f9b500e39af8642fe3d1b891758999c7/src/nlp/load.py#L51)
Any ideas?
p.s. tried the same code on colab, that runs perfectly
| 38 | 'cp950' codec error from load_dataset('xtreme', 'tydiqa')
![image](https://user-images.githubusercontent.com/50871412/86744744-67481680-c06c-11ea-8612-b77eba92a392.png)
I guess the error is related to python source encoding issue that my PC is trying to decode the source code with wrong encoding-decoding tools, perhaps :
https://www.python.org/dev/peps/pep-0263/
I guess the error was triggered by the code " module = importlib.import_module(module_path)" at line 57 in the source code: nlp/src/nlp/load.py / (https://github.com/huggingface/nlp/blob/911d5596f9b500e39af8642fe3d1b891758999c7/src/nlp/load.py#L51)
Any ideas?
p.s. tried the same code on colab, that runs perfectly
This is probably a Windows issue, we need to specify the encoding when `load_dataset()` reads the original CSV file.
Try to find the `open()` statement called by `load_dataset()` and add an `encoding='utf-8'` parameter.
See issues #242 and #307 | [
-0.2610891461,
-0.0766246244,
-0.0532213822,
0.1464463174,
0.3858147562,
0.0102547258,
0.025446631,
0.176357314,
-0.1791245937,
0.0838487968,
0.1790159941,
0.4352129698,
0.0588610545,
0.3545268178,
0.2403868884,
0.0416259281,
0.0944177657,
0.3228259981,
0.0393951386,
0.0472039357,
-0.3697527051,
0.1955367327,
-0.1032145768,
0.052232638,
-0.2589357495,
-0.0607873648,
0.0105512142,
0.2736924291,
-0.2823360562,
-0.5056849718,
0.2017234266,
-0.0907640904,
0.2071505189,
0.2249621302,
-0.0001033256,
-0.070025757,
0.2572825253,
-0.2035378516,
-0.0729972646,
-0.3186077178,
-0.1721761823,
-0.3807743788,
0.0590984002,
-0.2513725162,
0.0154253393,
0.298325479,
-0.0178566016,
-0.0695010573,
0.4933338463,
0.3671521246,
0.3225337267,
0.1151864454,
-0.1204386726,
0.1490380168,
-0.0000739936,
0.0481821224,
-0.0301628895,
0.4893271923,
0.1714178026,
-0.2337498367,
0.0854416862,
0.157532379,
-0.2183981091,
-0.1051617637,
0.0754631609,
0.1099672765,
-0.1662447304,
-0.3456839323,
0.1217202842,
0.0935377851,
0.2599756718,
-0.2827700675,
-0.03743596,
0.1049030274,
0.1600741744,
-0.6936118007,
0.2831139565,
0.3683129251,
-0.2686056495,
0.1347335279,
0.0133038834,
0.1663535535,
0.0272234827,
-0.0592777655,
0.0735417008,
-0.0005280003,
-0.1928128749,
-0.0872904062,
0.2068820298,
0.0006388407,
0.1293700933,
0.0012708083,
-0.1845572293,
0.2111003697,
-0.225935474,
-0.0672174543,
-0.1538409144,
0.0041099079,
-0.1760222018,
-0.1566055119,
0.5614209175,
0.1108472869,
0.047019273,
0.3558765352,
0.0998754799,
0.1248824149,
-0.2047815621,
0.1299195439,
0.253900528,
-0.0032391772,
0.2112280428,
0.002760618,
-0.1976269186,
-0.3183395863,
-0.2264608145,
0.3368729651,
0.1330851465,
-0.1672976166,
-0.4322226346,
0.1432409585,
0.1057568341,
0.1413567066,
0.0213064216,
0.2131027132,
0.1955600083,
0.2922653854,
0.0155843645,
0.2012346238,
-0.349791944,
-0.2578397691,
-0.046728842,
0.2218291163,
-0.3768263459,
-0.1314049065,
0.2358991504,
-0.1387220621,
0.1109037623,
0.2852520347,
0.1412975639,
-0.1839263886,
-0.0799178705,
-0.1549811959,
0.0537382886,
0.1382839531,
0.0759721994,
0.1385125369,
0.1670150906,
-0.3159832358,
-0.0821787417,
0.1015480757,
-0.4818613529,
-0.0225308537,
-0.0588509142,
0.2757770121,
-0.0652818903,
-0.0694928169,
-0.5188578367,
0.1689958572,
0.0898346007,
-0.3107697368,
0.0260850079,
-0.2124460191,
-0.1478362083,
-0.1852398068,
0.1550227106,
0.5013543367,
-0.5585446954,
0.1694433838,
0.2123720944,
0.0155498721,
0.318465203,
0.1244617999,
-0.0968642682,
-0.1430571973,
-0.1716031283,
-0.021770902,
0.2493202537,
-0.2651795447,
-0.2226247191,
0.3089698553,
-0.090182893,
-0.0586126447,
0.0460299775,
-0.106566079,
0.1471287757,
-0.1886292994,
0.1144839525,
0.3725191653,
-0.0196820796,
0.2809729874,
-0.219192192,
-0.1849874854,
0.2239280641,
-0.0044939592,
-0.2701481581,
-0.1170026064,
0.2115182579,
0.0669502616,
0.1973384917,
-0.1416929662,
-0.2056808472,
0.1531882286,
0.2411945462,
-0.2049694657,
-0.1022406146,
0.2412945032,
0.0358478874,
-0.0403327793,
-0.256057471,
0.1637055576,
-0.3069274724,
-0.1502539665,
-0.1704843789,
0.0351579562,
-0.36801368,
-0.2693883479,
0.2428940982,
-0.0371173471,
-0.0683984607,
-0.0123576969,
-0.0955901295,
0.2467948049,
-0.0134065673,
-0.0126048364,
-0.2271225452,
0.1789414734,
-0.2131494731,
-0.186883986,
0.3183473349,
0.2955128551,
0.1668151468,
-0.1177359372,
-0.2245186269,
0.2406990081,
0.0372980498,
0.3637149334,
-0.2209499478,
-0.2943727672,
0.4554789364,
-0.4603480101,
0.0675633997,
0.4531861544,
0.295717299,
-0.08738143,
0.2294560075,
0.3592467308,
-0.1594863236,
-0.0167383514,
-0.072595492,
-0.06143016,
0.2579917312,
0.084889248,
0.1084827557,
-0.1574769169,
0.3592939079,
0.6213693023,
0.2019228637,
-0.0257060453,
-0.1232931092,
0.0141804367,
0.4981154203,
-0.0518533811,
-0.1169800609,
0.089762181,
0.0535768718,
-0.1114099473,
0.0894827694,
0.0712491423,
0.2273185253,
-0.1056674346,
-0.3125162125,
0.2457751334,
0.0206148662,
-0.2307857871,
0.1905181706,
-0.1344037652,
-0.0368113741,
-0.0156290401,
0.0608470254,
0.1106142923,
-0.2907760739,
-0.1287159026,
0.1040018797,
0.1776341647,
-0.321040988,
0.3218945861,
-0.4479726851,
-0.3783264458,
-0.3087696135,
0.2326161265,
-0.1433223784,
0.0219255984,
-0.1595177799,
0.0173546728,
0.063120082,
0.1683903039,
-0.2043867707,
0.040057227,
-0.0683099926,
-0.1754353493,
0.1225206554,
-0.2182811797,
-0.262029171,
0.155913353,
0.4287243187,
-0.0599659458,
0.0835667327,
-0.3489724398,
0.1415617615,
0.2766744494,
-0.1465335041,
0.1601234227,
-0.2612072825,
0.1343978643,
-0.037187513,
0.0921341702,
-0.0619951673,
-0.4000650346,
0.1540006399,
-0.0559686087,
-0.0773291513,
0.1851529777,
0.0075844675,
-0.3202285469,
-0.2613765001,
-0.1141121387,
-0.4982915223,
-0.3325832486,
-0.1811804026,
0.0014526248,
0.101674445,
0.3449440598,
0.1368627399,
0.0497556217,
0.2142151892,
-0.1142486855,
-0.0944054276,
-0.2219959199,
0.3507092297,
-0.3976942897,
-0.5242290497,
0.0896817148,
-0.0443612561,
0.4002032578,
-0.2082482278,
-0.1853059828,
-0.0273386128,
-0.1131974384,
0.1191593334,
0.0449812636,
0.1042202637,
-0.0041820444,
-0.0227978565,
-0.0459146164,
-0.1186300069,
-0.1014540195,
-0.1292090267,
0.0962454081,
0.3029592335,
0.0399042778,
0.2478982806,
-0.2661066055,
0.099848114,
0.2606477737,
0.0474695079,
0.5908398628,
-0.1422193646,
0.3743229806,
-0.0816610977,
-0.1248042583,
0.1246359348,
-0.2733379602,
-0.0562201515,
0.2765927911,
-0.1166034415,
-0.2867607474,
-0.3135626316,
0.0396994874,
-0.3513278961,
-0.2961667478,
0.1885455549,
0.0594998859,
0.0969605371,
0.0248504728,
0.1353803277,
0.0701625794,
-0.3088004291,
-0.1110788137,
0.2989729643,
-0.1462356597,
0.1520845741,
-0.152161479,
-0.4839814901,
-0.2414468527,
0.1134495288,
0.1711221635,
0.4359161258,
-0.0367383435,
0.1763124019,
0.0794968307,
-0.119136855,
0.2165209204,
0.135101676,
0.0435078777,
0.1071513146,
0.1585660577,
0.1158136576,
-0.1062517539,
-0.2047526538,
0.1765426099,
0.1213099882,
-0.2626975775,
-0.0457272902,
0.0551602095,
0.0229957439,
0.3702945113,
-0.1329977363,
0.1060528532,
-0.4633557498,
-0.5534037352,
-0.024613902,
-0.1616850197,
0.1898548901,
0.2934005857,
-0.2198518515,
0.0093205124,
0.120200634,
-0.2522867322,
0.2437075377,
0.4230841696,
0.3740915656,
0.1527098566,
-0.0220924765,
-0.1854195297,
-0.072219342,
0.1872950196,
0.7113947868,
0.0337086208,
-0.3642601073,
0.1105944067,
-0.2761210501,
0.3163733482,
0.1974190176,
-0.1727223396,
-0.0785628036,
-0.1281435341,
-0.0657642558,
-0.2221492231,
0.0830027536,
0.2763552666,
0.1747067273,
-0.5603709817,
-0.4825351238,
0.4688641429,
-0.0914609358,
0.1933651119,
0.0365706906,
-0.0631640479,
-0.3073393703,
0.2559741139,
-0.0114887245,
0.8470349908,
0.2099159509,
0.1276678592,
0.2932155728,
0.0173728019,
0.2906724513,
-0.0832251906,
0.2038031071,
-0.2967996895,
-0.1601109207,
-0.0126134306,
0.1855672598,
0.2404242605,
0.0636230186,
-0.3559829891,
0.2242918909,
0.0648611635,
-0.1683226526,
0.1615426838,
0.1692886651,
-0.1898384988,
-0.2559832633,
-0.5498688221,
0.2420229912,
-0.0741748884,
0.0597804263,
-0.0901405215,
-0.2030754089,
0.0201644078,
-0.3251200318,
-0.2977222502,
0.2888046205,
-0.4078465104,
0.1668455154,
-0.2021711916,
-0.6580181122,
0.2853276134,
0.1242900789,
0.1985465884,
0.2002897263,
-0.0216456633,
0.1231298894,
0.2777644396,
-0.0227609314,
-0.0133759286,
0.1191108376,
0.0687002242,
-0.164490521,
-0.0619400889,
0.1669942439,
0.1084959209,
-0.0052967444,
0.4046760201,
0.0390394777,
-0.2194954455,
-0.111711137,
-0.2296896726,
-0.2004290223,
0.1841034889,
-0.0592128783,
0.1926204115,
-0.0688741431,
-0.127904743,
0.00368274,
0.0680622905,
-0.3047738075,
-0.1466594934,
0.0651417449,
-0.0677974671,
-0.1524514854,
0.4950757027,
0.1653574705,
-0.2378002852,
-0.1186074018,
0.2235969156,
-0.1604552567,
-0.4836040735,
-0.0424495414,
0.1999964118,
-0.0120626092,
0.0410431549,
0.6318269372,
-0.0175029226,
0.017241329,
0.1021786332,
-0.4966741204,
-0.2612891793,
-0.068495363,
-0.1012651622,
-0.0446722358,
0.2102419138,
0.343001008,
0.1056418493,
-0.1439816505,
-0.3483979404,
0.0469593182,
-0.0635713488,
0.0744442269,
0.2907149494,
-0.0819435269,
0.1172338352,
0.0607282817,
0.1660139263,
0.3002021611,
-0.02759769,
-0.2418088019,
-0.1697688401,
0.0561317652,
-0.0356496871,
-0.3160919249,
-0.0820616558,
0.0505352542,
-0.0692953095,
-0.0936086774,
0.1222847849,
0.073074311,
0.0730866119,
0.1747055352,
-0.3870046139,
0.1315187812,
-0.0197949633,
0.2080588341,
-0.2156208307,
0.561953187,
0.1797861606,
0.1604508758,
0.049826324,
0.0527412593,
-0.1532722265,
-0.0252488628,
-0.3163553178,
0.0578346625,
0.1277320832,
-0.3855437636,
0.3905307353,
0.1264445037,
-0.0082639791,
0.5075659156,
-0.1379269063,
-0.0211762264,
0.4258253574,
0.2020477355,
-0.3272443116,
0.1057451442,
-0.3296953142,
-0.0640653372,
-0.0720487386,
0.2804109156,
0.2723200321,
-0.1586754024,
0.2167008221,
-0.1451957226,
0.4394039512,
0.1370040625,
0.391492784,
0.4240071177,
0.1557473838,
0.2737902403,
-0.0957097858,
0.12829189,
-0.0470569916,
0.0887829587,
-0.55858922,
0.0297570322,
0.0904519111,
0.1773560345,
-0.1411349475,
-0.3880757689,
-0.0429102778,
-0.129121542,
-0.1982984245,
0.3351871967,
0.1471820772,
0.5732957721,
-0.4751992226,
-0.0534105748,
-0.1215255111,
0.1643478274,
-0.1561282426,
0.0596837103,
0.0776229799,
0.0138264745,
-0.2852063179,
0.1848023385,
-0.0392280295,
0.1242771149,
-0.0761308894,
0.3221029341,
-0.1820150167,
-0.0505411625,
-0.0110676913,
-0.0040787281,
0.0636590272,
-0.0879495367,
0.4701705873,
0.278747499,
0.1963550448,
0.2396333516,
0.0966276899,
0.6247939467,
0.4012522697,
-0.1397325993,
-0.0370991267,
-0.1724214256,
0.062666595,
0.1204679459,
0.0972918272,
0.3171799183,
0.4335699975,
0.1459423155,
0.2074576914,
-0.1358064413,
-0.0845309719,
0.2828326225,
-0.0246577859,
0.0637780875,
0.0951789767,
-0.0357816666,
0.2239774764,
-0.5465281606,
-0.0746002272,
-0.371096313,
0.2854523361,
0.3344532251,
0.0766335726,
0.0316527747,
-0.1154680848,
0.1219319999,
0.1146436557,
0.4839322865,
0.2948760092,
0.0673655421,
-0.1934747547,
-0.0274676159,
-0.7056218386,
0.2235511839,
0.0908994228,
-0.3779623508,
-0.2408954352,
-0.2864881456,
0.0177807342,
0.3394008875,
-0.0403151363,
0.2757698596,
0.0841897428,
0.0604776628,
-0.0808859766,
0.0141545758,
-0.1719046235,
0.0116177071,
-0.2442376614,
-0.2519825697,
0.0690807253,
-0.2601279914,
0.1166034713,
-0.2869594097,
-0.2666416168,
-0.4350649714,
0.0025403486,
0.2772054076,
0.1945087314,
0.4332049191,
-0.2569181025,
-0.1383418292,
-0.1196718067,
-0.1758013815,
-0.0627517104,
0.3558360934,
0.2394199222,
0.061762169,
0.0547003299,
0.1469727755,
-0.3888508677,
0.3169056177,
-0.038078364,
-0.1657898873,
-0.2426063418,
0.0363163799,
-0.0004941598,
-0.0887324214,
0.2033264041,
0.3809025586,
-0.1002786756,
0.1084837094,
-0.1204256043,
-0.4743167758,
0.140409559,
-0.5154397488,
-0.1619220674,
0.135095492,
0.2374833822,
-0.1778979897,
0.1382845044,
-0.4251005054,
0.2577647269,
-0.029769104,
-0.1882053763,
-0.2813649774,
0.2817207575,
-0.3067506552,
-0.1085518599,
-0.0804570839,
0.4227132797,
0.2139987648,
-0.1878925264,
0.1064993739,
-0.317903161
] |
https://github.com/huggingface/datasets/issues/347 | 'cp950' codec error from load_dataset('xtreme', 'tydiqa') | It should be in `xtreme.py:L755`:
```python
if self.config.name == "tydiqa" or self.config.name.startswith("MLQA") or self.config.name == "SQuAD":
with open(filepath) as f:
data = json.load(f)
```
Could you try to add the encoding parameter:
```python
open(filepath, encoding='utf-8')
``` | ![image](https://user-images.githubusercontent.com/50871412/86744744-67481680-c06c-11ea-8612-b77eba92a392.png)
I guess the error is related to python source encoding issue that my PC is trying to decode the source code with wrong encoding-decoding tools, perhaps :
https://www.python.org/dev/peps/pep-0263/
I guess the error was triggered by the code " module = importlib.import_module(module_path)" at line 57 in the source code: nlp/src/nlp/load.py / (https://github.com/huggingface/nlp/blob/911d5596f9b500e39af8642fe3d1b891758999c7/src/nlp/load.py#L51)
Any ideas?
p.s. tried the same code on colab, that runs perfectly
| 36 | 'cp950' codec error from load_dataset('xtreme', 'tydiqa')
![image](https://user-images.githubusercontent.com/50871412/86744744-67481680-c06c-11ea-8612-b77eba92a392.png)
I guess the error is related to python source encoding issue that my PC is trying to decode the source code with wrong encoding-decoding tools, perhaps :
https://www.python.org/dev/peps/pep-0263/
I guess the error was triggered by the code " module = importlib.import_module(module_path)" at line 57 in the source code: nlp/src/nlp/load.py / (https://github.com/huggingface/nlp/blob/911d5596f9b500e39af8642fe3d1b891758999c7/src/nlp/load.py#L51)
Any ideas?
p.s. tried the same code on colab, that runs perfectly
It should be in `xtreme.py:L755`:
```python
if self.config.name == "tydiqa" or self.config.name.startswith("MLQA") or self.config.name == "SQuAD":
with open(filepath) as f:
data = json.load(f)
```
Could you try to add the encoding parameter:
```python
open(filepath, encoding='utf-8')
``` | [
-0.2695922256,
-0.0288403779,
-0.0208714455,
0.2028596103,
0.448420167,
-0.1219136193,
-0.1402625442,
0.2741995454,
-0.3068620563,
0.1308183074,
0.1182492226,
0.5972365141,
0.0107578337,
0.3725727797,
0.1493884325,
0.0074847499,
-0.0501955599,
0.2807822526,
0.1142939478,
0.0160582811,
-0.3124450743,
0.1804719716,
-0.1091932878,
-0.0322549865,
-0.3568944335,
-0.0902505815,
0.127656281,
0.2784456015,
-0.423695147,
-0.5119253993,
0.1833940446,
-0.0129814642,
0.2230470479,
0.265347302,
-0.0001058441,
-0.0454375967,
0.3183932304,
-0.2982023358,
-0.2216446698,
-0.3611502647,
-0.2516931593,
-0.3150954247,
0.1989215016,
-0.2637839615,
-0.1006910354,
0.2404017597,
0.0199443381,
-0.0952382386,
0.5233159065,
0.2909532487,
0.296330303,
0.0738326311,
-0.0744113252,
0.1486847103,
-0.0282300971,
0.1482578516,
-0.1475577801,
0.4451700449,
0.2602997124,
-0.0911354125,
0.1426793486,
0.2766979039,
-0.1515209079,
-0.0569936335,
0.0407137536,
0.0499192141,
-0.1519033015,
-0.4266537726,
0.120906055,
0.1055289432,
0.179356426,
-0.3225931525,
-0.09619461,
0.0870560929,
0.1963281631,
-0.5246258974,
0.253420949,
0.3471791148,
-0.2969877124,
0.0974514112,
-0.0773087069,
0.1050552651,
0.0375202969,
-0.0349979028,
0.0779612288,
0.2109554857,
-0.181068182,
-0.0667629838,
0.1364755183,
-0.0218385812,
0.2110843807,
0.0128955431,
-0.2235885859,
0.1790784597,
-0.1587534398,
-0.1336389631,
-0.1817007065,
-0.0875810534,
-0.0873610154,
-0.1382653266,
0.5145936012,
0.1206673086,
-0.0586917177,
0.3560674489,
0.1107803881,
0.1049096361,
-0.0984216556,
0.2221193314,
0.1833807379,
0.1279565692,
0.0956942141,
0.0296435505,
-0.2141442597,
-0.132717222,
-0.3393443823,
0.289126128,
0.1441910118,
-0.1674301922,
-0.3648921251,
0.085182488,
-0.0286665186,
0.1087727398,
0.1422019601,
0.2070312053,
0.151067242,
0.2321666181,
0.0610188544,
0.2638309002,
-0.3025707901,
-0.258240819,
-0.0983017385,
0.2584833205,
-0.366959691,
-0.1151664928,
0.1970707476,
-0.0907113254,
0.198297292,
0.1363953948,
0.1843989938,
-0.2621589005,
0.0463314354,
-0.1218949631,
0.0610191226,
0.0838401914,
0.0885399207,
0.0350771546,
0.1756177396,
-0.3857582211,
-0.0953514874,
0.1032871306,
-0.493008405,
0.0364097804,
-0.1123502627,
0.2696917355,
-0.1408185065,
-0.054591421,
-0.5896956325,
0.1581824869,
0.0557486378,
-0.2681747675,
0.0798110962,
-0.1571029872,
-0.0741806477,
-0.176655069,
0.2183378339,
0.423066318,
-0.4035671949,
0.0333889127,
0.2349446118,
0.0550835766,
0.3388775885,
0.0612148605,
-0.2030251622,
-0.1410149634,
-0.1047271639,
-0.0357992947,
0.3881500065,
-0.4512213469,
-0.2139132619,
0.2725940645,
-0.050927572,
-0.0216156356,
-0.0301323645,
-0.1311160177,
0.0554814562,
-0.1026326865,
0.137977764,
0.4275481105,
0.0005009025,
0.3331618905,
-0.2610886693,
-0.2735878527,
0.1134486645,
0.1089547947,
-0.2255675942,
-0.1487601399,
0.1748796105,
0.3316149116,
0.2449595332,
-0.1301338524,
-0.2455989122,
0.1132459268,
0.236079976,
-0.335326761,
-0.2025871575,
0.2305120528,
0.0102626458,
-0.0392398648,
-0.2957897782,
0.2397305369,
-0.3415219188,
-0.0709602982,
-0.1357055157,
0.0705728009,
-0.4842483699,
-0.2870801985,
0.2603211999,
0.0040698051,
-0.1470944285,
-0.0489317328,
-0.1445099115,
0.3022412956,
-0.0475848131,
0.0106714629,
-0.2947006226,
0.2131464481,
-0.1876620054,
-0.2811373472,
0.3004021049,
0.2748616636,
0.1912815571,
-0.1671639532,
-0.2761872113,
0.1726582646,
0.0572982579,
0.3439615667,
-0.1737116873,
-0.2655004859,
0.4478881955,
-0.4799715877,
0.0514216349,
0.4397867918,
0.2158053964,
-0.1009262353,
0.2564738393,
0.3604640365,
-0.0498561487,
0.0057902262,
-0.0060211346,
-0.1606791914,
0.1911540627,
0.0216747597,
0.0419138819,
-0.141872257,
0.2428833395,
0.6975977421,
0.2468797565,
-0.0303255953,
-0.1135325953,
0.052224122,
0.5576224327,
0.0134540349,
-0.0485012531,
0.0479934625,
0.1208853722,
-0.173958376,
0.1238916963,
0.0689125583,
0.1667799205,
-0.0529843271,
-0.273735553,
0.2346286923,
0.018539805,
-0.1578700542,
0.1978086233,
-0.0990898311,
0.0686602369,
0.0721912906,
0.1992565542,
0.0100442916,
-0.3035994768,
-0.2533631921,
0.042458728,
0.1445676833,
-0.2297808826,
0.3444650471,
-0.466902703,
-0.4023391008,
-0.2357720733,
0.1430748552,
-0.1867651045,
-0.0578526668,
-0.1208833158,
-0.0568393283,
0.1553515941,
0.26016289,
-0.1332839876,
-0.0113900751,
-0.1319013834,
-0.2066190988,
0.0643784404,
-0.2219242454,
-0.2030798793,
0.1332084537,
0.4137870669,
-0.0475227125,
0.0261728261,
-0.3408562243,
0.0964660347,
0.3336158693,
-0.2299675792,
0.308339268,
-0.2643302977,
0.1596693099,
-0.0279840603,
0.1091463193,
-0.0951450542,
-0.3874912262,
0.2449336052,
-0.0245361626,
-0.1276832819,
0.0561909005,
-0.104013063,
-0.2081222087,
-0.2407756001,
0.0273788609,
-0.4849366248,
-0.3486635685,
-0.2008544505,
0.1295462698,
0.133315593,
0.3928815126,
0.2247520387,
0.1689451933,
0.2177813649,
-0.0570538417,
-0.1314011812,
-0.3819482327,
0.2595171928,
-0.3200514615,
-0.335532397,
0.0427411497,
-0.0658444613,
0.5374212861,
-0.2214779407,
-0.1797289252,
-0.1533396989,
-0.0088254567,
0.104693681,
-0.06501057,
0.1340196729,
0.0049344823,
-0.011370223,
-0.0147211626,
-0.1544589847,
-0.1391745508,
-0.0744661093,
0.1369942576,
0.4062228799,
-0.0833960474,
0.2225063443,
-0.2268182486,
0.078774333,
0.2252551913,
0.0042766156,
0.6793311238,
-0.0974558815,
0.322732091,
-0.1281468123,
-0.087752521,
0.1625579,
-0.1000213474,
-0.0727065578,
0.1974791586,
-0.0449010283,
-0.2861955464,
-0.3524032235,
0.015064396,
-0.3409986496,
-0.2340869606,
0.0905003473,
0.2625522017,
-0.0397367999,
-0.0230140015,
0.183215037,
0.0406133905,
-0.1779970974,
-0.1238776147,
0.287267983,
-0.1525918096,
0.2216817737,
-0.2870139182,
-0.5363566875,
-0.1644165218,
0.1338135004,
0.2102371454,
0.2769468129,
0.0445462912,
0.1823503673,
0.1378418207,
-0.1647197604,
0.1714295894,
0.0734705925,
0.0071996083,
0.0798156857,
0.1017654687,
0.0262049809,
-0.1008874774,
-0.1671184301,
0.1911312938,
0.1716034561,
-0.1884016395,
-0.1574800014,
-0.0023050644,
0.0705843195,
0.2752680779,
-0.0750971287,
0.1587522328,
-0.4937391281,
-0.6795375347,
-0.1820588112,
-0.2335928679,
0.2208955139,
0.3266311288,
-0.0434837975,
-0.0135292187,
0.1251823455,
-0.2238433808,
0.2270706147,
0.5767015815,
0.4269612134,
0.2597107291,
-0.0815525427,
-0.1813801527,
-0.0850743428,
0.2476553321,
0.7725037932,
0.0393482074,
-0.2483742535,
0.1788683683,
-0.0974322781,
0.2881153226,
0.2831274569,
-0.0874728113,
-0.1002378315,
-0.1817705929,
-0.056520734,
-0.1019541025,
0.2562605739,
0.1494087577,
0.0205733441,
-0.5256538391,
-0.4884113669,
0.5606645942,
-0.0549156293,
0.1898400784,
0.1073904783,
-0.0492882244,
-0.3160761297,
0.2909814119,
0.0824170038,
0.9118974209,
0.2074116468,
0.1326515228,
0.3785893321,
-0.0078506619,
0.2663110495,
-0.1112301126,
0.2233991325,
-0.2986944914,
-0.0614566579,
0.0507106334,
0.1321151853,
0.1290602982,
0.0739661679,
-0.3411414623,
0.1588944048,
-0.0305067152,
-0.3309118152,
0.1297970116,
0.3077479899,
-0.2023125142,
-0.2501314282,
-0.7101194263,
0.2257068902,
-0.2092168331,
0.0350708961,
-0.0871650204,
-0.2560058236,
-0.0722235292,
-0.2950133681,
-0.2078408301,
0.376031816,
-0.5171034932,
0.1067209691,
-0.062963903,
-0.5599790812,
0.249543488,
0.1234669238,
0.1044081524,
0.2184446901,
-0.0160452835,
0.2406458408,
0.2833398283,
-0.0059496388,
0.0110538378,
0.1758532226,
0.0805310234,
-0.2479123324,
-0.0770080686,
0.2005445361,
0.1386249959,
-0.0912181363,
0.339009434,
0.0428848304,
-0.2078882605,
-0.1063851938,
-0.309741348,
-0.1305739284,
0.1471555233,
-0.0394901559,
0.16914922,
-0.0256104842,
-0.2011846304,
-0.0777622461,
0.26281178,
-0.3546228111,
-0.1116668433,
0.1045368314,
-0.0236599743,
-0.0551139489,
0.470059216,
0.1100139171,
-0.2028771043,
-0.112823084,
0.2733695507,
-0.1000827253,
-0.4406726658,
-0.0156563539,
0.1384797692,
-0.1954839528,
0.0086423866,
0.7061379552,
-0.0132925389,
0.0516713671,
0.2228103727,
-0.3965663016,
-0.3372616768,
0.033979468,
-0.1442144811,
-0.0090893414,
0.1709857434,
0.4224153757,
0.0119779408,
-0.0714294612,
-0.3345587254,
0.0772369057,
-0.1851820052,
0.0922173262,
0.0920175686,
-0.1470723152,
0.1361896843,
0.1042296886,
0.1643655598,
0.3269127607,
-0.1279891878,
-0.2219964564,
-0.1826170683,
0.0694144294,
-0.000019554,
-0.3460963368,
-0.2182555199,
0.0524587333,
-0.0732847154,
-0.0780799016,
0.127520889,
0.0299432725,
0.1278790832,
0.1545259506,
-0.2598353028,
0.0735440552,
0.0710726604,
0.1250920892,
-0.0021256804,
0.5763776302,
0.2222474813,
0.1196838617,
0.0221082419,
0.0370835662,
-0.072737664,
-0.0311004035,
-0.2551569343,
0.2031831592,
0.0867755413,
-0.3685719669,
0.3687849343,
0.0811619908,
-0.0743521079,
0.4766416848,
-0.1920270771,
-0.0511039235,
0.2678045332,
0.1945385933,
-0.268693924,
0.0565886162,
-0.1823880076,
-0.0601927638,
-0.0239725187,
0.4054144025,
0.1480817646,
-0.0305432752,
0.2371187955,
-0.0708748698,
0.436930716,
0.2265249789,
0.3792160749,
0.2138879299,
-0.067676425,
0.1707873493,
-0.0843181238,
0.1106031686,
-0.0269387253,
-0.0761313066,
-0.5743139386,
0.1385024041,
0.0751405507,
0.098358281,
0.0161979683,
-0.1613381207,
-0.1337964088,
-0.0820502788,
-0.0703254715,
0.3402713239,
0.0914387256,
0.4065178037,
-0.4054420292,
-0.0660919547,
-0.0082068965,
0.1307260543,
-0.1202394664,
0.0487690307,
0.0025693029,
-0.0446657017,
-0.386964649,
0.1005101651,
-0.1038219333,
0.0603702851,
-0.1292277575,
0.3464910984,
-0.1597099602,
0.0560173765,
0.0290418826,
0.0874943361,
0.0793069378,
-0.1478643119,
0.6503376365,
0.2597218156,
0.1448374689,
0.1950771362,
0.1092396379,
0.5741662979,
0.3779682517,
-0.1820831895,
-0.0452343673,
-0.0910713375,
0.0127468482,
0.071332112,
0.0215485096,
0.4151416719,
0.2848603129,
0.2318216264,
0.2036957741,
-0.1636900008,
-0.1569397748,
0.2618772089,
-0.0566190146,
0.1092535779,
0.205309689,
-0.0973209441,
0.2734780312,
-0.4711077213,
-0.0992672592,
-0.4386306405,
0.3083437979,
0.2360981852,
-0.0013730526,
0.0319075622,
-0.2150590718,
0.1161063761,
-0.040357057,
0.5322922468,
0.2266664952,
-0.0033687837,
-0.1569126546,
-0.0840735734,
-0.5758491755,
0.2599775791,
0.0649029836,
-0.4464884102,
-0.1634181142,
-0.182746321,
0.0211067572,
0.4211795032,
-0.0096592158,
0.3094618917,
0.1508060992,
0.0013076058,
-0.1990278363,
-0.0340948328,
-0.1309002638,
0.046843864,
-0.1482459754,
-0.2397921681,
-0.0290269926,
-0.3242874146,
0.1147619337,
-0.2961994708,
-0.4041753411,
-0.4243035018,
0.0271789115,
0.2851335704,
0.1705962569,
0.3588987887,
-0.322924614,
-0.2342017144,
-0.0174815394,
-0.2376617938,
-0.1061407328,
0.3435547948,
0.2130289972,
0.3197681308,
0.1029951274,
0.2732101977,
-0.4937641323,
0.3357637525,
-0.0837131515,
-0.2716358006,
-0.1880094707,
0.0018077791,
-0.0851684511,
-0.0208521243,
0.0997845531,
0.3712543249,
-0.0338044912,
0.1574394405,
-0.1849865317,
-0.4357164204,
0.3454658687,
-0.422598213,
-0.1698668599,
0.2028683126,
0.1223302782,
-0.1553904563,
0.0797986388,
-0.5110162497,
0.2554684281,
0.0197687633,
-0.1227930337,
-0.278162986,
0.295969218,
-0.2903804481,
-0.07860367,
-0.0585516021,
0.3128243685,
0.2399622649,
-0.1206455976,
-0.0135890022,
-0.2334344685
] |
https://github.com/huggingface/datasets/issues/347 | 'cp950' codec error from load_dataset('xtreme', 'tydiqa') | Hello @jerryIsHere :) Did it work ?
If so we may change the dataset script to force the utf-8 encoding | ![image](https://user-images.githubusercontent.com/50871412/86744744-67481680-c06c-11ea-8612-b77eba92a392.png)
I guess the error is related to python source encoding issue that my PC is trying to decode the source code with wrong encoding-decoding tools, perhaps :
https://www.python.org/dev/peps/pep-0263/
I guess the error was triggered by the code " module = importlib.import_module(module_path)" at line 57 in the source code: nlp/src/nlp/load.py / (https://github.com/huggingface/nlp/blob/911d5596f9b500e39af8642fe3d1b891758999c7/src/nlp/load.py#L51)
Any ideas?
p.s. tried the same code on colab, that runs perfectly
| 20 | 'cp950' codec error from load_dataset('xtreme', 'tydiqa')
![image](https://user-images.githubusercontent.com/50871412/86744744-67481680-c06c-11ea-8612-b77eba92a392.png)
I guess the error is related to python source encoding issue that my PC is trying to decode the source code with wrong encoding-decoding tools, perhaps :
https://www.python.org/dev/peps/pep-0263/
I guess the error was triggered by the code " module = importlib.import_module(module_path)" at line 57 in the source code: nlp/src/nlp/load.py / (https://github.com/huggingface/nlp/blob/911d5596f9b500e39af8642fe3d1b891758999c7/src/nlp/load.py#L51)
Any ideas?
p.s. tried the same code on colab, that runs perfectly
Hello @jerryIsHere :) Did it work ?
If so we may change the dataset script to force the utf-8 encoding | [
-0.3731938004,
-0.000719592,
-0.0570685118,
0.1422874928,
0.4632267952,
-0.0583363734,
0.0105652045,
0.2293296456,
-0.2868662477,
0.0433461256,
0.1535943449,
0.4569694996,
-0.0138360653,
0.3835916221,
0.2669280171,
0.0252127424,
0.016434446,
0.2814874649,
-0.1030594707,
-0.0219442248,
-0.2794501185,
0.1553265005,
-0.0629757941,
0.0027549081,
-0.3882107139,
-0.0570776239,
0.0714773536,
0.2772662342,
-0.356934756,
-0.5312875509,
0.2094703913,
0.0535364375,
0.1863970608,
0.2738589644,
-0.0001022788,
-0.0029409602,
0.3291230202,
-0.2302228808,
-0.159539625,
-0.2611717284,
-0.2483114153,
-0.3530782163,
0.1106151938,
-0.2077699304,
-0.0237203464,
0.1612145752,
0.0368485302,
-0.1297168881,
0.4614186883,
0.2716952264,
0.3374944925,
0.1603053212,
-0.0636833012,
0.1194717139,
-0.0223567672,
0.1525048912,
-0.0523620546,
0.3465827107,
0.2546726763,
-0.192951858,
0.085583359,
0.2532849312,
-0.1368109137,
-0.0948409438,
0.0521471575,
0.0395272523,
-0.1605701149,
-0.384897083,
0.1053261608,
0.1600775123,
0.2978846133,
-0.3879603446,
-0.1183262765,
0.0882203206,
0.1210181564,
-0.472383976,
0.2392137647,
0.3041262031,
-0.2488497198,
0.1334116161,
-0.0709751472,
0.112944141,
0.0296886116,
-0.0367267244,
0.0147211328,
0.0923567712,
-0.1295586824,
-0.0976859853,
0.1248411983,
-0.0498688258,
0.1877581477,
0.0501294248,
-0.2015789449,
0.1952292621,
-0.1748968363,
-0.0906855687,
-0.1389019489,
0.0374197327,
-0.0177331716,
-0.12687096,
0.479439199,
0.183257103,
-0.0675332844,
0.3135922551,
0.1453901976,
0.0608674511,
-0.1526658684,
0.2708895802,
0.2193610817,
0.0321707539,
0.1343905479,
0.0710695982,
-0.1698643267,
-0.2104025185,
-0.2478931546,
0.2668914795,
0.1573393196,
-0.1860106885,
-0.4112693965,
0.0974363163,
0.1417267472,
0.0561989695,
0.0682379007,
0.2181813866,
0.2298815548,
0.3139411509,
-0.0291761234,
0.2334385514,
-0.3556649685,
-0.3158364296,
-0.152357012,
0.2118059546,
-0.3692722917,
-0.1307555735,
0.1776293516,
-0.0606789626,
0.1488869637,
0.171361208,
0.145004347,
-0.1141019315,
0.0414620638,
-0.1093732119,
0.1005496979,
0.1388428509,
0.043904528,
0.0962277278,
0.1858627051,
-0.2839113474,
-0.0842199028,
0.0651566982,
-0.4052482843,
-0.0274740532,
-0.1326571256,
0.3021104038,
-0.0976724848,
-0.0723734796,
-0.5015496612,
0.1596666723,
0.1064519882,
-0.2595108747,
0.0770503432,
-0.1923126727,
-0.0640768111,
-0.1431927979,
0.2095195204,
0.4781807661,
-0.4952634871,
0.0663276985,
0.1981608272,
-0.0513670556,
0.3271408081,
0.0646889731,
-0.1527039409,
-0.0950651914,
-0.1846716851,
0.0148837119,
0.3477720022,
-0.375685066,
-0.2681898475,
0.3038838506,
-0.0430336297,
-0.0552401543,
0.0085132457,
-0.0133374371,
0.0574759208,
-0.1772716194,
0.0595130399,
0.4527756274,
-0.0160305481,
0.2917616665,
-0.2091447413,
-0.2561105788,
0.1921695769,
0.1395069659,
-0.2073941827,
-0.1527814269,
0.2245236486,
0.262891382,
0.2572357357,
-0.0965588838,
-0.2111479938,
0.2039387673,
0.1723733544,
-0.2741016746,
-0.1649067998,
0.1530274898,
-0.0532299951,
-0.0128098875,
-0.2910030484,
0.221300751,
-0.3516928256,
-0.156319797,
-0.1589291394,
0.0381985456,
-0.4941663742,
-0.2556959987,
0.2810660899,
-0.0190963484,
-0.1264656335,
0.0135040656,
-0.1596524417,
0.2963832319,
0.0199437365,
-0.0196308848,
-0.3017688692,
0.215071857,
-0.1520978957,
-0.2504400611,
0.3062167764,
0.2735084295,
0.0892284289,
-0.1297210306,
-0.1804225296,
0.2587801516,
0.0460717417,
0.396495074,
-0.2296985835,
-0.2436212152,
0.4404161572,
-0.5327318907,
0.0991478637,
0.3941132724,
0.2343511283,
-0.1595864296,
0.2340753376,
0.2926606536,
-0.1530442536,
-0.0467363968,
0.0212420076,
-0.0999414772,
0.2121113241,
0.0230979696,
0.0503352359,
-0.2419478595,
0.3193282783,
0.5829185843,
0.335344851,
-0.0260669608,
-0.1082600057,
0.067452997,
0.515914619,
-0.0326998383,
-0.004393138,
0.0391604267,
0.0645852685,
-0.1366206408,
0.0882591531,
0.1023406237,
0.193241626,
-0.0185555797,
-0.2185660899,
0.2224381715,
-0.0169931389,
-0.1787494719,
0.1433494389,
-0.12766473,
0.0318575837,
0.0347284749,
0.1080370843,
-0.0078872666,
-0.3578636646,
-0.1810829639,
0.0537050739,
0.1668543667,
-0.2967947721,
0.2733751535,
-0.5112020373,
-0.4090254605,
-0.1868805736,
0.1079189554,
-0.1811730117,
-0.0947805122,
-0.0768208802,
-0.0853772014,
0.1153326035,
0.2908653319,
-0.1969726831,
-0.0615725666,
-0.0830116943,
-0.1593249142,
-0.0204550922,
-0.1876844615,
-0.2183430791,
0.1528370529,
0.4614593387,
0.00590159,
0.1112048328,
-0.3916858435,
0.073249653,
0.1947650015,
-0.2173333764,
0.2696352303,
-0.2560012937,
0.1230480596,
0.0718325749,
0.1163184643,
0.0312644392,
-0.278652817,
0.2485308796,
-0.0708811432,
-0.1150761694,
0.140976578,
-0.0682278723,
-0.2105593979,
-0.2368369102,
0.0126491059,
-0.5228257179,
-0.3507964611,
-0.2645411491,
0.1185956374,
0.1428292543,
0.3499614,
0.1977187544,
0.0584549308,
0.1639472246,
-0.1200959608,
-0.1110016853,
-0.3482828736,
0.3166835606,
-0.3320204616,
-0.4280414283,
0.0193368122,
-0.0038294569,
0.4887193441,
-0.1189453155,
-0.234121576,
-0.0923675001,
-0.1230493933,
0.1430980414,
-0.0310136639,
0.1473951936,
-0.0255243778,
0.0119264759,
-0.0425533503,
-0.1464658529,
0.0079846084,
-0.0698682964,
0.0022528591,
0.2842376232,
-0.0301313885,
0.2277227193,
-0.2086024284,
0.0189593975,
0.2235662639,
-0.0224646647,
0.7035977244,
-0.1742078364,
0.3842791319,
-0.1911883056,
-0.0875155032,
0.1026368663,
-0.0767124444,
-0.0156149752,
0.1611463875,
-0.0796989575,
-0.2145683169,
-0.2738921344,
0.0530567616,
-0.2512015402,
-0.2426973432,
0.1096383408,
0.1152196676,
0.0127795301,
-0.0002065673,
0.1531671137,
0.0882373825,
-0.2258841395,
-0.0663611889,
0.1648578942,
-0.1595698297,
0.214816004,
-0.2964559197,
-0.2983582616,
-0.2577537,
0.1107348129,
0.1485259533,
0.3356164098,
-0.0790966973,
0.1531947106,
0.1168303192,
-0.129146114,
0.2168402374,
0.0291318391,
0.1142596155,
0.0879061371,
0.0901452601,
-0.0188895389,
-0.0758940354,
-0.197804749,
0.1719637364,
0.0955982655,
-0.1960684508,
-0.1699278951,
-0.0016315021,
0.0589858592,
0.3772252202,
-0.0978037715,
0.1263486743,
-0.4287360013,
-0.687422514,
-0.11774005,
-0.2442572117,
0.2344146669,
0.2473380715,
-0.0949957222,
-0.0444275402,
0.0066077467,
-0.2473980039,
0.2189931571,
0.4687685072,
0.4177285731,
0.1295851916,
0.022317864,
-0.1359941512,
-0.1060857475,
0.2562143803,
0.7766752839,
0.0220116042,
-0.2808935046,
0.0966919959,
-0.2284709811,
0.2586401105,
0.2258523405,
-0.0765502378,
-0.1581787914,
-0.0957822278,
-0.0640958026,
-0.2174800932,
0.2045221031,
0.2207329869,
0.1283145249,
-0.6074515581,
-0.5158423185,
0.481723398,
-0.0257365406,
0.2049153149,
0.1231784523,
-0.07494995,
-0.3552889824,
0.2622032464,
0.0351318978,
0.8382996321,
0.1588292867,
0.2284820527,
0.322637558,
0.1386987418,
0.1874371022,
-0.0317842886,
0.1091985404,
-0.3560633063,
-0.185194239,
-0.0195191391,
0.1509483159,
0.1931738853,
0.1352784485,
-0.3118433654,
0.1862613261,
-0.0538871884,
-0.273714304,
0.1516506672,
0.2698061168,
-0.2737755477,
-0.2056011856,
-0.6117541194,
0.2700067759,
-0.1186785996,
0.0272534974,
-0.1151671112,
-0.2042443007,
0.0142220333,
-0.3317553997,
-0.2252711058,
0.334813863,
-0.4587017298,
0.2300192565,
-0.1353650689,
-0.6156852841,
0.1628250927,
0.1720418036,
0.1507767141,
0.1937800497,
-0.0101664001,
0.2571097016,
0.2559059262,
0.0317179002,
0.0555353723,
0.1400503218,
0.1517924517,
-0.1858288646,
-0.0883149356,
0.1521259248,
0.1377554685,
-0.0620553792,
0.2877078354,
-0.0062568896,
-0.1587271988,
-0.1283813864,
-0.2758003473,
-0.17050156,
0.1848899573,
-0.0551958345,
0.2012417167,
-0.006244529,
-0.1744208932,
-0.0054246858,
0.1873112619,
-0.318198204,
-0.1325163841,
0.0828514323,
-0.0555684045,
-0.0788571015,
0.5007188916,
0.210029304,
-0.219278872,
-0.1669026613,
0.2493758351,
-0.0017977282,
-0.5435650349,
-0.0312804207,
0.1454029083,
-0.0885961652,
-0.00082542,
0.6154597998,
-0.0781908333,
-0.0378505029,
0.1249645799,
-0.4164333344,
-0.3383080959,
-0.0199526288,
-0.1058941856,
0.0769013911,
0.1353715658,
0.3030593097,
0.0179047436,
-0.075192742,
-0.375834018,
0.0578423366,
-0.1599830389,
0.0512883253,
0.1627018154,
-0.0597326607,
0.1141208261,
0.0571746454,
0.2042424977,
0.2957518697,
-0.0587749034,
-0.2655422091,
-0.1633342505,
0.0448211208,
-0.0447307825,
-0.3438979387,
-0.0863282084,
0.0497448742,
-0.1354934424,
-0.0814273357,
0.1621012986,
0.1329279393,
0.0965037122,
0.1838115305,
-0.2290923893,
0.0540943593,
0.0325161889,
0.1618751138,
-0.1049632207,
0.490798831,
0.1859702766,
0.1443753839,
0.0478413664,
-0.0010488182,
-0.0478380732,
0.023732828,
-0.2163306922,
0.0968614221,
0.0982680097,
-0.3974516392,
0.4032672644,
0.1052447781,
0.038163498,
0.4829178154,
-0.2567422688,
-0.1113971472,
0.3376915157,
0.2441076189,
-0.3323170841,
0.022885181,
-0.2274405956,
-0.0486905389,
-0.0270724222,
0.3549534678,
0.1754572839,
-0.0744630843,
0.2037741989,
-0.0859550908,
0.4425882697,
0.100548692,
0.3665661812,
0.3080149591,
-0.0493704379,
0.1541155279,
-0.1038608626,
0.1590821445,
-0.0920453519,
0.1089130789,
-0.5868617892,
0.1726323068,
0.0507147014,
0.118617855,
-0.0504695512,
-0.2833313942,
-0.0698190182,
-0.0359473526,
-0.1264659762,
0.3150510788,
0.1728378832,
0.4308013916,
-0.3397231698,
-0.0370757058,
-0.0746366009,
0.1877142787,
-0.1154495925,
0.0538831167,
0.0222677663,
-0.0218784362,
-0.3208214939,
0.1186908036,
-0.1208409816,
0.0519775301,
-0.0135725141,
0.3341329992,
-0.1179920211,
-0.0927929431,
0.059522517,
0.0058216453,
-0.0208273716,
-0.1202606782,
0.5656138062,
0.3377196789,
0.1767877489,
0.3259630799,
0.1647761911,
0.6169279814,
0.4158922136,
-0.128358081,
0.0329094678,
-0.199183315,
0.0448213592,
0.0093141049,
0.0949316174,
0.2698282003,
0.3797510862,
0.2434949279,
0.2333049476,
-0.166817382,
-0.1974403262,
0.292579174,
0.0156131051,
0.0878326222,
0.2161628455,
-0.0928957611,
0.2102702111,
-0.50155586,
-0.0489591099,
-0.4342526197,
0.2403139472,
0.4158197641,
0.0206531323,
0.0559104793,
-0.2033475637,
0.1347760856,
0.0010750014,
0.5677645206,
0.2840278745,
0.0830738768,
-0.0933836848,
-0.0814679787,
-0.7156069279,
0.2470428795,
0.0399617106,
-0.475484848,
-0.1407996416,
-0.2607808113,
0.1011033207,
0.3434419632,
0.0972549766,
0.32717219,
0.0704674795,
0.0694176257,
-0.1378182322,
-0.0190068223,
-0.1851954758,
0.1184409782,
-0.2628827393,
-0.3089420199,
0.0403942727,
-0.2737839222,
0.1577047706,
-0.3079627752,
-0.2911492288,
-0.4004510939,
0.0246142969,
0.266448617,
0.2022699267,
0.4083617032,
-0.2999082804,
-0.2040601671,
-0.1089319438,
-0.2557530105,
-0.1500159949,
0.3890319467,
0.2026678175,
0.1393885463,
0.0956528708,
0.1532767713,
-0.4704892039,
0.3255022168,
-0.0776240528,
-0.0981985554,
-0.2244171202,
0.094647646,
0.0099899098,
-0.0435832851,
0.1534395963,
0.3403100371,
0.0001789741,
0.142714262,
-0.1330500394,
-0.4824038446,
0.2574144006,
-0.4593117833,
-0.225265339,
0.138877511,
0.1024018526,
-0.1715395004,
0.0529758111,
-0.5021644831,
0.2745053768,
0.0210057423,
-0.1494607478,
-0.2724818587,
0.3049334288,
-0.2336803675,
-0.0641322806,
-0.0872095153,
0.3601801395,
0.1789394915,
-0.173619628,
-0.0067085996,
-0.2403549254
] |
https://github.com/huggingface/datasets/issues/347 | 'cp950' codec error from load_dataset('xtreme', 'tydiqa') | @lhoestq sorry for being that late, I found 4 copy of xtreme.py. I did the changes as what has been told to all of them.
The problem is not solved | ![image](https://user-images.githubusercontent.com/50871412/86744744-67481680-c06c-11ea-8612-b77eba92a392.png)
I guess the error is related to python source encoding issue that my PC is trying to decode the source code with wrong encoding-decoding tools, perhaps :
https://www.python.org/dev/peps/pep-0263/
I guess the error was triggered by the code " module = importlib.import_module(module_path)" at line 57 in the source code: nlp/src/nlp/load.py / (https://github.com/huggingface/nlp/blob/911d5596f9b500e39af8642fe3d1b891758999c7/src/nlp/load.py#L51)
Any ideas?
p.s. tried the same code on colab, that runs perfectly
| 30 | 'cp950' codec error from load_dataset('xtreme', 'tydiqa')
![image](https://user-images.githubusercontent.com/50871412/86744744-67481680-c06c-11ea-8612-b77eba92a392.png)
I guess the error is related to python source encoding issue that my PC is trying to decode the source code with wrong encoding-decoding tools, perhaps :
https://www.python.org/dev/peps/pep-0263/
I guess the error was triggered by the code " module = importlib.import_module(module_path)" at line 57 in the source code: nlp/src/nlp/load.py / (https://github.com/huggingface/nlp/blob/911d5596f9b500e39af8642fe3d1b891758999c7/src/nlp/load.py#L51)
Any ideas?
p.s. tried the same code on colab, that runs perfectly
@lhoestq sorry for being that late, I found 4 copy of xtreme.py. I did the changes as what has been told to all of them.
The problem is not solved | [
-0.2841982245,
-0.1710128039,
-0.0102974772,
0.2463469803,
0.4728093445,
-0.0588770881,
-0.1426553428,
0.2119472623,
-0.2602449954,
0.1263465732,
0.0891536623,
0.5027422905,
-0.0454211161,
0.429033339,
0.2850133777,
0.0133222919,
0.0035835467,
0.2751809061,
-0.0077733472,
0.00213781,
-0.2719279826,
0.1288374513,
-0.1685152054,
0.0082538258,
-0.4515325725,
0.0142077561,
0.0879138634,
0.2322889566,
-0.3210149705,
-0.6467186213,
0.2900664806,
-0.0919904932,
0.2375109792,
0.3235115409,
-0.0001081838,
-0.0482051671,
0.3104090095,
-0.2778411508,
-0.0658102855,
-0.2856351137,
-0.2337791324,
-0.3430385888,
0.1013976187,
-0.2250873744,
-0.0894928649,
0.2258185744,
-0.0545106232,
-0.1139664575,
0.4601173401,
0.2725270689,
0.2595206499,
0.128780663,
-0.0217991993,
0.0607359298,
0.0604671501,
0.1154145524,
-0.0905227885,
0.4867530167,
0.3114895821,
-0.1195526421,
0.1933289468,
0.2543045878,
-0.1568316221,
-0.1334757358,
0.1259099841,
-0.0169644393,
0.0053901672,
-0.435708791,
0.0417732932,
0.2204737067,
0.151452288,
-0.3889329433,
-0.0276960246,
0.134176597,
0.1199851036,
-0.5919209719,
0.2534967661,
0.3236524463,
-0.2409827113,
0.1225273162,
-0.0020334125,
0.16516231,
0.0704385191,
-0.1112987399,
0.0444015041,
0.1325532645,
-0.2128740251,
-0.0954212919,
0.1789369583,
0.05462889,
0.2867624164,
0.0904348344,
-0.2125892043,
0.1940507591,
-0.3190440536,
-0.0655717701,
-0.1915603876,
-0.0587909184,
-0.0675601512,
-0.1182298511,
0.4792562127,
0.0995846316,
0.0326146148,
0.2687478364,
0.1060630828,
0.0777690709,
-0.1224477738,
0.2007589787,
0.1557713598,
0.0766424388,
0.1295706332,
0.0229568463,
-0.2260321379,
-0.1936634779,
-0.2553222775,
0.3502627015,
0.1382746398,
-0.2279365957,
-0.4356728494,
0.0755715743,
0.0437259302,
0.1526129097,
0.1308056265,
0.2008613646,
0.2930818796,
0.3658080399,
0.0010360777,
0.3005891144,
-0.3199249208,
-0.3942805231,
-0.1051794961,
0.3204546571,
-0.4212427437,
-0.1009719968,
0.1355400383,
-0.1225453243,
0.1391237676,
0.2384169996,
0.2263341695,
-0.3725573421,
0.0250783786,
-0.1242956519,
-0.0242593959,
0.104629904,
0.0223302543,
0.0954802409,
0.1946080029,
-0.2149742544,
-0.0951240435,
0.0950686187,
-0.5300652981,
-0.0877712443,
0.0242651571,
0.246544674,
-0.0689614788,
0.0110312738,
-0.6024034023,
0.0946128592,
0.1463539153,
-0.2219098806,
0.1035976559,
-0.2148194909,
0.0085424781,
-0.1859184653,
0.2275680602,
0.4329824746,
-0.4388878942,
0.0616351664,
0.1866436601,
0.0247414261,
0.3251605332,
-0.0308979675,
-0.2035872042,
-0.0952486247,
-0.147941649,
-0.0822999701,
0.3361433744,
-0.4542464912,
-0.2818062305,
0.2109289169,
-0.0842546076,
-0.006145753,
0.0338435173,
-0.0713118315,
0.0243243799,
-0.2501995265,
0.0208878461,
0.3124952018,
0.03463424,
0.2238526046,
-0.2625689507,
-0.255695194,
0.188891381,
0.0224905685,
-0.2124090791,
-0.2279862761,
0.1698410809,
0.24445647,
0.2650099695,
-0.0716836601,
-0.254024744,
0.2266709805,
0.1636253744,
-0.2654486597,
-0.1530475318,
0.1478766948,
0.097592175,
-0.0085666254,
-0.4412302971,
0.1540109068,
-0.188379854,
-0.1166942865,
-0.151998207,
0.0756862238,
-0.5332610607,
-0.2902416885,
0.2259463668,
-0.0512885563,
-0.1036309376,
-0.0128429532,
-0.1843509525,
0.2484762073,
-0.0960385203,
-0.0238132793,
-0.3227475882,
0.1692884266,
-0.1479878277,
-0.254502207,
0.3124351501,
0.2807561457,
0.2038684785,
-0.1880597323,
-0.302939564,
0.2458580732,
0.0449905992,
0.3558743894,
-0.3245795071,
-0.2304286659,
0.4206216633,
-0.6723703146,
0.1462451369,
0.4327424467,
0.2300487757,
-0.0863217115,
0.3771480024,
0.2802091837,
0.0099501871,
-0.0249163695,
-0.0998432264,
-0.1123462915,
0.1350063682,
0.034735918,
0.149747327,
-0.1532125175,
0.3822409213,
0.6770518422,
0.2885440588,
-0.0659381151,
-0.0031927377,
0.0499927998,
0.4282434285,
-0.0313407853,
0.0099423639,
0.0277369954,
0.0115203317,
-0.1405825019,
0.048286289,
0.0674978346,
0.1577578783,
-0.0938321799,
-0.3045615256,
0.2788316309,
0.0654535964,
-0.1355649531,
0.1910291016,
-0.1055883691,
-0.0699126199,
0.0142463762,
0.0924218595,
0.040595144,
-0.1860480011,
-0.1129703075,
0.09570577,
0.1482970268,
-0.3401214778,
0.2751012146,
-0.462646842,
-0.3754618168,
-0.1783537716,
0.2071150541,
-0.1286838055,
-0.0076485202,
-0.1607837677,
-0.1041117758,
0.1516872793,
0.2843092382,
-0.1858739555,
-0.0620628148,
-0.1134630963,
-0.1641199887,
0.1164783761,
-0.1277104914,
-0.2553991079,
0.0823456049,
0.4200476706,
0.0251665823,
0.0639337078,
-0.3856787384,
0.1357679516,
0.3003235161,
-0.1755380183,
0.2783759236,
-0.2725765705,
0.1561864614,
0.0260641202,
0.0388391651,
-0.043962568,
-0.2212332487,
0.2425481826,
-0.1499067545,
-0.0040791668,
0.1408836246,
-0.0309933685,
-0.2017136812,
-0.1660741866,
-0.0085949488,
-0.5145349503,
-0.3367131948,
-0.3198554814,
0.0043236315,
0.1315589249,
0.2935810089,
0.1360127479,
0.1235328317,
0.1453145444,
-0.1120188534,
-0.0669114143,
-0.4351955056,
0.278783381,
-0.2855578065,
-0.3827347457,
0.0567740351,
-0.0542964786,
0.539314568,
-0.1494326591,
-0.1855553985,
-0.059588898,
-0.0793234333,
0.0459489375,
-0.0032107509,
0.1624262333,
-0.0027853362,
-0.0708894655,
0.0175638273,
-0.1337156892,
0.0254941955,
-0.0617821515,
0.0362779163,
0.3804638386,
0.0331326202,
0.1845370382,
-0.2000239491,
0.0022226609,
0.2838158607,
0.0751434863,
0.7266831994,
-0.1042951569,
0.3343742788,
-0.1572363973,
-0.0879111141,
0.0311765373,
-0.1539882869,
0.0081960112,
0.0513679497,
-0.0408370756,
-0.1235364676,
-0.3065724373,
-0.071973227,
-0.1756368577,
-0.2540782094,
0.0641203746,
0.1964414567,
0.1248773485,
-0.0756761804,
0.1900190264,
0.1153948754,
-0.2332874388,
0.0341155231,
0.3092291653,
-0.1363598853,
0.2283605337,
-0.3142039776,
-0.4231188893,
-0.1252245605,
0.170786351,
0.216989547,
0.3219675124,
0.0325642973,
0.1843994856,
0.124058865,
-0.1191464663,
0.1105944663,
0.1513096392,
0.1104794666,
0.1094779745,
0.0363932475,
0.0851015449,
-0.122936517,
-0.1389256418,
0.0926547348,
0.0919786692,
-0.3064919114,
-0.1430079341,
-0.0295895599,
0.0537062585,
0.4073209763,
-0.0948461294,
0.1092243642,
-0.4352787435,
-0.6628596187,
-0.1123474836,
-0.2616869509,
0.2751930058,
0.2804513872,
-0.093049258,
-0.0211577639,
0.0791030526,
-0.2505543232,
0.3101435602,
0.4274913669,
0.5339715481,
0.0862643868,
-0.0194545873,
-0.1762205958,
-0.2426548898,
0.2761383951,
0.6962289214,
-0.0227933954,
-0.2288329303,
0.157019347,
-0.1308867335,
0.2720609903,
0.254186362,
-0.187223047,
-0.0783883631,
-0.2135688215,
-0.1060026139,
-0.1555952281,
0.236324802,
0.2061841488,
0.0780970901,
-0.6163371801,
-0.5784109831,
0.6196982265,
0.0039476156,
0.1832072437,
0.1434500962,
-0.0224705338,
-0.3126706183,
0.1387598813,
0.0617132336,
0.9569508433,
0.2100054622,
0.1338703632,
0.306366533,
0.0935852379,
0.1403221488,
-0.1279689521,
0.2171010226,
-0.332646668,
-0.219408527,
0.0028502196,
0.0785796642,
0.1480815411,
-0.0010920558,
-0.2661409378,
0.2339379042,
-0.0966951698,
-0.3270176649,
0.1215311885,
0.193431899,
-0.2453078628,
-0.1436849982,
-0.6070855856,
0.2140993923,
-0.1180018634,
0.0181743037,
-0.1240861565,
-0.2341246307,
-0.0462036915,
-0.302584976,
-0.1978774816,
0.3659679592,
-0.4864297211,
0.1834525019,
-0.1319803894,
-0.6856116056,
0.296600908,
-0.0068879714,
0.075027965,
0.2151511163,
0.0087228902,
0.2325279415,
0.3472608626,
-0.0084366538,
0.1008886099,
0.1394305229,
0.02475789,
-0.1841704249,
-0.0433436185,
0.2549689412,
0.116174385,
-0.0388153456,
0.2637767494,
-0.0586364791,
-0.1236662045,
-0.1759618968,
-0.2906428277,
-0.2101520002,
0.203905344,
-0.0643698648,
0.1580637991,
0.0173809659,
-0.2333698869,
-0.0397104956,
0.1144285277,
-0.3184390068,
-0.1402511448,
0.0468608364,
0.0103985257,
-0.0828842968,
0.4898571968,
0.2013558447,
-0.1491771489,
-0.0912686288,
0.3218547404,
0.0427366793,
-0.5850660801,
0.0545305572,
0.1139185056,
-0.1064220071,
0.0597930476,
0.7707699537,
-0.0121218795,
-0.0816621184,
0.169304803,
-0.3554030955,
-0.3297331035,
-0.0021987818,
-0.1268312782,
0.0535098426,
0.1177991256,
0.5053521395,
0.030391857,
-0.0944212079,
-0.3083257079,
0.0938747227,
-0.079748787,
-0.001451375,
0.1456511617,
-0.0619983189,
0.1321712732,
0.1597166061,
0.1371441782,
0.3783655763,
-0.1036974788,
-0.1838032454,
-0.1208276302,
0.0895377398,
-0.0762758926,
-0.3509172201,
-0.1385748237,
0.0530450046,
-0.0840032846,
-0.0165407918,
0.1091460437,
0.0537911654,
0.0979352295,
0.1658830494,
-0.3130360246,
-0.0078537967,
-0.0178282931,
0.2861247957,
-0.090545252,
0.4674898982,
0.1526814699,
0.0884238333,
0.0615560934,
0.0038008913,
-0.1924202144,
-0.0162333176,
-0.2317229509,
0.0429791287,
0.1086515635,
-0.4080073237,
0.3844201863,
0.1662028581,
-0.0784975588,
0.511318624,
-0.2503392994,
-0.0002709925,
0.2907697856,
0.1652013361,
-0.30328089,
0.0985563248,
-0.2944171727,
0.0109408572,
-0.122677356,
0.4289173186,
0.2969356179,
-0.135591805,
0.2463414073,
-0.0419783331,
0.4657475352,
0.1641958952,
0.4294067919,
0.3339244425,
0.117609784,
0.1835436523,
-0.1204462498,
0.1563708633,
-0.042437952,
-0.028828565,
-0.6253312826,
0.1836438179,
0.0830869824,
0.0889216512,
-0.0404970497,
-0.2828097939,
-0.1842342317,
-0.0523002297,
-0.1952909529,
0.3339409828,
0.0554024875,
0.4945182502,
-0.4045981169,
-0.0543086194,
-0.0903534815,
0.1913440675,
-0.1062505245,
0.1158466712,
0.1751670241,
-0.0295303389,
-0.372817874,
0.0510008484,
-0.0478915349,
0.1516237855,
-0.0984983593,
0.3364897966,
-0.1681475341,
0.0062475223,
0.0209678002,
0.1837593615,
0.0745996758,
-0.1302244663,
0.5655002594,
0.3868289292,
0.1632657796,
0.2651097178,
0.118730098,
0.5911535621,
0.4245759845,
-0.1783137918,
-0.0057316758,
-0.0481447279,
0.0702979714,
0.1987107247,
0.0354099274,
0.2802946568,
0.4603327513,
0.1872008592,
0.170415476,
-0.1349004656,
-0.2581368089,
0.1844436824,
0.024944853,
-0.0015241727,
0.2883340716,
-0.0720064193,
0.2568309307,
-0.5061604381,
-0.1153301746,
-0.4890586734,
0.2965936363,
0.4165180027,
0.0372215249,
-0.0408974141,
-0.2159250975,
0.0996101648,
-0.0284941308,
0.4844784141,
0.2472031116,
0.03031018,
-0.2621785104,
-0.1003775746,
-0.6561938524,
0.2546977401,
0.0283439178,
-0.4872553349,
-0.1307216585,
-0.305295825,
-0.0057947487,
0.355779618,
0.1714765877,
0.3289461434,
0.08510492,
0.0911219567,
-0.1206823885,
-0.0237275101,
-0.2309013009,
0.0887986943,
-0.1566856205,
-0.2004087269,
0.0185227208,
-0.2647874951,
0.0986331552,
-0.2584553063,
-0.341183126,
-0.2736744583,
0.0481207743,
0.3000488281,
0.1353301853,
0.3911930323,
-0.1834631413,
-0.2070967108,
-0.0924069807,
-0.1741215289,
-0.11017555,
0.2745240331,
0.2171795368,
0.1259854436,
0.0533539206,
0.1425205618,
-0.5296490192,
0.3337309957,
-0.0269117877,
-0.2261542231,
-0.2503294051,
0.042420879,
-0.0791867375,
-0.0027171969,
0.2878603935,
0.3772035837,
0.0333363637,
0.2308596075,
-0.1974360645,
-0.4907915592,
0.2464106232,
-0.418490082,
-0.1275345534,
0.0717023015,
0.216700092,
-0.1613467634,
0.0805046335,
-0.5184623599,
0.230783388,
0.0320794173,
-0.0563878566,
-0.2104314268,
0.3002870381,
-0.2732472718,
-0.0560419299,
-0.0295714512,
0.3224093914,
0.1971319467,
-0.1095009148,
0.0736239254,
-0.2415113896
] |
https://github.com/huggingface/datasets/issues/347 | 'cp950' codec error from load_dataset('xtreme', 'tydiqa') | Could you provide a better error message so that we can make sure it comes from the opening of the `tydiqa`'s json files ?
| ![image](https://user-images.githubusercontent.com/50871412/86744744-67481680-c06c-11ea-8612-b77eba92a392.png)
I guess the error is related to python source encoding issue that my PC is trying to decode the source code with wrong encoding-decoding tools, perhaps :
https://www.python.org/dev/peps/pep-0263/
I guess the error was triggered by the code " module = importlib.import_module(module_path)" at line 57 in the source code: nlp/src/nlp/load.py / (https://github.com/huggingface/nlp/blob/911d5596f9b500e39af8642fe3d1b891758999c7/src/nlp/load.py#L51)
Any ideas?
p.s. tried the same code on colab, that runs perfectly
| 24 | 'cp950' codec error from load_dataset('xtreme', 'tydiqa')
![image](https://user-images.githubusercontent.com/50871412/86744744-67481680-c06c-11ea-8612-b77eba92a392.png)
I guess the error is related to python source encoding issue that my PC is trying to decode the source code with wrong encoding-decoding tools, perhaps :
https://www.python.org/dev/peps/pep-0263/
I guess the error was triggered by the code " module = importlib.import_module(module_path)" at line 57 in the source code: nlp/src/nlp/load.py / (https://github.com/huggingface/nlp/blob/911d5596f9b500e39af8642fe3d1b891758999c7/src/nlp/load.py#L51)
Any ideas?
p.s. tried the same code on colab, that runs perfectly
Could you provide a better error message so that we can make sure it comes from the opening of the `tydiqa`'s json files ?
| [
-0.2817689776,
-0.0771226957,
-0.0259541273,
0.1864887178,
0.431878984,
-0.1063414067,
-0.0490796305,
0.2102419734,
-0.288875252,
0.0789321363,
0.1698376536,
0.5185143352,
-0.0157338716,
0.4039364755,
0.2165161669,
-0.0277954452,
-0.0087143146,
0.3307390511,
-0.0386375003,
0.0391563326,
-0.3182016015,
0.1808057576,
-0.0628178492,
0.0498375297,
-0.3340266049,
-0.1292741299,
0.1371210217,
0.3347367048,
-0.3895091414,
-0.5701819658,
0.2702988088,
-0.0080770478,
0.1706274748,
0.3130139709,
-0.0001040535,
0.0268081427,
0.3452882171,
-0.3027342856,
-0.104039982,
-0.2532045841,
-0.2504180074,
-0.3094665408,
0.1723181605,
-0.1982567757,
-0.0262208767,
0.241922915,
-0.0710229129,
-0.1036934257,
0.4995192289,
0.2284306586,
0.2823842764,
0.1334479898,
0.0270899683,
0.1191964895,
0.0230809189,
0.2401787937,
-0.0793570504,
0.4386380911,
0.2769226134,
-0.1497908831,
0.2019457072,
0.2887743711,
-0.1177522838,
-0.0590951033,
0.0971383154,
0.0272609964,
-0.1220088005,
-0.3863955736,
0.0478317924,
0.1814054549,
0.3376054764,
-0.3324700594,
-0.0737317652,
0.1352525502,
0.1053183079,
-0.432281971,
0.3052653074,
0.3276408911,
-0.3073069453,
0.0905289352,
-0.0683729202,
0.138113156,
0.0039157718,
-0.0165490173,
0.0366803408,
0.0251125824,
-0.1426300406,
-0.0910672098,
0.1715583801,
-0.110881865,
0.1577509046,
0.0657361224,
-0.2696867287,
0.202836886,
-0.1358705163,
-0.1643539965,
-0.1352389306,
-0.1784212887,
-0.0712779388,
-0.179998666,
0.6284136772,
0.0887388065,
-0.0453396216,
0.3436101973,
0.2137924135,
0.0779399574,
-0.1613688618,
0.2298020571,
0.1764535457,
0.106780827,
0.1351502985,
0.0063296165,
-0.1947844326,
-0.2007734925,
-0.380666554,
0.2614669204,
0.2055315673,
-0.1674136519,
-0.3905966878,
0.1570672691,
-0.0251289383,
0.125174135,
0.1215742528,
0.2305426449,
0.2509423494,
0.2337394357,
0.1035002619,
0.3014074564,
-0.2691757679,
-0.2696077526,
-0.0902693421,
0.2240215242,
-0.3366368711,
-0.130665198,
0.187525481,
0.0248257704,
0.1507217735,
0.1681638211,
0.1875316799,
-0.1822355241,
0.0831003189,
-0.0185788609,
0.0666427165,
0.1819320172,
0.0184237659,
0.0592943206,
0.1957464218,
-0.3177241981,
-0.1496908069,
0.047897052,
-0.4498772323,
-0.1029236987,
-0.0498546362,
0.2764463723,
-0.0709629655,
0.0148944017,
-0.5774100423,
0.1033242345,
0.1036704481,
-0.3065211177,
0.110410288,
-0.1724870503,
0.0652483106,
-0.1789132953,
0.1632582247,
0.4239062071,
-0.5196293592,
0.061409317,
0.2629773021,
-0.0087286299,
0.3078123927,
0.0395207442,
-0.2188351154,
0.0014090426,
-0.1103206277,
-0.0673657805,
0.342774421,
-0.3594682813,
-0.2083871365,
0.264814496,
-0.0599898845,
-0.0064670071,
-0.0183022954,
-0.0459113382,
-0.0296962224,
-0.1674283594,
0.1635743231,
0.407384485,
0.0208943505,
0.331974268,
-0.1896001846,
-0.2001388073,
0.1352939308,
0.1335034966,
-0.3661078811,
-0.1996988654,
0.1727053523,
0.3472836018,
0.232628718,
-0.1098583639,
-0.2995853424,
0.1958723962,
0.1872800738,
-0.2911572456,
-0.1688218713,
0.2727039456,
-0.0299199745,
-0.0008161813,
-0.4668939114,
0.1937799603,
-0.3488872051,
-0.1252830178,
-0.1011166573,
0.1086005569,
-0.4706579745,
-0.2607014477,
0.2740674019,
-0.0427691713,
-0.0989651531,
0.0541110784,
-0.1565454155,
0.1738284677,
0.0019520223,
-0.0128229782,
-0.3405915499,
0.1497580856,
-0.1362094879,
-0.2563149333,
0.3186991513,
0.2369575948,
0.1342217624,
-0.1979387403,
-0.2061989009,
0.2130203396,
0.03901048,
0.3725277483,
-0.2939711511,
-0.2491042912,
0.4123367369,
-0.5082933903,
0.0771567374,
0.4808596075,
0.2183993906,
-0.146153748,
0.2769641578,
0.2817264795,
-0.0891664848,
0.0151477195,
-0.0292360932,
-0.1517890394,
0.1802473664,
0.0448528305,
0.0785501301,
-0.1457229704,
0.3540159464,
0.6760113239,
0.2317337543,
-0.061865516,
-0.061297901,
0.0631480291,
0.4979126155,
-0.0228536539,
0.0224456526,
0.0306604132,
0.0818221793,
-0.1498588473,
0.0854416788,
0.0991886109,
0.1967510581,
-0.0726003721,
-0.2659803033,
0.1621044129,
-0.0040253103,
-0.1762969792,
0.1893493831,
-0.1335133016,
-0.009568233,
0.0479487889,
0.1350295246,
-0.011934299,
-0.2644741535,
-0.2243677229,
0.0472703204,
0.1501172036,
-0.2828512192,
0.2840695083,
-0.4692809582,
-0.3395819962,
-0.1189215034,
0.0577479526,
-0.1735456139,
-0.0477438122,
-0.0287638642,
-0.087550506,
0.020084694,
0.2474016547,
-0.1192871034,
-0.0076292753,
-0.0873216242,
-0.1683952063,
-0.0243217796,
-0.2341930717,
-0.2052879035,
0.1376560479,
0.4320602715,
-0.006056793,
0.0468511283,
-0.4066323042,
0.1306011379,
0.3167106807,
-0.1881710589,
0.2786335051,
-0.2370866537,
0.0836379528,
0.0733188391,
0.1783911288,
0.0843785703,
-0.3423640728,
0.2534835339,
0.0106195062,
-0.1843847632,
0.1638585031,
-0.0660433993,
-0.1703947783,
-0.2623522282,
0.0312269442,
-0.478166312,
-0.3827650547,
-0.1456868947,
0.123057425,
0.1545903981,
0.2949497104,
0.2861063778,
0.1185111403,
0.1604106128,
-0.0210369378,
-0.0711761564,
-0.347428441,
0.2403914928,
-0.3694213629,
-0.3852404952,
0.0362635851,
-0.0017280355,
0.5735812187,
-0.245536685,
-0.210210979,
-0.0124379918,
-0.0979463831,
0.0303755477,
-0.1026783735,
0.0817887187,
0.0242637265,
0.0206773989,
-0.0392616019,
-0.128828615,
-0.02398853,
-0.0752912536,
-0.0287438314,
0.3422815204,
-0.0258512739,
0.2903345525,
-0.2431195378,
0.0379475169,
0.232742697,
-0.0770642087,
0.656468451,
-0.0829387531,
0.336674124,
-0.2007136047,
-0.0529078096,
0.0831647292,
-0.1412674487,
-0.0648585036,
0.1083847582,
-0.075447306,
-0.2820370793,
-0.3335748315,
0.0537840724,
-0.2663481534,
-0.2430242896,
0.0889938325,
0.195113346,
-0.0806273073,
-0.0360128209,
0.1178685352,
0.067562893,
-0.1302369684,
-0.045302663,
0.2454379797,
-0.1497396082,
0.2119571418,
-0.2705280781,
-0.4818197787,
-0.1639064252,
0.1904550493,
0.1681246012,
0.2538112998,
-0.0260944217,
0.0711109191,
0.1143480241,
-0.1675318182,
0.213732332,
0.1218518391,
0.0823776722,
0.125548467,
0.0904080272,
0.063979052,
-0.0746582374,
-0.2222862989,
0.1211323068,
0.1885789186,
-0.2162658274,
-0.2339185178,
0.0046443455,
-0.0255858935,
0.333047986,
-0.0405115522,
0.1393742561,
-0.496022135,
-0.6708531976,
-0.2037331462,
-0.222194016,
0.206086576,
0.2809029818,
-0.089795202,
-0.0868963152,
0.0504809096,
-0.2398330122,
0.1881610453,
0.5552307963,
0.4350996912,
0.1240931451,
-0.0356481634,
-0.2201028466,
-0.1016192585,
0.3710555136,
0.8140741587,
0.1218467206,
-0.213930279,
0.1597448587,
-0.1061504632,
0.1949418634,
0.218397826,
-0.0612572357,
-0.1229308546,
-0.2011159509,
-0.0471098237,
-0.1970366836,
0.2360363901,
0.2261997014,
0.0052683987,
-0.5391128063,
-0.4374728203,
0.5951077938,
-0.1041427329,
0.1791023612,
0.1939287186,
-0.049726285,
-0.2902443111,
0.2526354492,
0.0939049274,
0.8820837736,
0.2124814391,
0.1971963197,
0.3946867287,
0.1023964733,
0.2337599546,
-0.1697790325,
0.1595805585,
-0.2948201001,
-0.0567247346,
-0.0166520141,
0.0715669245,
0.1229253858,
0.1062171981,
-0.3144181371,
0.0424726345,
-0.0723965541,
-0.3561920524,
0.0593950897,
0.2124868333,
-0.2269318998,
-0.2082307786,
-0.6637165546,
0.2391317487,
-0.1073244363,
0.0407227129,
-0.1362830549,
-0.2645183802,
-0.0510926582,
-0.3845809698,
-0.1963123083,
0.3531444669,
-0.4750058949,
0.184869051,
-0.0700016245,
-0.6309322119,
0.1859443784,
0.0950208753,
0.1329974681,
0.188610509,
-0.0468605533,
0.2326344401,
0.2573447227,
-0.0418466106,
-0.0256653037,
0.144677192,
0.0865650401,
-0.2290066034,
-0.0461319387,
0.2251648605,
0.0787734613,
-0.0925493687,
0.3337952197,
0.0486084595,
-0.2959440351,
-0.1502701342,
-0.3046674728,
-0.1649681628,
0.163693279,
-0.0122375563,
0.1836998016,
0.0649409816,
-0.2007921189,
-0.123596102,
0.1584539264,
-0.3354060352,
-0.1280152202,
-0.0002242029,
-0.0564099774,
-0.051817663,
0.4692660868,
0.1955725849,
-0.1823513657,
-0.1286049187,
0.3528128862,
0.0209736079,
-0.5445839763,
0.0216624103,
0.25078848,
-0.2140465379,
0.0216915049,
0.7245565653,
-0.0386077613,
-0.0383135453,
0.197974056,
-0.3346593976,
-0.410052985,
0.12111222,
-0.176541537,
0.1115837097,
0.12926507,
0.3700280786,
-0.0438421406,
-0.0467107967,
-0.340513438,
0.0951456949,
-0.1919038296,
-0.0264844112,
0.1189278141,
-0.0848550275,
0.1138951927,
0.1564534456,
0.1555798948,
0.3289300799,
-0.1472268999,
-0.2335827351,
-0.1009581238,
0.0682492629,
-0.0222879201,
-0.2691430748,
-0.1357531101,
0.071720399,
-0.0849233121,
-0.0229941197,
0.148989886,
-0.0507917963,
0.1142267138,
0.148194328,
-0.228745237,
0.0628200173,
0.0075676665,
0.1854741275,
-0.1000135392,
0.5562203526,
0.1064175963,
0.0211144909,
-0.0779818669,
-0.0006729364,
-0.1246823967,
0.069360435,
-0.2328158915,
0.1099681333,
0.1433180273,
-0.325874567,
0.3833556771,
-0.0472302847,
-0.0225432925,
0.4821302891,
-0.2560999095,
-0.0375840515,
0.2865120471,
0.2163230926,
-0.2558054626,
-0.0219414402,
-0.2864892185,
-0.0266390294,
-0.0596191324,
0.317425698,
0.0948874578,
-0.0968193933,
0.267911464,
-0.0562099181,
0.4560813308,
0.1287515759,
0.3024080098,
0.3055932224,
-0.1382282376,
0.1300308108,
-0.1319559813,
0.1824097931,
0.0500272959,
-0.026569372,
-0.6331768632,
0.0941194892,
0.0548141152,
0.0723896176,
-0.0161443427,
-0.2497697026,
-0.2015657723,
-0.0490620732,
-0.0829799771,
0.3896671534,
0.1720817089,
0.3763706088,
-0.4089491069,
-0.0280413479,
-0.1358756721,
0.1379606873,
-0.0701371804,
0.05549822,
-0.0409295671,
-0.0583388358,
-0.2832134366,
0.085039638,
-0.0863702744,
0.1195399761,
-0.0830632299,
0.2690287232,
-0.111613445,
-0.0280177481,
0.0860884339,
0.0169620886,
-0.0092137307,
-0.1316576749,
0.5656223893,
0.3985664546,
0.1152792647,
0.2964437902,
0.1866955012,
0.6348480582,
0.4427378178,
-0.2009816766,
0.0176077895,
-0.2134806216,
0.0193559006,
0.0494363084,
0.1225808635,
0.3237188458,
0.2292331755,
0.232883513,
0.2080930471,
-0.1593469679,
-0.2050780952,
0.2338088751,
0.0916535407,
0.1269598901,
0.2348295152,
-0.2353522778,
0.2718703151,
-0.4492447972,
-0.0878829509,
-0.4653194249,
0.2442936003,
0.2965212464,
0.0449353941,
0.0403481498,
-0.2311995924,
0.1190266982,
-0.0631498694,
0.600646019,
0.1987867355,
0.1034514308,
-0.1107357219,
-0.0290536433,
-0.6104622483,
0.2797623277,
-0.0068356614,
-0.4517887235,
-0.1234370768,
-0.2283340394,
0.1319386363,
0.4181395769,
0.0715555847,
0.3477073908,
0.0696174353,
0.098947823,
-0.1631031036,
-0.0020969629,
-0.2136658281,
0.087061055,
-0.1896213889,
-0.2382357121,
0.0256432183,
-0.3435178399,
0.1415511966,
-0.2849487364,
-0.2998341918,
-0.3997804224,
0.1126058996,
0.3344659209,
0.2275513113,
0.3273841739,
-0.2716763318,
-0.2994090617,
-0.0551988073,
-0.2854253948,
-0.0677862689,
0.3536013961,
0.2097641826,
0.2202962488,
0.0422311798,
0.2010892779,
-0.4806054533,
0.2990703285,
-0.1135338172,
-0.1927038133,
-0.2164246738,
0.056837514,
-0.0278046429,
-0.0177574772,
0.1971735507,
0.3319280148,
0.015820289,
0.1581098437,
-0.1731147915,
-0.4464834929,
0.3486944139,
-0.4384193718,
-0.1625082046,
0.2954721153,
0.0785423666,
-0.2457386106,
0.1090266332,
-0.5252716541,
0.2714562416,
0.0139725469,
-0.0921186432,
-0.2960338593,
0.2218853533,
-0.2321229577,
-0.1918735802,
-0.0756714121,
0.4190499783,
0.187801376,
-0.0788548812,
-0.0127318352,
-0.2181259394
] |
https://github.com/huggingface/datasets/issues/347 | 'cp950' codec error from load_dataset('xtreme', 'tydiqa') | @lhoestq
The error message is same as before:
Exception has occurred: UnicodeDecodeError
'cp950' codec can't decode byte 0xe2 in position 111: illegal multibyte sequence
File "D:\python\test\test.py", line 3, in <module>
dataset = load_dataset('xtreme', 'tydiqa')
![image](https://user-images.githubusercontent.com/50871412/87748794-7c216880-c829-11ea-94f0-7caeacb4d865.png)
I said that I found 4 copy of xtreme.py and add the 「, encoding='utf-8'」 parameter to the open() function
these python script was found under this directory
C:\Users\USER\AppData\Local\Programs\Python\Python37\Lib\site-packages\nlp\datasets\xtreme
| ![image](https://user-images.githubusercontent.com/50871412/86744744-67481680-c06c-11ea-8612-b77eba92a392.png)
I guess the error is related to python source encoding issue that my PC is trying to decode the source code with wrong encoding-decoding tools, perhaps :
https://www.python.org/dev/peps/pep-0263/
I guess the error was triggered by the code " module = importlib.import_module(module_path)" at line 57 in the source code: nlp/src/nlp/load.py / (https://github.com/huggingface/nlp/blob/911d5596f9b500e39af8642fe3d1b891758999c7/src/nlp/load.py#L51)
Any ideas?
p.s. tried the same code on colab, that runs perfectly
| 63 | 'cp950' codec error from load_dataset('xtreme', 'tydiqa')
![image](https://user-images.githubusercontent.com/50871412/86744744-67481680-c06c-11ea-8612-b77eba92a392.png)
I guess the error is related to python source encoding issue that my PC is trying to decode the source code with wrong encoding-decoding tools, perhaps :
https://www.python.org/dev/peps/pep-0263/
I guess the error was triggered by the code " module = importlib.import_module(module_path)" at line 57 in the source code: nlp/src/nlp/load.py / (https://github.com/huggingface/nlp/blob/911d5596f9b500e39af8642fe3d1b891758999c7/src/nlp/load.py#L51)
Any ideas?
p.s. tried the same code on colab, that runs perfectly
@lhoestq
The error message is same as before:
Exception has occurred: UnicodeDecodeError
'cp950' codec can't decode byte 0xe2 in position 111: illegal multibyte sequence
File "D:\python\test\test.py", line 3, in <module>
dataset = load_dataset('xtreme', 'tydiqa')
![image](https://user-images.githubusercontent.com/50871412/87748794-7c216880-c829-11ea-94f0-7caeacb4d865.png)
I said that I found 4 copy of xtreme.py and add the 「, encoding='utf-8'」 parameter to the open() function
these python script was found under this directory
C:\Users\USER\AppData\Local\Programs\Python\Python37\Lib\site-packages\nlp\datasets\xtreme
| [
-0.2993038297,
-0.0795089006,
-0.0254609678,
0.2176792771,
0.3856869042,
-0.0703270957,
-0.1006558836,
0.1843705177,
-0.2766492963,
0.0560928248,
0.1345288754,
0.4247641563,
-0.0865386575,
0.2728085816,
0.2161015272,
-0.0068475623,
-0.0502492711,
0.2241973877,
0.1564085931,
0.0707994476,
-0.408891052,
0.1733011454,
-0.1744892597,
0.1244190037,
-0.4139836133,
-0.0595943704,
0.0413278416,
0.3134812713,
-0.2633450031,
-0.6551193595,
0.1879901588,
-0.0460012071,
0.1435699016,
0.3817633092,
-0.000106594,
-0.098006174,
0.2307548821,
-0.2170888484,
-0.1518953592,
-0.276779592,
-0.3016498685,
-0.3093871474,
0.1195953265,
-0.308241725,
0.0811883509,
0.1373252571,
0.0110626668,
-0.330506146,
0.44848755,
0.3554727137,
0.2603322566,
0.1282585263,
0.0217568427,
0.140582487,
0.0245090537,
0.0218689404,
-0.0638802648,
0.4434994161,
0.2685891986,
-0.0473265275,
0.1204437166,
0.1458220482,
-0.1865743399,
-0.0480094403,
0.0152620468,
0.0447202884,
0.0667639077,
-0.4407675266,
0.1138862297,
0.1189365089,
0.0809878707,
-0.3776187301,
-0.1859688759,
0.0942310244,
0.1264691949,
-0.6105189919,
0.2371099442,
0.400020659,
-0.3269695938,
0.1599571556,
-0.0670776814,
0.063843064,
0.0541391373,
-0.0907463431,
-0.0465914756,
0.1650672853,
-0.1873859912,
-0.077428624,
0.1572607458,
0.0634271502,
0.1613898575,
0.017196998,
-0.1779074967,
0.1812131107,
-0.235455811,
0.0056718811,
-0.1401464343,
-0.0122229978,
-0.0569796413,
-0.0703787655,
0.4700907469,
0.1602921486,
-0.0891897827,
0.2671577334,
0.0374502949,
0.1032641754,
-0.2167340517,
0.1008804962,
0.190623045,
0.1225571111,
0.1977972686,
0.0752737597,
-0.2027530521,
-0.2452728003,
-0.1989913136,
0.451569438,
0.3463511765,
-0.1463846415,
-0.4804705679,
0.0671460629,
0.0153366029,
0.0724577382,
0.0974964947,
0.15005593,
0.1725723445,
0.3843927681,
-0.0482335612,
0.2677056789,
-0.3312210739,
-0.291478157,
-0.0979885757,
0.251581341,
-0.3490157425,
-0.0358148478,
0.1118651852,
-0.1107489318,
0.1102607101,
0.2399999052,
0.1703832895,
-0.3305484653,
0.089422442,
-0.1719461381,
-0.001108069,
0.0261318088,
0.0958599672,
0.1550362855,
0.1559720933,
-0.3678236306,
-0.0557277501,
0.0636260808,
-0.5577607751,
-0.1297599673,
-0.1729641855,
0.2627519369,
-0.0124776699,
-0.0123801678,
-0.5066613555,
0.0706067085,
0.1725927889,
-0.230397895,
0.0631195232,
-0.1705558002,
-0.1377055347,
-0.2525263727,
0.1753312051,
0.4754905701,
-0.2941104174,
0.053860113,
0.1609710902,
0.0338647068,
0.3461770415,
0.0864406377,
-0.2136351913,
-0.1357936859,
-0.2194355726,
-0.0354539752,
0.3955560327,
-0.4324067831,
-0.2422580421,
0.358715415,
-0.2437881529,
-0.0083461478,
0.0660074279,
-0.1317991018,
0.0356074162,
-0.2514544427,
0.1312208474,
0.4155409038,
0.0266560782,
0.2746024132,
-0.1828945577,
-0.309240818,
0.2006273568,
0.0163545981,
-0.2178279757,
-0.2202052921,
0.2515698969,
0.3486475646,
0.2898350656,
-0.1736854464,
-0.1671793312,
0.2128670514,
0.0270128325,
-0.216756016,
-0.2222603559,
0.0945964381,
0.0223031398,
-0.0189576447,
-0.3267049789,
0.0898942798,
-0.3444603086,
-0.1623486727,
-0.1593017578,
0.0376579538,
-0.6050459743,
-0.2833512425,
0.2350181639,
0.208681792,
-0.0824371055,
0.0819685608,
-0.207541734,
0.2771041989,
0.0008027405,
-0.0396683142,
-0.3657072484,
0.0936849341,
-0.1336219609,
-0.1018196791,
0.2282006592,
0.3284243941,
0.167885974,
-0.1420125514,
-0.241291523,
0.3130164146,
0.0796096027,
0.3886030316,
-0.2427395582,
-0.1854431629,
0.4853191674,
-0.6272901297,
0.1525296569,
0.4805998802,
0.2121467441,
-0.1064733192,
0.3261396289,
0.3260166049,
-0.0221676417,
-0.0876563936,
0.0208772719,
-0.1277965903,
0.1704483777,
-0.0059429482,
0.1041063219,
-0.2580584884,
0.3132899106,
0.6806161404,
0.3463382721,
-0.0056934441,
-0.0863398761,
-0.0046063997,
0.5590985417,
-0.0820823237,
0.0221952368,
0.0778364688,
0.1216900051,
-0.1580359489,
-0.0382321887,
0.0860444307,
0.2751678824,
-0.0825376436,
-0.1489645541,
0.2428868711,
0.0354848951,
-0.2573784292,
0.1527565718,
-0.0567202233,
0.0502873883,
0.0647864193,
0.1666751057,
0.0959485844,
-0.2578539848,
-0.3063186407,
0.0870975852,
0.1154114902,
-0.3568194211,
0.3141881227,
-0.5408016443,
-0.3548948467,
-0.2717302442,
0.1222768649,
-0.1007573903,
-0.0870125145,
-0.1659289896,
-0.0778104514,
0.1684070528,
0.1757584363,
-0.2078569233,
0.0004745573,
-0.0593756288,
-0.090887934,
0.1813365966,
-0.1437170804,
-0.2546927631,
0.0867512301,
0.4046461582,
-0.0034862384,
0.0353800952,
-0.3951057196,
0.0685482025,
0.1820477247,
-0.119526498,
0.2201738954,
-0.2149032354,
0.1363781691,
-0.0043686926,
0.0067561865,
0.0071470141,
-0.2906437218,
0.1497113407,
-0.0239727236,
-0.0502183214,
0.1258328259,
-0.0785774812,
-0.1874871105,
-0.2346598059,
0.015699964,
-0.5259250998,
-0.413779676,
-0.2053125054,
0.0765401274,
0.2234556824,
0.2994024158,
-0.0135563128,
0.2073118836,
0.2510856688,
-0.0007845499,
-0.1215124875,
-0.3657855093,
0.3067184091,
-0.4246501923,
-0.4335763752,
0.032273829,
-0.0820376575,
0.4345401227,
-0.0832582265,
-0.1792015433,
-0.0581076331,
-0.1336794198,
0.0765964687,
-0.0586901456,
0.1000944749,
-0.0111698061,
0.0214981735,
-0.0183023885,
-0.0689398795,
0.0800178051,
-0.1598850191,
0.0732787848,
0.3267391622,
0.0562294647,
0.225590691,
-0.104882136,
-0.0407769382,
0.309138298,
0.1325107217,
0.6449683309,
-0.1720909774,
0.2896554172,
-0.0610421188,
-0.0595870763,
-0.010182742,
-0.1836557239,
-0.0560681783,
0.1665944159,
-0.0855596513,
-0.1660768241,
-0.2576842308,
0.0474130362,
-0.2950177789,
-0.2238308191,
0.0523652285,
0.1114466339,
0.1309528351,
-0.1122145057,
0.164320305,
0.0339247361,
-0.2491915375,
-0.0222500078,
0.3163500428,
-0.1691477448,
0.1459117085,
-0.2220990956,
-0.3437348902,
-0.2073239088,
0.1932176054,
0.3202222884,
0.3662997186,
0.0591937527,
0.2135510296,
0.1143078282,
-0.1909121871,
0.1653678864,
0.0742492527,
0.0477263518,
0.1528622806,
0.1147703081,
0.0004943311,
-0.0868356377,
-0.27727139,
0.2468749285,
0.0710148662,
-0.2654929161,
-0.1259055734,
-0.0268592555,
0.1045970172,
0.393148303,
-0.1350216568,
0.2678694725,
-0.4257535636,
-0.7568019629,
-0.1499161869,
-0.2945360541,
0.2177586854,
0.330001235,
-0.0727688447,
0.0765950754,
0.0575871244,
-0.2534157038,
0.2762100697,
0.3764480054,
0.3708625138,
0.266807884,
-0.1186255515,
-0.1426455379,
-0.2091724277,
0.2116287053,
0.6942176819,
0.1674201638,
-0.2489523888,
0.1772020608,
-0.1624294221,
0.2050910145,
0.2624575794,
-0.1384047568,
-0.0221755505,
-0.1742611825,
-0.0046035424,
-0.1279201508,
0.1411251575,
0.2708051205,
0.0400171392,
-0.5778195262,
-0.5629858375,
0.5285754204,
0.0018851608,
0.1206889153,
0.1148112714,
-0.0753367245,
-0.299239099,
0.1864058226,
0.1224783063,
0.8694339991,
0.2407931983,
0.1287990957,
0.4219370484,
0.071068503,
0.1791027039,
-0.013395831,
0.200865671,
-0.2237322927,
-0.1441681385,
-0.0482103154,
0.1069194525,
0.1695764661,
-0.0610565804,
-0.3289296329,
0.248093158,
-0.0318162814,
-0.3604767621,
0.1572131515,
0.2678993046,
-0.2972079217,
-0.1847030371,
-0.5931876898,
0.1891244501,
-0.1117905974,
0.0649577081,
-0.1340328604,
-0.1960575432,
-0.0200167745,
-0.2767280638,
-0.2806448936,
0.3329109251,
-0.4735087156,
0.3480066061,
-0.2584133148,
-0.5290862918,
0.2686243057,
0.1564140022,
0.2244636565,
0.0829586685,
0.0273847301,
0.1534835398,
0.262237668,
0.0240561068,
0.0552042052,
0.0767489374,
0.1274212301,
-0.1599382013,
-0.0795191601,
0.3281881809,
0.1406796426,
-0.0697797164,
0.2809197307,
-0.0097975396,
-0.1568863541,
-0.0493091419,
-0.2253404856,
-0.2602359354,
0.1359809488,
-0.0604950041,
0.131728366,
-0.0802661926,
-0.1057083011,
-0.1073966771,
0.0571068898,
-0.3944144845,
-0.0997214913,
0.1367492974,
0.0153043754,
-0.0763814226,
0.5025991797,
0.1954506338,
-0.1406811923,
-0.1048963219,
0.3054180443,
-0.1084145457,
-0.5312293172,
-0.0495974757,
0.0164839849,
-0.0170058906,
0.0806871504,
0.6536363363,
-0.0109748794,
0.0688044727,
0.1723845005,
-0.5049066544,
-0.2466585934,
0.0166136716,
-0.1233025044,
0.0090256296,
0.1266394556,
0.4019543529,
0.0770145133,
-0.0840224996,
-0.3070729971,
0.1770120114,
-0.1739885509,
-0.0136989271,
0.216189906,
-0.0522600636,
0.1325300038,
0.1732368469,
0.1574271023,
0.360614121,
-0.0934450924,
-0.1727009714,
-0.1912989914,
0.0932843611,
-0.0934175104,
-0.3760544062,
-0.1042428762,
0.0646768063,
-0.0465692729,
-0.010136947,
0.1986923367,
0.0797908008,
0.1309220493,
0.2023890018,
-0.2446156889,
0.0136061199,
-0.0848861262,
0.1965003461,
-0.0774521083,
0.5980930924,
0.1646554172,
0.2236829251,
0.0172847323,
-0.0131132752,
-0.3025081754,
0.0197590142,
-0.161549747,
0.0791383386,
0.0524096154,
-0.3789252043,
0.3416692019,
0.1473592967,
-0.1021377295,
0.4704591036,
-0.3041957915,
-0.0333042927,
0.2028287947,
0.161591962,
-0.2177619785,
0.046001371,
-0.2467534542,
-0.1125779748,
-0.0840739459,
0.458467871,
0.2320083827,
-0.0806797072,
0.1945516765,
-0.0239910483,
0.3604415059,
0.2142914385,
0.447963357,
0.3134162426,
0.0202897266,
0.1337036788,
-0.1337765455,
0.1738453656,
0.0654901266,
0.1365725547,
-0.5954401493,
0.2841956019,
0.09920232,
0.194631651,
-0.0844503194,
-0.3110915124,
-0.0892350823,
-0.0549091697,
-0.2381765097,
0.3179436028,
0.1723591089,
0.3926721215,
-0.4416764975,
-0.0227639582,
-0.1770833433,
0.2958930135,
-0.0724513531,
0.0080596134,
0.0955120027,
-0.034978725,
-0.4344462156,
0.0805490911,
-0.0886063278,
0.1283376515,
-0.0331964754,
0.3416310549,
-0.1514338106,
-0.0637250319,
0.0173055828,
0.1080750972,
0.0809842944,
-0.2101391256,
0.5812782049,
0.4417739213,
0.1471702456,
0.2122600377,
0.1768321097,
0.5937770009,
0.4060041308,
-0.2153434008,
0.012656983,
-0.0964886397,
0.030823417,
0.1480908841,
0.0102315098,
0.2071187943,
0.4157855511,
0.250259459,
0.1861783713,
-0.1576273441,
-0.1346196532,
0.3104699254,
0.0544277132,
-0.062156897,
0.3012606502,
-0.0716731995,
0.2231063992,
-0.3759076893,
-0.0721328557,
-0.4998146594,
0.2332315147,
0.3207103014,
0.016981978,
0.0273133181,
-0.1229552627,
0.1045161039,
0.0163002834,
0.4972699881,
0.2941489816,
0.0312457979,
-0.135842219,
-0.2252736837,
-0.7696906328,
0.2917549014,
0.0701574236,
-0.4844244719,
-0.1144132167,
-0.2295143604,
-0.1175689921,
0.3979947567,
0.0498127937,
0.2959584892,
0.1677702665,
0.010977868,
-0.1803515255,
0.0211552884,
-0.0218764991,
0.0617012009,
-0.2551729083,
-0.3233397901,
0.1144113168,
-0.39970541,
0.1131576672,
-0.3319922984,
-0.2369957715,
-0.368552655,
0.0032365099,
0.2550115883,
0.2010789216,
0.3229778707,
-0.3041160107,
-0.2139413357,
-0.1175044477,
-0.1041313261,
-0.0419157594,
0.3619711995,
0.1920212656,
0.2813420892,
0.082563445,
0.153879866,
-0.5075464249,
0.418390125,
-0.0698082149,
-0.1183640957,
-0.2643517256,
0.1811921895,
-0.0990330949,
-0.0012426227,
0.2663116455,
0.38618204,
0.0138148526,
0.2909950018,
-0.0476448387,
-0.5047469139,
0.291806072,
-0.4830420017,
-0.1419980228,
0.1137419045,
0.2829333544,
-0.2061603516,
0.0223941077,
-0.4061277807,
0.2821894288,
0.1225739568,
-0.038764894,
-0.3610474169,
0.305799067,
-0.3156986833,
-0.1741197258,
-0.0470324382,
0.328420043,
0.1485314816,
-0.1605901122,
0.1165081561,
-0.2194475532
] |
https://github.com/huggingface/datasets/issues/347 | 'cp950' codec error from load_dataset('xtreme', 'tydiqa') | Hi there !
I encountered the same issue with the IMDB dataset on windows. It threw an error about charmap not being able to decode a symbol during the first time I tried to download it. I checked on a remote linux machine I have, and it can't be reproduced.
I added ```encoding='UTF-8'``` to both lines that have ```open``` in ```imdb.py``` (108 and 114) and it worked for me.
Thank you ! | ![image](https://user-images.githubusercontent.com/50871412/86744744-67481680-c06c-11ea-8612-b77eba92a392.png)
I guess the error is related to python source encoding issue that my PC is trying to decode the source code with wrong encoding-decoding tools, perhaps :
https://www.python.org/dev/peps/pep-0263/
I guess the error was triggered by the code " module = importlib.import_module(module_path)" at line 57 in the source code: nlp/src/nlp/load.py / (https://github.com/huggingface/nlp/blob/911d5596f9b500e39af8642fe3d1b891758999c7/src/nlp/load.py#L51)
Any ideas?
p.s. tried the same code on colab, that runs perfectly
| 72 | 'cp950' codec error from load_dataset('xtreme', 'tydiqa')
![image](https://user-images.githubusercontent.com/50871412/86744744-67481680-c06c-11ea-8612-b77eba92a392.png)
I guess the error is related to python source encoding issue that my PC is trying to decode the source code with wrong encoding-decoding tools, perhaps :
https://www.python.org/dev/peps/pep-0263/
I guess the error was triggered by the code " module = importlib.import_module(module_path)" at line 57 in the source code: nlp/src/nlp/load.py / (https://github.com/huggingface/nlp/blob/911d5596f9b500e39af8642fe3d1b891758999c7/src/nlp/load.py#L51)
Any ideas?
p.s. tried the same code on colab, that runs perfectly
Hi there !
I encountered the same issue with the IMDB dataset on windows. It threw an error about charmap not being able to decode a symbol during the first time I tried to download it. I checked on a remote linux machine I have, and it can't be reproduced.
I added ```encoding='UTF-8'``` to both lines that have ```open``` in ```imdb.py``` (108 and 114) and it worked for me.
Thank you ! | [
-0.3488941193,
0.0580563098,
-0.0053172372,
0.2148149312,
0.2911396325,
0.0693921521,
-0.0231633224,
0.1682785749,
-0.1171182171,
-0.0088028312,
0.0351621211,
0.3814254999,
0.0592853129,
0.2256455123,
0.2042712569,
0.1376581043,
0.0813012198,
0.2279615551,
0.076269418,
-0.032126233,
-0.2550891042,
0.2474255711,
-0.1208337992,
0.1178524047,
-0.3460617065,
-0.1771094501,
0.1752642542,
0.2684677243,
-0.2989813685,
-0.5578819513,
0.3264291883,
-0.0420310907,
0.16373007,
0.3156365156,
-0.000107127,
-0.1720657349,
0.4879132211,
-0.2730461955,
-0.0977525115,
-0.2996378541,
-0.0662686154,
-0.1792029291,
0.2087058127,
-0.195127815,
0.164209187,
0.2361986935,
0.0254219044,
-0.2193974406,
0.2429869473,
0.2548005283,
0.2512706816,
0.0758321434,
-0.0124274716,
0.0530119427,
0.1059627384,
0.0892353952,
-0.0343467481,
0.4207035005,
0.4167107344,
-0.0661737099,
0.1576464921,
0.1413359344,
-0.2976842225,
-0.1031859219,
0.1930610538,
0.1217103824,
-0.1926505417,
-0.5360169411,
0.0280170254,
0.2379918844,
0.4053961337,
-0.4262821078,
-0.2080039978,
0.0869112015,
0.2992159724,
-0.4392410815,
0.2078834623,
0.4138444364,
-0.3085671067,
0.1394882649,
-0.0505686477,
0.1756737977,
0.15243119,
-0.0138392523,
0.0176995769,
-0.0796571821,
-0.0850760862,
-0.0789388567,
0.1076152325,
-0.0334566161,
0.2237874866,
0.0531088561,
-0.1419589221,
0.0521737523,
-0.0420181341,
-0.0374314785,
-0.1653198898,
0.0665674955,
-0.0967047215,
0.0523704216,
0.3962652981,
0.1933191568,
-0.1017117202,
0.3944354653,
0.2274760604,
0.0416718312,
-0.2219594568,
0.2559441328,
0.3583295643,
0.1660341322,
0.0576863885,
-0.0020178868,
-0.1636369526,
-0.1274364293,
-0.1428083628,
0.2887330651,
0.1514270306,
-0.1898153424,
-0.4294270873,
0.1617309451,
0.1705230772,
0.2196199596,
0.1940183789,
0.1838283539,
0.1750238538,
0.3112074435,
0.0333496854,
0.3036215305,
-0.2544293106,
-0.2565977871,
-0.0809630156,
0.1975771189,
-0.2479851693,
-0.1120389774,
0.2367904931,
-0.0987466946,
0.1741166413,
0.2018452883,
0.2456618547,
-0.1505300999,
0.0676358119,
-0.1074693725,
0.2129864693,
0.2414593548,
0.1607814133,
0.2428202033,
0.1067944467,
-0.2313485593,
-0.1709672958,
0.0372146592,
-0.4215360284,
-0.1010326892,
-0.0597746,
0.2072862536,
-0.0817629695,
-0.117190659,
-0.6567409039,
0.0730895251,
0.0092074499,
-0.3679390252,
0.069724299,
-0.1777153611,
-0.0362020656,
-0.076847896,
0.1931197196,
0.5341473222,
-0.4658976197,
0.1469018161,
0.0349594094,
0.0121595077,
0.2244080901,
0.1452995241,
-0.1387916207,
-0.1420612335,
-0.3158385456,
0.1119498312,
0.3089249432,
-0.5038152933,
-0.3365868926,
0.3986087739,
-0.0998630077,
-0.0152450576,
-0.0035205111,
0.0348179005,
0.1104172766,
-0.2140942365,
0.0104302373,
0.3849824071,
-0.0740714297,
0.1820015609,
-0.1900571883,
-0.1728017926,
0.1346135587,
-0.0327697769,
-0.171205312,
-0.1084194183,
0.1116733849,
0.1699971557,
0.23009561,
0.0933080763,
-0.1538112909,
0.1082641929,
0.2403593361,
-0.0081668645,
-0.073368825,
0.1044958383,
0.0796273351,
0.0673354864,
-0.2456252575,
0.106788449,
-0.4861813784,
-0.2660392225,
-0.1546811461,
0.0328311175,
-0.3553246558,
-0.0886503011,
0.2059871554,
-0.0387348235,
-0.2071610093,
0.0492851362,
-0.3249137104,
0.176543355,
0.1097026616,
0.0658432692,
-0.2932018638,
0.1220300943,
-0.1851797104,
-0.2235825807,
0.2431549877,
0.1649625599,
0.1026879698,
-0.0626985282,
-0.1499414146,
0.2574964166,
0.0730740577,
0.344971925,
-0.2452048063,
-0.2048247755,
0.5607063174,
-0.548206687,
0.1130468026,
0.4191701114,
0.2602438629,
-0.1504662484,
0.2045988739,
0.2479985207,
-0.1719045043,
0.0086717941,
0.0719210729,
-0.0847105756,
0.297203809,
0.1503053308,
0.0177874565,
-0.3461951613,
0.2551013231,
0.5953896642,
0.214658767,
-0.0987163484,
-0.1114513502,
0.1296661645,
0.4439415634,
-0.0543932468,
-0.0165182799,
0.0682231635,
0.0208389461,
-0.0622438863,
-0.0034999959,
0.0270832181,
0.0906313136,
-0.0888236091,
-0.2187939286,
0.212004438,
0.0657967776,
-0.2460460365,
0.1466578543,
-0.0243355371,
-0.1499833614,
0.0709519088,
0.0682789311,
0.1316544414,
-0.2474686801,
-0.277613461,
0.0352979973,
0.0612462312,
-0.3537083268,
0.2199955881,
-0.4938859046,
-0.3810700476,
-0.1177900583,
0.0698185116,
-0.0420002267,
-0.131108582,
-0.0912832692,
0.1379748285,
0.1113819927,
0.1218911111,
-0.3576263785,
-0.0745341927,
-0.1458539069,
-0.1930759996,
0.0304773822,
-0.2158690244,
-0.1704758108,
0.0831770971,
0.4746145606,
0.0928668082,
0.0708579198,
-0.4188652635,
0.2015619427,
0.0766295344,
-0.1373045743,
0.2315509021,
-0.2333491892,
0.1168907061,
0.0479769371,
0.058222495,
-0.0004435554,
-0.4387207031,
0.1450606883,
-0.1077361554,
-0.0211320892,
0.20001477,
-0.0105560683,
-0.3811510205,
-0.1138435826,
0.0026008487,
-0.4156636298,
-0.2895945609,
-0.1918064207,
0.0485391319,
0.0491558909,
0.197178334,
0.1036534905,
0.1325831562,
0.2278991193,
-0.007673407,
-0.0012114011,
-0.3418914676,
0.4118302763,
-0.3309630454,
-0.4681513011,
0.2416665256,
0.038517192,
0.370306164,
-0.2364395261,
-0.2635744214,
-0.0220800415,
-0.1116252244,
0.1798571646,
0.1413115561,
0.0253992695,
-0.0990376174,
-0.0507818907,
-0.031988807,
-0.0363838263,
-0.0893608257,
-0.114113152,
-0.0868040621,
0.175424546,
0.0025574081,
0.2680504024,
-0.3292318285,
-0.0546297282,
0.2706370354,
0.076869078,
0.7014581561,
-0.1841563135,
0.3847277164,
-0.2749556601,
-0.1120502651,
-0.1152991503,
-0.1782614291,
-0.0452873036,
0.1329732835,
-0.0346847139,
-0.3643230796,
-0.3445567489,
-0.0151833817,
-0.3853968978,
-0.3656520247,
0.0515641123,
-0.0386586227,
-0.0795245171,
-0.0491099954,
0.1858220696,
0.1852455735,
-0.3853036165,
0.0595191233,
0.3000605404,
-0.0337146521,
0.1691735536,
-0.200334847,
-0.4145610332,
-0.0238720179,
0.0646646842,
0.1260298789,
0.3964129984,
-0.0625858009,
0.1580930501,
0.0996637493,
-0.0700342953,
0.2098914385,
0.0011676606,
0.1445217431,
0.1332656741,
0.0414976329,
-0.003513284,
-0.0736076385,
-0.191760987,
0.1426026523,
0.0759233013,
-0.2320161462,
-0.1212173775,
0.0906407535,
-0.017912915,
0.4438251555,
-0.0154711008,
0.1246912256,
-0.3756383061,
-0.6495360732,
-0.11624147,
-0.217859745,
0.2925515771,
0.1491618305,
-0.0827390403,
-0.0954446346,
-0.0313662179,
-0.2161990702,
0.2599014044,
0.3667048812,
0.4251410961,
0.0928977355,
0.132270813,
-0.1587823033,
-0.2337959856,
0.4214051068,
0.7679150701,
-0.0410800353,
-0.3446137905,
0.0866516978,
-0.2720608115,
0.1166201681,
0.2882130444,
-0.1064956486,
-0.3059372306,
-0.0120730801,
-0.1494903713,
-0.0843594372,
-0.0203367416,
0.2839378119,
-0.0101465359,
-0.502590239,
-0.556586504,
0.5252872109,
0.0544943437,
0.148449868,
0.1141892895,
0.1410294324,
-0.3060488105,
0.3216566145,
0.0084048733,
0.8980356455,
0.1697074473,
0.0520553552,
0.1316681802,
0.0856747925,
0.232000351,
-0.1181476191,
0.1271190196,
-0.2963445187,
-0.2047524154,
-0.0603118986,
0.1422052383,
0.0265941601,
0.1766858995,
-0.3149734735,
0.2057440728,
-0.1948058456,
-0.2809530497,
0.0025013834,
0.4298158586,
-0.4101656377,
-0.1963339448,
-0.3811075091,
0.2214440107,
-0.0037670508,
0.05921565,
-0.0165952705,
-0.1233689934,
-0.0648113489,
-0.196201846,
-0.5394251347,
0.2126026154,
-0.4355986416,
0.2661520243,
-0.1694539338,
-0.601549089,
0.2076182812,
0.05849953,
0.2319201827,
0.2045706958,
0.0033770241,
0.158348307,
0.4542037249,
-0.1000345051,
0.1493111253,
0.0307285078,
0.2625713348,
-0.226654768,
-0.1099126264,
0.1795324087,
0.1999660879,
0.0505417809,
0.4349756241,
0.0638070405,
-0.1949104071,
-0.0802446529,
-0.4043857455,
-0.307302922,
0.1276114732,
0.0048041791,
0.1415298134,
0.0007688198,
-0.0947989523,
-0.0846794024,
0.1823081076,
-0.2930837572,
-0.114996843,
0.1405195594,
-0.1353622079,
-0.2118999064,
0.4401683509,
0.2668431997,
-0.2931905091,
-0.0937639996,
0.252941221,
0.0809999779,
-0.6456249356,
-0.0327519663,
0.1414752305,
-0.0271260589,
0.076899156,
0.5570614934,
-0.0146494657,
-0.039285589,
-0.0212187096,
-0.4366116226,
-0.1500800848,
0.1035269946,
-0.0610396117,
0.0435240455,
0.0346662924,
0.2332766056,
0.1965368688,
-0.3172605634,
-0.2861512303,
0.1628328264,
-0.1895156056,
-0.0744390413,
0.1498771757,
0.054862231,
0.0498877279,
0.0334465392,
0.0986449867,
0.3002923429,
0.058588881,
-0.1640836,
-0.0407447889,
0.0971774086,
-0.0833941251,
-0.380146265,
-0.0983819664,
0.0328744352,
-0.1393336803,
-0.0724402741,
0.1072918624,
0.2493106425,
0.1552938223,
0.1637898982,
-0.2214386016,
-0.0776810125,
-0.0907813385,
0.2290742993,
-0.0882274732,
0.6197980046,
0.1204075366,
0.0937777907,
0.0755981579,
0.0117448866,
-0.0024526305,
0.0852478445,
-0.3687498569,
0.0874377489,
0.2601128221,
-0.2806625366,
0.4758725464,
0.3395780325,
0.0342617929,
0.6537334919,
-0.1924585998,
-0.1549038738,
0.2746970952,
0.1757349372,
-0.2116664499,
0.0447177179,
-0.1870625019,
-0.0186887216,
-0.1748129725,
0.2415547222,
0.2729083598,
-0.0701916739,
0.1137248725,
-0.1272247434,
0.6796852946,
0.0675558746,
0.4454050958,
0.1634872854,
0.0051600412,
0.2355175614,
-0.162599951,
0.2476622015,
0.0433171317,
0.1495420635,
-0.610783577,
0.0075276867,
0.1179185361,
0.1389140487,
-0.0233896933,
-0.3540790975,
-0.1168868542,
-0.1897131503,
-0.0814371109,
0.2204176337,
0.0778035596,
0.4481519461,
-0.3725145757,
0.0363468565,
-0.0800350755,
0.229007259,
-0.0346463844,
0.0572868139,
0.1025848836,
-0.0603952259,
-0.3064059615,
0.0626410246,
-0.1271175444,
0.1142821014,
-0.1865482777,
0.454862982,
-0.0956259817,
-0.1367362291,
0.0715409368,
-0.1400912404,
0.1747960448,
-0.1992777586,
0.3945741951,
0.4614478052,
0.2651832402,
0.3899482191,
0.1301806569,
0.7003704906,
0.4630872011,
-0.2856802642,
0.1554400176,
-0.1311319768,
-0.0159363113,
0.1274091303,
0.0577639639,
0.2666422129,
0.3672747016,
0.1465815306,
0.1811801791,
-0.1162870228,
-0.1475510001,
0.1802455336,
0.2748168707,
0.0868371874,
0.2116274536,
-0.2151836455,
0.2226525396,
-0.6005721092,
-0.189181596,
-0.3627199531,
0.1600749195,
0.5220953226,
-0.1226458848,
-0.1263443977,
-0.1507476419,
0.1021172106,
0.0950002223,
0.4163969755,
0.3352279663,
0.1280608177,
-0.1833306551,
0.0290790051,
-0.7274274826,
0.2501838207,
0.1206399873,
-0.4472246766,
-0.0691539198,
-0.0969259813,
-0.0752483308,
0.3170582354,
0.0283113457,
0.350397408,
-0.0214040577,
0.22060287,
0.0137887225,
0.0328274742,
-0.2921747863,
0.0086511839,
-0.2400587797,
-0.1825529039,
0.0216028281,
-0.5079542398,
0.0847154409,
-0.2318253666,
-0.4743774831,
-0.3261174858,
0.2696194351,
0.3063947856,
0.1306882799,
0.5721480846,
-0.164570719,
-0.216447413,
-0.2139158547,
-0.2999967039,
-0.1513900459,
0.5063717365,
0.191857338,
0.0153995529,
0.0620903149,
0.1250699013,
-0.4375211298,
0.335876286,
-0.1156732738,
-0.1946087778,
-0.3811297715,
-0.039220579,
-0.0960306376,
-0.0140087344,
0.1611043811,
0.3276615143,
0.0059704911,
0.1686804295,
-0.1238926724,
-0.6365165114,
0.3105710745,
-0.3692491651,
-0.06265793,
0.0510923788,
0.2514257729,
-0.1500353515,
0.1229875609,
-0.5104001164,
0.2605612278,
-0.0195219591,
-0.1634386033,
-0.3511120081,
0.1121346653,
-0.2120520025,
-0.0391762182,
-0.1606920362,
0.3674100637,
0.220996961,
-0.2025868893,
-0.0319333747,
-0.121639058
] |
https://github.com/huggingface/datasets/issues/347 | 'cp950' codec error from load_dataset('xtreme', 'tydiqa') | > Hi there !
> I encountered the same issue with the IMDB dataset on windows. It threw an error about charmap not being able to decode a symbol during the first time I tried to download it. I checked on a remote linux machine I have, and it can't be reproduced.
> I added `encoding='UTF-8'` to both lines that have `open` in `imdb.py` (108 and 114) and it worked for me.
> Thank you !
Hello !
Glad you managed to fix this issue on your side.
Do you mind opening a PR for IMDB ? | ![image](https://user-images.githubusercontent.com/50871412/86744744-67481680-c06c-11ea-8612-b77eba92a392.png)
I guess the error is related to python source encoding issue that my PC is trying to decode the source code with wrong encoding-decoding tools, perhaps :
https://www.python.org/dev/peps/pep-0263/
I guess the error was triggered by the code " module = importlib.import_module(module_path)" at line 57 in the source code: nlp/src/nlp/load.py / (https://github.com/huggingface/nlp/blob/911d5596f9b500e39af8642fe3d1b891758999c7/src/nlp/load.py#L51)
Any ideas?
p.s. tried the same code on colab, that runs perfectly
| 97 | 'cp950' codec error from load_dataset('xtreme', 'tydiqa')
![image](https://user-images.githubusercontent.com/50871412/86744744-67481680-c06c-11ea-8612-b77eba92a392.png)
I guess the error is related to python source encoding issue that my PC is trying to decode the source code with wrong encoding-decoding tools, perhaps :
https://www.python.org/dev/peps/pep-0263/
I guess the error was triggered by the code " module = importlib.import_module(module_path)" at line 57 in the source code: nlp/src/nlp/load.py / (https://github.com/huggingface/nlp/blob/911d5596f9b500e39af8642fe3d1b891758999c7/src/nlp/load.py#L51)
Any ideas?
p.s. tried the same code on colab, that runs perfectly
> Hi there !
> I encountered the same issue with the IMDB dataset on windows. It threw an error about charmap not being able to decode a symbol during the first time I tried to download it. I checked on a remote linux machine I have, and it can't be reproduced.
> I added `encoding='UTF-8'` to both lines that have `open` in `imdb.py` (108 and 114) and it worked for me.
> Thank you !
Hello !
Glad you managed to fix this issue on your side.
Do you mind opening a PR for IMDB ? | [
-0.3819616735,
0.0328492373,
-0.0154810995,
0.2028752714,
0.3120900989,
0.0689590201,
0.005816563,
0.1825688481,
-0.0836709738,
0.0293349549,
0.014070034,
0.4008608758,
0.0577818267,
0.2399224788,
0.1625406593,
0.1409793049,
0.0723040253,
0.2220349312,
0.1050564647,
-0.0275191218,
-0.2586428523,
0.2288961858,
-0.1308452189,
0.1349902898,
-0.3728032112,
-0.1832352281,
0.1941953301,
0.2883251905,
-0.2690778971,
-0.5402292013,
0.3226153851,
-0.0409627371,
0.1525746584,
0.3042992353,
-0.0001053745,
-0.178781867,
0.5192815065,
-0.26025334,
-0.1324336231,
-0.285913974,
-0.0765625313,
-0.1620348394,
0.212364465,
-0.1953220218,
0.1557099819,
0.2527002096,
0.0229268726,
-0.2271057814,
0.2151815891,
0.231975913,
0.2676603496,
0.0608118251,
-0.0186497048,
0.0458022989,
0.0669804886,
0.1003599837,
-0.0261971764,
0.4292517602,
0.4187467396,
-0.0728279501,
0.1366801858,
0.1390880048,
-0.2907058299,
-0.1177427769,
0.230893746,
0.1356048435,
-0.1527100205,
-0.5397376418,
0.0303559229,
0.2396232188,
0.4043299556,
-0.4341340661,
-0.2198886871,
0.0727623627,
0.2851532102,
-0.4451399148,
0.2295990884,
0.3813068867,
-0.3105043173,
0.1312863827,
-0.0726718083,
0.1851215065,
0.1598811001,
-0.0166889988,
0.0241955966,
-0.1213527471,
-0.071985051,
-0.0958219618,
0.064496994,
-0.075563848,
0.221859023,
0.040813826,
-0.1298448443,
0.0311497375,
-0.0231442675,
-0.0654445887,
-0.1572762728,
0.0888461471,
-0.1031691656,
0.0526711009,
0.3892245889,
0.1904301792,
-0.1060631722,
0.3926351964,
0.2187592387,
0.076483421,
-0.1863272339,
0.2649509609,
0.3690948188,
0.1792969406,
0.0352389589,
-0.0075881481,
-0.1356830895,
-0.1409617662,
-0.1185562611,
0.289142549,
0.1462388635,
-0.1817835569,
-0.4506698549,
0.1488845348,
0.1540303826,
0.2377267182,
0.1990222186,
0.1871264875,
0.1694627404,
0.3224521279,
0.0406054109,
0.2857058942,
-0.2505061626,
-0.2612253428,
-0.0903879404,
0.1797526479,
-0.2592475414,
-0.1103613675,
0.2183031738,
-0.1018045768,
0.1758917868,
0.2183074206,
0.2862080336,
-0.1571926177,
0.0534932986,
-0.0925323665,
0.2198347747,
0.2458465695,
0.1864881665,
0.2278590202,
0.1167295575,
-0.2549143434,
-0.1482724547,
0.0122955944,
-0.4237721562,
-0.1114707887,
-0.0551035926,
0.2240453362,
-0.0579552874,
-0.0987669379,
-0.6468677521,
0.0615717806,
0.0012060404,
-0.3656573296,
0.0753828883,
-0.186497882,
-0.0492680073,
-0.0849165916,
0.198623687,
0.5331301689,
-0.4609873593,
0.1437168419,
0.0010170601,
0.0304280333,
0.2228224128,
0.1494709998,
-0.1381026059,
-0.1621316671,
-0.319288969,
0.1065661609,
0.2765077651,
-0.5096929073,
-0.2977876663,
0.4063528776,
-0.093693167,
-0.0049823374,
-0.0029611364,
0.00643548,
0.1321466565,
-0.2374906093,
0.035081856,
0.3566595912,
-0.083965756,
0.1826423407,
-0.2123107016,
-0.1224608868,
0.0972468555,
-0.0655149966,
-0.1674878001,
-0.1106645614,
0.1359252483,
0.1589934826,
0.2215437293,
0.1049711779,
-0.1610751599,
0.108102724,
0.2616811395,
0.0201451499,
-0.0755082071,
0.1233402789,
0.0588507988,
0.0779781938,
-0.210732609,
0.0863467455,
-0.4398860633,
-0.2682015598,
-0.1456342638,
0.0335428789,
-0.3326474428,
-0.0839553922,
0.2256684601,
-0.0241782963,
-0.2100741118,
0.0258991048,
-0.346807003,
0.1851453781,
0.0887816027,
0.0475905202,
-0.2662092745,
0.1227072701,
-0.1663834006,
-0.2624224424,
0.2336540967,
0.1494118571,
0.101633884,
-0.0474019833,
-0.1530421972,
0.2827340364,
0.0698585957,
0.3505373001,
-0.2592073381,
-0.178145498,
0.5491707921,
-0.5299209356,
0.1276388913,
0.3686937094,
0.2468719929,
-0.1486336887,
0.2010567039,
0.2885656357,
-0.1976455301,
0.0161662214,
0.0763598233,
-0.0940712392,
0.295225054,
0.1128006428,
0.0039008334,
-0.3647910357,
0.263272047,
0.5909790397,
0.2062432617,
-0.1096374393,
-0.1240625978,
0.1479020268,
0.4497823417,
-0.0390716866,
-0.0305702947,
0.0685049221,
0.0158067085,
-0.0551204085,
-0.0131514035,
-0.00065054,
0.0780510679,
-0.0851646215,
-0.2253015041,
0.2005332261,
0.05985374,
-0.2409398258,
0.1696550399,
-0.0282124318,
-0.1508951187,
0.1010192484,
0.0679655522,
0.1174647063,
-0.223512888,
-0.2603946328,
0.0180319548,
0.0348621458,
-0.3721188605,
0.1928665936,
-0.4626435339,
-0.344440937,
-0.0923712552,
0.0627865419,
-0.0048273951,
-0.137460798,
-0.0746687055,
0.1510360539,
0.1117160916,
0.1418266892,
-0.3286173642,
-0.0649259388,
-0.1468444169,
-0.1589345038,
0.0047206879,
-0.214106366,
-0.159800753,
0.0984135792,
0.4974023998,
0.0695274249,
0.0424908996,
-0.4195203781,
0.1661723405,
0.0735996738,
-0.1208948642,
0.224932164,
-0.2262671441,
0.1265571713,
0.0426302999,
0.0500890799,
0.0114446804,
-0.45309636,
0.1485359073,
-0.1235467196,
-0.0203630514,
0.2205782831,
-0.0266793389,
-0.3890242577,
-0.1062776223,
-0.0042592697,
-0.3799138963,
-0.2897251248,
-0.1875098199,
0.0466418713,
0.04195318,
0.2030292153,
0.153160274,
0.1282238066,
0.2437354326,
-0.0116907861,
-0.0117252208,
-0.3491706252,
0.3963183463,
-0.3242892027,
-0.4361436665,
0.2484277487,
0.0181290582,
0.3712930977,
-0.2505525351,
-0.2293867618,
-0.044573836,
-0.1163297743,
0.2337529212,
0.1334401071,
0.0063668825,
-0.1004880071,
-0.0388953015,
-0.0566142276,
-0.0311201811,
-0.0822283998,
-0.1118071675,
-0.0823015347,
0.1642277539,
-0.0008163881,
0.3257592916,
-0.344471097,
-0.0641673654,
0.2906717062,
0.0664942861,
0.6802043319,
-0.1825074255,
0.3822164536,
-0.2870154977,
-0.1066950336,
-0.1105035841,
-0.1770841777,
-0.0840745196,
0.1418682486,
-0.045512449,
-0.3872095048,
-0.3534778953,
-0.0205648392,
-0.3872492909,
-0.3599243462,
0.0646855682,
-0.0233656224,
-0.0833873749,
-0.0514738858,
0.1716667563,
0.1632600278,
-0.373939991,
0.0709824786,
0.2905242741,
0.0032345839,
0.1390341818,
-0.1456485987,
-0.4058153033,
0.0373885483,
0.0740529001,
0.1374882013,
0.3621405959,
-0.0664485246,
0.1329340637,
0.1096547246,
-0.0678953379,
0.2257567942,
-0.0245678518,
0.1511807144,
0.121797815,
0.0325782299,
0.0282568932,
-0.0670828819,
-0.2033534348,
0.1408220381,
0.0898728147,
-0.2273917794,
-0.1217871383,
0.081479691,
-0.0189185832,
0.4337354898,
-0.0289857984,
0.1312064976,
-0.3555262089,
-0.6048947573,
-0.1163029969,
-0.2135591656,
0.3056263626,
0.1313644648,
-0.0855508,
-0.0886629969,
-0.0354816914,
-0.2256160676,
0.2622635067,
0.363951534,
0.418930769,
0.0952568427,
0.151211381,
-0.1506408602,
-0.296284318,
0.4755996764,
0.7579312921,
-0.0628825277,
-0.3353410363,
0.0696811453,
-0.2625261247,
0.1225969344,
0.2908005118,
-0.0995925888,
-0.3634564877,
-0.0428484306,
-0.1352629811,
-0.0904112086,
-0.0461259298,
0.259637624,
0.0115137398,
-0.4596989453,
-0.5531417727,
0.4936636388,
0.068786338,
0.1376951188,
0.1065333784,
0.1512179226,
-0.3186249435,
0.3118925989,
0.0499964654,
0.8768313527,
0.1690898091,
0.0178324841,
0.1353873909,
0.1137557775,
0.1773052961,
-0.1257156432,
0.116773665,
-0.3097361326,
-0.2357069552,
-0.0424281918,
0.1386723816,
0.017618984,
0.2051661015,
-0.3177804351,
0.1894604266,
-0.223888278,
-0.3268327117,
0.0049137473,
0.4409636557,
-0.4308355749,
-0.1852425635,
-0.3423235416,
0.2386997193,
0.0068174405,
0.0410209559,
0.0084730051,
-0.1343968064,
-0.0586549044,
-0.1826477051,
-0.5604505539,
0.2045680881,
-0.4502363205,
0.2335237861,
-0.1552651674,
-0.5828345418,
0.204924047,
0.0524209179,
0.2246321887,
0.2009429932,
0.0352862328,
0.1392652839,
0.4998709559,
-0.0876827687,
0.1361325383,
0.0344667844,
0.3020971417,
-0.2286529839,
-0.0887029171,
0.1868337244,
0.2094144672,
0.0480543077,
0.4210774601,
0.0568982512,
-0.1814819574,
-0.0926159099,
-0.3883616328,
-0.3068868518,
0.113551423,
-0.0009190887,
0.1626931727,
-0.012549568,
-0.080698587,
-0.0822211653,
0.197956413,
-0.2848176956,
-0.1028458849,
0.120929271,
-0.1530725211,
-0.1807938516,
0.4431288242,
0.2550022006,
-0.3089764714,
-0.0976345316,
0.2654066086,
0.0895824134,
-0.6359013319,
0.0107241198,
0.1750410497,
-0.013591677,
0.0732012391,
0.5347975492,
-0.0093494076,
-0.0093097501,
-0.0575876236,
-0.4145112336,
-0.1540647447,
0.1111318171,
-0.0529177599,
0.0361159965,
0.0036037564,
0.2317661643,
0.1910301894,
-0.3191349208,
-0.3135760725,
0.1277838945,
-0.180990234,
-0.0826672465,
0.1218072176,
0.0374050252,
0.0613201782,
0.04581232,
0.1207922101,
0.2752503455,
0.0704007298,
-0.18560642,
-0.0310357548,
0.0935355723,
-0.09458673,
-0.3848305941,
-0.1018098444,
0.0509495959,
-0.1382486522,
-0.0940427259,
0.1085341573,
0.2424839884,
0.1397391707,
0.1503272206,
-0.2062701881,
-0.0738325566,
-0.0967532843,
0.2157615721,
-0.0656295791,
0.6222364306,
0.0835403726,
0.0899159387,
0.0687401891,
0.0016749874,
-0.0090177469,
0.0916681737,
-0.3974384964,
0.1120015904,
0.2612664104,
-0.2647682726,
0.4513233304,
0.3277535439,
0.0248490348,
0.6391991377,
-0.1918765604,
-0.1447708458,
0.2480616868,
0.1942305565,
-0.1797553003,
0.0820863172,
-0.1910091341,
-0.0413828306,
-0.1458641291,
0.2278406322,
0.2588403821,
-0.0676345304,
0.1220641434,
-0.1367559433,
0.6583895683,
0.0565239042,
0.4018710256,
0.1692889631,
0.0072387084,
0.2384666651,
-0.1481663734,
0.2285072356,
0.0441469774,
0.1129242107,
-0.5978397131,
0.012028696,
0.0928180814,
0.1366986632,
-0.0247605592,
-0.3500495851,
-0.0962140858,
-0.2052509189,
-0.1049080044,
0.2066029012,
0.0769882277,
0.4065272212,
-0.3523643017,
0.0463087521,
-0.0728027225,
0.2305919975,
-0.0307383779,
0.0494085737,
0.0797045529,
-0.0599664524,
-0.3355242312,
0.0768500194,
-0.1499579251,
0.1301868111,
-0.1789728403,
0.496809274,
-0.0891894773,
-0.0880022943,
0.0696658492,
-0.1445423067,
0.2056100965,
-0.2087628543,
0.4046178758,
0.4655504823,
0.2585844696,
0.3722352087,
0.1180811301,
0.7204273939,
0.464776516,
-0.2893509865,
0.140136376,
-0.1179886162,
-0.037178725,
0.1352972388,
0.0572053939,
0.2359022349,
0.3432404995,
0.1024342701,
0.2056760788,
-0.1445981562,
-0.1523902714,
0.171033904,
0.2750335932,
0.0960645527,
0.1789360046,
-0.1939712167,
0.2216334343,
-0.6160328984,
-0.1946112663,
-0.3276048303,
0.1413036883,
0.507089138,
-0.1426657438,
-0.1561327577,
-0.1630194038,
0.1189669073,
0.0971947163,
0.3863835037,
0.3257064819,
0.1111596376,
-0.1812241971,
0.0590066612,
-0.6790173054,
0.2511719465,
0.1505208462,
-0.4328424037,
-0.062822029,
-0.0845030844,
-0.0707968473,
0.2998315096,
0.0380316041,
0.3017373085,
-0.016989518,
0.2377492785,
0.0184392557,
0.0462244414,
-0.2748250663,
-0.0114823328,
-0.2171441019,
-0.166330874,
0.0131079778,
-0.5385060906,
0.1001397371,
-0.2253274471,
-0.4575334787,
-0.2884438634,
0.3197564483,
0.2966778278,
0.1021386236,
0.5777382851,
-0.1906376034,
-0.2266547233,
-0.1735038757,
-0.3024672866,
-0.1558379978,
0.5097601414,
0.1807525605,
0.0282094479,
0.065235503,
0.0682394877,
-0.4261285961,
0.3391430378,
-0.1371011287,
-0.2331566811,
-0.353323102,
-0.0364747792,
-0.1109623685,
-0.0156720541,
0.1409450471,
0.3411546052,
0.0085549075,
0.1746238172,
-0.1368001252,
-0.6540454626,
0.3415570855,
-0.3543436825,
-0.0692147017,
0.0435868464,
0.2550293207,
-0.151098758,
0.1150416657,
-0.48638165,
0.2621542513,
-0.014934402,
-0.1655166745,
-0.353398174,
0.1019228846,
-0.1916577518,
-0.0216967911,
-0.1677825898,
0.3394939303,
0.2147027552,
-0.1901501715,
-0.055405356,
-0.1051221639
] |
https://github.com/huggingface/datasets/issues/347 | 'cp950' codec error from load_dataset('xtreme', 'tydiqa') | > This is probably a Windows issue, we need to specify the encoding when `load_dataset()` reads the original CSV file.
> Try to find the `open()` statement called by `load_dataset()` and add an `encoding='utf-8'` parameter.
> See issues #242 and #307
Sorry for not responding for about a month.
I have just found that it is necessary to change / add the environment variable as what was told in #242.
Everything works after I add the new environment variable and restart my PC.
I think the encoding issue for windows isn't limited to the open() function call specific to few dataset, but actually in the entire library, depends on the machine / os you use. | ![image](https://user-images.githubusercontent.com/50871412/86744744-67481680-c06c-11ea-8612-b77eba92a392.png)
I guess the error is related to python source encoding issue that my PC is trying to decode the source code with wrong encoding-decoding tools, perhaps :
https://www.python.org/dev/peps/pep-0263/
I guess the error was triggered by the code " module = importlib.import_module(module_path)" at line 57 in the source code: nlp/src/nlp/load.py / (https://github.com/huggingface/nlp/blob/911d5596f9b500e39af8642fe3d1b891758999c7/src/nlp/load.py#L51)
Any ideas?
p.s. tried the same code on colab, that runs perfectly
| 115 | 'cp950' codec error from load_dataset('xtreme', 'tydiqa')
![image](https://user-images.githubusercontent.com/50871412/86744744-67481680-c06c-11ea-8612-b77eba92a392.png)
I guess the error is related to python source encoding issue that my PC is trying to decode the source code with wrong encoding-decoding tools, perhaps :
https://www.python.org/dev/peps/pep-0263/
I guess the error was triggered by the code " module = importlib.import_module(module_path)" at line 57 in the source code: nlp/src/nlp/load.py / (https://github.com/huggingface/nlp/blob/911d5596f9b500e39af8642fe3d1b891758999c7/src/nlp/load.py#L51)
Any ideas?
p.s. tried the same code on colab, that runs perfectly
> This is probably a Windows issue, we need to specify the encoding when `load_dataset()` reads the original CSV file.
> Try to find the `open()` statement called by `load_dataset()` and add an `encoding='utf-8'` parameter.
> See issues #242 and #307
Sorry for not responding for about a month.
I have just found that it is necessary to change / add the environment variable as what was told in #242.
Everything works after I add the new environment variable and restart my PC.
I think the encoding issue for windows isn't limited to the open() function call specific to few dataset, but actually in the entire library, depends on the machine / os you use. | [
-0.3218464553,
0.0410403907,
-0.0172629803,
0.1921314001,
0.3841376007,
-0.0418329239,
0.0533848032,
0.1839185953,
-0.2438149005,
0.0746566355,
0.1122438088,
0.4671258032,
0.1107987314,
0.3263352513,
0.2156341076,
0.0793419331,
0.1215936095,
0.2935244739,
0.0367937237,
0.0253929496,
-0.4600175619,
0.1801846027,
-0.1028251052,
0.106212303,
-0.2276372612,
-0.1009321585,
0.0553657785,
0.2734965086,
-0.2023732364,
-0.5459722281,
0.1896325648,
-0.0750284791,
0.2605702579,
0.2277505696,
-0.0001059823,
-0.0440535918,
0.2804323733,
-0.1803227961,
-0.1569125801,
-0.2889733016,
-0.1975432485,
-0.3678890467,
0.1078184247,
-0.2368739545,
0.0635783225,
0.2137290984,
-0.0024224743,
-0.2136175334,
0.4395005405,
0.3770241737,
0.2794306576,
0.1354236901,
-0.1147258505,
0.1099153385,
0.0541248024,
0.0573215745,
-0.0186663717,
0.5010842085,
0.2131777704,
-0.2339811474,
0.0298318006,
0.1721237898,
-0.2423509657,
-0.0580993406,
0.09732458,
0.1594382226,
-0.2101518661,
-0.4088998139,
0.1295931786,
0.1351368129,
0.3100121617,
-0.3249755502,
-0.1276600063,
0.008314915,
0.1066843718,
-0.7205762267,
0.3261364102,
0.4268108606,
-0.2456022501,
0.1342461109,
0.0609914027,
0.2269620895,
0.0461215824,
-0.0214393735,
0.0695760176,
-0.0316440836,
-0.2375247777,
-0.0469958,
0.222900033,
-0.0380634926,
0.0924569517,
0.0012148935,
-0.2106274664,
0.0815221667,
-0.2083333433,
0.0376020372,
-0.175078094,
0.0315689072,
-0.1538992375,
-0.0620151386,
0.5168813467,
0.1546451449,
0.01362947,
0.3213181198,
0.1049255282,
0.07977698,
-0.1220798567,
0.1708955616,
0.3792805374,
-0.0342669114,
0.1415133625,
-0.0152555732,
-0.2251727432,
-0.3475308418,
-0.2094829381,
0.3959980607,
0.2165503502,
-0.1523401141,
-0.4361654222,
0.1212785169,
0.0980654508,
0.0702150762,
0.0240602791,
0.2243413776,
0.2047695667,
0.3466666937,
0.0168044716,
0.2039871216,
-0.3592663109,
-0.2429450154,
-0.0173091721,
0.1819055974,
-0.3688890636,
-0.0697529167,
0.2735366225,
-0.1578791589,
0.0549854785,
0.2533170581,
0.1688397378,
-0.2118097842,
-0.0451448597,
-0.2011538446,
0.1154902428,
0.1348488629,
0.0499352962,
0.2183389664,
0.1298356205,
-0.3230084181,
-0.0904250592,
0.0744728595,
-0.5151635408,
-0.0060917959,
-0.0799659938,
0.2387245595,
-0.137450248,
-0.0513864681,
-0.479976058,
0.1780169606,
0.0198981166,
-0.4306436777,
0.0101032928,
-0.2054033279,
-0.1354724318,
-0.2135006785,
0.1875980347,
0.5726644397,
-0.5493265986,
0.2175498307,
0.2308416069,
0.0270517394,
0.2820725441,
0.1310220957,
-0.1339086592,
-0.1769123524,
-0.1706346869,
-0.0320753604,
0.2616344392,
-0.2815623283,
-0.2736172676,
0.3523002565,
-0.0072575063,
-0.0457919315,
0.0350062549,
-0.1634368002,
0.1933968067,
-0.2519922256,
0.0321126431,
0.379345417,
0.0374852642,
0.3035110533,
-0.2011088282,
-0.1544063389,
0.2732437849,
0.0107405707,
-0.2936501801,
-0.203254208,
0.2821952701,
0.1416627318,
0.1744513065,
-0.151170969,
-0.1337530017,
0.1587603837,
0.2327429652,
-0.2096040547,
-0.025487408,
0.1805101335,
-0.0249590874,
-0.0260686465,
-0.2298218906,
0.0581738502,
-0.2890239656,
-0.1495996416,
-0.0929414183,
0.0466047078,
-0.324644655,
-0.239946723,
0.2032573819,
0.036951039,
-0.1426316947,
-0.0014227405,
-0.1411514431,
0.2768867016,
0.0107316673,
-0.013901649,
-0.1724307984,
0.1861789972,
-0.0900348723,
-0.2032658458,
0.2726716399,
0.3069350123,
0.1852345169,
-0.1314294636,
-0.2873484194,
0.2914460003,
0.0348337032,
0.3578837812,
-0.2649575472,
-0.2401683629,
0.4578381777,
-0.4840074182,
0.0709462389,
0.4611472487,
0.3018132448,
-0.0979862809,
0.1545101255,
0.3615798354,
-0.1767529249,
0.0195956118,
-0.0165709928,
-0.1244196892,
0.213132441,
0.0307014287,
0.0570869744,
-0.1943310499,
0.3480560184,
0.5848907828,
0.2559981942,
0.0374703109,
-0.1499474049,
-0.0009214617,
0.548014164,
-0.0926614106,
-0.0730474591,
0.1219992042,
0.0281347483,
-0.1021298617,
0.0819741711,
0.035426721,
0.3410061002,
-0.1184014976,
-0.2693508863,
0.2631338239,
0.0719557032,
-0.2493241876,
0.1785948575,
-0.0663465559,
-0.0398109034,
0.0016246308,
0.109224692,
0.2062707841,
-0.2464143336,
-0.0896530971,
0.1819760799,
0.1307781637,
-0.3706768453,
0.3590082526,
-0.5268562436,
-0.4222703576,
-0.2778967023,
0.2370272577,
-0.1506249756,
0.0565890446,
-0.206083402,
-0.0146388588,
0.0048539937,
0.1809752733,
-0.1959636509,
0.0591055453,
-0.167737484,
-0.1239162385,
0.1611839086,
-0.2020171136,
-0.3256497979,
0.1091828644,
0.4991663396,
-0.0672035366,
0.0567065626,
-0.3631935716,
0.1340764761,
0.1923757792,
-0.1332846135,
0.1386753023,
-0.1958271414,
0.2174885571,
-0.0461456366,
0.0197297242,
-0.0940220356,
-0.4398110807,
0.1757382601,
-0.0620789714,
0.0180766582,
0.1688306183,
-0.0519438013,
-0.2897465229,
-0.2744269967,
-0.1558914781,
-0.5099149346,
-0.388605684,
-0.113643378,
-0.1147132367,
0.0890478492,
0.3229116797,
0.0256176889,
0.0290209688,
0.187355265,
-0.1173404232,
-0.0495330244,
-0.1487432867,
0.3419558406,
-0.4083910882,
-0.5525044203,
0.1008482128,
-0.0198436677,
0.3197479248,
-0.1563618779,
-0.1896935403,
-0.0069782846,
-0.1507256478,
0.1050708219,
0.0035448298,
0.1002133638,
-0.0547258668,
-0.0470751822,
-0.0254628621,
-0.1998525113,
-0.1922400594,
-0.0613545328,
0.0895955935,
0.2490138859,
0.0475216731,
0.2492836863,
-0.2908986211,
0.0163077712,
0.3181404173,
0.0356078409,
0.5225814581,
-0.1361581981,
0.423456043,
-0.027513504,
-0.0585540459,
0.1832723022,
-0.3034590185,
-0.0593871921,
0.3025194407,
-0.0573701896,
-0.2925334573,
-0.3560011387,
-0.0560593978,
-0.3991359472,
-0.4300521612,
0.2192281187,
0.0196991954,
0.0863973051,
-0.0032784045,
0.1869968027,
0.0527208149,
-0.3269919455,
-0.0897169635,
0.3263345361,
-0.079277575,
0.1276280284,
-0.2166724801,
-0.5177029967,
-0.157039836,
0.1196626723,
0.1495021284,
0.4917264879,
-0.0036257729,
0.1317595243,
0.059584748,
-0.1126441807,
0.1731649339,
0.1403087527,
0.0347481519,
0.2260686308,
0.1334952861,
0.0010702088,
-0.1015533358,
-0.2331472635,
0.1813057065,
0.0255562551,
-0.2500879765,
-0.1180429235,
-0.0594409592,
0.0258446299,
0.4494214654,
-0.1025723219,
0.1163973659,
-0.4000316858,
-0.5393142104,
-0.0066741779,
-0.2123166919,
0.1392352581,
0.2193724513,
-0.2538375556,
0.041528821,
0.057458654,
-0.254773438,
0.3427101672,
0.4044584632,
0.4600490928,
0.1762463301,
0.0257121623,
-0.2020939142,
-0.0036787838,
0.2242470086,
0.694976747,
-0.0148347532,
-0.3524723947,
0.1786701679,
-0.226142019,
0.3051572144,
0.274577409,
-0.2305901647,
-0.0252359733,
-0.119888328,
-0.0643104687,
-0.2265756577,
0.1373445094,
0.2278237045,
0.1492487639,
-0.6115512848,
-0.5212312937,
0.4964288473,
-0.070880942,
0.1042996198,
0.1622759402,
-0.0925318599,
-0.2440130115,
0.2267633379,
0.0110183321,
0.8180407286,
0.187176764,
0.1551417708,
0.2317280471,
0.0124781281,
0.2823655903,
-0.0824648067,
0.1657142341,
-0.2303944826,
-0.1943761408,
0.0515924469,
0.1619339138,
0.2197645307,
0.0098030679,
-0.3544757366,
0.1651541889,
0.1574190557,
-0.1693670154,
0.1786857694,
0.2002146244,
-0.2210119069,
-0.3044359684,
-0.5463434458,
0.1954889745,
-0.0740820318,
0.0194923431,
-0.067719698,
-0.2836330533,
0.0822208375,
-0.2928804457,
-0.2578261793,
0.3182099462,
-0.5277628303,
0.1614253223,
-0.1627802998,
-0.6413748264,
0.33349967,
0.1623922139,
0.1746073216,
0.2281081825,
-0.0163872112,
0.1101089343,
0.2558588684,
0.0816324577,
0.0255466662,
0.1103221029,
0.1319284588,
-0.1720840335,
-0.0298330486,
0.2104110867,
0.0497552156,
0.1005043834,
0.3739160299,
0.0870173424,
-0.1857060194,
-0.1484851837,
-0.1668727398,
-0.2551544011,
0.165378198,
-0.017203398,
0.153273195,
-0.0348782465,
-0.0256396309,
0.0324696228,
-0.0089338459,
-0.4061692953,
-0.1536930948,
0.0468813404,
-0.1016247422,
-0.1706159115,
0.4922058582,
0.1520531476,
-0.2427229285,
-0.0898727775,
0.2722657919,
-0.1683485508,
-0.4991508424,
-0.0479402654,
0.2028664798,
0.0255379081,
0.0953287482,
0.6194525957,
-0.0614954568,
0.0107835596,
0.082240209,
-0.525403142,
-0.2215739191,
-0.0073886774,
-0.0767014399,
-0.0994527489,
0.1991026402,
0.2663200498,
0.0984674543,
-0.1928879619,
-0.3095079064,
0.0479181185,
-0.0177296437,
0.0585787706,
0.2214009166,
0.0117227919,
0.1854636371,
0.0903158635,
0.1096259356,
0.3042014837,
-0.0431340858,
-0.1653181314,
-0.1965869367,
0.1016258076,
-0.0849458724,
-0.335591346,
-0.0742771626,
0.0007750466,
0.0120751522,
-0.1772135943,
0.1821671724,
0.0850231051,
0.0071397275,
0.1622145623,
-0.3617426455,
0.1223223954,
-0.0545534603,
0.2537567616,
-0.1959925443,
0.545430243,
0.1013528481,
0.1406720877,
0.0746449977,
0.0525414944,
-0.1080559567,
-0.0751102939,
-0.3167441189,
0.0266647004,
0.1425267011,
-0.3232634068,
0.3874886036,
0.1754030585,
-0.0412466899,
0.5807671547,
-0.1149187461,
0.0385222286,
0.4276027977,
0.1528723538,
-0.2509970665,
0.137631923,
-0.3420264721,
-0.0307525136,
-0.1033080369,
0.2464760542,
0.2873434722,
-0.2221654803,
0.2221741676,
-0.1821419895,
0.4188606143,
0.1687108129,
0.4179494381,
0.5055611134,
0.2075407952,
0.2703207135,
-0.1195040047,
0.1081861109,
-0.0125815757,
0.069363825,
-0.5291963816,
0.0862782076,
0.1331266761,
0.2308526039,
-0.1569823921,
-0.4490402043,
-0.062026307,
-0.1416445076,
-0.1820909679,
0.3372344971,
0.089504391,
0.5444590449,
-0.5150148273,
-0.0241567735,
-0.0906513482,
0.1710394025,
-0.0851530433,
0.0186974891,
0.1001985148,
0.0202853829,
-0.2237953246,
0.161075294,
-0.1375222206,
0.1272424757,
-0.074517861,
0.3670584559,
-0.1495957524,
-0.0310944505,
0.0380565263,
0.0136257671,
0.0813055411,
-0.1314342171,
0.4910908937,
0.2642471492,
0.1730857193,
0.2993220389,
0.0991362929,
0.6880449653,
0.4429652095,
-0.0856585652,
0.0140998885,
-0.1428180039,
0.0847916976,
0.1277453303,
0.1018149257,
0.3066107333,
0.4459540248,
0.1761083156,
0.1773951352,
-0.1048400402,
-0.0791590288,
0.1718279868,
0.0267850384,
-0.0118572712,
0.067297563,
-0.0916436017,
0.2169594169,
-0.4925689697,
-0.1169271767,
-0.330747664,
0.2565573454,
0.4066551328,
0.1152115762,
0.0020707883,
-0.1124933511,
0.1001631618,
0.1549316198,
0.4857949913,
0.1887951344,
0.1078944951,
-0.1383640915,
-0.0711543337,
-0.7003782988,
0.2771180272,
0.1238696426,
-0.3950074613,
-0.1486749947,
-0.3675146699,
0.0559087247,
0.2969881296,
-0.0918394774,
0.2815228701,
0.099947989,
0.0551990904,
-0.1643670797,
-0.0053274753,
-0.1478892565,
0.0649377704,
-0.2525985837,
-0.219763428,
0.09494178,
-0.2618751824,
0.0492762551,
-0.2654631436,
-0.2644871473,
-0.3507199287,
0.0578470416,
0.3458447456,
0.2307629138,
0.4740201235,
-0.2685821354,
-0.0703148916,
-0.1581525207,
-0.1835352033,
0.0014245994,
0.338047415,
0.1791275889,
0.0468650162,
0.0372326523,
0.1575435698,
-0.4053703249,
0.1725753695,
-0.0981006771,
-0.080311507,
-0.1913544089,
0.0461894572,
0.0541716814,
-0.1207836792,
0.2979144156,
0.4182400703,
-0.079811126,
0.0535575449,
-0.1110069454,
-0.5214464664,
0.2054064423,
-0.6085340977,
-0.1537294388,
0.1054374278,
0.3048875928,
-0.2272162437,
0.1380754411,
-0.463804543,
0.2531892955,
0.0248385221,
-0.1234541386,
-0.3444531858,
0.1683742553,
-0.2985505462,
-0.137781769,
-0.089217037,
0.4464709163,
0.1969400942,
-0.3050908446,
0.1170787066,
-0.2842419147
] |
https://github.com/huggingface/datasets/issues/347 | 'cp950' codec error from load_dataset('xtreme', 'tydiqa') | Since #481 we shouldn't have other issues with encodings as they need to be set to "utf-8" be default.
Closing this one, but feel free to re-open if you gave other questions | ![image](https://user-images.githubusercontent.com/50871412/86744744-67481680-c06c-11ea-8612-b77eba92a392.png)
I guess the error is related to python source encoding issue that my PC is trying to decode the source code with wrong encoding-decoding tools, perhaps :
https://www.python.org/dev/peps/pep-0263/
I guess the error was triggered by the code " module = importlib.import_module(module_path)" at line 57 in the source code: nlp/src/nlp/load.py / (https://github.com/huggingface/nlp/blob/911d5596f9b500e39af8642fe3d1b891758999c7/src/nlp/load.py#L51)
Any ideas?
p.s. tried the same code on colab, that runs perfectly
| 32 | 'cp950' codec error from load_dataset('xtreme', 'tydiqa')
![image](https://user-images.githubusercontent.com/50871412/86744744-67481680-c06c-11ea-8612-b77eba92a392.png)
I guess the error is related to python source encoding issue that my PC is trying to decode the source code with wrong encoding-decoding tools, perhaps :
https://www.python.org/dev/peps/pep-0263/
I guess the error was triggered by the code " module = importlib.import_module(module_path)" at line 57 in the source code: nlp/src/nlp/load.py / (https://github.com/huggingface/nlp/blob/911d5596f9b500e39af8642fe3d1b891758999c7/src/nlp/load.py#L51)
Any ideas?
p.s. tried the same code on colab, that runs perfectly
Since #481 we shouldn't have other issues with encodings as they need to be set to "utf-8" be default.
Closing this one, but feel free to re-open if you gave other questions | [
-0.2920767069,
-0.1154669151,
-0.0485052355,
0.1429697126,
0.3976850212,
-0.1386853009,
-0.0299377777,
0.2073103786,
-0.348603487,
0.1107887402,
0.1741642952,
0.4716800153,
0.0220729895,
0.336784035,
0.2393416315,
-0.0221371111,
0.034644261,
0.2812205553,
-0.0362176448,
-0.0421608314,
-0.2705142498,
0.1711585969,
-0.0659665167,
-0.0170620978,
-0.3997239769,
-0.0124581065,
0.0486949161,
0.2974319458,
-0.3648322225,
-0.4751563072,
0.1951904297,
0.0119116101,
0.1359134912,
0.2594547868,
-0.0001011886,
-0.0771026984,
0.3384813368,
-0.2374664843,
-0.0726836026,
-0.2214625776,
-0.2162151635,
-0.339541316,
0.0997418389,
-0.1581600308,
-0.0460250974,
0.2871538997,
0.054769814,
-0.0264534876,
0.4907978177,
0.2225219905,
0.336117655,
0.1082954034,
-0.0871381462,
0.0970922261,
0.0383864902,
0.1536251903,
-0.0810597166,
0.4045355916,
0.2657890916,
-0.2489143312,
0.1300011277,
0.3025206029,
-0.1547401845,
-0.1583585739,
0.0455348231,
0.0050725266,
-0.0771131068,
-0.4147142172,
0.0786357298,
0.1539196968,
0.1933077723,
-0.3020583987,
-0.0559194423,
0.0919888541,
0.1005073637,
-0.5315518379,
0.241429925,
0.2892898917,
-0.2620901763,
0.0932656676,
-0.0564311519,
0.1054813415,
0.0520002842,
-0.0431904942,
0.0325560048,
0.1327358484,
-0.1192578673,
-0.124322623,
0.1317434162,
0.0007686373,
0.1545885503,
0.0858948827,
-0.2029138356,
0.2109204531,
-0.1349484324,
-0.1016721725,
-0.1193923056,
-0.0037290975,
-0.0798945054,
-0.1457082033,
0.5618261099,
0.1537455618,
-0.0523673296,
0.3236985803,
0.12995933,
0.0667189509,
-0.1919054389,
0.1937865615,
0.2312004119,
0.0484265648,
0.1330808252,
0.0626808852,
-0.1734258682,
-0.2025744915,
-0.3286466002,
0.2584734559,
0.1405036598,
-0.1802670062,
-0.387039423,
0.0865399763,
0.0774647966,
0.1144332141,
0.0800357684,
0.1966688931,
0.2150230706,
0.3200769722,
-0.0310160033,
0.2661578059,
-0.3405723572,
-0.3002048731,
-0.1536053121,
0.2318948805,
-0.4263073504,
-0.1337780952,
0.1555854529,
-0.0103648826,
0.1558936834,
0.2073732316,
0.1698082685,
-0.124043636,
0.0667799339,
-0.0724977553,
0.0879871845,
0.1300013214,
-0.0004065111,
0.0970362797,
0.1606968045,
-0.2576762438,
-0.095600754,
0.0696864575,
-0.4069736898,
-0.0201016888,
-0.0522613749,
0.3179690838,
-0.0753248632,
-0.0466688909,
-0.4660200477,
0.1913838685,
0.1194685996,
-0.3060784638,
0.1238185391,
-0.169136852,
-0.0626118928,
-0.1708723754,
0.1583507061,
0.4247142971,
-0.4670238197,
0.0496594012,
0.2211826742,
-0.0012427475,
0.3695965111,
0.0587587543,
-0.1565060169,
-0.1428921521,
-0.1330501139,
-0.00472074,
0.319884479,
-0.3632707298,
-0.2036394775,
0.2700953186,
-0.0475944579,
-0.0306831188,
-0.0173875801,
-0.0106356852,
0.0530154891,
-0.1864280254,
0.0972901285,
0.4720683098,
0.0049763229,
0.2972853184,
-0.2908040881,
-0.2138976604,
0.140878126,
0.0919194669,
-0.221155867,
-0.2059462816,
0.1534098387,
0.3134851158,
0.2427744716,
-0.0770797282,
-0.2892002463,
0.163090378,
0.2696893215,
-0.263469547,
-0.1851072609,
0.2320985496,
0.0784945339,
-0.0356946886,
-0.390193969,
0.226823926,
-0.2439684123,
-0.1308946609,
-0.0936575457,
0.0231818631,
-0.4545503557,
-0.2627985477,
0.2949181795,
-0.0049354956,
-0.1328282058,
0.0112288594,
-0.1847511828,
0.2601160109,
0.0009448379,
-0.0335318036,
-0.2378201336,
0.184979856,
-0.1797090918,
-0.267531395,
0.2869933844,
0.2790135145,
0.1291237622,
-0.1447087675,
-0.1572818011,
0.2860490382,
0.0124837682,
0.4131275415,
-0.2609881759,
-0.2436141968,
0.5184406638,
-0.5575978756,
0.070003897,
0.4544991553,
0.1927970499,
-0.160333842,
0.2434354126,
0.270200789,
-0.052383773,
-0.0549969785,
0.0412183329,
-0.1327362955,
0.1504887938,
0.0241405591,
0.0469060466,
-0.1603645533,
0.3626900911,
0.608037591,
0.2547625303,
-0.0487533286,
-0.1286945492,
0.1122964174,
0.4738336205,
-0.0103485063,
-0.0013963971,
0.0326427184,
0.0848799497,
-0.1663376391,
0.1038348302,
0.0503442809,
0.1257791966,
-0.034434516,
-0.2082007974,
0.2009344548,
-0.0656057596,
-0.2105450928,
0.1600574106,
-0.1011010855,
-0.0115905218,
0.02241515,
0.1100707799,
0.0249630138,
-0.3192923069,
-0.1397741437,
0.0235096812,
0.0939735025,
-0.2500427961,
0.2658500671,
-0.4543833733,
-0.4244669378,
-0.1767515093,
0.088206999,
-0.2056943476,
-0.0796076581,
0.0103620514,
-0.0777701214,
0.067016378,
0.2921091318,
-0.1647596657,
-0.0042430758,
-0.1235997975,
-0.0989780575,
-0.0117903128,
-0.1825898588,
-0.2122237384,
0.1677801311,
0.4413802028,
-0.0398410484,
0.1024440005,
-0.3816798627,
0.0646962076,
0.2964734435,
-0.3084106445,
0.2883994579,
-0.2581630051,
0.1106205732,
-0.0010713786,
0.0948398411,
-0.0560661107,
-0.3148551583,
0.2171660066,
-0.1198959798,
-0.0971307829,
0.1169729084,
-0.0459104404,
-0.1961915642,
-0.2785633504,
0.0642170161,
-0.4410554171,
-0.3425576091,
-0.2023861408,
0.1259258986,
0.0929158777,
0.4156619012,
0.2045500278,
0.0987193286,
0.1759501994,
-0.0851389691,
-0.133168906,
-0.3334025443,
0.2693319321,
-0.3517207205,
-0.4344561398,
-0.0000726134,
-0.012158867,
0.5023621917,
-0.1869820356,
-0.2606027424,
-0.1026283801,
-0.0670834333,
0.0555354804,
-0.0144216102,
0.1379836053,
-0.032456886,
-0.0005474798,
-0.0640171692,
-0.1284194142,
0.0312205032,
-0.0455351211,
0.0314097293,
0.3433048129,
-0.0890800506,
0.168887347,
-0.2043136805,
0.070365116,
0.1695304215,
0.0827560127,
0.6934220791,
-0.0739770457,
0.4205711484,
-0.1995114982,
-0.0481581613,
0.1415821016,
-0.1206924319,
-0.0635126382,
0.1851134747,
-0.0492117703,
-0.2864257693,
-0.3336732388,
0.0551527888,
-0.2285633236,
-0.2171087116,
0.0999126434,
0.165222764,
-0.0143466778,
0.0129885823,
0.1171453297,
0.0883734524,
-0.2286763489,
-0.0144518688,
0.1805532575,
-0.1751569659,
0.1710315198,
-0.2869600654,
-0.3914886117,
-0.1915302873,
0.0800629556,
0.1745440662,
0.2313797027,
-0.080242306,
0.0730664954,
0.1344738901,
-0.1544648856,
0.1718646288,
0.1257069707,
0.0307810996,
0.0954239964,
0.1099882126,
0.0595228076,
-0.054594852,
-0.2330915034,
0.1247988641,
0.1994681507,
-0.220510155,
-0.168894887,
0.0259050205,
0.033910241,
0.3165859878,
-0.0589166321,
0.1562264264,
-0.4766592085,
-0.6225416064,
-0.1087159663,
-0.1997410953,
0.2200855017,
0.2296118289,
-0.128959015,
-0.0488641374,
0.0438686758,
-0.2837003469,
0.2512354553,
0.5140663981,
0.4233028293,
0.1211608723,
-0.0226251483,
-0.1903213859,
-0.1330410838,
0.1896956861,
0.7450624108,
0.0363706462,
-0.2097329199,
0.139144212,
-0.1770808697,
0.2507607937,
0.2999683022,
-0.0407049358,
-0.1753132641,
-0.1670932323,
-0.0752965212,
-0.1916788071,
0.2307225168,
0.2340690196,
0.0813334882,
-0.5356985331,
-0.4480488002,
0.5573651791,
-0.0504169539,
0.1726905704,
0.1419837922,
-0.0903691053,
-0.3141257167,
0.24117589,
0.0783975497,
0.9852374196,
0.2112352848,
0.2190212011,
0.3602868915,
0.1238727868,
0.1683173776,
-0.0752920583,
0.1940021217,
-0.3183616996,
-0.1474912167,
0.0280086249,
0.1500528753,
0.1256139278,
0.0791479349,
-0.3388417959,
0.1087121442,
-0.0423831716,
-0.2682108879,
0.1092865691,
0.2032420337,
-0.2257400602,
-0.1824252307,
-0.6316770911,
0.271288991,
-0.0699543133,
0.0368466265,
-0.1795904636,
-0.2181742936,
-0.0113351792,
-0.3394555151,
-0.1856634915,
0.3587396145,
-0.4648076296,
0.165663749,
-0.1256932914,
-0.6603456736,
0.0589870661,
0.1018798873,
0.142208606,
0.1705819964,
-0.0316310897,
0.2886002064,
0.3289842606,
-0.0333042368,
0.0538528338,
0.1803847104,
0.1164436638,
-0.2379676998,
-0.0408894569,
0.2168305069,
0.1136523038,
-0.0507301763,
0.2746549547,
-0.0139089264,
-0.1687867939,
-0.0425475873,
-0.2854608595,
-0.1196895465,
0.1908657849,
-0.0586595759,
0.2239396423,
-0.0279350542,
-0.22309196,
-0.0733639598,
0.1914934218,
-0.292498827,
-0.1645859033,
0.0671760738,
-0.0564565696,
-0.1051127091,
0.4461651444,
0.1842794716,
-0.2075338811,
-0.1513285637,
0.2436149418,
-0.075442411,
-0.5386852026,
-0.0066285431,
0.1410817057,
-0.1534484029,
0.0034851432,
0.6803991795,
-0.0269049928,
-0.0568693131,
0.1441957355,
-0.3272306323,
-0.3443568647,
0.0150196552,
-0.1162099317,
0.0749120414,
0.0879411399,
0.3469925523,
0.0539478958,
-0.0673553199,
-0.3985675871,
0.0662677437,
-0.1426669955,
0.0488451049,
0.1289652437,
-0.1215148568,
0.107146576,
0.1047941148,
0.202996552,
0.3219653666,
-0.0979115665,
-0.2832180858,
-0.1359743625,
0.0565713048,
0.0017053299,
-0.3379482329,
-0.0889104158,
0.0667092428,
-0.0858610272,
0.0071736611,
0.1423535049,
0.0524303988,
0.0931167454,
0.1324238181,
-0.2461741865,
0.158641547,
0.105399102,
0.1628993005,
-0.0696341395,
0.559764266,
0.1636883467,
0.0628751665,
0.0059852563,
-0.0253743157,
-0.0447144099,
0.0505545065,
-0.2376694679,
0.1062284932,
0.1044626981,
-0.3597470224,
0.4122328162,
0.0589300729,
-0.0163108334,
0.4570338726,
-0.2496931553,
-0.0978305787,
0.3505031466,
0.2655178905,
-0.3189133108,
0.0738122165,
-0.2843264639,
-0.0188766532,
-0.0421065763,
0.3487905562,
0.2089371234,
-0.1145652011,
0.2774544358,
-0.0404059142,
0.3768452406,
0.1393832266,
0.3384265602,
0.3199059367,
-0.0633218214,
0.1767777205,
-0.1449135393,
0.1443769187,
-0.0619789809,
-0.006590833,
-0.6218461394,
0.1565927416,
0.0202321019,
0.0615847558,
0.0130639318,
-0.2305773199,
-0.1371740103,
-0.0970708355,
-0.1079708636,
0.3458487391,
0.1533380747,
0.4684999287,
-0.3881831467,
-0.0618438758,
-0.0999523997,
0.2083485425,
-0.1023445129,
0.0380978212,
0.0167681351,
-0.0260501131,
-0.3448733091,
0.124151133,
-0.1106194481,
0.1190153062,
-0.0481749624,
0.3128439188,
-0.10804189,
-0.0022145435,
0.0105921011,
-0.0133057237,
0.0652080923,
-0.0903547257,
0.5817039609,
0.3365060985,
0.1659685224,
0.2955406606,
0.1637489051,
0.5992536545,
0.4194280207,
-0.1985060722,
0.0197414644,
-0.1594893336,
0.0386609361,
0.0385328531,
0.119136557,
0.3507336676,
0.3548158705,
0.2214702368,
0.2291056961,
-0.2119885087,
-0.1589120328,
0.2516646385,
0.0198067687,
0.1084340066,
0.1820884049,
-0.1276624501,
0.2285720706,
-0.5063567758,
-0.10436894,
-0.4751029909,
0.2843631506,
0.3184303641,
0.0251299255,
0.0145882331,
-0.1881730109,
0.1490681767,
0.0117615424,
0.5455561876,
0.2462001443,
0.0812007785,
-0.1053361148,
-0.0941711962,
-0.7023863196,
0.2900265455,
0.0358979218,
-0.4220153391,
-0.2040276527,
-0.2144599706,
0.0586931556,
0.3786676228,
0.0576027408,
0.2639370859,
0.0873136818,
0.0427205302,
-0.1206455827,
0.0599488318,
-0.167631194,
0.0728154331,
-0.2522138357,
-0.2338364422,
0.0252856389,
-0.3026718199,
0.166526705,
-0.2468507588,
-0.3811718524,
-0.4446495771,
0.0948226303,
0.235276103,
0.1897627562,
0.3141132593,
-0.2809830904,
-0.289131999,
-0.0594041832,
-0.2559399009,
-0.0849949718,
0.3175149858,
0.1799069643,
0.1395935714,
0.1158801764,
0.1496807039,
-0.4539955258,
0.3691821396,
-0.0407510772,
-0.150304094,
-0.2544985116,
0.0400626138,
0.0016040877,
-0.0154123176,
0.1373393387,
0.3708090782,
-0.0436604023,
0.1041946039,
-0.1964037418,
-0.494351089,
0.2880335152,
-0.4873784482,
-0.1555864513,
0.1463108957,
0.1133802384,
-0.1505156457,
0.0910946205,
-0.5280275345,
0.2367158234,
-0.0112896301,
-0.1485493779,
-0.2645400763,
0.2816722393,
-0.2627761364,
-0.0958282799,
-0.0795657709,
0.3230295479,
0.1931322813,
-0.1097924933,
0.0396765396,
-0.2406677753
] |
https://github.com/huggingface/datasets/issues/345 | Supporting documents in ELI5 | Hi @saverymax ! For licensing reasons, the original team was unable to release pre-processed CommonCrawl documents. Instead, they provided a script to re-create them from a CommonCrawl dump, but it unfortunately requires access to a medium-large size cluster:
https://github.com/facebookresearch/ELI5#downloading-support-documents-from-the-commoncrawl
In order to make the task accessible to people who may not have access to this kind of infrastructure, we suggest to use Wikipedia as a knowledge source rather than the full CommonCrawl. The following blog post shows how you can create Wikipedia support documents and get a performance that is on par with a system that uses CommonCrawl pages.
https://yjernite.github.io/lfqa.html#task_description
Hope that helps, using ElasticSearch to index Wiki40b and create the documents should take about 4 hours. Let us know if you have any trouble with the blog post though! | I was attempting to use the ELI5 dataset, when I realized that huggingface does not provide the supporting documents (the source documents from the common crawl). Without the supporting documents, this makes the dataset about as useful for my project as a block of cheese, or some other more apt metaphor. According to facebook, the entire document collection is quite large. However, it would still be helpful to at least include a subset of the supporting documents i.e., having some data is better than having a block of cheese, in my case at least.
If you choose not to include them, it would be helpful to have documentation mentioning this specifically. It is especially confusing because the hf nlp ELI5 dataset has the key `'document'` but there are no documents to be found :( | 130 | Supporting documents in ELI5
I was attempting to use the ELI5 dataset, when I realized that huggingface does not provide the supporting documents (the source documents from the common crawl). Without the supporting documents, this makes the dataset about as useful for my project as a block of cheese, or some other more apt metaphor. According to facebook, the entire document collection is quite large. However, it would still be helpful to at least include a subset of the supporting documents i.e., having some data is better than having a block of cheese, in my case at least.
If you choose not to include them, it would be helpful to have documentation mentioning this specifically. It is especially confusing because the hf nlp ELI5 dataset has the key `'document'` but there are no documents to be found :(
Hi @saverymax ! For licensing reasons, the original team was unable to release pre-processed CommonCrawl documents. Instead, they provided a script to re-create them from a CommonCrawl dump, but it unfortunately requires access to a medium-large size cluster:
https://github.com/facebookresearch/ELI5#downloading-support-documents-from-the-commoncrawl
In order to make the task accessible to people who may not have access to this kind of infrastructure, we suggest to use Wikipedia as a knowledge source rather than the full CommonCrawl. The following blog post shows how you can create Wikipedia support documents and get a performance that is on par with a system that uses CommonCrawl pages.
https://yjernite.github.io/lfqa.html#task_description
Hope that helps, using ElasticSearch to index Wiki40b and create the documents should take about 4 hours. Let us know if you have any trouble with the blog post though! | [
0.0806761831,
-0.1414157599,
-0.1308176816,
-0.0987009555,
-0.3395777941,
-0.02161403,
-0.2173520327,
0.2103032172,
0.0503013059,
-0.0259133652,
0.1280902624,
-0.241194874,
0.1008688807,
0.1427404881,
-0.2445807904,
0.1461948156,
0.027654659,
0.2660850286,
0.2416870892,
-0.1947776228,
-0.0178428739,
0.197636947,
0.1432034671,
-0.1716153473,
-0.3346629739,
0.2507555783,
-0.2730869353,
0.1042412147,
-0.2372616976,
-0.0662402734,
0.102394104,
0.2378302664,
-0.036256399,
-0.0565397218,
-0.0001082366,
0.0151389539,
0.0998263657,
-0.1303935945,
-0.0717166886,
0.0352356397,
0.3620175421,
-0.4477026761,
0.1384600401,
-0.1620796025,
-0.3059388399,
-0.1202641129,
0.279863447,
0.3556277752,
0.3528574705,
-0.0046446659,
0.1948396116,
0.0135870427,
0.1496861279,
0.0355120823,
0.3426303864,
0.3699352145,
-0.2522276044,
-0.2625690103,
0.2649263144,
-0.2322939634,
0.0697336867,
0.364772886,
0.0875472277,
-0.1129978895,
0.3730439544,
0.1021437347,
0.0469902977,
-0.613278389,
0.2595944703,
0.2510031462,
0.3036838472,
0.2703650594,
-0.1207335591,
-0.3047219515,
-0.2468187809,
0.2858925462,
0.1955959946,
0.2177018225,
-0.1502867788,
0.15116404,
0.0314802229,
-0.1184745505,
-0.0182720125,
0.3093075752,
0.1452441216,
0.1628545523,
-0.0881979913,
-0.146066308,
0.2186288536,
-0.1449058205,
-0.6590023041,
0.1220766455,
0.2056595981,
0.1340452284,
0.0484927595,
-0.1340939403,
0.1747567058,
0.1377399564,
0.5864341855,
0.0596160889,
-0.0866416544,
0.127357319,
-0.0404509827,
0.0465864129,
0.088900201,
0.0602403022,
0.0087469388,
-0.2209193856,
0.2579366565,
0.1123382151,
-0.0838557258,
0.0046389075,
0.0627129227,
0.3078454137,
-0.3241543472,
-0.539518714,
0.1201750338,
-0.1676558405,
-0.1507183462,
0.1569000632,
-0.1685596704,
0.0254626535,
-0.2234403491,
0.5335275531,
0.0401803441,
-0.0055816276,
-0.0136977285,
0.0386955738,
-0.1921837628,
-0.1128756776,
-0.0731189102,
-0.1688322723,
-0.109717086,
0.19987607,
0.1995477974,
-0.3310861588,
0.5541294813,
-0.2196206599,
0.2041631192,
0.097754702,
0.1932164133,
0.0301174633,
0.2535439134,
0.353828162,
0.1545121223,
0.0394502282,
-0.0487941019,
-0.1594575197,
-0.2483039498,
-0.2479276657,
0.0697254017,
-0.3629741073,
-0.4516445994,
0.2046124339,
0.1505703926,
0.2050658613,
0.0230999645,
0.5333046913,
-0.3146409988,
-0.1038460881,
0.1686963141,
0.3648091853,
-0.3038466573,
-0.1020548418,
0.4092982411,
0.2519218922,
0.400988996,
-0.3729685843,
-0.0606632642,
0.3335618377,
-0.097783871,
0.3365209699,
-0.0658702552,
-0.2021241784,
-0.033273112,
0.3529548049,
0.2694992721,
-0.2427786887,
-0.5641850829,
0.2591613531,
-0.0024538115,
0.2508821785,
0.0845530331,
0.0684899613,
0.082615003,
-0.2189551145,
0.0249456428,
0.2849488854,
0.0519595593,
0.0720636621,
-0.3615595102,
-0.4118729532,
0.0270242952,
0.1433935612,
-0.0667520836,
-0.2504670918,
0.0029694773,
-0.0645664036,
-0.0254444554,
-0.0772937983,
0.1527874321,
0.3830136657,
0.1348628998,
0.1990216225,
0.1052662507,
-0.0190326981,
-0.3713849187,
0.2328279465,
-0.0967206657,
0.4336291552,
0.1736373305,
-0.385011375,
-0.0803901851,
-0.0744089186,
-0.1050056219,
-0.4436506033,
0.2301822305,
-0.1027261019,
0.285761714,
0.0918076932,
-0.0282302424,
-0.2864752412,
-0.2602203786,
0.0710944235,
-0.1651407182,
0.3315625191,
-0.3213315308,
0.0342533253,
0.0782488286,
0.1614308953,
-0.1242557168,
0.1105072051,
0.194281742,
-0.0071294652,
-0.3551357687,
-0.0379278585,
0.4002786279,
0.7665849328,
0.2776438594,
-0.3818292618,
0.1005617082,
0.1995648891,
-0.035321109,
-0.173257947,
-0.3145941496,
0.0889276788,
0.2785706222,
0.320040077,
0.1890919358,
-0.0571335107,
0.0382557064,
0.0903183818,
-0.1557939202,
-0.1499131471,
0.3771612346,
-0.1340331584,
0.0639238209,
0.0019982737,
-0.1482245475,
0.4138779044,
0.1723027229,
0.1056227162,
0.1920792013,
0.5266594291,
-0.1382302642,
-0.4718618989,
-0.1715258658,
-0.3971881866,
0.0164451823,
0.2203442454,
0.1913431734,
0.0278092492,
0.1325483322,
0.0655031204,
0.1050012857,
0.0083913244,
-0.0028979965,
0.0728534758,
0.2263056636,
0.220969528,
-0.2642668486,
-0.1024459898,
-0.3160077333,
-0.0796576589,
0.1014828533,
-0.0092379563,
0.2213158906,
-0.2507490516,
0.263444066,
-0.0781889185,
-0.4147419333,
-0.3153248727,
0.2948233485,
0.1135604531,
-0.1521182358,
0.0933335572,
-0.0359078534,
0.1366749406,
-0.1347663999,
0.2000320256,
-0.4448849857,
-0.1261643767,
-0.1927214265,
0.0864220262,
-0.045394212,
0.4896548986,
0.1996759325,
-0.1918669045,
-0.0891262144,
-0.6268860102,
-0.6305288672,
0.2847005129,
-0.1327684522,
0.1055972651,
0.2470077574,
0.3481205404,
-0.3925290406,
-0.4493706226,
0.2627792656,
-0.4444779754,
-0.1999738514,
-0.2748993039,
-0.1903125346,
0.0225157179,
0.0493831635,
-0.1188695058,
-0.2579313517,
-0.2666806877,
0.3291161656,
0.2762426436,
-0.0609607026,
-0.0458910428,
0.0205529109,
0.1251767576,
0.2258082926,
0.2626571655,
-0.2936742902,
-0.0474499874,
0.2918272614,
-0.3029046357,
-0.2832888365,
-0.0370078236,
-0.1125947237,
-0.232483238,
-0.1866954267,
-0.3569921255,
-0.3837313056,
-0.1370197535,
0.0548831224,
-0.0264959037,
0.0882043615,
0.1968397349,
-0.0107377656,
-0.2033340931,
0.1613603085,
-0.0292124413,
-0.0383645669,
0.0866159052,
0.0075271651,
-0.2022763193,
0.2060182095,
0.0629343241,
0.7775629759,
0.2560122311,
0.0957143158,
0.3554350138,
0.0965008512,
0.302388519,
-0.3307038844,
-0.0481679887,
0.0820792839,
0.0261234567,
0.1000514403,
0.5637341738,
0.2327352911,
-0.1557640135,
-0.1026141793,
-0.5225752592,
-0.3188148737,
-0.2693006992,
0.2323872745,
0.2323056161,
0.251464963,
-0.0427641757,
0.0313496664,
0.0448826998,
-0.4328539371,
0.1710642576,
0.1494747847,
0.0656207278,
0.067215696,
-0.2274290174,
0.0286748894,
-0.9157410264,
0.2903389037,
0.1272511035,
-0.2261871547,
-0.2038733661,
0.0086206198,
0.1673072577,
-0.1656232774,
0.3456696868,
-0.244261995,
-0.2296358496,
-0.2217077017,
-0.0772222653,
-0.118479006,
0.0776620284,
0.0778404921,
0.0282882117,
0.3759852052,
-0.0090690143,
-0.6138384342,
-0.1671897024,
0.2821725607,
-0.0146169998,
-0.0445769988,
0.0969725698,
-0.3596685529,
-0.4528431594,
-0.5167990327,
-0.1217091382,
0.2898418903,
-0.183667928,
-0.1271050274,
0.1153054982,
0.162175864,
0.1249371469,
0.1095973924,
0.1497635692,
0.0782528818,
0.0392141901,
0.0177033693,
0.4854710996,
0.1623134911,
0.1095938087,
0.4987755418,
0.0102829318,
-0.0290296972,
0.0863296092,
0.092633754,
0.0507370904,
0.3944363594,
0.4012106657,
0.0613245815,
0.2153003067,
0.1702975482,
-0.1811872423,
-0.0273434892,
0.4937494397,
-0.1580030322,
-0.1015142128,
0.063448213,
0.4403321147,
-0.0228713937,
0.0520250499,
-0.1205284297,
0.8181396723,
0.0034933127,
0.6203834414,
0.0245092362,
1.0834468603,
0.0712137222,
0.23550798,
-0.0662083179,
0.1022236049,
0.4590820372,
-0.5924050212,
-0.0719933733,
-0.1716341227,
-0.357932508,
-0.0282047875,
0.205829367,
-0.2424092293,
0.0943547264,
-0.2666332126,
0.1641510725,
0.1665959656,
0.0792629868,
-0.132383734,
0.5353415608,
-0.2092642933,
-0.2426698357,
-0.2931989431,
0.1606055349,
0.1370085925,
0.4707178771,
-0.0683386922,
-0.0239952635,
-0.0310567915,
-0.1576668471,
-0.4364045262,
-0.0868461728,
-0.0571712554,
0.0721726269,
0.2667095065,
-0.0620509014,
0.0479140058,
0.1726254374,
0.1590501368,
-0.1449035704,
-0.4947534502,
0.1609767377,
-0.0852396488,
-0.2354753017,
0.2217707932,
-0.3119464517,
0.3180813789,
-0.1570399404,
-0.2050401419,
0.2423342019,
-0.1365591884,
-0.0473491251,
-0.1830670983,
-0.2662456036,
-0.2832189202,
-0.1319665015,
-0.0575911365,
0.2548998892,
-0.5066121221,
-0.1073728129,
0.1360842437,
0.0619509108,
0.1497884095,
-0.1424946785,
0.3879219294,
-0.0254308805,
-0.164731279,
0.4760464728,
-0.0733070374,
-0.1303656399,
0.3072898388,
0.013433069,
-0.2064885646,
-0.0190459304,
-0.1087078303,
0.2752625644,
-0.282153368,
-0.1286256164,
0.1442894936,
-0.1705992967,
0.0885858983,
0.7039005756,
0.1237254888,
-0.123646684,
-0.1176971868,
-0.0933520421,
0.1011838093,
0.4985336661,
0.0505791306,
0.0725106224,
0.0642405152,
-0.127299726,
0.2589458525,
0.2433388829,
-0.3592048883,
-0.0717600137,
-0.439050436,
0.0184074901,
-0.1205718815,
-0.1613069028,
0.4346777797,
0.2047706246,
0.0707754865,
0.0910656601,
-0.0933138579,
-0.180837661,
0.0803187937,
0.1305054873,
0.1066499576,
0.0202973038,
-0.1118559688,
0.0898531377,
-0.1579395533,
-0.3185768723,
0.0888935849,
-0.1715652347,
0.0360233337,
-0.0528541021,
-0.1689077914,
0.0717956424,
-0.0415925123,
-0.0718804821,
0.1163446605,
0.4744983613,
0.0726781189,
-0.0939535499,
-0.2063882649,
-0.1261649579,
0.2610611022,
0.2690450251,
0.2563708127,
-0.2336864471,
0.2742327452,
0.1976020336,
-0.2272610515,
0.0177478455,
0.0360474661,
0.1653278172,
-0.137349993,
0.1518942416,
0.1155490801,
0.2441235483,
-0.2058785707,
-0.0913568437,
0.3557409644,
-0.2692942619,
0.3280308247,
0.1972305477,
0.6575438976,
-0.1029171571,
0.268609345,
0.1029348746,
0.1431605816,
-0.319832623,
-0.2167582363,
-0.3446308076,
0.0643807575,
-0.0358220264,
-0.1502176523,
0.0252594613,
0.6202685237,
-0.1843102574,
0.0242388006,
0.2300519794,
-0.2149220407,
0.4202449024,
0.2570253611,
-0.0216606408,
0.1826198399,
0.1664551795,
0.2891643047,
0.3017506599,
-0.0999803841,
0.056486316,
0.0933227465,
-0.0102173053,
-0.4102498293,
0.3412417173,
0.0440336056,
-0.0449782051,
0.2121953666,
-0.2977993488,
-0.1784312576,
0.1179586053,
-0.0404759273,
-0.1816560775,
-0.2485122383,
-0.1287420392,
0.0907340348,
-0.0210817903,
0.2186369598,
-0.1247330979,
0.6175803542,
-0.0710851103,
0.1010064557,
0.191088438,
-0.198579073,
-0.0609303154,
0.3612090647,
0.2990720272,
-0.0895743966,
-0.4420961738,
0.1821316779,
0.0637876913,
-0.0583394617,
-0.1847286671,
0.0843778849,
0.2508338094,
-0.3955078423,
0.0231665671,
0.0982851982,
-0.3194875419,
-0.5002750158,
-0.2329955399,
0.3162245452,
0.0624837615,
-0.4794465899,
-0.1802380383,
-0.0294060409,
-0.0606037155,
0.0291260276,
-0.3866061568,
0.1661672145,
-0.1591113955,
0.0206480138,
0.0503560305,
-0.2859904468,
0.0850376338,
0.0807041824,
0.4946762323,
0.3730101585,
0.1127116233,
0.0598620772,
-0.4312782884,
-0.130233109,
0.1595836133,
-0.2466771603,
-0.0424959436,
0.4238418937,
0.3498512506,
0.2614301443,
0.3045891225,
0.029717546,
-0.2874191105,
-0.2152041495,
-0.0699587017,
-0.0957851186,
0.0840470046,
-0.2433261126,
0.1507636905,
0.0208425522,
0.0374241769,
0.0005403766,
-0.2379782051,
0.0414123014,
-0.2940927446,
-0.0217355415,
-0.1969222724,
0.3018134832,
0.0099937581,
0.2058704495,
-0.1764583737,
-0.2507235706,
-0.4384674728,
0.0337839797,
0.1012851149,
0.059390042,
0.1374856085,
0.0188354962,
-0.0253788792,
-0.0652533695,
-0.1125294343,
-0.0281356871,
0.1453640908,
0.2425727248,
0.1292923838,
-0.2725088,
-0.0987303331,
-0.1670648754,
0.1415548623,
0.0640584007,
0.4082989693,
-0.1655519456,
-0.3016098738,
-0.2824160159,
-0.1516106725,
0.2724375725,
-0.1437878907,
0.1419828385,
-0.1527415067,
0.1226043552,
0.425335139,
0.0978573412,
-0.3977631032,
-0.0714543536,
0.1101637632,
0.315171361,
-0.2627429962,
-0.262763381,
0.1294184923,
-0.1696703136,
-0.242809847,
-0.0516270734,
-0.0634539053,
-0.0654646605,
-0.2057817876,
-0.1455374956
] |
https://github.com/huggingface/datasets/issues/345 | Supporting documents in ELI5 | Hi, thanks for the quick response. The blog post is quite an interesting working example, thanks for sharing it.
Two follow-up points/questions about my original question:
1. Yes, I read that the facebook team could not share the CommonCrawl b/c of licensing reasons. They state "No, we are not allowed to host processed Reddit or CommonCrawl data," which indicates they could also not share the Reddit data for licensing reasons. But it seems that HuggingFace is able to share the Reddit data, so why not a subset of CommonCrawl?
2. Thanks for the suggestion about ElasticSearch and Wiki40b. This is good to know about performance. I definitely could do the indexing and querying myself. What I like about the ELI5 dataset though, at least what is suggested by the paper, is that to create the dataset they had already selected the top 100 web sources and made a single support document from those. Though it doesn't appear to be too sophisticated an approach, having a single support document pre-computed (without having to run the facebook code or a replacement with another dataset) is super useful for my work, especially since I'm not working on developing the latest and greatest retrieval model. Of course, I don't expect HF NLP datasets to be perfectly tailored to my use-case. I know there is overhead to any project, I'm just illustrating a use-case of ELI5 which is not possible with the data provided as-is. If it's for licensing reasons, that is perfectly acceptable a reason, and I appreciate your response. | I was attempting to use the ELI5 dataset, when I realized that huggingface does not provide the supporting documents (the source documents from the common crawl). Without the supporting documents, this makes the dataset about as useful for my project as a block of cheese, or some other more apt metaphor. According to facebook, the entire document collection is quite large. However, it would still be helpful to at least include a subset of the supporting documents i.e., having some data is better than having a block of cheese, in my case at least.
If you choose not to include them, it would be helpful to have documentation mentioning this specifically. It is especially confusing because the hf nlp ELI5 dataset has the key `'document'` but there are no documents to be found :( | 256 | Supporting documents in ELI5
I was attempting to use the ELI5 dataset, when I realized that huggingface does not provide the supporting documents (the source documents from the common crawl). Without the supporting documents, this makes the dataset about as useful for my project as a block of cheese, or some other more apt metaphor. According to facebook, the entire document collection is quite large. However, it would still be helpful to at least include a subset of the supporting documents i.e., having some data is better than having a block of cheese, in my case at least.
If you choose not to include them, it would be helpful to have documentation mentioning this specifically. It is especially confusing because the hf nlp ELI5 dataset has the key `'document'` but there are no documents to be found :(
Hi, thanks for the quick response. The blog post is quite an interesting working example, thanks for sharing it.
Two follow-up points/questions about my original question:
1. Yes, I read that the facebook team could not share the CommonCrawl b/c of licensing reasons. They state "No, we are not allowed to host processed Reddit or CommonCrawl data," which indicates they could also not share the Reddit data for licensing reasons. But it seems that HuggingFace is able to share the Reddit data, so why not a subset of CommonCrawl?
2. Thanks for the suggestion about ElasticSearch and Wiki40b. This is good to know about performance. I definitely could do the indexing and querying myself. What I like about the ELI5 dataset though, at least what is suggested by the paper, is that to create the dataset they had already selected the top 100 web sources and made a single support document from those. Though it doesn't appear to be too sophisticated an approach, having a single support document pre-computed (without having to run the facebook code or a replacement with another dataset) is super useful for my work, especially since I'm not working on developing the latest and greatest retrieval model. Of course, I don't expect HF NLP datasets to be perfectly tailored to my use-case. I know there is overhead to any project, I'm just illustrating a use-case of ELI5 which is not possible with the data provided as-is. If it's for licensing reasons, that is perfectly acceptable a reason, and I appreciate your response. | [
0.1618808508,
-0.0452028811,
-0.0387861878,
-0.0477257706,
-0.3124102354,
0.0002395436,
-0.1353976429,
0.130229786,
-0.0219205655,
-0.0501844436,
0.0941171795,
-0.2651154697,
0.11306113,
0.144380331,
-0.1669063717,
0.1842311919,
0.0264952667,
0.2427611947,
0.3465197086,
-0.3121983707,
0.0172464848,
0.2343268991,
0.1443893909,
-0.1357309967,
-0.3666527271,
0.2833316326,
-0.299878329,
0.1768081933,
-0.2238982916,
-0.0061550066,
0.0662746206,
0.2734151781,
0.0293229967,
-0.2047092468,
-0.0001143989,
0.0644622296,
-0.0929929689,
-0.1426991373,
-0.1507162452,
-0.1806529313,
0.2431352139,
-0.3142085075,
-0.0273022838,
-0.0974221379,
-0.1486662626,
-0.2026416063,
0.2346536219,
0.259924829,
0.353569001,
-0.0374873802,
0.1049090847,
0.0820605755,
0.0161263049,
0.1020363718,
0.1941462904,
0.3405364752,
-0.2443338037,
-0.0740672648,
0.3869933188,
-0.2022095919,
0.0654285252,
0.2211509347,
0.0566232651,
-0.1823203415,
0.2999624908,
0.0382444672,
0.0203537922,
-0.6953430176,
0.2636002302,
0.3578397036,
0.4532781839,
0.2831231654,
-0.2213174552,
-0.4320506155,
-0.1177457422,
0.2731926143,
-0.0302478932,
0.3697185814,
-0.0638158396,
0.3528541625,
0.0016577654,
-0.2023565471,
-0.0750340968,
0.3632194102,
0.2741083503,
0.0566655658,
-0.1507906914,
-0.0997989923,
0.1249807328,
0.0599625558,
-0.4961784184,
-0.023037307,
0.1168765426,
-0.0398269519,
0.1816922873,
-0.1658807993,
0.0937455222,
0.3632129729,
0.6906953454,
0.2466050088,
0.0316824019,
-0.0119368378,
-0.2202199399,
0.0572161116,
0.2629970908,
-0.0168862082,
-0.062011674,
-0.1783059537,
0.1461057365,
-0.0312415659,
0.1357304305,
-0.0091117201,
-0.0422686227,
0.5626630187,
-0.5317932963,
-0.593288362,
0.2085094601,
-0.2363735437,
-0.1962756664,
0.1573076546,
-0.2473310232,
-0.0459485576,
-0.1888717264,
0.4357138574,
0.1879492551,
0.0037180912,
-0.3072890043,
0.1680948138,
0.0074784756,
-0.3712285459,
-0.0267666727,
-0.1037181318,
-0.1844661534,
0.1345676184,
0.1396352798,
-0.3869446218,
0.6252249479,
-0.2365909815,
0.3478045464,
0.1796343029,
0.1624159813,
-0.018536482,
0.3222462535,
0.3538752496,
0.106995523,
0.0527895913,
0.0617663376,
-0.0122317523,
-0.2694573402,
-0.2196469009,
-0.0066611953,
-0.4560048878,
-0.4140786529,
0.0596289933,
0.0276853293,
0.2341441065,
0.1031517386,
0.5134555697,
-0.4354709387,
-0.139975518,
0.210980311,
0.2206292301,
-0.396133244,
-0.2374760211,
0.3468028307,
0.294028163,
0.3394906819,
-0.4009535313,
-0.0533857606,
0.2656393647,
-0.1998752952,
0.3898680508,
-0.2220278978,
-0.2204249799,
-0.0046833269,
0.3456552029,
0.3490614891,
-0.1972568929,
-0.7282791734,
0.2450960577,
0.1184999496,
0.3259022236,
0.1589939743,
-0.0551898256,
0.0623805486,
-0.3640515804,
-0.0432474948,
0.1965421736,
-0.0435870737,
-0.119429931,
-0.2560025752,
-0.4202410281,
-0.0762733072,
0.1884015203,
-0.105800584,
-0.1561291367,
0.0355003625,
-0.0632956773,
0.0083654458,
-0.0580607019,
0.1475290507,
0.3281921446,
0.1072342843,
0.1590900421,
0.0168098807,
0.0722490773,
-0.3731555939,
0.3071225584,
-0.0141973943,
0.3480275869,
0.304420352,
-0.3181044161,
0.0587490201,
-0.0931867957,
-0.0007662317,
-0.6210438013,
0.135581404,
-0.0142497979,
0.1797038317,
0.0173146948,
-0.2134849131,
-0.0974055678,
-0.1941886246,
0.1273106486,
-0.1348651201,
0.3530066013,
-0.2602703869,
0.0966936573,
0.0792047456,
0.4140845835,
-0.1390439421,
0.0689709783,
0.2654939592,
-0.0479334407,
-0.3764591515,
-0.0900986344,
0.2554417551,
0.873713553,
0.3631453514,
-0.3448278904,
0.2278610766,
0.066680409,
-0.0577500537,
-0.1940208822,
-0.2126740664,
0.0391617976,
0.1341945231,
0.3453151286,
0.3507530093,
0.065123871,
-0.0663317144,
0.0633669347,
-0.2704554498,
-0.2145715952,
0.4714911282,
-0.1026437655,
0.2174862772,
0.0538594127,
-0.2446396053,
0.4113783836,
0.2338641733,
0.1658737808,
-0.0037704334,
0.4241568446,
-0.2534435093,
-0.3952468038,
0.0571384653,
-0.1831640303,
0.2414889336,
0.2258033752,
0.2277134359,
0.0635994226,
0.156009078,
0.056804385,
0.0174492374,
0.1503195465,
-0.051708784,
0.0024007778,
0.1140674725,
0.376413852,
-0.2117665708,
-0.2193943262,
-0.3091650009,
-0.2785672843,
0.0724302307,
0.0705561489,
0.1820525676,
-0.3416143358,
0.1765881777,
-0.0956141204,
-0.4134990573,
-0.2661289871,
0.2347913384,
0.1461955607,
-0.0589657575,
-0.0071644392,
-0.2509240806,
0.2849392891,
-0.4807713032,
0.3026829362,
-0.3664852977,
-0.0576582849,
-0.2014651597,
0.0328035094,
0.0083477274,
0.3727062345,
0.2562310398,
-0.0921005309,
-0.1207937449,
-0.5289493203,
-0.452175498,
0.3688603938,
-0.2268683314,
0.1133746952,
0.1305220872,
0.1967617273,
-0.3303304613,
-0.264618665,
0.1088887826,
-0.3639266491,
-0.0934841633,
-0.3351449966,
-0.0973836929,
-0.0986824483,
-0.0030946583,
-0.0411963761,
-0.3535022736,
-0.2808043957,
0.3430297971,
0.2254040092,
-0.1302048713,
0.0172078386,
-0.0800357312,
0.1123525649,
0.1259935647,
0.3323070109,
-0.2970348001,
-0.1613462865,
0.1960987151,
-0.2074229121,
-0.2651272416,
-0.0386922732,
-0.0539248697,
-0.0615291521,
-0.1005943045,
-0.4254784882,
-0.3604821563,
0.0556921065,
-0.0251165628,
-0.0703637525,
0.0615713894,
0.0977730304,
0.0125414692,
-0.0685770586,
0.0065079108,
0.0051072314,
-0.1429708302,
0.1419216096,
0.0686364472,
-0.0926286802,
0.1250013709,
0.2023942322,
0.7989223599,
0.4217327833,
0.128645435,
0.4140595794,
0.2201205641,
0.4891654551,
-0.2331580073,
-0.0684256479,
0.104460761,
-0.0167272463,
0.287329644,
0.5585056543,
0.304633081,
0.0850377381,
-0.061594978,
-0.475753665,
-0.2863049507,
-0.1630811691,
0.2455820143,
0.0341193974,
0.2572930455,
0.0019512922,
-0.0227634832,
0.1661116928,
-0.3102347851,
0.0538972132,
0.1662834883,
0.2355101854,
0.1411303878,
-0.3051782548,
0.1529215574,
-0.8590835333,
0.2311120927,
-0.0189006887,
-0.1874372959,
-0.2980822921,
0.0848468766,
0.1466865391,
0.055716686,
0.323502928,
-0.3109870255,
-0.3885937631,
-0.2066269219,
-0.0179767609,
-0.0430694222,
0.0947533101,
0.1059951484,
0.0098150373,
0.4081764817,
-0.1639485359,
-0.4936894476,
-0.2149727494,
0.2640774548,
-0.0316419788,
0.0092504993,
0.1360559762,
-0.1757678241,
-0.2938087583,
-0.5504941344,
-0.4285240769,
0.2547287047,
-0.3438403308,
-0.219306618,
0.2031399906,
0.2557870448,
0.0077917278,
0.27219522,
0.183965385,
-0.0555270314,
-0.0856641978,
-0.0926734582,
0.5099771023,
0.3596837521,
0.2354167849,
0.7077590227,
0.0179832652,
-0.089313373,
0.1664326042,
0.0522187315,
0.2376981378,
0.4825987816,
0.3366217315,
0.0189695805,
0.0892786831,
-0.0071083941,
-0.1003564745,
-0.0050262734,
0.4554412961,
-0.3331573606,
-0.1282137781,
0.0333347544,
0.3052026331,
-0.1238712519,
0.0464241803,
-0.0847176611,
0.9499080777,
0.1301208436,
0.5122741461,
-0.0499970429,
1.1526868343,
0.2842030227,
0.3870044351,
-0.1136416346,
-0.05328371,
0.5818099976,
-0.5025376081,
-0.1942021549,
-0.0220449865,
-0.38685745,
-0.1671907008,
0.0516409501,
-0.2265331894,
0.2156894803,
-0.0801805854,
0.2316942811,
0.3886116445,
0.0542904288,
0.014928434,
0.4949815571,
-0.2575529516,
-0.1681657434,
-0.1999784857,
0.0432277918,
0.1722920388,
0.4088796675,
-0.1498885751,
-0.1088572815,
-0.2044110149,
-0.166397661,
-0.5499108434,
-0.0497839823,
0.0601079725,
-0.0614460893,
0.3552019894,
-0.0797137693,
0.325350821,
0.1505556554,
0.3010340333,
-0.3107363284,
-0.5965964198,
0.0113911629,
-0.0683426559,
-0.2154921293,
0.2730763853,
-0.1934507191,
0.4823542237,
-0.1064100266,
-0.1110986769,
0.3303714395,
-0.0982627124,
-0.0512317419,
-0.4185140431,
-0.2416195273,
-0.1881911159,
-0.1779619157,
-0.0705721155,
0.3471905887,
-0.4256944656,
-0.1267222613,
0.048054859,
0.1066824496,
0.3316639364,
-0.2672721744,
0.3429389596,
0.0106947422,
-0.2360140681,
0.3876948655,
-0.1587111056,
-0.0637341067,
0.2717561722,
-0.2133659422,
-0.12752074,
0.0727553591,
-0.1064477935,
0.2839752734,
-0.4165972471,
-0.2355315089,
0.1129473895,
-0.1551660299,
-0.1096848696,
0.4567146599,
0.1899130344,
-0.0448392332,
-0.2044053972,
-0.1590967625,
0.1070049033,
0.5737264156,
-0.1819012165,
0.0827111006,
-0.0194353089,
-0.0116752964,
0.2233769745,
0.1554016471,
-0.2522448897,
-0.0365174562,
-0.312936902,
-0.0768675581,
0.027843304,
-0.0764378011,
0.3367640376,
0.113808915,
-0.0922477841,
-0.0516176447,
-0.1766045392,
-0.0428036451,
0.0224405602,
0.1930936426,
0.3122955263,
-0.0885732248,
-0.1383557916,
0.08682248,
-0.1138550863,
-0.3022904396,
0.1337786913,
-0.221106261,
0.0707971305,
0.0809218138,
-0.1911885738,
0.1946780086,
-0.1025142148,
0.0423028469,
0.117494233,
0.5127564669,
0.2672609687,
-0.0269919615,
-0.2109586746,
-0.1394848228,
-0.008747831,
0.2265077829,
0.3295250237,
-0.2503396273,
0.3612287939,
0.3472686708,
0.026163429,
-0.1014584303,
-0.0064436607,
0.1815852076,
-0.2297013253,
0.2761462629,
0.2086240351,
0.1057320684,
-0.148996383,
-0.0837414563,
0.3395871818,
-0.1748007834,
0.2245008349,
0.191462189,
0.8282391429,
-0.1262876093,
0.3334258795,
-0.1276555657,
0.1897798777,
-0.2044482678,
-0.181761533,
-0.2316095829,
0.0415633172,
0.1843356192,
-0.1679464579,
0.0841622502,
0.576459825,
-0.3147501349,
-0.0840195864,
0.1850132346,
-0.2706154883,
0.2517427206,
0.4075969458,
-0.0716695786,
0.1097724885,
0.1970787048,
0.4905516803,
0.2935714424,
-0.1452922225,
-0.0370133854,
0.1738232225,
0.1525018662,
-0.2693367898,
0.16360192,
0.1845989823,
-0.0508922972,
0.1807233393,
-0.1903873384,
-0.2372000068,
0.1965667307,
-0.2412139922,
-0.2911819518,
-0.2178949118,
-0.1432462931,
-0.0616886579,
-0.1196154207,
0.2244770229,
-0.0884869248,
0.3507429957,
-0.0996968895,
0.1117531806,
0.0399555266,
-0.1257641017,
-0.000462668,
0.3130824566,
0.3190274239,
-0.1744493842,
-0.1170388684,
-0.0126746297,
0.2129799277,
0.0158326924,
-0.2076570243,
0.1143770665,
0.2840116024,
-0.248205021,
0.1243276447,
-0.0195966698,
-0.1539877802,
-0.3735153377,
-0.1696234345,
0.2303638607,
-0.183468774,
-0.3113377094,
-0.1564993262,
-0.1659864187,
0.1074690223,
0.0604185462,
-0.2830296159,
0.2151736617,
-0.1071439683,
0.0541044176,
0.0130196996,
-0.2539302707,
0.0379406549,
0.1356281042,
0.3063029647,
0.5627689958,
0.1095671505,
-0.0617810376,
-0.3986174464,
-0.1172647551,
0.1899099499,
-0.2081125975,
-0.0411838591,
0.3487138152,
0.183249414,
0.3635133207,
0.303783685,
-0.0953093171,
-0.2481213063,
-0.2477925718,
-0.181662783,
-0.023304224,
-0.0725574791,
-0.1085302979,
0.2357600778,
-0.0107638612,
0.2202773392,
0.0317006484,
-0.1569306403,
-0.1226207763,
-0.3057940006,
0.0225641206,
-0.2268681526,
0.3308990002,
-0.0405958742,
0.1599258184,
-0.1917670071,
-0.2094218731,
-0.4069240689,
-0.0480842069,
0.1296696365,
0.0477343835,
0.1616850942,
0.009490706,
-0.0973555297,
-0.2759914696,
-0.0923783705,
0.0149697885,
-0.0296083074,
0.1296310127,
0.1409835517,
-0.307448566,
-0.0239942335,
-0.1898321062,
0.1414305121,
0.0891474783,
0.3798627555,
-0.2511124015,
-0.3843089938,
-0.2604123056,
0.0579465255,
0.2941582203,
-0.1104182303,
0.289601326,
-0.0296140239,
0.1552997231,
0.454370141,
0.018380763,
-0.5039558411,
-0.2176715136,
0.2137528956,
0.1811883152,
-0.3754467368,
-0.2439007163,
0.1902200282,
-0.1772356778,
-0.2124370337,
-0.0106055699,
-0.1518128216,
-0.1758590639,
0.1100063324,
-0.1202375814
] |
https://github.com/huggingface/datasets/issues/331 | Loading CNN/Daily Mail dataset produces `nlp.utils.info_utils.NonMatchingSplitsSizesError` | I couldn't reproduce on my side.
It looks like you were not able to generate all the examples, and you have the problem for each split train-test-validation.
Could you try to enable logging, try again and send the logs ?
```python
import logging
logging.basicConfig(level=logging.INFO)
``` | ```
>>> import nlp
>>> nlp.load_dataset('cnn_dailymail', '3.0.0')
Downloading and preparing dataset cnn_dailymail/3.0.0 (download: 558.32 MiB, generated: 1.26 GiB, total: 1.81 GiB) to /u/jm8wx/.cache/huggingface/datasets/cnn_dailymail/3.0.0/3.0.0...
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/p/qdata/jm8wx/datasets/nlp/src/nlp/load.py", line 520, in load_dataset
builder_instance.download_and_prepare(
File "/p/qdata/jm8wx/datasets/nlp/src/nlp/builder.py", line 431, in download_and_prepare
self._download_and_prepare(
File "/p/qdata/jm8wx/datasets/nlp/src/nlp/builder.py", line 488, in _download_and_prepare
verify_splits(self.info.splits, split_dict)
File "/p/qdata/jm8wx/datasets/nlp/src/nlp/utils/info_utils.py", line 70, in verify_splits
raise NonMatchingSplitsSizesError(str(bad_splits))
nlp.utils.info_utils.NonMatchingSplitsSizesError: [{'expected': SplitInfo(name='test', num_bytes=49424491, num_examples=11490, dataset_name='cnn_dailymail'), 'recorded': SplitInfo(name='test', num_bytes=48931393, num_examples=11379, dataset_name='cnn_dailymail')}, {'expected': SplitInfo(name='train', num_bytes=1249178681, num_examples=287113, dataset_name='cnn_dailymail'), 'recorded': SplitInfo(name='train', num_bytes=1240618482, num_examples=285161, dataset_name='cnn_dailymail')}, {'expected': SplitInfo(name='validation', num_bytes=57149241, num_examples=13368, dataset_name='cnn_dailymail'), 'recorded': SplitInfo(name='validation', num_bytes=56637485, num_examples=13255, dataset_name='cnn_dailymail')}]
``` | 45 | Loading CNN/Daily Mail dataset produces `nlp.utils.info_utils.NonMatchingSplitsSizesError`
```
>>> import nlp
>>> nlp.load_dataset('cnn_dailymail', '3.0.0')
Downloading and preparing dataset cnn_dailymail/3.0.0 (download: 558.32 MiB, generated: 1.26 GiB, total: 1.81 GiB) to /u/jm8wx/.cache/huggingface/datasets/cnn_dailymail/3.0.0/3.0.0...
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/p/qdata/jm8wx/datasets/nlp/src/nlp/load.py", line 520, in load_dataset
builder_instance.download_and_prepare(
File "/p/qdata/jm8wx/datasets/nlp/src/nlp/builder.py", line 431, in download_and_prepare
self._download_and_prepare(
File "/p/qdata/jm8wx/datasets/nlp/src/nlp/builder.py", line 488, in _download_and_prepare
verify_splits(self.info.splits, split_dict)
File "/p/qdata/jm8wx/datasets/nlp/src/nlp/utils/info_utils.py", line 70, in verify_splits
raise NonMatchingSplitsSizesError(str(bad_splits))
nlp.utils.info_utils.NonMatchingSplitsSizesError: [{'expected': SplitInfo(name='test', num_bytes=49424491, num_examples=11490, dataset_name='cnn_dailymail'), 'recorded': SplitInfo(name='test', num_bytes=48931393, num_examples=11379, dataset_name='cnn_dailymail')}, {'expected': SplitInfo(name='train', num_bytes=1249178681, num_examples=287113, dataset_name='cnn_dailymail'), 'recorded': SplitInfo(name='train', num_bytes=1240618482, num_examples=285161, dataset_name='cnn_dailymail')}, {'expected': SplitInfo(name='validation', num_bytes=57149241, num_examples=13368, dataset_name='cnn_dailymail'), 'recorded': SplitInfo(name='validation', num_bytes=56637485, num_examples=13255, dataset_name='cnn_dailymail')}]
```
I couldn't reproduce on my side.
It looks like you were not able to generate all the examples, and you have the problem for each split train-test-validation.
Could you try to enable logging, try again and send the logs ?
```python
import logging
logging.basicConfig(level=logging.INFO)
``` | [
-0.1410692483,
-0.0569873303,
-0.0082135461,
0.2086569071,
0.077649653,
0.0907959044,
0.1833024472,
0.5251755714,
0.098731637,
0.1542320698,
0.016297888,
0.0769967809,
-0.3141205311,
-0.0437741652,
-0.0335894674,
0.0359019861,
-0.1871678531,
0.2515124083,
0.0448877588,
-0.0229971036,
-0.2874318361,
0.2817906439,
-0.2087393552,
-0.0366006307,
-0.4835284948,
-0.2941966951,
0.0143963248,
0.3698373735,
0.0376473665,
-0.3093644381,
-0.0541153438,
-0.1348574013,
-0.1841388643,
0.1029711068,
-0.0001130321,
0.1136061102,
0.3911181092,
-0.1433287561,
-0.4867384434,
0.0093756616,
-0.2104335129,
-0.4906257987,
0.0880899653,
-0.3546803296,
-0.1552340537,
0.0253198408,
0.0945639163,
-0.2195381224,
0.496927917,
0.3904687166,
0.2402192503,
0.5636103153,
0.0662315339,
0.1633448601,
-0.0887692645,
-0.1809550077,
-0.1458709836,
-0.0048659053,
-0.3178359866,
-0.151013881,
-0.0242432393,
0.4289470911,
-0.0926199704,
0.1253477633,
-0.0872373134,
0.1102500558,
0.0889440849,
-0.1658465415,
0.0938814357,
0.1360181272,
-0.0329078473,
-0.0759069324,
-0.2113920152,
-0.4385612309,
-0.0160644352,
-0.3980172276,
0.2251277566,
0.2127165794,
-0.1745027453,
0.0653805062,
-0.3212836087,
0.0384897403,
-0.0294717774,
0.2034062594,
0.0819328725,
0.4111945927,
-0.1002975553,
0.0258116666,
0.0555455647,
-0.0901165009,
0.1567517072,
-0.1769281924,
0.1543257833,
0.0778364241,
-0.1457693279,
-0.0452777855,
0.1644649208,
-0.1484152079,
0.0430354252,
-0.0675476491,
0.1789104491,
-0.0621049292,
0.1744741201,
0.0868739933,
0.0470654182,
0.3125295639,
-0.0163506009,
0.268633306,
0.1245980784,
0.2852091789,
0.0025194362,
0.0181033462,
0.1172014475,
-0.0053180419,
0.1188476086,
0.2207993269,
0.3734845519,
-0.0592547804,
-0.3276321888,
0.1337224543,
-0.2627149224,
-0.2590237558,
-0.0015640147,
0.2562179863,
-0.0583016649,
0.3132663071,
-0.0608433485,
-0.0814520121,
-0.3839430213,
-0.1547318101,
-0.3804472089,
0.170079723,
-0.1844010651,
0.0808091238,
0.2795963883,
-0.0796255916,
0.457221657,
-0.2497541308,
-0.0141824186,
-0.147263661,
0.2093331218,
-0.0398356281,
0.025049882,
0.2831858695,
-0.1309730411,
0.1706080139,
0.2590436637,
0.1690688878,
-0.2127454579,
-0.0859967694,
-0.0040090233,
-0.6050630808,
0.1887343824,
0.2487293333,
0.0593622252,
-0.0687001497,
0.6144138575,
0.0758781508,
0.2487533689,
0.0350490063,
-0.1620906442,
-0.0698394626,
-0.0113208443,
-0.1684927493,
0.0756479874,
0.4380224943,
-0.2325228453,
-0.2369067967,
-0.0135411322,
-0.1419267505,
0.5154548287,
0.4340134859,
-0.1053205132,
0.0439390019,
-0.1265490353,
0.1538269818,
0.2003800869,
-0.1545392871,
-0.3955638111,
0.1898385882,
-0.0884126425,
0.2039061338,
0.2070534676,
0.1967762411,
-0.02944622,
0.1016343832,
0.0539141931,
0.5395388007,
-0.2290878147,
0.1055223197,
-0.4344432056,
-0.4346443117,
0.3582523167,
0.0564583987,
0.2241696715,
-0.0408380479,
-0.0627061129,
0.4361118972,
0.2115103304,
-0.1110629216,
0.0374838635,
0.0333373286,
-0.1516633481,
-0.1143532097,
0.0171923935,
-0.043171037,
-0.4885511994,
0.1375232637,
-0.1571969539,
0.3005177081,
-0.0501775332,
-0.1014919057,
-0.2627062201,
-0.1947334409,
-0.1750029773,
-0.283849895,
0.2178566158,
0.2274241745,
0.2097194642,
0.0044352934,
-0.2784238756,
0.3022135496,
-0.0314072035,
0.1214025319,
-0.5230281949,
0.2627043128,
-0.2279071957,
-0.1810560524,
0.2639639974,
0.429887265,
0.2641761303,
-0.1530766487,
-0.2832181752,
0.2833616734,
-0.0861626118,
0.2315969765,
-0.1480447948,
-0.1591015011,
0.1137662753,
-0.0814556628,
0.1697773784,
0.4025969207,
-0.0342430882,
-0.1033014879,
-0.1191940829,
0.4826930761,
0.0484579131,
0.0898779258,
0.149933666,
-0.1141222864,
0.0772693977,
-0.1309575886,
0.1130283475,
-0.5237566233,
0.3187465966,
-0.169630751,
0.2132312357,
-0.0878212675,
-0.2500074208,
0.0530381538,
0.6815167069,
-0.0259576365,
0.097513549,
0.0207600687,
-0.1026210263,
-0.2020811141,
-0.1837860644,
0.1597261131,
0.3386713862,
0.2413775474,
0.1866381913,
0.2474579364,
-0.1729584932,
-0.2860015631,
0.2723778784,
0.0954683572,
0.2538042068,
0.3859497905,
0.0060879141,
-0.0024017561,
-0.5314664841,
-0.0248312876,
0.0135072693,
0.3741950989,
-0.223636508,
-0.2018273771,
-0.4316604137,
-0.4015898705,
-0.1702874452,
-0.2987871766,
-0.1874078959,
-0.5853306651,
0.0800147951,
0.0300565977,
-0.1252746731,
0.1624234319,
-0.1581036448,
0.2318920344,
0.2769705951,
-0.0165660195,
-0.1927297413,
-0.0813190639,
-0.1340955794,
0.0754105449,
0.1756270528,
0.0380112045,
0.328263253,
-0.1323557794,
-0.1795408726,
-0.024630107,
-0.401037991,
0.0776724145,
0.0673700348,
0.1397408694,
0.3047906458,
0.1800093651,
0.3312229216,
-0.3353325129,
0.1972532868,
-0.2418714166,
-0.2770204842,
-0.0081244968,
0.0024522766,
0.1431994736,
-0.2382312268,
-0.4810167849,
-0.4326364696,
-0.5125102401,
0.1009554416,
0.0488469303,
0.4066631496,
0.2704301178,
-0.2863166332,
0.1968384534,
-0.121017009,
0.1822269261,
-0.2584165335,
-0.1776081324,
0.2502978742,
-0.2715797126,
-0.270478934,
-0.1265955418,
-0.1486995965,
0.204890877,
-0.2855253518,
-0.4239242673,
-0.3295067847,
-0.1458871216,
-0.0527007543,
0.1072002202,
-0.0558418408,
0.2296746671,
-0.012112854,
-0.1654176712,
-0.0335120596,
-0.3873254061,
0.053417962,
0.1250746548,
0.0702093765,
-0.092771776,
0.6258089542,
0.0622663498,
0.5375288725,
0.3718979359,
0.0934446231,
0.2314645648,
0.1095012501,
0.1484316885,
-0.0122382008,
-0.3427924514,
0.2506150603,
0.1518255621,
0.0592514575,
0.3488016725,
-0.0516511425,
-0.3857151568,
-0.0800837949,
-0.3046745062,
-0.4658904672,
-0.2806209922,
0.1811252385,
0.1248164475,
0.2579151392,
0.2710354328,
0.1946985424,
-0.1767564416,
-0.1700817943,
-0.1458096504,
0.1727719307,
0.0059874989,
-0.0366932377,
-0.108393915,
0.0141895935,
-0.6109687686,
0.2600288391,
0.0066703781,
0.6111476421,
-0.1570563614,
-0.0673669726,
-0.0168538541,
-0.2866098285,
0.3602801561,
-0.3092955351,
-0.0543416739,
0.1828866303,
-0.1095798016,
-0.3564969897,
-0.1205786765,
-0.1527361721,
0.0463259742,
0.5042912364,
0.5133963823,
-0.2715702355,
-0.2822859883,
0.4173491299,
0.1056820154,
-0.1925455779,
-0.240532577,
-0.2602204084,
-0.2365471721,
-0.3589505553,
-0.0029187389,
-0.354958415,
0.2806676924,
0.0347827375,
-0.0494442247,
-0.0367944241,
-0.2479301393,
0.1712225378,
0.0238342844,
-0.0075590704,
0.2060531378,
0.1902968735,
0.2586182058,
0.3282210529,
-0.2777056396,
0.3211953044,
-0.0436941423,
0.0135159567,
-0.086697638,
0.1257399619,
0.0457250588,
0.4861239493,
0.0170815252,
-0.0189174376,
0.2016195804,
0.3254520297,
-0.0044429023,
-0.0331221037,
0.4496918917,
-0.0619697496,
-0.4111624956,
-0.1648906171,
0.2997184098,
0.123189941,
0.1361617446,
-0.1300017983,
-0.1973913312,
-0.2437219024,
0.127602756,
0.1129898876,
0.7832136154,
0.2591176033,
0.064823471,
0.3565960228,
-0.1549977809,
0.6783717275,
-0.2112057805,
0.2569588721,
-0.3706094325,
-0.3312230706,
-0.0379183069,
-0.1108771935,
0.3169817328,
0.1003670245,
-0.1770120561,
0.4902182221,
-0.1291065216,
-0.099432759,
-0.0617541149,
0.4637357593,
-0.2605730593,
-0.1433637887,
-0.400167942,
0.1066973805,
-0.1958622485,
0.3526177406,
-0.1023911014,
-0.1949198544,
0.2577713132,
-0.2590810955,
-0.0749825612,
0.277351737,
-0.2684627175,
0.1398487687,
0.0061618099,
0.2401972115,
-0.2210499197,
-0.3827385604,
0.3137291074,
-0.1355182379,
-0.0385885462,
-0.0691946149,
-0.2621515095,
-0.0241812244,
-0.1012060791,
0.106011942,
0.4224325716,
-0.2187233269,
-0.114556931,
0.0203035623,
-0.1885793209,
-0.1630530208,
-0.0189783573,
-0.0354849249,
0.1039874703,
-0.1709196568,
-0.197095722,
0.0954249352,
-0.2310492694,
-0.3154528737,
0.1461789608,
-0.0577432029,
-0.2906802893,
0.3077005744,
-0.0858524144,
-0.2809659243,
-0.2579652369,
0.2445218861,
0.1696912646,
0.0508793518,
0.492274642,
0.0225026384,
-0.289804697,
-0.2790829539,
-0.0300642401,
0.0263600089,
-0.3613365293,
0.1998149008,
-0.0870136023,
-0.0155759305,
0.2755271494,
0.2051899731,
0.1997066289,
0.2912752032,
-0.2323928177,
-0.5686834455,
-0.1438725889,
0.062984854,
-0.0053664125,
0.289378643,
0.046633631,
0.5640015602,
0.0183577389,
0.3612832427,
-0.3558591604,
0.0370597318,
-0.2532135844,
0.1774703264,
0.1644680947,
-0.2871334553,
0.4796303511,
0.3361742198,
0.1896098852,
0.1844836175,
-0.3276688457,
-0.2398814559,
-0.1398789883,
0.1459912956,
0.0528671816,
-0.1507483125,
0.10912624,
0.0210518986,
-0.1626611352,
-0.0761599168,
-0.0131698288,
-0.1183910072,
-0.0879905596,
0.2467848957,
-0.0422546305,
-0.0603145286,
0.1202735975,
0.0563643724,
-0.1231211126,
0.3887267113,
-0.011861939,
0.2306242585,
-0.2371812165,
0.0459103137,
-0.1055978686,
-0.1075531542,
0.0492276438,
0.014070807,
0.2833744287,
-0.4350685477,
-0.2895485163,
0.162304461,
0.2314195633,
0.2564557791,
-0.0285924189,
-0.1506043971,
0.1654753238,
0.2218015641,
-0.3195351362,
0.0245437101,
0.3671753407,
-0.0035076253,
0.321882993,
0.3530762792,
0.1187403351,
0.0195525885,
-0.0508775935,
0.0890134498,
0.2165189832,
-0.2659978867,
0.0368570015,
0.2631332874,
-0.1103862375,
-0.0150806736,
0.3015814424,
-0.121802479,
0.3009925783,
0.2377935499,
-0.0317760408,
0.4294943213,
-0.0397183076,
0.3304133415,
-0.0069706328,
-0.2167675048,
0.1839848459,
0.4842497706,
-0.112000674,
0.3832815886,
0.0147899427,
0.4105643332,
-0.2803668082,
0.0144451894,
-0.1774632633,
0.4721756876,
-0.1400125623,
0.0913877487,
-0.033626087,
-0.0987381041,
-0.2867731452,
-0.0064010173,
0.0785610154,
0.0901597068,
0.1506232619,
0.1159300357,
-0.0376420803,
-0.3303665221,
-0.1878766567,
0.1589913964,
0.2382989228,
-0.3991440535,
0.3074402213,
0.2775504887,
-0.0423322655,
-0.1595372856,
0.6101227403,
0.343123585,
0.3848833144,
-0.1388493627,
-0.0203317162,
0.1635615826,
-0.0777900293,
-0.089092806,
0.3411321938,
0.1897567213,
-0.0746390894,
0.3646365106,
0.1043185964,
-0.2784146965,
-0.0463375747,
0.0937770009,
-0.2416165769,
-0.1392457634,
0.2932829559,
-0.0494255051,
0.2100279927,
-0.2220619321,
0.0304330513,
-0.6043114662,
-0.0503051542,
0.1934354752,
-0.0807916224,
0.2918082476,
0.0341566354,
0.1002931297,
-0.1915135682,
0.4911068082,
0.0694369525,
-0.0748936683,
-0.3047779202,
-0.2246829569,
-0.5798496604,
0.1475736201,
-0.1549477279,
-0.0564665943,
0.0097489767,
0.2813647091,
-0.2015341371,
0.0494434759,
0.0776406154,
0.3546507061,
-0.0404425934,
-0.1575729251,
-0.3835545182,
0.0163158868,
0.0054040477,
-0.2268490642,
0.0736883432,
-0.4133267999,
0.2439870685,
-0.2011680007,
0.036815457,
-0.123730056,
0.0597287714,
-0.0689729601,
0.4797641933,
0.0129687171,
0.505263567,
0.2816343009,
-0.2362823039,
-0.3487401903,
-0.1656105965,
-0.1421876997,
-0.2967921793,
0.1579183638,
0.31911093,
0.5874747038,
0.0172954351,
0.0549575649,
-0.3607899547,
0.3801417053,
0.0239443034,
-0.1877518743,
0.0241976976,
0.3261168897,
-0.2411892861,
0.2674722075,
0.2473862767,
0.3860734403,
0.1126280129,
0.1490354538,
-0.2446985841,
-0.3713934124,
0.5164572597,
-0.1831857562,
-0.2234717906,
-0.0118960291,
0.1257263124,
0.0264659319,
-0.1279569417,
-0.4188545644,
0.0567013472,
0.3580688238,
-0.1017918885,
-0.0891666859,
0.2000731975,
0.2182816863,
-0.2056007683,
-0.019860778,
-0.095474191,
0.3953031003,
-0.4314528108,
0.2040596604,
-0.0773263201
] |
https://github.com/huggingface/datasets/issues/331 | Loading CNN/Daily Mail dataset produces `nlp.utils.info_utils.NonMatchingSplitsSizesError` | here's the log
```
>>> import nlp
import logging
logging.basicConfig(level=logging.INFO)
nlp.load_dataset('cnn_dailymail', '3.0.0')
>>> import logging
>>> logging.basicConfig(level=logging.INFO)
>>> nlp.load_dataset('cnn_dailymail', '3.0.0')
INFO:nlp.load:Checking /u/jm8wx/.cache/huggingface/datasets/720d2e20d8dc6d98f21195a39cc934bb41dd0a40b57ea3d323661a7c5d70522c.d44c2417f4e0fe938ede0a684dcbb1fa9b4789de22e8a99c43103d4b4c374b3b.py for additional imports.
INFO:filelock:Lock 140443095301136 acquired on /u/jm8wx/.cache/huggingface/datasets/720d2e20d8dc6d98f21195a39cc934bb41dd0a40b57ea3d323661a7c5d70522c.d44c2417f4e0fe938ede0a684dcbb1fa9b4789de22e8a99c43103d4b4c374b3b.py.lock
INFO:nlp.load:Found main folder for dataset https://s3.amazonaws.com/datasets.huggingface.co/nlp/datasets/cnn_dailymail/cnn_dailymail.py at /p/qdata/jm8wx/datasets/nlp/src/nlp/datasets/cnn_dailymail
INFO:nlp.load:Found specific version folder for dataset https://s3.amazonaws.com/datasets.huggingface.co/nlp/datasets/cnn_dailymail/cnn_dailymail.py at /p/qdata/jm8wx/datasets/nlp/src/nlp/datasets/cnn_dailymail/9645e0bc96f647decf46541f6f4bef6936ee82ace653ac362bab03309a46d4ad
INFO:nlp.load:Found script file from https://s3.amazonaws.com/datasets.huggingface.co/nlp/datasets/cnn_dailymail/cnn_dailymail.py to /p/qdata/jm8wx/datasets/nlp/src/nlp/datasets/cnn_dailymail/9645e0bc96f647decf46541f6f4bef6936ee82ace653ac362bab03309a46d4ad/cnn_dailymail.py
INFO:nlp.load:Updating dataset infos file from https://s3.amazonaws.com/datasets.huggingface.co/nlp/datasets/cnn_dailymail/dataset_infos.json to /p/qdata/jm8wx/datasets/nlp/src/nlp/datasets/cnn_dailymail/9645e0bc96f647decf46541f6f4bef6936ee82ace653ac362bab03309a46d4ad/dataset_infos.json
INFO:nlp.load:Found metadata file for dataset https://s3.amazonaws.com/datasets.huggingface.co/nlp/datasets/cnn_dailymail/cnn_dailymail.py at /p/qdata/jm8wx/datasets/nlp/src/nlp/datasets/cnn_dailymail/9645e0bc96f647decf46541f6f4bef6936ee82ace653ac362bab03309a46d4ad/cnn_dailymail.json
INFO:filelock:Lock 140443095301136 released on /u/jm8wx/.cache/huggingface/datasets/720d2e20d8dc6d98f21195a39cc934bb41dd0a40b57ea3d323661a7c5d70522c.d44c2417f4e0fe938ede0a684dcbb1fa9b4789de22e8a99c43103d4b4c374b3b.py.lock
INFO:nlp.info:Loading Dataset Infos from /p/qdata/jm8wx/datasets/nlp/src/nlp/datasets/cnn_dailymail/9645e0bc96f647decf46541f6f4bef6936ee82ace653ac362bab03309a46d4ad
INFO:nlp.builder:Generating dataset cnn_dailymail (/u/jm8wx/.cache/huggingface/datasets/cnn_dailymail/3.0.0/3.0.0)
INFO:nlp.builder:Dataset not on Hf google storage. Downloading and preparing it from source
Downloading and preparing dataset cnn_dailymail/3.0.0 (download: 558.32 MiB, generated: 1.26 GiB, total: 1.81 GiB) to /u/jm8wx/.cache/huggingface/datasets/cnn_dailymail/3.0.0/3.0.0...
INFO:nlp.utils.info_utils:All the checksums matched successfully.
INFO:nlp.builder:Generating split train
INFO:nlp.arrow_writer:Done writing 285161 examples in 1240618482 bytes /u/jm8wx/.cache/huggingface/datasets/cnn_dailymail/3.0.0/3.0.0.incomplete/cnn_dailymail-train.arrow.
INFO:nlp.builder:Generating split validation
INFO:nlp.arrow_writer:Done writing 13255 examples in 56637485 bytes /u/jm8wx/.cache/huggingface/datasets/cnn_dailymail/3.0.0/3.0.0.incomplete/cnn_dailymail-validation.arrow.
INFO:nlp.builder:Generating split test
INFO:nlp.arrow_writer:Done writing 11379 examples in 48931393 bytes /u/jm8wx/.cache/huggingface/datasets/cnn_dailymail/3.0.0/3.0.0.incomplete/cnn_dailymail-test.arrow.
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/p/qdata/jm8wx/datasets/nlp/src/nlp/load.py", line 520, in load_dataset
builder_instance.download_and_prepare(
File "/p/qdata/jm8wx/datasets/nlp/src/nlp/builder.py", line 431, in download_and_prepare
self._download_and_prepare(
File "/p/qdata/jm8wx/datasets/nlp/src/nlp/builder.py", line 488, in _download_and_prepare
verify_splits(self.info.splits, split_dict)
File "/p/qdata/jm8wx/datasets/nlp/src/nlp/utils/info_utils.py", line 70, in verify_splits
raise NonMatchingSplitsSizesError(str(bad_splits))
nlp.utils.info_utils.NonMatchingSplitsSizesError: [{'expected': SplitInfo(name='test', num_bytes=49424491, num_examples=11490, dataset_name='cnn_dailymail'), 'recorded': SplitInfo(name='test', num_bytes=48931393, num_examples=11379, dataset_name='cnn_dailymail')}, {'expected': SplitInfo(name='train', num_bytes=1249178681, num_examples=287113, dataset_name='cnn_dailymail'), 'recorded': SplitInfo(name='train', num_bytes=1240618482, num_examples=285161, dataset_name='cnn_dailymail')}, {'expected': SplitInfo(name='validation', num_bytes=57149241, num_examples=13368, dataset_name='cnn_dailymail'), 'recorded': SplitInfo(name='validation', num_bytes=56637485, num_examples=13255, dataset_name='cnn_dailymail')}]
``` | ```
>>> import nlp
>>> nlp.load_dataset('cnn_dailymail', '3.0.0')
Downloading and preparing dataset cnn_dailymail/3.0.0 (download: 558.32 MiB, generated: 1.26 GiB, total: 1.81 GiB) to /u/jm8wx/.cache/huggingface/datasets/cnn_dailymail/3.0.0/3.0.0...
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/p/qdata/jm8wx/datasets/nlp/src/nlp/load.py", line 520, in load_dataset
builder_instance.download_and_prepare(
File "/p/qdata/jm8wx/datasets/nlp/src/nlp/builder.py", line 431, in download_and_prepare
self._download_and_prepare(
File "/p/qdata/jm8wx/datasets/nlp/src/nlp/builder.py", line 488, in _download_and_prepare
verify_splits(self.info.splits, split_dict)
File "/p/qdata/jm8wx/datasets/nlp/src/nlp/utils/info_utils.py", line 70, in verify_splits
raise NonMatchingSplitsSizesError(str(bad_splits))
nlp.utils.info_utils.NonMatchingSplitsSizesError: [{'expected': SplitInfo(name='test', num_bytes=49424491, num_examples=11490, dataset_name='cnn_dailymail'), 'recorded': SplitInfo(name='test', num_bytes=48931393, num_examples=11379, dataset_name='cnn_dailymail')}, {'expected': SplitInfo(name='train', num_bytes=1249178681, num_examples=287113, dataset_name='cnn_dailymail'), 'recorded': SplitInfo(name='train', num_bytes=1240618482, num_examples=285161, dataset_name='cnn_dailymail')}, {'expected': SplitInfo(name='validation', num_bytes=57149241, num_examples=13368, dataset_name='cnn_dailymail'), 'recorded': SplitInfo(name='validation', num_bytes=56637485, num_examples=13255, dataset_name='cnn_dailymail')}]
``` | 223 | Loading CNN/Daily Mail dataset produces `nlp.utils.info_utils.NonMatchingSplitsSizesError`
```
>>> import nlp
>>> nlp.load_dataset('cnn_dailymail', '3.0.0')
Downloading and preparing dataset cnn_dailymail/3.0.0 (download: 558.32 MiB, generated: 1.26 GiB, total: 1.81 GiB) to /u/jm8wx/.cache/huggingface/datasets/cnn_dailymail/3.0.0/3.0.0...
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/p/qdata/jm8wx/datasets/nlp/src/nlp/load.py", line 520, in load_dataset
builder_instance.download_and_prepare(
File "/p/qdata/jm8wx/datasets/nlp/src/nlp/builder.py", line 431, in download_and_prepare
self._download_and_prepare(
File "/p/qdata/jm8wx/datasets/nlp/src/nlp/builder.py", line 488, in _download_and_prepare
verify_splits(self.info.splits, split_dict)
File "/p/qdata/jm8wx/datasets/nlp/src/nlp/utils/info_utils.py", line 70, in verify_splits
raise NonMatchingSplitsSizesError(str(bad_splits))
nlp.utils.info_utils.NonMatchingSplitsSizesError: [{'expected': SplitInfo(name='test', num_bytes=49424491, num_examples=11490, dataset_name='cnn_dailymail'), 'recorded': SplitInfo(name='test', num_bytes=48931393, num_examples=11379, dataset_name='cnn_dailymail')}, {'expected': SplitInfo(name='train', num_bytes=1249178681, num_examples=287113, dataset_name='cnn_dailymail'), 'recorded': SplitInfo(name='train', num_bytes=1240618482, num_examples=285161, dataset_name='cnn_dailymail')}, {'expected': SplitInfo(name='validation', num_bytes=57149241, num_examples=13368, dataset_name='cnn_dailymail'), 'recorded': SplitInfo(name='validation', num_bytes=56637485, num_examples=13255, dataset_name='cnn_dailymail')}]
```
here's the log
```
>>> import nlp
import logging
logging.basicConfig(level=logging.INFO)
nlp.load_dataset('cnn_dailymail', '3.0.0')
>>> import logging
>>> logging.basicConfig(level=logging.INFO)
>>> nlp.load_dataset('cnn_dailymail', '3.0.0')
INFO:nlp.load:Checking /u/jm8wx/.cache/huggingface/datasets/720d2e20d8dc6d98f21195a39cc934bb41dd0a40b57ea3d323661a7c5d70522c.d44c2417f4e0fe938ede0a684dcbb1fa9b4789de22e8a99c43103d4b4c374b3b.py for additional imports.
INFO:filelock:Lock 140443095301136 acquired on /u/jm8wx/.cache/huggingface/datasets/720d2e20d8dc6d98f21195a39cc934bb41dd0a40b57ea3d323661a7c5d70522c.d44c2417f4e0fe938ede0a684dcbb1fa9b4789de22e8a99c43103d4b4c374b3b.py.lock
INFO:nlp.load:Found main folder for dataset https://s3.amazonaws.com/datasets.huggingface.co/nlp/datasets/cnn_dailymail/cnn_dailymail.py at /p/qdata/jm8wx/datasets/nlp/src/nlp/datasets/cnn_dailymail
INFO:nlp.load:Found specific version folder for dataset https://s3.amazonaws.com/datasets.huggingface.co/nlp/datasets/cnn_dailymail/cnn_dailymail.py at /p/qdata/jm8wx/datasets/nlp/src/nlp/datasets/cnn_dailymail/9645e0bc96f647decf46541f6f4bef6936ee82ace653ac362bab03309a46d4ad
INFO:nlp.load:Found script file from https://s3.amazonaws.com/datasets.huggingface.co/nlp/datasets/cnn_dailymail/cnn_dailymail.py to /p/qdata/jm8wx/datasets/nlp/src/nlp/datasets/cnn_dailymail/9645e0bc96f647decf46541f6f4bef6936ee82ace653ac362bab03309a46d4ad/cnn_dailymail.py
INFO:nlp.load:Updating dataset infos file from https://s3.amazonaws.com/datasets.huggingface.co/nlp/datasets/cnn_dailymail/dataset_infos.json to /p/qdata/jm8wx/datasets/nlp/src/nlp/datasets/cnn_dailymail/9645e0bc96f647decf46541f6f4bef6936ee82ace653ac362bab03309a46d4ad/dataset_infos.json
INFO:nlp.load:Found metadata file for dataset https://s3.amazonaws.com/datasets.huggingface.co/nlp/datasets/cnn_dailymail/cnn_dailymail.py at /p/qdata/jm8wx/datasets/nlp/src/nlp/datasets/cnn_dailymail/9645e0bc96f647decf46541f6f4bef6936ee82ace653ac362bab03309a46d4ad/cnn_dailymail.json
INFO:filelock:Lock 140443095301136 released on /u/jm8wx/.cache/huggingface/datasets/720d2e20d8dc6d98f21195a39cc934bb41dd0a40b57ea3d323661a7c5d70522c.d44c2417f4e0fe938ede0a684dcbb1fa9b4789de22e8a99c43103d4b4c374b3b.py.lock
INFO:nlp.info:Loading Dataset Infos from /p/qdata/jm8wx/datasets/nlp/src/nlp/datasets/cnn_dailymail/9645e0bc96f647decf46541f6f4bef6936ee82ace653ac362bab03309a46d4ad
INFO:nlp.builder:Generating dataset cnn_dailymail (/u/jm8wx/.cache/huggingface/datasets/cnn_dailymail/3.0.0/3.0.0)
INFO:nlp.builder:Dataset not on Hf google storage. Downloading and preparing it from source
Downloading and preparing dataset cnn_dailymail/3.0.0 (download: 558.32 MiB, generated: 1.26 GiB, total: 1.81 GiB) to /u/jm8wx/.cache/huggingface/datasets/cnn_dailymail/3.0.0/3.0.0...
INFO:nlp.utils.info_utils:All the checksums matched successfully.
INFO:nlp.builder:Generating split train
INFO:nlp.arrow_writer:Done writing 285161 examples in 1240618482 bytes /u/jm8wx/.cache/huggingface/datasets/cnn_dailymail/3.0.0/3.0.0.incomplete/cnn_dailymail-train.arrow.
INFO:nlp.builder:Generating split validation
INFO:nlp.arrow_writer:Done writing 13255 examples in 56637485 bytes /u/jm8wx/.cache/huggingface/datasets/cnn_dailymail/3.0.0/3.0.0.incomplete/cnn_dailymail-validation.arrow.
INFO:nlp.builder:Generating split test
INFO:nlp.arrow_writer:Done writing 11379 examples in 48931393 bytes /u/jm8wx/.cache/huggingface/datasets/cnn_dailymail/3.0.0/3.0.0.incomplete/cnn_dailymail-test.arrow.
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/p/qdata/jm8wx/datasets/nlp/src/nlp/load.py", line 520, in load_dataset
builder_instance.download_and_prepare(
File "/p/qdata/jm8wx/datasets/nlp/src/nlp/builder.py", line 431, in download_and_prepare
self._download_and_prepare(
File "/p/qdata/jm8wx/datasets/nlp/src/nlp/builder.py", line 488, in _download_and_prepare
verify_splits(self.info.splits, split_dict)
File "/p/qdata/jm8wx/datasets/nlp/src/nlp/utils/info_utils.py", line 70, in verify_splits
raise NonMatchingSplitsSizesError(str(bad_splits))
nlp.utils.info_utils.NonMatchingSplitsSizesError: [{'expected': SplitInfo(name='test', num_bytes=49424491, num_examples=11490, dataset_name='cnn_dailymail'), 'recorded': SplitInfo(name='test', num_bytes=48931393, num_examples=11379, dataset_name='cnn_dailymail')}, {'expected': SplitInfo(name='train', num_bytes=1249178681, num_examples=287113, dataset_name='cnn_dailymail'), 'recorded': SplitInfo(name='train', num_bytes=1240618482, num_examples=285161, dataset_name='cnn_dailymail')}, {'expected': SplitInfo(name='validation', num_bytes=57149241, num_examples=13368, dataset_name='cnn_dailymail'), 'recorded': SplitInfo(name='validation', num_bytes=56637485, num_examples=13255, dataset_name='cnn_dailymail')}]
``` | [
-0.1410692483,
-0.0569873303,
-0.0082135461,
0.2086569071,
0.077649653,
0.0907959044,
0.1833024472,
0.5251755714,
0.098731637,
0.1542320698,
0.016297888,
0.0769967809,
-0.3141205311,
-0.0437741652,
-0.0335894674,
0.0359019861,
-0.1871678531,
0.2515124083,
0.0448877588,
-0.0229971036,
-0.2874318361,
0.2817906439,
-0.2087393552,
-0.0366006307,
-0.4835284948,
-0.2941966951,
0.0143963248,
0.3698373735,
0.0376473665,
-0.3093644381,
-0.0541153438,
-0.1348574013,
-0.1841388643,
0.1029711068,
-0.0001130321,
0.1136061102,
0.3911181092,
-0.1433287561,
-0.4867384434,
0.0093756616,
-0.2104335129,
-0.4906257987,
0.0880899653,
-0.3546803296,
-0.1552340537,
0.0253198408,
0.0945639163,
-0.2195381224,
0.496927917,
0.3904687166,
0.2402192503,
0.5636103153,
0.0662315339,
0.1633448601,
-0.0887692645,
-0.1809550077,
-0.1458709836,
-0.0048659053,
-0.3178359866,
-0.151013881,
-0.0242432393,
0.4289470911,
-0.0926199704,
0.1253477633,
-0.0872373134,
0.1102500558,
0.0889440849,
-0.1658465415,
0.0938814357,
0.1360181272,
-0.0329078473,
-0.0759069324,
-0.2113920152,
-0.4385612309,
-0.0160644352,
-0.3980172276,
0.2251277566,
0.2127165794,
-0.1745027453,
0.0653805062,
-0.3212836087,
0.0384897403,
-0.0294717774,
0.2034062594,
0.0819328725,
0.4111945927,
-0.1002975553,
0.0258116666,
0.0555455647,
-0.0901165009,
0.1567517072,
-0.1769281924,
0.1543257833,
0.0778364241,
-0.1457693279,
-0.0452777855,
0.1644649208,
-0.1484152079,
0.0430354252,
-0.0675476491,
0.1789104491,
-0.0621049292,
0.1744741201,
0.0868739933,
0.0470654182,
0.3125295639,
-0.0163506009,
0.268633306,
0.1245980784,
0.2852091789,
0.0025194362,
0.0181033462,
0.1172014475,
-0.0053180419,
0.1188476086,
0.2207993269,
0.3734845519,
-0.0592547804,
-0.3276321888,
0.1337224543,
-0.2627149224,
-0.2590237558,
-0.0015640147,
0.2562179863,
-0.0583016649,
0.3132663071,
-0.0608433485,
-0.0814520121,
-0.3839430213,
-0.1547318101,
-0.3804472089,
0.170079723,
-0.1844010651,
0.0808091238,
0.2795963883,
-0.0796255916,
0.457221657,
-0.2497541308,
-0.0141824186,
-0.147263661,
0.2093331218,
-0.0398356281,
0.025049882,
0.2831858695,
-0.1309730411,
0.1706080139,
0.2590436637,
0.1690688878,
-0.2127454579,
-0.0859967694,
-0.0040090233,
-0.6050630808,
0.1887343824,
0.2487293333,
0.0593622252,
-0.0687001497,
0.6144138575,
0.0758781508,
0.2487533689,
0.0350490063,
-0.1620906442,
-0.0698394626,
-0.0113208443,
-0.1684927493,
0.0756479874,
0.4380224943,
-0.2325228453,
-0.2369067967,
-0.0135411322,
-0.1419267505,
0.5154548287,
0.4340134859,
-0.1053205132,
0.0439390019,
-0.1265490353,
0.1538269818,
0.2003800869,
-0.1545392871,
-0.3955638111,
0.1898385882,
-0.0884126425,
0.2039061338,
0.2070534676,
0.1967762411,
-0.02944622,
0.1016343832,
0.0539141931,
0.5395388007,
-0.2290878147,
0.1055223197,
-0.4344432056,
-0.4346443117,
0.3582523167,
0.0564583987,
0.2241696715,
-0.0408380479,
-0.0627061129,
0.4361118972,
0.2115103304,
-0.1110629216,
0.0374838635,
0.0333373286,
-0.1516633481,
-0.1143532097,
0.0171923935,
-0.043171037,
-0.4885511994,
0.1375232637,
-0.1571969539,
0.3005177081,
-0.0501775332,
-0.1014919057,
-0.2627062201,
-0.1947334409,
-0.1750029773,
-0.283849895,
0.2178566158,
0.2274241745,
0.2097194642,
0.0044352934,
-0.2784238756,
0.3022135496,
-0.0314072035,
0.1214025319,
-0.5230281949,
0.2627043128,
-0.2279071957,
-0.1810560524,
0.2639639974,
0.429887265,
0.2641761303,
-0.1530766487,
-0.2832181752,
0.2833616734,
-0.0861626118,
0.2315969765,
-0.1480447948,
-0.1591015011,
0.1137662753,
-0.0814556628,
0.1697773784,
0.4025969207,
-0.0342430882,
-0.1033014879,
-0.1191940829,
0.4826930761,
0.0484579131,
0.0898779258,
0.149933666,
-0.1141222864,
0.0772693977,
-0.1309575886,
0.1130283475,
-0.5237566233,
0.3187465966,
-0.169630751,
0.2132312357,
-0.0878212675,
-0.2500074208,
0.0530381538,
0.6815167069,
-0.0259576365,
0.097513549,
0.0207600687,
-0.1026210263,
-0.2020811141,
-0.1837860644,
0.1597261131,
0.3386713862,
0.2413775474,
0.1866381913,
0.2474579364,
-0.1729584932,
-0.2860015631,
0.2723778784,
0.0954683572,
0.2538042068,
0.3859497905,
0.0060879141,
-0.0024017561,
-0.5314664841,
-0.0248312876,
0.0135072693,
0.3741950989,
-0.223636508,
-0.2018273771,
-0.4316604137,
-0.4015898705,
-0.1702874452,
-0.2987871766,
-0.1874078959,
-0.5853306651,
0.0800147951,
0.0300565977,
-0.1252746731,
0.1624234319,
-0.1581036448,
0.2318920344,
0.2769705951,
-0.0165660195,
-0.1927297413,
-0.0813190639,
-0.1340955794,
0.0754105449,
0.1756270528,
0.0380112045,
0.328263253,
-0.1323557794,
-0.1795408726,
-0.024630107,
-0.401037991,
0.0776724145,
0.0673700348,
0.1397408694,
0.3047906458,
0.1800093651,
0.3312229216,
-0.3353325129,
0.1972532868,
-0.2418714166,
-0.2770204842,
-0.0081244968,
0.0024522766,
0.1431994736,
-0.2382312268,
-0.4810167849,
-0.4326364696,
-0.5125102401,
0.1009554416,
0.0488469303,
0.4066631496,
0.2704301178,
-0.2863166332,
0.1968384534,
-0.121017009,
0.1822269261,
-0.2584165335,
-0.1776081324,
0.2502978742,
-0.2715797126,
-0.270478934,
-0.1265955418,
-0.1486995965,
0.204890877,
-0.2855253518,
-0.4239242673,
-0.3295067847,
-0.1458871216,
-0.0527007543,
0.1072002202,
-0.0558418408,
0.2296746671,
-0.012112854,
-0.1654176712,
-0.0335120596,
-0.3873254061,
0.053417962,
0.1250746548,
0.0702093765,
-0.092771776,
0.6258089542,
0.0622663498,
0.5375288725,
0.3718979359,
0.0934446231,
0.2314645648,
0.1095012501,
0.1484316885,
-0.0122382008,
-0.3427924514,
0.2506150603,
0.1518255621,
0.0592514575,
0.3488016725,
-0.0516511425,
-0.3857151568,
-0.0800837949,
-0.3046745062,
-0.4658904672,
-0.2806209922,
0.1811252385,
0.1248164475,
0.2579151392,
0.2710354328,
0.1946985424,
-0.1767564416,
-0.1700817943,
-0.1458096504,
0.1727719307,
0.0059874989,
-0.0366932377,
-0.108393915,
0.0141895935,
-0.6109687686,
0.2600288391,
0.0066703781,
0.6111476421,
-0.1570563614,
-0.0673669726,
-0.0168538541,
-0.2866098285,
0.3602801561,
-0.3092955351,
-0.0543416739,
0.1828866303,
-0.1095798016,
-0.3564969897,
-0.1205786765,
-0.1527361721,
0.0463259742,
0.5042912364,
0.5133963823,
-0.2715702355,
-0.2822859883,
0.4173491299,
0.1056820154,
-0.1925455779,
-0.240532577,
-0.2602204084,
-0.2365471721,
-0.3589505553,
-0.0029187389,
-0.354958415,
0.2806676924,
0.0347827375,
-0.0494442247,
-0.0367944241,
-0.2479301393,
0.1712225378,
0.0238342844,
-0.0075590704,
0.2060531378,
0.1902968735,
0.2586182058,
0.3282210529,
-0.2777056396,
0.3211953044,
-0.0436941423,
0.0135159567,
-0.086697638,
0.1257399619,
0.0457250588,
0.4861239493,
0.0170815252,
-0.0189174376,
0.2016195804,
0.3254520297,
-0.0044429023,
-0.0331221037,
0.4496918917,
-0.0619697496,
-0.4111624956,
-0.1648906171,
0.2997184098,
0.123189941,
0.1361617446,
-0.1300017983,
-0.1973913312,
-0.2437219024,
0.127602756,
0.1129898876,
0.7832136154,
0.2591176033,
0.064823471,
0.3565960228,
-0.1549977809,
0.6783717275,
-0.2112057805,
0.2569588721,
-0.3706094325,
-0.3312230706,
-0.0379183069,
-0.1108771935,
0.3169817328,
0.1003670245,
-0.1770120561,
0.4902182221,
-0.1291065216,
-0.099432759,
-0.0617541149,
0.4637357593,
-0.2605730593,
-0.1433637887,
-0.400167942,
0.1066973805,
-0.1958622485,
0.3526177406,
-0.1023911014,
-0.1949198544,
0.2577713132,
-0.2590810955,
-0.0749825612,
0.277351737,
-0.2684627175,
0.1398487687,
0.0061618099,
0.2401972115,
-0.2210499197,
-0.3827385604,
0.3137291074,
-0.1355182379,
-0.0385885462,
-0.0691946149,
-0.2621515095,
-0.0241812244,
-0.1012060791,
0.106011942,
0.4224325716,
-0.2187233269,
-0.114556931,
0.0203035623,
-0.1885793209,
-0.1630530208,
-0.0189783573,
-0.0354849249,
0.1039874703,
-0.1709196568,
-0.197095722,
0.0954249352,
-0.2310492694,
-0.3154528737,
0.1461789608,
-0.0577432029,
-0.2906802893,
0.3077005744,
-0.0858524144,
-0.2809659243,
-0.2579652369,
0.2445218861,
0.1696912646,
0.0508793518,
0.492274642,
0.0225026384,
-0.289804697,
-0.2790829539,
-0.0300642401,
0.0263600089,
-0.3613365293,
0.1998149008,
-0.0870136023,
-0.0155759305,
0.2755271494,
0.2051899731,
0.1997066289,
0.2912752032,
-0.2323928177,
-0.5686834455,
-0.1438725889,
0.062984854,
-0.0053664125,
0.289378643,
0.046633631,
0.5640015602,
0.0183577389,
0.3612832427,
-0.3558591604,
0.0370597318,
-0.2532135844,
0.1774703264,
0.1644680947,
-0.2871334553,
0.4796303511,
0.3361742198,
0.1896098852,
0.1844836175,
-0.3276688457,
-0.2398814559,
-0.1398789883,
0.1459912956,
0.0528671816,
-0.1507483125,
0.10912624,
0.0210518986,
-0.1626611352,
-0.0761599168,
-0.0131698288,
-0.1183910072,
-0.0879905596,
0.2467848957,
-0.0422546305,
-0.0603145286,
0.1202735975,
0.0563643724,
-0.1231211126,
0.3887267113,
-0.011861939,
0.2306242585,
-0.2371812165,
0.0459103137,
-0.1055978686,
-0.1075531542,
0.0492276438,
0.014070807,
0.2833744287,
-0.4350685477,
-0.2895485163,
0.162304461,
0.2314195633,
0.2564557791,
-0.0285924189,
-0.1506043971,
0.1654753238,
0.2218015641,
-0.3195351362,
0.0245437101,
0.3671753407,
-0.0035076253,
0.321882993,
0.3530762792,
0.1187403351,
0.0195525885,
-0.0508775935,
0.0890134498,
0.2165189832,
-0.2659978867,
0.0368570015,
0.2631332874,
-0.1103862375,
-0.0150806736,
0.3015814424,
-0.121802479,
0.3009925783,
0.2377935499,
-0.0317760408,
0.4294943213,
-0.0397183076,
0.3304133415,
-0.0069706328,
-0.2167675048,
0.1839848459,
0.4842497706,
-0.112000674,
0.3832815886,
0.0147899427,
0.4105643332,
-0.2803668082,
0.0144451894,
-0.1774632633,
0.4721756876,
-0.1400125623,
0.0913877487,
-0.033626087,
-0.0987381041,
-0.2867731452,
-0.0064010173,
0.0785610154,
0.0901597068,
0.1506232619,
0.1159300357,
-0.0376420803,
-0.3303665221,
-0.1878766567,
0.1589913964,
0.2382989228,
-0.3991440535,
0.3074402213,
0.2775504887,
-0.0423322655,
-0.1595372856,
0.6101227403,
0.343123585,
0.3848833144,
-0.1388493627,
-0.0203317162,
0.1635615826,
-0.0777900293,
-0.089092806,
0.3411321938,
0.1897567213,
-0.0746390894,
0.3646365106,
0.1043185964,
-0.2784146965,
-0.0463375747,
0.0937770009,
-0.2416165769,
-0.1392457634,
0.2932829559,
-0.0494255051,
0.2100279927,
-0.2220619321,
0.0304330513,
-0.6043114662,
-0.0503051542,
0.1934354752,
-0.0807916224,
0.2918082476,
0.0341566354,
0.1002931297,
-0.1915135682,
0.4911068082,
0.0694369525,
-0.0748936683,
-0.3047779202,
-0.2246829569,
-0.5798496604,
0.1475736201,
-0.1549477279,
-0.0564665943,
0.0097489767,
0.2813647091,
-0.2015341371,
0.0494434759,
0.0776406154,
0.3546507061,
-0.0404425934,
-0.1575729251,
-0.3835545182,
0.0163158868,
0.0054040477,
-0.2268490642,
0.0736883432,
-0.4133267999,
0.2439870685,
-0.2011680007,
0.036815457,
-0.123730056,
0.0597287714,
-0.0689729601,
0.4797641933,
0.0129687171,
0.505263567,
0.2816343009,
-0.2362823039,
-0.3487401903,
-0.1656105965,
-0.1421876997,
-0.2967921793,
0.1579183638,
0.31911093,
0.5874747038,
0.0172954351,
0.0549575649,
-0.3607899547,
0.3801417053,
0.0239443034,
-0.1877518743,
0.0241976976,
0.3261168897,
-0.2411892861,
0.2674722075,
0.2473862767,
0.3860734403,
0.1126280129,
0.1490354538,
-0.2446985841,
-0.3713934124,
0.5164572597,
-0.1831857562,
-0.2234717906,
-0.0118960291,
0.1257263124,
0.0264659319,
-0.1279569417,
-0.4188545644,
0.0567013472,
0.3580688238,
-0.1017918885,
-0.0891666859,
0.2000731975,
0.2182816863,
-0.2056007683,
-0.019860778,
-0.095474191,
0.3953031003,
-0.4314528108,
0.2040596604,
-0.0773263201
] |
https://github.com/huggingface/datasets/issues/331 | Loading CNN/Daily Mail dataset produces `nlp.utils.info_utils.NonMatchingSplitsSizesError` | > here's the log
>
> ```
> >>> import nlp
> import logging
> logging.basicConfig(level=logging.INFO)
> nlp.load_dataset('cnn_dailymail', '3.0.0')
> >>> import logging
> >>> logging.basicConfig(level=logging.INFO)
> >>> nlp.load_dataset('cnn_dailymail', '3.0.0')
> INFO:nlp.load:Checking /u/jm8wx/.cache/huggingface/datasets/720d2e20d8dc6d98f21195a39cc934bb41dd0a40b57ea3d323661a7c5d70522c.d44c2417f4e0fe938ede0a684dcbb1fa9b4789de22e8a99c43103d4b4c374b3b.py for additional imports.
> INFO:filelock:Lock 140443095301136 acquired on /u/jm8wx/.cache/huggingface/datasets/720d2e20d8dc6d98f21195a39cc934bb41dd0a40b57ea3d323661a7c5d70522c.d44c2417f4e0fe938ede0a684dcbb1fa9b4789de22e8a99c43103d4b4c374b3b.py.lock
> INFO:nlp.load:Found main folder for dataset https://s3.amazonaws.com/datasets.huggingface.co/nlp/datasets/cnn_dailymail/cnn_dailymail.py at /p/qdata/jm8wx/datasets/nlp/src/nlp/datasets/cnn_dailymail
> INFO:nlp.load:Found specific version folder for dataset https://s3.amazonaws.com/datasets.huggingface.co/nlp/datasets/cnn_dailymail/cnn_dailymail.py at /p/qdata/jm8wx/datasets/nlp/src/nlp/datasets/cnn_dailymail/9645e0bc96f647decf46541f6f4bef6936ee82ace653ac362bab03309a46d4ad
> INFO:nlp.load:Found script file from https://s3.amazonaws.com/datasets.huggingface.co/nlp/datasets/cnn_dailymail/cnn_dailymail.py to /p/qdata/jm8wx/datasets/nlp/src/nlp/datasets/cnn_dailymail/9645e0bc96f647decf46541f6f4bef6936ee82ace653ac362bab03309a46d4ad/cnn_dailymail.py
> INFO:nlp.load:Updating dataset infos file from https://s3.amazonaws.com/datasets.huggingface.co/nlp/datasets/cnn_dailymail/dataset_infos.json to /p/qdata/jm8wx/datasets/nlp/src/nlp/datasets/cnn_dailymail/9645e0bc96f647decf46541f6f4bef6936ee82ace653ac362bab03309a46d4ad/dataset_infos.json
> INFO:nlp.load:Found metadata file for dataset https://s3.amazonaws.com/datasets.huggingface.co/nlp/datasets/cnn_dailymail/cnn_dailymail.py at /p/qdata/jm8wx/datasets/nlp/src/nlp/datasets/cnn_dailymail/9645e0bc96f647decf46541f6f4bef6936ee82ace653ac362bab03309a46d4ad/cnn_dailymail.json
> INFO:filelock:Lock 140443095301136 released on /u/jm8wx/.cache/huggingface/datasets/720d2e20d8dc6d98f21195a39cc934bb41dd0a40b57ea3d323661a7c5d70522c.d44c2417f4e0fe938ede0a684dcbb1fa9b4789de22e8a99c43103d4b4c374b3b.py.lock
> INFO:nlp.info:Loading Dataset Infos from /p/qdata/jm8wx/datasets/nlp/src/nlp/datasets/cnn_dailymail/9645e0bc96f647decf46541f6f4bef6936ee82ace653ac362bab03309a46d4ad
> INFO:nlp.builder:Generating dataset cnn_dailymail (/u/jm8wx/.cache/huggingface/datasets/cnn_dailymail/3.0.0/3.0.0)
> INFO:nlp.builder:Dataset not on Hf google storage. Downloading and preparing it from source
> Downloading and preparing dataset cnn_dailymail/3.0.0 (download: 558.32 MiB, generated: 1.26 GiB, total: 1.81 GiB) to /u/jm8wx/.cache/huggingface/datasets/cnn_dailymail/3.0.0/3.0.0...
> INFO:nlp.utils.info_utils:All the checksums matched successfully.
> INFO:nlp.builder:Generating split train
> INFO:nlp.arrow_writer:Done writing 285161 examples in 1240618482 bytes /u/jm8wx/.cache/huggingface/datasets/cnn_dailymail/3.0.0/3.0.0.incomplete/cnn_dailymail-train.arrow.
> INFO:nlp.builder:Generating split validation
> INFO:nlp.arrow_writer:Done writing 13255 examples in 56637485 bytes /u/jm8wx/.cache/huggingface/datasets/cnn_dailymail/3.0.0/3.0.0.incomplete/cnn_dailymail-validation.arrow.
> INFO:nlp.builder:Generating split test
> INFO:nlp.arrow_writer:Done writing 11379 examples in 48931393 bytes /u/jm8wx/.cache/huggingface/datasets/cnn_dailymail/3.0.0/3.0.0.incomplete/cnn_dailymail-test.arrow.
> Traceback (most recent call last):
> File "<stdin>", line 1, in <module>
> File "/p/qdata/jm8wx/datasets/nlp/src/nlp/load.py", line 520, in load_dataset
> builder_instance.download_and_prepare(
> File "/p/qdata/jm8wx/datasets/nlp/src/nlp/builder.py", line 431, in download_and_prepare
> self._download_and_prepare(
> File "/p/qdata/jm8wx/datasets/nlp/src/nlp/builder.py", line 488, in _download_and_prepare
> verify_splits(self.info.splits, split_dict)
> File "/p/qdata/jm8wx/datasets/nlp/src/nlp/utils/info_utils.py", line 70, in verify_splits
> raise NonMatchingSplitsSizesError(str(bad_splits))
> nlp.utils.info_utils.NonMatchingSplitsSizesError: [{'expected': SplitInfo(name='test', num_bytes=49424491, num_examples=11490, dataset_name='cnn_dailymail'), 'recorded': SplitInfo(name='test', num_bytes=48931393, num_examples=11379, dataset_name='cnn_dailymail')}, {'expected': SplitInfo(name='train', num_bytes=1249178681, num_examples=287113, dataset_name='cnn_dailymail'), 'recorded': SplitInfo(name='train', num_bytes=1240618482, num_examples=285161, dataset_name='cnn_dailymail')}, {'expected': SplitInfo(name='validation', num_bytes=57149241, num_examples=13368, dataset_name='cnn_dailymail'), 'recorded': SplitInfo(name='validation', num_bytes=56637485, num_examples=13255, dataset_name='cnn_dailymail')}]
> ```
With `nlp == 0.3.0` version, I'm not able to reproduce this error on my side.
Which version are you using for reproducing your bug?
```
>> nlp.load_dataset('cnn_dailymail', '3.0.0')
8.90k/8.90k [00:18<00:00, 486B/s]
Downloading: 100%
9.37k/9.37k [00:00<00:00, 234kB/s]
Downloading and preparing dataset cnn_dailymail/3.0.0 (download: 558.32 MiB, generated: 1.26 GiB, total: 1.81 GiB) to /root/.cache/huggingface/datasets/cnn_dailymail/3.0.0/3.0.0...
Downloading:
159M/? [00:09<00:00, 16.7MB/s]
Downloading:
376M/? [00:06<00:00, 62.6MB/s]
Downloading:
2.11M/? [00:06<00:00, 333kB/s]
Downloading:
46.4M/? [00:02<00:00, 18.4MB/s]
Downloading:
2.43M/? [00:00<00:00, 2.62MB/s]
Dataset cnn_dailymail downloaded and prepared to /root/.cache/huggingface/datasets/cnn_dailymail/3.0.0/3.0.0. Subsequent calls will reuse this data.
{'test': Dataset(schema: {'article': 'string', 'highlights': 'string'}, num_rows: 11490),
'train': Dataset(schema: {'article': 'string', 'highlights': 'string'}, num_rows: 287113),
'validation': Dataset(schema: {'article': 'string', 'highlights': 'string'}, num_rows: 13368)}
>> ...
``` | ```
>>> import nlp
>>> nlp.load_dataset('cnn_dailymail', '3.0.0')
Downloading and preparing dataset cnn_dailymail/3.0.0 (download: 558.32 MiB, generated: 1.26 GiB, total: 1.81 GiB) to /u/jm8wx/.cache/huggingface/datasets/cnn_dailymail/3.0.0/3.0.0...
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/p/qdata/jm8wx/datasets/nlp/src/nlp/load.py", line 520, in load_dataset
builder_instance.download_and_prepare(
File "/p/qdata/jm8wx/datasets/nlp/src/nlp/builder.py", line 431, in download_and_prepare
self._download_and_prepare(
File "/p/qdata/jm8wx/datasets/nlp/src/nlp/builder.py", line 488, in _download_and_prepare
verify_splits(self.info.splits, split_dict)
File "/p/qdata/jm8wx/datasets/nlp/src/nlp/utils/info_utils.py", line 70, in verify_splits
raise NonMatchingSplitsSizesError(str(bad_splits))
nlp.utils.info_utils.NonMatchingSplitsSizesError: [{'expected': SplitInfo(name='test', num_bytes=49424491, num_examples=11490, dataset_name='cnn_dailymail'), 'recorded': SplitInfo(name='test', num_bytes=48931393, num_examples=11379, dataset_name='cnn_dailymail')}, {'expected': SplitInfo(name='train', num_bytes=1249178681, num_examples=287113, dataset_name='cnn_dailymail'), 'recorded': SplitInfo(name='train', num_bytes=1240618482, num_examples=285161, dataset_name='cnn_dailymail')}, {'expected': SplitInfo(name='validation', num_bytes=57149241, num_examples=13368, dataset_name='cnn_dailymail'), 'recorded': SplitInfo(name='validation', num_bytes=56637485, num_examples=13255, dataset_name='cnn_dailymail')}]
``` | 376 | Loading CNN/Daily Mail dataset produces `nlp.utils.info_utils.NonMatchingSplitsSizesError`
```
>>> import nlp
>>> nlp.load_dataset('cnn_dailymail', '3.0.0')
Downloading and preparing dataset cnn_dailymail/3.0.0 (download: 558.32 MiB, generated: 1.26 GiB, total: 1.81 GiB) to /u/jm8wx/.cache/huggingface/datasets/cnn_dailymail/3.0.0/3.0.0...
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/p/qdata/jm8wx/datasets/nlp/src/nlp/load.py", line 520, in load_dataset
builder_instance.download_and_prepare(
File "/p/qdata/jm8wx/datasets/nlp/src/nlp/builder.py", line 431, in download_and_prepare
self._download_and_prepare(
File "/p/qdata/jm8wx/datasets/nlp/src/nlp/builder.py", line 488, in _download_and_prepare
verify_splits(self.info.splits, split_dict)
File "/p/qdata/jm8wx/datasets/nlp/src/nlp/utils/info_utils.py", line 70, in verify_splits
raise NonMatchingSplitsSizesError(str(bad_splits))
nlp.utils.info_utils.NonMatchingSplitsSizesError: [{'expected': SplitInfo(name='test', num_bytes=49424491, num_examples=11490, dataset_name='cnn_dailymail'), 'recorded': SplitInfo(name='test', num_bytes=48931393, num_examples=11379, dataset_name='cnn_dailymail')}, {'expected': SplitInfo(name='train', num_bytes=1249178681, num_examples=287113, dataset_name='cnn_dailymail'), 'recorded': SplitInfo(name='train', num_bytes=1240618482, num_examples=285161, dataset_name='cnn_dailymail')}, {'expected': SplitInfo(name='validation', num_bytes=57149241, num_examples=13368, dataset_name='cnn_dailymail'), 'recorded': SplitInfo(name='validation', num_bytes=56637485, num_examples=13255, dataset_name='cnn_dailymail')}]
```
> here's the log
>
> ```
> >>> import nlp
> import logging
> logging.basicConfig(level=logging.INFO)
> nlp.load_dataset('cnn_dailymail', '3.0.0')
> >>> import logging
> >>> logging.basicConfig(level=logging.INFO)
> >>> nlp.load_dataset('cnn_dailymail', '3.0.0')
> INFO:nlp.load:Checking /u/jm8wx/.cache/huggingface/datasets/720d2e20d8dc6d98f21195a39cc934bb41dd0a40b57ea3d323661a7c5d70522c.d44c2417f4e0fe938ede0a684dcbb1fa9b4789de22e8a99c43103d4b4c374b3b.py for additional imports.
> INFO:filelock:Lock 140443095301136 acquired on /u/jm8wx/.cache/huggingface/datasets/720d2e20d8dc6d98f21195a39cc934bb41dd0a40b57ea3d323661a7c5d70522c.d44c2417f4e0fe938ede0a684dcbb1fa9b4789de22e8a99c43103d4b4c374b3b.py.lock
> INFO:nlp.load:Found main folder for dataset https://s3.amazonaws.com/datasets.huggingface.co/nlp/datasets/cnn_dailymail/cnn_dailymail.py at /p/qdata/jm8wx/datasets/nlp/src/nlp/datasets/cnn_dailymail
> INFO:nlp.load:Found specific version folder for dataset https://s3.amazonaws.com/datasets.huggingface.co/nlp/datasets/cnn_dailymail/cnn_dailymail.py at /p/qdata/jm8wx/datasets/nlp/src/nlp/datasets/cnn_dailymail/9645e0bc96f647decf46541f6f4bef6936ee82ace653ac362bab03309a46d4ad
> INFO:nlp.load:Found script file from https://s3.amazonaws.com/datasets.huggingface.co/nlp/datasets/cnn_dailymail/cnn_dailymail.py to /p/qdata/jm8wx/datasets/nlp/src/nlp/datasets/cnn_dailymail/9645e0bc96f647decf46541f6f4bef6936ee82ace653ac362bab03309a46d4ad/cnn_dailymail.py
> INFO:nlp.load:Updating dataset infos file from https://s3.amazonaws.com/datasets.huggingface.co/nlp/datasets/cnn_dailymail/dataset_infos.json to /p/qdata/jm8wx/datasets/nlp/src/nlp/datasets/cnn_dailymail/9645e0bc96f647decf46541f6f4bef6936ee82ace653ac362bab03309a46d4ad/dataset_infos.json
> INFO:nlp.load:Found metadata file for dataset https://s3.amazonaws.com/datasets.huggingface.co/nlp/datasets/cnn_dailymail/cnn_dailymail.py at /p/qdata/jm8wx/datasets/nlp/src/nlp/datasets/cnn_dailymail/9645e0bc96f647decf46541f6f4bef6936ee82ace653ac362bab03309a46d4ad/cnn_dailymail.json
> INFO:filelock:Lock 140443095301136 released on /u/jm8wx/.cache/huggingface/datasets/720d2e20d8dc6d98f21195a39cc934bb41dd0a40b57ea3d323661a7c5d70522c.d44c2417f4e0fe938ede0a684dcbb1fa9b4789de22e8a99c43103d4b4c374b3b.py.lock
> INFO:nlp.info:Loading Dataset Infos from /p/qdata/jm8wx/datasets/nlp/src/nlp/datasets/cnn_dailymail/9645e0bc96f647decf46541f6f4bef6936ee82ace653ac362bab03309a46d4ad
> INFO:nlp.builder:Generating dataset cnn_dailymail (/u/jm8wx/.cache/huggingface/datasets/cnn_dailymail/3.0.0/3.0.0)
> INFO:nlp.builder:Dataset not on Hf google storage. Downloading and preparing it from source
> Downloading and preparing dataset cnn_dailymail/3.0.0 (download: 558.32 MiB, generated: 1.26 GiB, total: 1.81 GiB) to /u/jm8wx/.cache/huggingface/datasets/cnn_dailymail/3.0.0/3.0.0...
> INFO:nlp.utils.info_utils:All the checksums matched successfully.
> INFO:nlp.builder:Generating split train
> INFO:nlp.arrow_writer:Done writing 285161 examples in 1240618482 bytes /u/jm8wx/.cache/huggingface/datasets/cnn_dailymail/3.0.0/3.0.0.incomplete/cnn_dailymail-train.arrow.
> INFO:nlp.builder:Generating split validation
> INFO:nlp.arrow_writer:Done writing 13255 examples in 56637485 bytes /u/jm8wx/.cache/huggingface/datasets/cnn_dailymail/3.0.0/3.0.0.incomplete/cnn_dailymail-validation.arrow.
> INFO:nlp.builder:Generating split test
> INFO:nlp.arrow_writer:Done writing 11379 examples in 48931393 bytes /u/jm8wx/.cache/huggingface/datasets/cnn_dailymail/3.0.0/3.0.0.incomplete/cnn_dailymail-test.arrow.
> Traceback (most recent call last):
> File "<stdin>", line 1, in <module>
> File "/p/qdata/jm8wx/datasets/nlp/src/nlp/load.py", line 520, in load_dataset
> builder_instance.download_and_prepare(
> File "/p/qdata/jm8wx/datasets/nlp/src/nlp/builder.py", line 431, in download_and_prepare
> self._download_and_prepare(
> File "/p/qdata/jm8wx/datasets/nlp/src/nlp/builder.py", line 488, in _download_and_prepare
> verify_splits(self.info.splits, split_dict)
> File "/p/qdata/jm8wx/datasets/nlp/src/nlp/utils/info_utils.py", line 70, in verify_splits
> raise NonMatchingSplitsSizesError(str(bad_splits))
> nlp.utils.info_utils.NonMatchingSplitsSizesError: [{'expected': SplitInfo(name='test', num_bytes=49424491, num_examples=11490, dataset_name='cnn_dailymail'), 'recorded': SplitInfo(name='test', num_bytes=48931393, num_examples=11379, dataset_name='cnn_dailymail')}, {'expected': SplitInfo(name='train', num_bytes=1249178681, num_examples=287113, dataset_name='cnn_dailymail'), 'recorded': SplitInfo(name='train', num_bytes=1240618482, num_examples=285161, dataset_name='cnn_dailymail')}, {'expected': SplitInfo(name='validation', num_bytes=57149241, num_examples=13368, dataset_name='cnn_dailymail'), 'recorded': SplitInfo(name='validation', num_bytes=56637485, num_examples=13255, dataset_name='cnn_dailymail')}]
> ```
With `nlp == 0.3.0` version, I'm not able to reproduce this error on my side.
Which version are you using for reproducing your bug?
```
>> nlp.load_dataset('cnn_dailymail', '3.0.0')
8.90k/8.90k [00:18<00:00, 486B/s]
Downloading: 100%
9.37k/9.37k [00:00<00:00, 234kB/s]
Downloading and preparing dataset cnn_dailymail/3.0.0 (download: 558.32 MiB, generated: 1.26 GiB, total: 1.81 GiB) to /root/.cache/huggingface/datasets/cnn_dailymail/3.0.0/3.0.0...
Downloading:
159M/? [00:09<00:00, 16.7MB/s]
Downloading:
376M/? [00:06<00:00, 62.6MB/s]
Downloading:
2.11M/? [00:06<00:00, 333kB/s]
Downloading:
46.4M/? [00:02<00:00, 18.4MB/s]
Downloading:
2.43M/? [00:00<00:00, 2.62MB/s]
Dataset cnn_dailymail downloaded and prepared to /root/.cache/huggingface/datasets/cnn_dailymail/3.0.0/3.0.0. Subsequent calls will reuse this data.
{'test': Dataset(schema: {'article': 'string', 'highlights': 'string'}, num_rows: 11490),
'train': Dataset(schema: {'article': 'string', 'highlights': 'string'}, num_rows: 287113),
'validation': Dataset(schema: {'article': 'string', 'highlights': 'string'}, num_rows: 13368)}
>> ...
``` | [
-0.1410692483,
-0.0569873303,
-0.0082135461,
0.2086569071,
0.077649653,
0.0907959044,
0.1833024472,
0.5251755714,
0.098731637,
0.1542320698,
0.016297888,
0.0769967809,
-0.3141205311,
-0.0437741652,
-0.0335894674,
0.0359019861,
-0.1871678531,
0.2515124083,
0.0448877588,
-0.0229971036,
-0.2874318361,
0.2817906439,
-0.2087393552,
-0.0366006307,
-0.4835284948,
-0.2941966951,
0.0143963248,
0.3698373735,
0.0376473665,
-0.3093644381,
-0.0541153438,
-0.1348574013,
-0.1841388643,
0.1029711068,
-0.0001130321,
0.1136061102,
0.3911181092,
-0.1433287561,
-0.4867384434,
0.0093756616,
-0.2104335129,
-0.4906257987,
0.0880899653,
-0.3546803296,
-0.1552340537,
0.0253198408,
0.0945639163,
-0.2195381224,
0.496927917,
0.3904687166,
0.2402192503,
0.5636103153,
0.0662315339,
0.1633448601,
-0.0887692645,
-0.1809550077,
-0.1458709836,
-0.0048659053,
-0.3178359866,
-0.151013881,
-0.0242432393,
0.4289470911,
-0.0926199704,
0.1253477633,
-0.0872373134,
0.1102500558,
0.0889440849,
-0.1658465415,
0.0938814357,
0.1360181272,
-0.0329078473,
-0.0759069324,
-0.2113920152,
-0.4385612309,
-0.0160644352,
-0.3980172276,
0.2251277566,
0.2127165794,
-0.1745027453,
0.0653805062,
-0.3212836087,
0.0384897403,
-0.0294717774,
0.2034062594,
0.0819328725,
0.4111945927,
-0.1002975553,
0.0258116666,
0.0555455647,
-0.0901165009,
0.1567517072,
-0.1769281924,
0.1543257833,
0.0778364241,
-0.1457693279,
-0.0452777855,
0.1644649208,
-0.1484152079,
0.0430354252,
-0.0675476491,
0.1789104491,
-0.0621049292,
0.1744741201,
0.0868739933,
0.0470654182,
0.3125295639,
-0.0163506009,
0.268633306,
0.1245980784,
0.2852091789,
0.0025194362,
0.0181033462,
0.1172014475,
-0.0053180419,
0.1188476086,
0.2207993269,
0.3734845519,
-0.0592547804,
-0.3276321888,
0.1337224543,
-0.2627149224,
-0.2590237558,
-0.0015640147,
0.2562179863,
-0.0583016649,
0.3132663071,
-0.0608433485,
-0.0814520121,
-0.3839430213,
-0.1547318101,
-0.3804472089,
0.170079723,
-0.1844010651,
0.0808091238,
0.2795963883,
-0.0796255916,
0.457221657,
-0.2497541308,
-0.0141824186,
-0.147263661,
0.2093331218,
-0.0398356281,
0.025049882,
0.2831858695,
-0.1309730411,
0.1706080139,
0.2590436637,
0.1690688878,
-0.2127454579,
-0.0859967694,
-0.0040090233,
-0.6050630808,
0.1887343824,
0.2487293333,
0.0593622252,
-0.0687001497,
0.6144138575,
0.0758781508,
0.2487533689,
0.0350490063,
-0.1620906442,
-0.0698394626,
-0.0113208443,
-0.1684927493,
0.0756479874,
0.4380224943,
-0.2325228453,
-0.2369067967,
-0.0135411322,
-0.1419267505,
0.5154548287,
0.4340134859,
-0.1053205132,
0.0439390019,
-0.1265490353,
0.1538269818,
0.2003800869,
-0.1545392871,
-0.3955638111,
0.1898385882,
-0.0884126425,
0.2039061338,
0.2070534676,
0.1967762411,
-0.02944622,
0.1016343832,
0.0539141931,
0.5395388007,
-0.2290878147,
0.1055223197,
-0.4344432056,
-0.4346443117,
0.3582523167,
0.0564583987,
0.2241696715,
-0.0408380479,
-0.0627061129,
0.4361118972,
0.2115103304,
-0.1110629216,
0.0374838635,
0.0333373286,
-0.1516633481,
-0.1143532097,
0.0171923935,
-0.043171037,
-0.4885511994,
0.1375232637,
-0.1571969539,
0.3005177081,
-0.0501775332,
-0.1014919057,
-0.2627062201,
-0.1947334409,
-0.1750029773,
-0.283849895,
0.2178566158,
0.2274241745,
0.2097194642,
0.0044352934,
-0.2784238756,
0.3022135496,
-0.0314072035,
0.1214025319,
-0.5230281949,
0.2627043128,
-0.2279071957,
-0.1810560524,
0.2639639974,
0.429887265,
0.2641761303,
-0.1530766487,
-0.2832181752,
0.2833616734,
-0.0861626118,
0.2315969765,
-0.1480447948,
-0.1591015011,
0.1137662753,
-0.0814556628,
0.1697773784,
0.4025969207,
-0.0342430882,
-0.1033014879,
-0.1191940829,
0.4826930761,
0.0484579131,
0.0898779258,
0.149933666,
-0.1141222864,
0.0772693977,
-0.1309575886,
0.1130283475,
-0.5237566233,
0.3187465966,
-0.169630751,
0.2132312357,
-0.0878212675,
-0.2500074208,
0.0530381538,
0.6815167069,
-0.0259576365,
0.097513549,
0.0207600687,
-0.1026210263,
-0.2020811141,
-0.1837860644,
0.1597261131,
0.3386713862,
0.2413775474,
0.1866381913,
0.2474579364,
-0.1729584932,
-0.2860015631,
0.2723778784,
0.0954683572,
0.2538042068,
0.3859497905,
0.0060879141,
-0.0024017561,
-0.5314664841,
-0.0248312876,
0.0135072693,
0.3741950989,
-0.223636508,
-0.2018273771,
-0.4316604137,
-0.4015898705,
-0.1702874452,
-0.2987871766,
-0.1874078959,
-0.5853306651,
0.0800147951,
0.0300565977,
-0.1252746731,
0.1624234319,
-0.1581036448,
0.2318920344,
0.2769705951,
-0.0165660195,
-0.1927297413,
-0.0813190639,
-0.1340955794,
0.0754105449,
0.1756270528,
0.0380112045,
0.328263253,
-0.1323557794,
-0.1795408726,
-0.024630107,
-0.401037991,
0.0776724145,
0.0673700348,
0.1397408694,
0.3047906458,
0.1800093651,
0.3312229216,
-0.3353325129,
0.1972532868,
-0.2418714166,
-0.2770204842,
-0.0081244968,
0.0024522766,
0.1431994736,
-0.2382312268,
-0.4810167849,
-0.4326364696,
-0.5125102401,
0.1009554416,
0.0488469303,
0.4066631496,
0.2704301178,
-0.2863166332,
0.1968384534,
-0.121017009,
0.1822269261,
-0.2584165335,
-0.1776081324,
0.2502978742,
-0.2715797126,
-0.270478934,
-0.1265955418,
-0.1486995965,
0.204890877,
-0.2855253518,
-0.4239242673,
-0.3295067847,
-0.1458871216,
-0.0527007543,
0.1072002202,
-0.0558418408,
0.2296746671,
-0.012112854,
-0.1654176712,
-0.0335120596,
-0.3873254061,
0.053417962,
0.1250746548,
0.0702093765,
-0.092771776,
0.6258089542,
0.0622663498,
0.5375288725,
0.3718979359,
0.0934446231,
0.2314645648,
0.1095012501,
0.1484316885,
-0.0122382008,
-0.3427924514,
0.2506150603,
0.1518255621,
0.0592514575,
0.3488016725,
-0.0516511425,
-0.3857151568,
-0.0800837949,
-0.3046745062,
-0.4658904672,
-0.2806209922,
0.1811252385,
0.1248164475,
0.2579151392,
0.2710354328,
0.1946985424,
-0.1767564416,
-0.1700817943,
-0.1458096504,
0.1727719307,
0.0059874989,
-0.0366932377,
-0.108393915,
0.0141895935,
-0.6109687686,
0.2600288391,
0.0066703781,
0.6111476421,
-0.1570563614,
-0.0673669726,
-0.0168538541,
-0.2866098285,
0.3602801561,
-0.3092955351,
-0.0543416739,
0.1828866303,
-0.1095798016,
-0.3564969897,
-0.1205786765,
-0.1527361721,
0.0463259742,
0.5042912364,
0.5133963823,
-0.2715702355,
-0.2822859883,
0.4173491299,
0.1056820154,
-0.1925455779,
-0.240532577,
-0.2602204084,
-0.2365471721,
-0.3589505553,
-0.0029187389,
-0.354958415,
0.2806676924,
0.0347827375,
-0.0494442247,
-0.0367944241,
-0.2479301393,
0.1712225378,
0.0238342844,
-0.0075590704,
0.2060531378,
0.1902968735,
0.2586182058,
0.3282210529,
-0.2777056396,
0.3211953044,
-0.0436941423,
0.0135159567,
-0.086697638,
0.1257399619,
0.0457250588,
0.4861239493,
0.0170815252,
-0.0189174376,
0.2016195804,
0.3254520297,
-0.0044429023,
-0.0331221037,
0.4496918917,
-0.0619697496,
-0.4111624956,
-0.1648906171,
0.2997184098,
0.123189941,
0.1361617446,
-0.1300017983,
-0.1973913312,
-0.2437219024,
0.127602756,
0.1129898876,
0.7832136154,
0.2591176033,
0.064823471,
0.3565960228,
-0.1549977809,
0.6783717275,
-0.2112057805,
0.2569588721,
-0.3706094325,
-0.3312230706,
-0.0379183069,
-0.1108771935,
0.3169817328,
0.1003670245,
-0.1770120561,
0.4902182221,
-0.1291065216,
-0.099432759,
-0.0617541149,
0.4637357593,
-0.2605730593,
-0.1433637887,
-0.400167942,
0.1066973805,
-0.1958622485,
0.3526177406,
-0.1023911014,
-0.1949198544,
0.2577713132,
-0.2590810955,
-0.0749825612,
0.277351737,
-0.2684627175,
0.1398487687,
0.0061618099,
0.2401972115,
-0.2210499197,
-0.3827385604,
0.3137291074,
-0.1355182379,
-0.0385885462,
-0.0691946149,
-0.2621515095,
-0.0241812244,
-0.1012060791,
0.106011942,
0.4224325716,
-0.2187233269,
-0.114556931,
0.0203035623,
-0.1885793209,
-0.1630530208,
-0.0189783573,
-0.0354849249,
0.1039874703,
-0.1709196568,
-0.197095722,
0.0954249352,
-0.2310492694,
-0.3154528737,
0.1461789608,
-0.0577432029,
-0.2906802893,
0.3077005744,
-0.0858524144,
-0.2809659243,
-0.2579652369,
0.2445218861,
0.1696912646,
0.0508793518,
0.492274642,
0.0225026384,
-0.289804697,
-0.2790829539,
-0.0300642401,
0.0263600089,
-0.3613365293,
0.1998149008,
-0.0870136023,
-0.0155759305,
0.2755271494,
0.2051899731,
0.1997066289,
0.2912752032,
-0.2323928177,
-0.5686834455,
-0.1438725889,
0.062984854,
-0.0053664125,
0.289378643,
0.046633631,
0.5640015602,
0.0183577389,
0.3612832427,
-0.3558591604,
0.0370597318,
-0.2532135844,
0.1774703264,
0.1644680947,
-0.2871334553,
0.4796303511,
0.3361742198,
0.1896098852,
0.1844836175,
-0.3276688457,
-0.2398814559,
-0.1398789883,
0.1459912956,
0.0528671816,
-0.1507483125,
0.10912624,
0.0210518986,
-0.1626611352,
-0.0761599168,
-0.0131698288,
-0.1183910072,
-0.0879905596,
0.2467848957,
-0.0422546305,
-0.0603145286,
0.1202735975,
0.0563643724,
-0.1231211126,
0.3887267113,
-0.011861939,
0.2306242585,
-0.2371812165,
0.0459103137,
-0.1055978686,
-0.1075531542,
0.0492276438,
0.014070807,
0.2833744287,
-0.4350685477,
-0.2895485163,
0.162304461,
0.2314195633,
0.2564557791,
-0.0285924189,
-0.1506043971,
0.1654753238,
0.2218015641,
-0.3195351362,
0.0245437101,
0.3671753407,
-0.0035076253,
0.321882993,
0.3530762792,
0.1187403351,
0.0195525885,
-0.0508775935,
0.0890134498,
0.2165189832,
-0.2659978867,
0.0368570015,
0.2631332874,
-0.1103862375,
-0.0150806736,
0.3015814424,
-0.121802479,
0.3009925783,
0.2377935499,
-0.0317760408,
0.4294943213,
-0.0397183076,
0.3304133415,
-0.0069706328,
-0.2167675048,
0.1839848459,
0.4842497706,
-0.112000674,
0.3832815886,
0.0147899427,
0.4105643332,
-0.2803668082,
0.0144451894,
-0.1774632633,
0.4721756876,
-0.1400125623,
0.0913877487,
-0.033626087,
-0.0987381041,
-0.2867731452,
-0.0064010173,
0.0785610154,
0.0901597068,
0.1506232619,
0.1159300357,
-0.0376420803,
-0.3303665221,
-0.1878766567,
0.1589913964,
0.2382989228,
-0.3991440535,
0.3074402213,
0.2775504887,
-0.0423322655,
-0.1595372856,
0.6101227403,
0.343123585,
0.3848833144,
-0.1388493627,
-0.0203317162,
0.1635615826,
-0.0777900293,
-0.089092806,
0.3411321938,
0.1897567213,
-0.0746390894,
0.3646365106,
0.1043185964,
-0.2784146965,
-0.0463375747,
0.0937770009,
-0.2416165769,
-0.1392457634,
0.2932829559,
-0.0494255051,
0.2100279927,
-0.2220619321,
0.0304330513,
-0.6043114662,
-0.0503051542,
0.1934354752,
-0.0807916224,
0.2918082476,
0.0341566354,
0.1002931297,
-0.1915135682,
0.4911068082,
0.0694369525,
-0.0748936683,
-0.3047779202,
-0.2246829569,
-0.5798496604,
0.1475736201,
-0.1549477279,
-0.0564665943,
0.0097489767,
0.2813647091,
-0.2015341371,
0.0494434759,
0.0776406154,
0.3546507061,
-0.0404425934,
-0.1575729251,
-0.3835545182,
0.0163158868,
0.0054040477,
-0.2268490642,
0.0736883432,
-0.4133267999,
0.2439870685,
-0.2011680007,
0.036815457,
-0.123730056,
0.0597287714,
-0.0689729601,
0.4797641933,
0.0129687171,
0.505263567,
0.2816343009,
-0.2362823039,
-0.3487401903,
-0.1656105965,
-0.1421876997,
-0.2967921793,
0.1579183638,
0.31911093,
0.5874747038,
0.0172954351,
0.0549575649,
-0.3607899547,
0.3801417053,
0.0239443034,
-0.1877518743,
0.0241976976,
0.3261168897,
-0.2411892861,
0.2674722075,
0.2473862767,
0.3860734403,
0.1126280129,
0.1490354538,
-0.2446985841,
-0.3713934124,
0.5164572597,
-0.1831857562,
-0.2234717906,
-0.0118960291,
0.1257263124,
0.0264659319,
-0.1279569417,
-0.4188545644,
0.0567013472,
0.3580688238,
-0.1017918885,
-0.0891666859,
0.2000731975,
0.2182816863,
-0.2056007683,
-0.019860778,
-0.095474191,
0.3953031003,
-0.4314528108,
0.2040596604,
-0.0773263201
] |
https://github.com/huggingface/datasets/issues/331 | Loading CNN/Daily Mail dataset produces `nlp.utils.info_utils.NonMatchingSplitsSizesError` | In general if some examples are missing after processing (hence causing the `NonMatchingSplitsSizesError `), it is often due to either
1) corrupted cached files
2) decoding errors
I just checked the dataset script for code that could lead to decoding errors but I couldn't find any. Before we try to dive more into the processing of the dataset, could you try to clear your cache ? Just to make sure that it isn't 1) | ```
>>> import nlp
>>> nlp.load_dataset('cnn_dailymail', '3.0.0')
Downloading and preparing dataset cnn_dailymail/3.0.0 (download: 558.32 MiB, generated: 1.26 GiB, total: 1.81 GiB) to /u/jm8wx/.cache/huggingface/datasets/cnn_dailymail/3.0.0/3.0.0...
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/p/qdata/jm8wx/datasets/nlp/src/nlp/load.py", line 520, in load_dataset
builder_instance.download_and_prepare(
File "/p/qdata/jm8wx/datasets/nlp/src/nlp/builder.py", line 431, in download_and_prepare
self._download_and_prepare(
File "/p/qdata/jm8wx/datasets/nlp/src/nlp/builder.py", line 488, in _download_and_prepare
verify_splits(self.info.splits, split_dict)
File "/p/qdata/jm8wx/datasets/nlp/src/nlp/utils/info_utils.py", line 70, in verify_splits
raise NonMatchingSplitsSizesError(str(bad_splits))
nlp.utils.info_utils.NonMatchingSplitsSizesError: [{'expected': SplitInfo(name='test', num_bytes=49424491, num_examples=11490, dataset_name='cnn_dailymail'), 'recorded': SplitInfo(name='test', num_bytes=48931393, num_examples=11379, dataset_name='cnn_dailymail')}, {'expected': SplitInfo(name='train', num_bytes=1249178681, num_examples=287113, dataset_name='cnn_dailymail'), 'recorded': SplitInfo(name='train', num_bytes=1240618482, num_examples=285161, dataset_name='cnn_dailymail')}, {'expected': SplitInfo(name='validation', num_bytes=57149241, num_examples=13368, dataset_name='cnn_dailymail'), 'recorded': SplitInfo(name='validation', num_bytes=56637485, num_examples=13255, dataset_name='cnn_dailymail')}]
``` | 74 | Loading CNN/Daily Mail dataset produces `nlp.utils.info_utils.NonMatchingSplitsSizesError`
```
>>> import nlp
>>> nlp.load_dataset('cnn_dailymail', '3.0.0')
Downloading and preparing dataset cnn_dailymail/3.0.0 (download: 558.32 MiB, generated: 1.26 GiB, total: 1.81 GiB) to /u/jm8wx/.cache/huggingface/datasets/cnn_dailymail/3.0.0/3.0.0...
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/p/qdata/jm8wx/datasets/nlp/src/nlp/load.py", line 520, in load_dataset
builder_instance.download_and_prepare(
File "/p/qdata/jm8wx/datasets/nlp/src/nlp/builder.py", line 431, in download_and_prepare
self._download_and_prepare(
File "/p/qdata/jm8wx/datasets/nlp/src/nlp/builder.py", line 488, in _download_and_prepare
verify_splits(self.info.splits, split_dict)
File "/p/qdata/jm8wx/datasets/nlp/src/nlp/utils/info_utils.py", line 70, in verify_splits
raise NonMatchingSplitsSizesError(str(bad_splits))
nlp.utils.info_utils.NonMatchingSplitsSizesError: [{'expected': SplitInfo(name='test', num_bytes=49424491, num_examples=11490, dataset_name='cnn_dailymail'), 'recorded': SplitInfo(name='test', num_bytes=48931393, num_examples=11379, dataset_name='cnn_dailymail')}, {'expected': SplitInfo(name='train', num_bytes=1249178681, num_examples=287113, dataset_name='cnn_dailymail'), 'recorded': SplitInfo(name='train', num_bytes=1240618482, num_examples=285161, dataset_name='cnn_dailymail')}, {'expected': SplitInfo(name='validation', num_bytes=57149241, num_examples=13368, dataset_name='cnn_dailymail'), 'recorded': SplitInfo(name='validation', num_bytes=56637485, num_examples=13255, dataset_name='cnn_dailymail')}]
```
In general if some examples are missing after processing (hence causing the `NonMatchingSplitsSizesError `), it is often due to either
1) corrupted cached files
2) decoding errors
I just checked the dataset script for code that could lead to decoding errors but I couldn't find any. Before we try to dive more into the processing of the dataset, could you try to clear your cache ? Just to make sure that it isn't 1) | [
-0.1410692483,
-0.0569873303,
-0.0082135461,
0.2086569071,
0.077649653,
0.0907959044,
0.1833024472,
0.5251755714,
0.098731637,
0.1542320698,
0.016297888,
0.0769967809,
-0.3141205311,
-0.0437741652,
-0.0335894674,
0.0359019861,
-0.1871678531,
0.2515124083,
0.0448877588,
-0.0229971036,
-0.2874318361,
0.2817906439,
-0.2087393552,
-0.0366006307,
-0.4835284948,
-0.2941966951,
0.0143963248,
0.3698373735,
0.0376473665,
-0.3093644381,
-0.0541153438,
-0.1348574013,
-0.1841388643,
0.1029711068,
-0.0001130321,
0.1136061102,
0.3911181092,
-0.1433287561,
-0.4867384434,
0.0093756616,
-0.2104335129,
-0.4906257987,
0.0880899653,
-0.3546803296,
-0.1552340537,
0.0253198408,
0.0945639163,
-0.2195381224,
0.496927917,
0.3904687166,
0.2402192503,
0.5636103153,
0.0662315339,
0.1633448601,
-0.0887692645,
-0.1809550077,
-0.1458709836,
-0.0048659053,
-0.3178359866,
-0.151013881,
-0.0242432393,
0.4289470911,
-0.0926199704,
0.1253477633,
-0.0872373134,
0.1102500558,
0.0889440849,
-0.1658465415,
0.0938814357,
0.1360181272,
-0.0329078473,
-0.0759069324,
-0.2113920152,
-0.4385612309,
-0.0160644352,
-0.3980172276,
0.2251277566,
0.2127165794,
-0.1745027453,
0.0653805062,
-0.3212836087,
0.0384897403,
-0.0294717774,
0.2034062594,
0.0819328725,
0.4111945927,
-0.1002975553,
0.0258116666,
0.0555455647,
-0.0901165009,
0.1567517072,
-0.1769281924,
0.1543257833,
0.0778364241,
-0.1457693279,
-0.0452777855,
0.1644649208,
-0.1484152079,
0.0430354252,
-0.0675476491,
0.1789104491,
-0.0621049292,
0.1744741201,
0.0868739933,
0.0470654182,
0.3125295639,
-0.0163506009,
0.268633306,
0.1245980784,
0.2852091789,
0.0025194362,
0.0181033462,
0.1172014475,
-0.0053180419,
0.1188476086,
0.2207993269,
0.3734845519,
-0.0592547804,
-0.3276321888,
0.1337224543,
-0.2627149224,
-0.2590237558,
-0.0015640147,
0.2562179863,
-0.0583016649,
0.3132663071,
-0.0608433485,
-0.0814520121,
-0.3839430213,
-0.1547318101,
-0.3804472089,
0.170079723,
-0.1844010651,
0.0808091238,
0.2795963883,
-0.0796255916,
0.457221657,
-0.2497541308,
-0.0141824186,
-0.147263661,
0.2093331218,
-0.0398356281,
0.025049882,
0.2831858695,
-0.1309730411,
0.1706080139,
0.2590436637,
0.1690688878,
-0.2127454579,
-0.0859967694,
-0.0040090233,
-0.6050630808,
0.1887343824,
0.2487293333,
0.0593622252,
-0.0687001497,
0.6144138575,
0.0758781508,
0.2487533689,
0.0350490063,
-0.1620906442,
-0.0698394626,
-0.0113208443,
-0.1684927493,
0.0756479874,
0.4380224943,
-0.2325228453,
-0.2369067967,
-0.0135411322,
-0.1419267505,
0.5154548287,
0.4340134859,
-0.1053205132,
0.0439390019,
-0.1265490353,
0.1538269818,
0.2003800869,
-0.1545392871,
-0.3955638111,
0.1898385882,
-0.0884126425,
0.2039061338,
0.2070534676,
0.1967762411,
-0.02944622,
0.1016343832,
0.0539141931,
0.5395388007,
-0.2290878147,
0.1055223197,
-0.4344432056,
-0.4346443117,
0.3582523167,
0.0564583987,
0.2241696715,
-0.0408380479,
-0.0627061129,
0.4361118972,
0.2115103304,
-0.1110629216,
0.0374838635,
0.0333373286,
-0.1516633481,
-0.1143532097,
0.0171923935,
-0.043171037,
-0.4885511994,
0.1375232637,
-0.1571969539,
0.3005177081,
-0.0501775332,
-0.1014919057,
-0.2627062201,
-0.1947334409,
-0.1750029773,
-0.283849895,
0.2178566158,
0.2274241745,
0.2097194642,
0.0044352934,
-0.2784238756,
0.3022135496,
-0.0314072035,
0.1214025319,
-0.5230281949,
0.2627043128,
-0.2279071957,
-0.1810560524,
0.2639639974,
0.429887265,
0.2641761303,
-0.1530766487,
-0.2832181752,
0.2833616734,
-0.0861626118,
0.2315969765,
-0.1480447948,
-0.1591015011,
0.1137662753,
-0.0814556628,
0.1697773784,
0.4025969207,
-0.0342430882,
-0.1033014879,
-0.1191940829,
0.4826930761,
0.0484579131,
0.0898779258,
0.149933666,
-0.1141222864,
0.0772693977,
-0.1309575886,
0.1130283475,
-0.5237566233,
0.3187465966,
-0.169630751,
0.2132312357,
-0.0878212675,
-0.2500074208,
0.0530381538,
0.6815167069,
-0.0259576365,
0.097513549,
0.0207600687,
-0.1026210263,
-0.2020811141,
-0.1837860644,
0.1597261131,
0.3386713862,
0.2413775474,
0.1866381913,
0.2474579364,
-0.1729584932,
-0.2860015631,
0.2723778784,
0.0954683572,
0.2538042068,
0.3859497905,
0.0060879141,
-0.0024017561,
-0.5314664841,
-0.0248312876,
0.0135072693,
0.3741950989,
-0.223636508,
-0.2018273771,
-0.4316604137,
-0.4015898705,
-0.1702874452,
-0.2987871766,
-0.1874078959,
-0.5853306651,
0.0800147951,
0.0300565977,
-0.1252746731,
0.1624234319,
-0.1581036448,
0.2318920344,
0.2769705951,
-0.0165660195,
-0.1927297413,
-0.0813190639,
-0.1340955794,
0.0754105449,
0.1756270528,
0.0380112045,
0.328263253,
-0.1323557794,
-0.1795408726,
-0.024630107,
-0.401037991,
0.0776724145,
0.0673700348,
0.1397408694,
0.3047906458,
0.1800093651,
0.3312229216,
-0.3353325129,
0.1972532868,
-0.2418714166,
-0.2770204842,
-0.0081244968,
0.0024522766,
0.1431994736,
-0.2382312268,
-0.4810167849,
-0.4326364696,
-0.5125102401,
0.1009554416,
0.0488469303,
0.4066631496,
0.2704301178,
-0.2863166332,
0.1968384534,
-0.121017009,
0.1822269261,
-0.2584165335,
-0.1776081324,
0.2502978742,
-0.2715797126,
-0.270478934,
-0.1265955418,
-0.1486995965,
0.204890877,
-0.2855253518,
-0.4239242673,
-0.3295067847,
-0.1458871216,
-0.0527007543,
0.1072002202,
-0.0558418408,
0.2296746671,
-0.012112854,
-0.1654176712,
-0.0335120596,
-0.3873254061,
0.053417962,
0.1250746548,
0.0702093765,
-0.092771776,
0.6258089542,
0.0622663498,
0.5375288725,
0.3718979359,
0.0934446231,
0.2314645648,
0.1095012501,
0.1484316885,
-0.0122382008,
-0.3427924514,
0.2506150603,
0.1518255621,
0.0592514575,
0.3488016725,
-0.0516511425,
-0.3857151568,
-0.0800837949,
-0.3046745062,
-0.4658904672,
-0.2806209922,
0.1811252385,
0.1248164475,
0.2579151392,
0.2710354328,
0.1946985424,
-0.1767564416,
-0.1700817943,
-0.1458096504,
0.1727719307,
0.0059874989,
-0.0366932377,
-0.108393915,
0.0141895935,
-0.6109687686,
0.2600288391,
0.0066703781,
0.6111476421,
-0.1570563614,
-0.0673669726,
-0.0168538541,
-0.2866098285,
0.3602801561,
-0.3092955351,
-0.0543416739,
0.1828866303,
-0.1095798016,
-0.3564969897,
-0.1205786765,
-0.1527361721,
0.0463259742,
0.5042912364,
0.5133963823,
-0.2715702355,
-0.2822859883,
0.4173491299,
0.1056820154,
-0.1925455779,
-0.240532577,
-0.2602204084,
-0.2365471721,
-0.3589505553,
-0.0029187389,
-0.354958415,
0.2806676924,
0.0347827375,
-0.0494442247,
-0.0367944241,
-0.2479301393,
0.1712225378,
0.0238342844,
-0.0075590704,
0.2060531378,
0.1902968735,
0.2586182058,
0.3282210529,
-0.2777056396,
0.3211953044,
-0.0436941423,
0.0135159567,
-0.086697638,
0.1257399619,
0.0457250588,
0.4861239493,
0.0170815252,
-0.0189174376,
0.2016195804,
0.3254520297,
-0.0044429023,
-0.0331221037,
0.4496918917,
-0.0619697496,
-0.4111624956,
-0.1648906171,
0.2997184098,
0.123189941,
0.1361617446,
-0.1300017983,
-0.1973913312,
-0.2437219024,
0.127602756,
0.1129898876,
0.7832136154,
0.2591176033,
0.064823471,
0.3565960228,
-0.1549977809,
0.6783717275,
-0.2112057805,
0.2569588721,
-0.3706094325,
-0.3312230706,
-0.0379183069,
-0.1108771935,
0.3169817328,
0.1003670245,
-0.1770120561,
0.4902182221,
-0.1291065216,
-0.099432759,
-0.0617541149,
0.4637357593,
-0.2605730593,
-0.1433637887,
-0.400167942,
0.1066973805,
-0.1958622485,
0.3526177406,
-0.1023911014,
-0.1949198544,
0.2577713132,
-0.2590810955,
-0.0749825612,
0.277351737,
-0.2684627175,
0.1398487687,
0.0061618099,
0.2401972115,
-0.2210499197,
-0.3827385604,
0.3137291074,
-0.1355182379,
-0.0385885462,
-0.0691946149,
-0.2621515095,
-0.0241812244,
-0.1012060791,
0.106011942,
0.4224325716,
-0.2187233269,
-0.114556931,
0.0203035623,
-0.1885793209,
-0.1630530208,
-0.0189783573,
-0.0354849249,
0.1039874703,
-0.1709196568,
-0.197095722,
0.0954249352,
-0.2310492694,
-0.3154528737,
0.1461789608,
-0.0577432029,
-0.2906802893,
0.3077005744,
-0.0858524144,
-0.2809659243,
-0.2579652369,
0.2445218861,
0.1696912646,
0.0508793518,
0.492274642,
0.0225026384,
-0.289804697,
-0.2790829539,
-0.0300642401,
0.0263600089,
-0.3613365293,
0.1998149008,
-0.0870136023,
-0.0155759305,
0.2755271494,
0.2051899731,
0.1997066289,
0.2912752032,
-0.2323928177,
-0.5686834455,
-0.1438725889,
0.062984854,
-0.0053664125,
0.289378643,
0.046633631,
0.5640015602,
0.0183577389,
0.3612832427,
-0.3558591604,
0.0370597318,
-0.2532135844,
0.1774703264,
0.1644680947,
-0.2871334553,
0.4796303511,
0.3361742198,
0.1896098852,
0.1844836175,
-0.3276688457,
-0.2398814559,
-0.1398789883,
0.1459912956,
0.0528671816,
-0.1507483125,
0.10912624,
0.0210518986,
-0.1626611352,
-0.0761599168,
-0.0131698288,
-0.1183910072,
-0.0879905596,
0.2467848957,
-0.0422546305,
-0.0603145286,
0.1202735975,
0.0563643724,
-0.1231211126,
0.3887267113,
-0.011861939,
0.2306242585,
-0.2371812165,
0.0459103137,
-0.1055978686,
-0.1075531542,
0.0492276438,
0.014070807,
0.2833744287,
-0.4350685477,
-0.2895485163,
0.162304461,
0.2314195633,
0.2564557791,
-0.0285924189,
-0.1506043971,
0.1654753238,
0.2218015641,
-0.3195351362,
0.0245437101,
0.3671753407,
-0.0035076253,
0.321882993,
0.3530762792,
0.1187403351,
0.0195525885,
-0.0508775935,
0.0890134498,
0.2165189832,
-0.2659978867,
0.0368570015,
0.2631332874,
-0.1103862375,
-0.0150806736,
0.3015814424,
-0.121802479,
0.3009925783,
0.2377935499,
-0.0317760408,
0.4294943213,
-0.0397183076,
0.3304133415,
-0.0069706328,
-0.2167675048,
0.1839848459,
0.4842497706,
-0.112000674,
0.3832815886,
0.0147899427,
0.4105643332,
-0.2803668082,
0.0144451894,
-0.1774632633,
0.4721756876,
-0.1400125623,
0.0913877487,
-0.033626087,
-0.0987381041,
-0.2867731452,
-0.0064010173,
0.0785610154,
0.0901597068,
0.1506232619,
0.1159300357,
-0.0376420803,
-0.3303665221,
-0.1878766567,
0.1589913964,
0.2382989228,
-0.3991440535,
0.3074402213,
0.2775504887,
-0.0423322655,
-0.1595372856,
0.6101227403,
0.343123585,
0.3848833144,
-0.1388493627,
-0.0203317162,
0.1635615826,
-0.0777900293,
-0.089092806,
0.3411321938,
0.1897567213,
-0.0746390894,
0.3646365106,
0.1043185964,
-0.2784146965,
-0.0463375747,
0.0937770009,
-0.2416165769,
-0.1392457634,
0.2932829559,
-0.0494255051,
0.2100279927,
-0.2220619321,
0.0304330513,
-0.6043114662,
-0.0503051542,
0.1934354752,
-0.0807916224,
0.2918082476,
0.0341566354,
0.1002931297,
-0.1915135682,
0.4911068082,
0.0694369525,
-0.0748936683,
-0.3047779202,
-0.2246829569,
-0.5798496604,
0.1475736201,
-0.1549477279,
-0.0564665943,
0.0097489767,
0.2813647091,
-0.2015341371,
0.0494434759,
0.0776406154,
0.3546507061,
-0.0404425934,
-0.1575729251,
-0.3835545182,
0.0163158868,
0.0054040477,
-0.2268490642,
0.0736883432,
-0.4133267999,
0.2439870685,
-0.2011680007,
0.036815457,
-0.123730056,
0.0597287714,
-0.0689729601,
0.4797641933,
0.0129687171,
0.505263567,
0.2816343009,
-0.2362823039,
-0.3487401903,
-0.1656105965,
-0.1421876997,
-0.2967921793,
0.1579183638,
0.31911093,
0.5874747038,
0.0172954351,
0.0549575649,
-0.3607899547,
0.3801417053,
0.0239443034,
-0.1877518743,
0.0241976976,
0.3261168897,
-0.2411892861,
0.2674722075,
0.2473862767,
0.3860734403,
0.1126280129,
0.1490354538,
-0.2446985841,
-0.3713934124,
0.5164572597,
-0.1831857562,
-0.2234717906,
-0.0118960291,
0.1257263124,
0.0264659319,
-0.1279569417,
-0.4188545644,
0.0567013472,
0.3580688238,
-0.1017918885,
-0.0891666859,
0.2000731975,
0.2182816863,
-0.2056007683,
-0.019860778,
-0.095474191,
0.3953031003,
-0.4314528108,
0.2040596604,
-0.0773263201
] |
https://github.com/huggingface/datasets/issues/331 | Loading CNN/Daily Mail dataset produces `nlp.utils.info_utils.NonMatchingSplitsSizesError` | Yes thanks for the support! I cleared out my cache folder and everything works fine now | ```
>>> import nlp
>>> nlp.load_dataset('cnn_dailymail', '3.0.0')
Downloading and preparing dataset cnn_dailymail/3.0.0 (download: 558.32 MiB, generated: 1.26 GiB, total: 1.81 GiB) to /u/jm8wx/.cache/huggingface/datasets/cnn_dailymail/3.0.0/3.0.0...
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/p/qdata/jm8wx/datasets/nlp/src/nlp/load.py", line 520, in load_dataset
builder_instance.download_and_prepare(
File "/p/qdata/jm8wx/datasets/nlp/src/nlp/builder.py", line 431, in download_and_prepare
self._download_and_prepare(
File "/p/qdata/jm8wx/datasets/nlp/src/nlp/builder.py", line 488, in _download_and_prepare
verify_splits(self.info.splits, split_dict)
File "/p/qdata/jm8wx/datasets/nlp/src/nlp/utils/info_utils.py", line 70, in verify_splits
raise NonMatchingSplitsSizesError(str(bad_splits))
nlp.utils.info_utils.NonMatchingSplitsSizesError: [{'expected': SplitInfo(name='test', num_bytes=49424491, num_examples=11490, dataset_name='cnn_dailymail'), 'recorded': SplitInfo(name='test', num_bytes=48931393, num_examples=11379, dataset_name='cnn_dailymail')}, {'expected': SplitInfo(name='train', num_bytes=1249178681, num_examples=287113, dataset_name='cnn_dailymail'), 'recorded': SplitInfo(name='train', num_bytes=1240618482, num_examples=285161, dataset_name='cnn_dailymail')}, {'expected': SplitInfo(name='validation', num_bytes=57149241, num_examples=13368, dataset_name='cnn_dailymail'), 'recorded': SplitInfo(name='validation', num_bytes=56637485, num_examples=13255, dataset_name='cnn_dailymail')}]
``` | 16 | Loading CNN/Daily Mail dataset produces `nlp.utils.info_utils.NonMatchingSplitsSizesError`
```
>>> import nlp
>>> nlp.load_dataset('cnn_dailymail', '3.0.0')
Downloading and preparing dataset cnn_dailymail/3.0.0 (download: 558.32 MiB, generated: 1.26 GiB, total: 1.81 GiB) to /u/jm8wx/.cache/huggingface/datasets/cnn_dailymail/3.0.0/3.0.0...
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/p/qdata/jm8wx/datasets/nlp/src/nlp/load.py", line 520, in load_dataset
builder_instance.download_and_prepare(
File "/p/qdata/jm8wx/datasets/nlp/src/nlp/builder.py", line 431, in download_and_prepare
self._download_and_prepare(
File "/p/qdata/jm8wx/datasets/nlp/src/nlp/builder.py", line 488, in _download_and_prepare
verify_splits(self.info.splits, split_dict)
File "/p/qdata/jm8wx/datasets/nlp/src/nlp/utils/info_utils.py", line 70, in verify_splits
raise NonMatchingSplitsSizesError(str(bad_splits))
nlp.utils.info_utils.NonMatchingSplitsSizesError: [{'expected': SplitInfo(name='test', num_bytes=49424491, num_examples=11490, dataset_name='cnn_dailymail'), 'recorded': SplitInfo(name='test', num_bytes=48931393, num_examples=11379, dataset_name='cnn_dailymail')}, {'expected': SplitInfo(name='train', num_bytes=1249178681, num_examples=287113, dataset_name='cnn_dailymail'), 'recorded': SplitInfo(name='train', num_bytes=1240618482, num_examples=285161, dataset_name='cnn_dailymail')}, {'expected': SplitInfo(name='validation', num_bytes=57149241, num_examples=13368, dataset_name='cnn_dailymail'), 'recorded': SplitInfo(name='validation', num_bytes=56637485, num_examples=13255, dataset_name='cnn_dailymail')}]
```
Yes thanks for the support! I cleared out my cache folder and everything works fine now | [
-0.1410692483,
-0.0569873303,
-0.0082135461,
0.2086569071,
0.077649653,
0.0907959044,
0.1833024472,
0.5251755714,
0.098731637,
0.1542320698,
0.016297888,
0.0769967809,
-0.3141205311,
-0.0437741652,
-0.0335894674,
0.0359019861,
-0.1871678531,
0.2515124083,
0.0448877588,
-0.0229971036,
-0.2874318361,
0.2817906439,
-0.2087393552,
-0.0366006307,
-0.4835284948,
-0.2941966951,
0.0143963248,
0.3698373735,
0.0376473665,
-0.3093644381,
-0.0541153438,
-0.1348574013,
-0.1841388643,
0.1029711068,
-0.0001130321,
0.1136061102,
0.3911181092,
-0.1433287561,
-0.4867384434,
0.0093756616,
-0.2104335129,
-0.4906257987,
0.0880899653,
-0.3546803296,
-0.1552340537,
0.0253198408,
0.0945639163,
-0.2195381224,
0.496927917,
0.3904687166,
0.2402192503,
0.5636103153,
0.0662315339,
0.1633448601,
-0.0887692645,
-0.1809550077,
-0.1458709836,
-0.0048659053,
-0.3178359866,
-0.151013881,
-0.0242432393,
0.4289470911,
-0.0926199704,
0.1253477633,
-0.0872373134,
0.1102500558,
0.0889440849,
-0.1658465415,
0.0938814357,
0.1360181272,
-0.0329078473,
-0.0759069324,
-0.2113920152,
-0.4385612309,
-0.0160644352,
-0.3980172276,
0.2251277566,
0.2127165794,
-0.1745027453,
0.0653805062,
-0.3212836087,
0.0384897403,
-0.0294717774,
0.2034062594,
0.0819328725,
0.4111945927,
-0.1002975553,
0.0258116666,
0.0555455647,
-0.0901165009,
0.1567517072,
-0.1769281924,
0.1543257833,
0.0778364241,
-0.1457693279,
-0.0452777855,
0.1644649208,
-0.1484152079,
0.0430354252,
-0.0675476491,
0.1789104491,
-0.0621049292,
0.1744741201,
0.0868739933,
0.0470654182,
0.3125295639,
-0.0163506009,
0.268633306,
0.1245980784,
0.2852091789,
0.0025194362,
0.0181033462,
0.1172014475,
-0.0053180419,
0.1188476086,
0.2207993269,
0.3734845519,
-0.0592547804,
-0.3276321888,
0.1337224543,
-0.2627149224,
-0.2590237558,
-0.0015640147,
0.2562179863,
-0.0583016649,
0.3132663071,
-0.0608433485,
-0.0814520121,
-0.3839430213,
-0.1547318101,
-0.3804472089,
0.170079723,
-0.1844010651,
0.0808091238,
0.2795963883,
-0.0796255916,
0.457221657,
-0.2497541308,
-0.0141824186,
-0.147263661,
0.2093331218,
-0.0398356281,
0.025049882,
0.2831858695,
-0.1309730411,
0.1706080139,
0.2590436637,
0.1690688878,
-0.2127454579,
-0.0859967694,
-0.0040090233,
-0.6050630808,
0.1887343824,
0.2487293333,
0.0593622252,
-0.0687001497,
0.6144138575,
0.0758781508,
0.2487533689,
0.0350490063,
-0.1620906442,
-0.0698394626,
-0.0113208443,
-0.1684927493,
0.0756479874,
0.4380224943,
-0.2325228453,
-0.2369067967,
-0.0135411322,
-0.1419267505,
0.5154548287,
0.4340134859,
-0.1053205132,
0.0439390019,
-0.1265490353,
0.1538269818,
0.2003800869,
-0.1545392871,
-0.3955638111,
0.1898385882,
-0.0884126425,
0.2039061338,
0.2070534676,
0.1967762411,
-0.02944622,
0.1016343832,
0.0539141931,
0.5395388007,
-0.2290878147,
0.1055223197,
-0.4344432056,
-0.4346443117,
0.3582523167,
0.0564583987,
0.2241696715,
-0.0408380479,
-0.0627061129,
0.4361118972,
0.2115103304,
-0.1110629216,
0.0374838635,
0.0333373286,
-0.1516633481,
-0.1143532097,
0.0171923935,
-0.043171037,
-0.4885511994,
0.1375232637,
-0.1571969539,
0.3005177081,
-0.0501775332,
-0.1014919057,
-0.2627062201,
-0.1947334409,
-0.1750029773,
-0.283849895,
0.2178566158,
0.2274241745,
0.2097194642,
0.0044352934,
-0.2784238756,
0.3022135496,
-0.0314072035,
0.1214025319,
-0.5230281949,
0.2627043128,
-0.2279071957,
-0.1810560524,
0.2639639974,
0.429887265,
0.2641761303,
-0.1530766487,
-0.2832181752,
0.2833616734,
-0.0861626118,
0.2315969765,
-0.1480447948,
-0.1591015011,
0.1137662753,
-0.0814556628,
0.1697773784,
0.4025969207,
-0.0342430882,
-0.1033014879,
-0.1191940829,
0.4826930761,
0.0484579131,
0.0898779258,
0.149933666,
-0.1141222864,
0.0772693977,
-0.1309575886,
0.1130283475,
-0.5237566233,
0.3187465966,
-0.169630751,
0.2132312357,
-0.0878212675,
-0.2500074208,
0.0530381538,
0.6815167069,
-0.0259576365,
0.097513549,
0.0207600687,
-0.1026210263,
-0.2020811141,
-0.1837860644,
0.1597261131,
0.3386713862,
0.2413775474,
0.1866381913,
0.2474579364,
-0.1729584932,
-0.2860015631,
0.2723778784,
0.0954683572,
0.2538042068,
0.3859497905,
0.0060879141,
-0.0024017561,
-0.5314664841,
-0.0248312876,
0.0135072693,
0.3741950989,
-0.223636508,
-0.2018273771,
-0.4316604137,
-0.4015898705,
-0.1702874452,
-0.2987871766,
-0.1874078959,
-0.5853306651,
0.0800147951,
0.0300565977,
-0.1252746731,
0.1624234319,
-0.1581036448,
0.2318920344,
0.2769705951,
-0.0165660195,
-0.1927297413,
-0.0813190639,
-0.1340955794,
0.0754105449,
0.1756270528,
0.0380112045,
0.328263253,
-0.1323557794,
-0.1795408726,
-0.024630107,
-0.401037991,
0.0776724145,
0.0673700348,
0.1397408694,
0.3047906458,
0.1800093651,
0.3312229216,
-0.3353325129,
0.1972532868,
-0.2418714166,
-0.2770204842,
-0.0081244968,
0.0024522766,
0.1431994736,
-0.2382312268,
-0.4810167849,
-0.4326364696,
-0.5125102401,
0.1009554416,
0.0488469303,
0.4066631496,
0.2704301178,
-0.2863166332,
0.1968384534,
-0.121017009,
0.1822269261,
-0.2584165335,
-0.1776081324,
0.2502978742,
-0.2715797126,
-0.270478934,
-0.1265955418,
-0.1486995965,
0.204890877,
-0.2855253518,
-0.4239242673,
-0.3295067847,
-0.1458871216,
-0.0527007543,
0.1072002202,
-0.0558418408,
0.2296746671,
-0.012112854,
-0.1654176712,
-0.0335120596,
-0.3873254061,
0.053417962,
0.1250746548,
0.0702093765,
-0.092771776,
0.6258089542,
0.0622663498,
0.5375288725,
0.3718979359,
0.0934446231,
0.2314645648,
0.1095012501,
0.1484316885,
-0.0122382008,
-0.3427924514,
0.2506150603,
0.1518255621,
0.0592514575,
0.3488016725,
-0.0516511425,
-0.3857151568,
-0.0800837949,
-0.3046745062,
-0.4658904672,
-0.2806209922,
0.1811252385,
0.1248164475,
0.2579151392,
0.2710354328,
0.1946985424,
-0.1767564416,
-0.1700817943,
-0.1458096504,
0.1727719307,
0.0059874989,
-0.0366932377,
-0.108393915,
0.0141895935,
-0.6109687686,
0.2600288391,
0.0066703781,
0.6111476421,
-0.1570563614,
-0.0673669726,
-0.0168538541,
-0.2866098285,
0.3602801561,
-0.3092955351,
-0.0543416739,
0.1828866303,
-0.1095798016,
-0.3564969897,
-0.1205786765,
-0.1527361721,
0.0463259742,
0.5042912364,
0.5133963823,
-0.2715702355,
-0.2822859883,
0.4173491299,
0.1056820154,
-0.1925455779,
-0.240532577,
-0.2602204084,
-0.2365471721,
-0.3589505553,
-0.0029187389,
-0.354958415,
0.2806676924,
0.0347827375,
-0.0494442247,
-0.0367944241,
-0.2479301393,
0.1712225378,
0.0238342844,
-0.0075590704,
0.2060531378,
0.1902968735,
0.2586182058,
0.3282210529,
-0.2777056396,
0.3211953044,
-0.0436941423,
0.0135159567,
-0.086697638,
0.1257399619,
0.0457250588,
0.4861239493,
0.0170815252,
-0.0189174376,
0.2016195804,
0.3254520297,
-0.0044429023,
-0.0331221037,
0.4496918917,
-0.0619697496,
-0.4111624956,
-0.1648906171,
0.2997184098,
0.123189941,
0.1361617446,
-0.1300017983,
-0.1973913312,
-0.2437219024,
0.127602756,
0.1129898876,
0.7832136154,
0.2591176033,
0.064823471,
0.3565960228,
-0.1549977809,
0.6783717275,
-0.2112057805,
0.2569588721,
-0.3706094325,
-0.3312230706,
-0.0379183069,
-0.1108771935,
0.3169817328,
0.1003670245,
-0.1770120561,
0.4902182221,
-0.1291065216,
-0.099432759,
-0.0617541149,
0.4637357593,
-0.2605730593,
-0.1433637887,
-0.400167942,
0.1066973805,
-0.1958622485,
0.3526177406,
-0.1023911014,
-0.1949198544,
0.2577713132,
-0.2590810955,
-0.0749825612,
0.277351737,
-0.2684627175,
0.1398487687,
0.0061618099,
0.2401972115,
-0.2210499197,
-0.3827385604,
0.3137291074,
-0.1355182379,
-0.0385885462,
-0.0691946149,
-0.2621515095,
-0.0241812244,
-0.1012060791,
0.106011942,
0.4224325716,
-0.2187233269,
-0.114556931,
0.0203035623,
-0.1885793209,
-0.1630530208,
-0.0189783573,
-0.0354849249,
0.1039874703,
-0.1709196568,
-0.197095722,
0.0954249352,
-0.2310492694,
-0.3154528737,
0.1461789608,
-0.0577432029,
-0.2906802893,
0.3077005744,
-0.0858524144,
-0.2809659243,
-0.2579652369,
0.2445218861,
0.1696912646,
0.0508793518,
0.492274642,
0.0225026384,
-0.289804697,
-0.2790829539,
-0.0300642401,
0.0263600089,
-0.3613365293,
0.1998149008,
-0.0870136023,
-0.0155759305,
0.2755271494,
0.2051899731,
0.1997066289,
0.2912752032,
-0.2323928177,
-0.5686834455,
-0.1438725889,
0.062984854,
-0.0053664125,
0.289378643,
0.046633631,
0.5640015602,
0.0183577389,
0.3612832427,
-0.3558591604,
0.0370597318,
-0.2532135844,
0.1774703264,
0.1644680947,
-0.2871334553,
0.4796303511,
0.3361742198,
0.1896098852,
0.1844836175,
-0.3276688457,
-0.2398814559,
-0.1398789883,
0.1459912956,
0.0528671816,
-0.1507483125,
0.10912624,
0.0210518986,
-0.1626611352,
-0.0761599168,
-0.0131698288,
-0.1183910072,
-0.0879905596,
0.2467848957,
-0.0422546305,
-0.0603145286,
0.1202735975,
0.0563643724,
-0.1231211126,
0.3887267113,
-0.011861939,
0.2306242585,
-0.2371812165,
0.0459103137,
-0.1055978686,
-0.1075531542,
0.0492276438,
0.014070807,
0.2833744287,
-0.4350685477,
-0.2895485163,
0.162304461,
0.2314195633,
0.2564557791,
-0.0285924189,
-0.1506043971,
0.1654753238,
0.2218015641,
-0.3195351362,
0.0245437101,
0.3671753407,
-0.0035076253,
0.321882993,
0.3530762792,
0.1187403351,
0.0195525885,
-0.0508775935,
0.0890134498,
0.2165189832,
-0.2659978867,
0.0368570015,
0.2631332874,
-0.1103862375,
-0.0150806736,
0.3015814424,
-0.121802479,
0.3009925783,
0.2377935499,
-0.0317760408,
0.4294943213,
-0.0397183076,
0.3304133415,
-0.0069706328,
-0.2167675048,
0.1839848459,
0.4842497706,
-0.112000674,
0.3832815886,
0.0147899427,
0.4105643332,
-0.2803668082,
0.0144451894,
-0.1774632633,
0.4721756876,
-0.1400125623,
0.0913877487,
-0.033626087,
-0.0987381041,
-0.2867731452,
-0.0064010173,
0.0785610154,
0.0901597068,
0.1506232619,
0.1159300357,
-0.0376420803,
-0.3303665221,
-0.1878766567,
0.1589913964,
0.2382989228,
-0.3991440535,
0.3074402213,
0.2775504887,
-0.0423322655,
-0.1595372856,
0.6101227403,
0.343123585,
0.3848833144,
-0.1388493627,
-0.0203317162,
0.1635615826,
-0.0777900293,
-0.089092806,
0.3411321938,
0.1897567213,
-0.0746390894,
0.3646365106,
0.1043185964,
-0.2784146965,
-0.0463375747,
0.0937770009,
-0.2416165769,
-0.1392457634,
0.2932829559,
-0.0494255051,
0.2100279927,
-0.2220619321,
0.0304330513,
-0.6043114662,
-0.0503051542,
0.1934354752,
-0.0807916224,
0.2918082476,
0.0341566354,
0.1002931297,
-0.1915135682,
0.4911068082,
0.0694369525,
-0.0748936683,
-0.3047779202,
-0.2246829569,
-0.5798496604,
0.1475736201,
-0.1549477279,
-0.0564665943,
0.0097489767,
0.2813647091,
-0.2015341371,
0.0494434759,
0.0776406154,
0.3546507061,
-0.0404425934,
-0.1575729251,
-0.3835545182,
0.0163158868,
0.0054040477,
-0.2268490642,
0.0736883432,
-0.4133267999,
0.2439870685,
-0.2011680007,
0.036815457,
-0.123730056,
0.0597287714,
-0.0689729601,
0.4797641933,
0.0129687171,
0.505263567,
0.2816343009,
-0.2362823039,
-0.3487401903,
-0.1656105965,
-0.1421876997,
-0.2967921793,
0.1579183638,
0.31911093,
0.5874747038,
0.0172954351,
0.0549575649,
-0.3607899547,
0.3801417053,
0.0239443034,
-0.1877518743,
0.0241976976,
0.3261168897,
-0.2411892861,
0.2674722075,
0.2473862767,
0.3860734403,
0.1126280129,
0.1490354538,
-0.2446985841,
-0.3713934124,
0.5164572597,
-0.1831857562,
-0.2234717906,
-0.0118960291,
0.1257263124,
0.0264659319,
-0.1279569417,
-0.4188545644,
0.0567013472,
0.3580688238,
-0.1017918885,
-0.0891666859,
0.2000731975,
0.2182816863,
-0.2056007683,
-0.019860778,
-0.095474191,
0.3953031003,
-0.4314528108,
0.2040596604,
-0.0773263201
] |
https://github.com/huggingface/datasets/issues/329 | [Bug] FileLock dependency incompatible with filesystem | Environment is Ubuntu 18.04, Python 3.7.5, nlp==0.3.0, filelock=3.0.12.
The external volume is Amazon FSx for Lustre, and it by default creates files with limited permissions. My working theory is that FileLock creates a lockfile that isn't writable, and thus there's no way to acquire it by removing the .lock file. But Python is able to create new files and write to them outside of the FileLock package.
When I attempt to use FileLock within a Docker container by writing to `/root/.cache/hello.txt`, it succeeds. So there's some permissions issue. But it's not a Docker configuration issue; I've replicated it without Docker.
```bash
echo "hello world" >> hello.txt
ls -l
-rw-rw-r-- 1 ubuntu ubuntu 10 Jun 30 19:52 hello.txt
``` | I'm downloading a dataset successfully with
`load_dataset("wikitext", "wikitext-2-raw-v1")`
But when I attempt to cache it on an external volume, it hangs indefinitely:
`load_dataset("wikitext", "wikitext-2-raw-v1", cache_dir="/fsx") # /fsx is an external volume mount`
The filesystem when hanging looks like this:
```bash
/fsx
----downloads
----94be...73.lock
----wikitext
----wikitext-2-raw
----wikitext-2-raw-1.0.0.incomplete
```
It appears that on this filesystem, the FileLock object is forever stuck in its "acquire" stage. I have verified that the issue lies specifically with the `filelock` dependency:
```python
open("/fsx/hello.txt").write("hello") # succeeds
from filelock import FileLock
with FileLock("/fsx/hello.lock"):
open("/fsx/hello.txt").write("hello") # hangs indefinitely
```
Has anyone else run into this issue? I'd raise it directly on the FileLock repo, but that project appears abandoned with the last update over a year ago. Or if there's a solution that would remove the FileLock dependency from the project, I would appreciate that. | 118 | [Bug] FileLock dependency incompatible with filesystem
I'm downloading a dataset successfully with
`load_dataset("wikitext", "wikitext-2-raw-v1")`
But when I attempt to cache it on an external volume, it hangs indefinitely:
`load_dataset("wikitext", "wikitext-2-raw-v1", cache_dir="/fsx") # /fsx is an external volume mount`
The filesystem when hanging looks like this:
```bash
/fsx
----downloads
----94be...73.lock
----wikitext
----wikitext-2-raw
----wikitext-2-raw-1.0.0.incomplete
```
It appears that on this filesystem, the FileLock object is forever stuck in its "acquire" stage. I have verified that the issue lies specifically with the `filelock` dependency:
```python
open("/fsx/hello.txt").write("hello") # succeeds
from filelock import FileLock
with FileLock("/fsx/hello.lock"):
open("/fsx/hello.txt").write("hello") # hangs indefinitely
```
Has anyone else run into this issue? I'd raise it directly on the FileLock repo, but that project appears abandoned with the last update over a year ago. Or if there's a solution that would remove the FileLock dependency from the project, I would appreciate that.
Environment is Ubuntu 18.04, Python 3.7.5, nlp==0.3.0, filelock=3.0.12.
The external volume is Amazon FSx for Lustre, and it by default creates files with limited permissions. My working theory is that FileLock creates a lockfile that isn't writable, and thus there's no way to acquire it by removing the .lock file. But Python is able to create new files and write to them outside of the FileLock package.
When I attempt to use FileLock within a Docker container by writing to `/root/.cache/hello.txt`, it succeeds. So there's some permissions issue. But it's not a Docker configuration issue; I've replicated it without Docker.
```bash
echo "hello world" >> hello.txt
ls -l
-rw-rw-r-- 1 ubuntu ubuntu 10 Jun 30 19:52 hello.txt
``` | [
0.0329923108,
0.0771608651,
-0.0250303689,
0.0279641598,
0.0889832973,
0.1513945311,
0.3646971285,
0.0651534349,
0.7094062567,
-0.0978956968,
0.0909680873,
-0.0051192865,
0.0214459077,
-0.3159704804,
-0.2095369399,
0.2686364353,
0.1863837838,
0.0667655393,
0.0055687688,
0.0047017857,
-0.0693235546,
0.3521535099,
-0.1633293033,
-0.2751575112,
-0.7754428983,
0.1206445247,
0.0365541354,
0.0431684442,
-0.2784684002,
0.0024246424,
0.4160516858,
0.5284099579,
-0.0816124752,
0.4965884089,
-0.0001226855,
-0.1948296875,
0.2004581839,
-0.0361197293,
-0.174651444,
-0.2742000818,
-0.2164895535,
-0.3265876174,
0.1097058654,
-0.1128876358,
0.1944535375,
-0.2241576314,
0.0919877142,
-0.4995854497,
0.3337174058,
-0.0410729237,
0.0680703074,
0.2360711098,
0.2542808056,
-0.0269482862,
0.3872798085,
-0.2296983451,
-0.2215995193,
0.5681558251,
0.4567057192,
-0.2117681205,
-0.1409667283,
-0.0369958878,
-0.012971431,
-0.0679328889,
0.5948628783,
-0.1976969391,
0.3488732576,
-0.2678503394,
-0.101282917,
0.3191519082,
0.6145643592,
-0.0441021174,
-0.5926793814,
-0.2471347749,
0.3272881508,
0.1455293596,
0.5233203173,
0.0666398555,
-0.0742338151,
0.360670507,
0.0522743799,
-0.1590827256,
0.045744434,
0.0224096961,
-0.1197817326,
0.2216321826,
0.145360291,
0.0084854905,
0.1708887815,
-0.0806066468,
0.3088316619,
-0.1967708617,
0.0066905953,
0.0987598896,
-0.454965502,
0.1360242367,
0.0213125851,
0.1014316007,
-0.1403492689,
-0.2220835984,
-0.4776565135,
0.1874593794,
0.0509253554,
0.3599930406,
0.112027511,
0.1694355011,
0.0524429418,
0.0851672292,
0.2234936804,
-0.0380136445,
-0.2711603045,
0.0675248951,
-0.0540339947,
-0.1094277203,
0.1089456528,
-0.0756203085,
0.0264970958,
-0.3769022822,
0.1710461974,
0.1699296385,
0.0443219095,
0.3801295459,
0.1577483565,
0.0316458233,
0.1108211726,
0.4331047833,
0.1974973381,
0.0049863104,
-0.1965512335,
0.3437234759,
-0.0323615558,
-0.0984642804,
0.069049418,
0.0930997282,
0.0324409604,
0.2763170004,
0.1785524935,
0.1565663517,
0.3272791505,
0.1014770195,
0.2352107614,
-0.1581269652,
-0.1276830733,
0.393193841,
-0.137797609,
0.0754466578,
0.0243202858,
-0.0310191959,
-0.0276714787,
0.0367913693,
-0.1925076842,
0.0691401809,
-0.0996998921,
0.0263193212,
-0.3808282316,
0.1100183651,
0.162058413,
-0.246406287,
-0.1027879864,
-0.4254750311,
0.0668771863,
-0.4721824825,
-0.0609574281,
-0.0015061758,
-0.0517788678,
0.3292968869,
-0.2778445482,
-0.0546496958,
0.2590722144,
-0.0380638875,
-0.1223073229,
0.2285177708,
-0.0811449587,
0.1059946716,
-0.2078043371,
0.0991858244,
-0.0261377245,
-0.4818364084,
-0.7829110026,
0.2422852963,
-0.2895566225,
0.2557765841,
0.1629288197,
0.3792766333,
0.1021167487,
-0.2274316847,
0.0992247462,
0.3591866791,
0.1214847192,
-0.2170902491,
-0.0638452172,
-0.284576118,
-0.2017316967,
0.0688610375,
0.0111606726,
0.2223487794,
0.0180596076,
0.6689190865,
0.2116286606,
0.0055398401,
0.0050582327,
0.5441517234,
0.6210244298,
0.0836994946,
0.0081206076,
-0.1322745383,
-0.6575933695,
0.5051037669,
-0.4428116977,
-0.0797982663,
-0.200809896,
-0.0727460235,
0.1174283773,
-0.0122000501,
-0.0691098347,
0.1472262889,
0.0574349724,
-0.0790044814,
0.0755311176,
0.1750713289,
0.0899825171,
0.3439257443,
0.0125085115,
-0.020002557,
-0.0590692684,
-0.0895982906,
0.1630966663,
-0.1867703944,
0.0538615361,
-0.0638035685,
0.1063677371,
-0.2141563594,
-0.1605973393,
0.2369827628,
0.3473388851,
0.295368731,
-0.2741959393,
0.3801432252,
0.0418265015,
0.4804564416,
-0.1965431273,
-0.0899000987,
0.1089190096,
-0.2300200164,
0.0361247808,
0.0947793126,
-0.219152227,
0.0928042158,
-0.2077878863,
0.0561608523,
0.0911781415,
0.0453530774,
-0.1688563824,
-0.026934959,
0.2806838453,
-0.0091584027,
0.2706624866,
-0.1058413163,
0.6271887422,
0.0670903623,
0.3668434024,
0.1496050954,
0.0516430363,
0.0494003519,
0.0035035461,
-0.1143361032,
0.0166759174,
0.3775185347,
0.4988293648,
0.1017265543,
0.288933754,
-0.216471076,
0.2117235512,
-0.2904098928,
0.0543169081,
-0.1254850924,
-0.2110745013,
0.3450728059,
0.1341909915,
-0.1068298817,
0.131516397,
-0.286865294,
0.1256858706,
0.0205751751,
0.1268950701,
0.1132572219,
-0.3515273035,
0.5667671561,
0.2086836398,
0.1933234334,
-0.2534320354,
-0.4644888639,
0.1059638038,
0.7339767814,
0.1522964835,
0.0692452639,
-0.4219462872,
-0.0498632789,
0.0390345231,
-0.3337164223,
-0.0399525613,
-0.3362486362,
-0.0026226114,
-0.1162399575,
0.553121388,
0.0384057164,
0.1448248625,
0.1003429741,
-0.3246200979,
-0.3931279778,
-0.1838716865,
0.149912715,
-0.0926099494,
0.4356100857,
0.0584887937,
0.1634124964,
-0.1018637717,
0.0385643914,
-0.0192830861,
-0.388620615,
-0.0294426605,
-0.097579062,
-0.0303106457,
-0.109744966,
-0.2369120419,
0.1718400866,
-0.1660529375,
-0.3670011163,
0.3042770624,
-0.3411257267,
-0.2106986642,
0.2431463748,
0.018586196,
0.2877354622,
-0.0033967234,
-0.0847149938,
0.0122465193,
-0.4591411352,
0.2137270868,
0.1240148395,
-0.435131222,
-0.1326474249,
0.1863021851,
-0.4067222476,
0.2642199099,
-0.4266269207,
-0.2256038189,
-0.3255860507,
0.2897674739,
-0.0849460214,
-0.0755463168,
0.4451620281,
-0.2783599198,
0.0496293791,
-0.4187122583,
0.3278363347,
0.1877295673,
0.0333669744,
-0.0206509009,
0.0646266788,
-0.2048717737,
0.137707755,
0.5131194592,
-0.0706714243,
0.012360624,
0.1415622234,
0.3056559265,
0.4387531877,
-0.3285653889,
-0.1682540476,
-0.1418813318,
-0.0881156847,
-0.1464127302,
-0.0282608271,
-0.1522280276,
-0.0631076321,
-0.1003580689,
-0.0561153293,
-0.0604509674,
-0.3005374074,
0.035687916,
0.193885237,
0.1703025401,
0.2378978431,
-0.0101714954,
-0.0816976205,
-0.153150171,
0.1253316253,
0.231932655,
0.4605027735,
0.0418452844,
-0.0895563439,
0.2507176399,
-0.1388714761,
0.1664324999,
0.0581350401,
0.3817953765,
-0.0692601874,
-0.0027471706,
-0.0256758146,
-0.3396190107,
0.3149639666,
0.022852635,
0.140936479,
0.2082723826,
0.1402718723,
-0.2288291007,
-0.179369688,
-0.192405954,
0.2797607183,
0.4190054834,
0.1958258599,
-0.1657380164,
-0.1652560234,
-0.6652340293,
0.3763881326,
-0.0641948432,
-0.5701955557,
-0.1203796491,
0.2926158905,
-0.2946733832,
-0.0075141899,
-0.0453768149,
0.0121910535,
0.0891528055,
0.1238369793,
-0.2526248395,
-0.1297715455,
-0.1409837157,
-0.1335090995,
0.0248140991,
-0.1612219512,
0.2471481562,
0.0566676445,
-0.2681395411,
0.1358756721,
0.1964802891,
0.1946497262,
0.1310193241,
0.3067687154,
-0.239816457,
-0.2409113199,
0.4729900658,
-0.0340858065,
0.1218701005,
0.0318529047,
-0.0542270765,
0.0342295729,
0.0109435245,
0.1316777468,
-0.0267075244,
0.442661643,
0.0681155697,
0.0203915592,
0.1507996768,
-0.190019384,
0.4326276481,
0.3856017292,
-0.0337895863,
0.0248088203,
-0.0407204069,
0.8245960474,
0.0921500772,
0.1442941874,
-0.0362535082,
-0.0155592561,
0.2752336562,
-0.4026062489,
0.0966882035,
-0.1102208421,
-0.4013602436,
-0.0234982744,
-0.2942135036,
0.3266856074,
-0.1835653484,
0.0453543589,
0.1467426121,
-0.1992108524,
-0.1096253619,
-0.0855047405,
0.3566524088,
-0.4257876277,
-0.344966948,
-0.1093271226,
0.153333813,
0.2002200186,
0.1391862631,
-0.082458891,
-0.1181074679,
-0.2436952889,
-0.0548406728,
-0.2625558972,
0.0846151263,
-0.0476016067,
0.4155932367,
-0.3947256804,
0.1000962257,
-0.0801594779,
0.0445273705,
0.0227884036,
0.3616430461,
-0.3698628247,
0.1039462611,
-0.030253537,
-0.1415359229,
0.1491735578,
-0.1640700996,
0.2833951414,
-0.0795299485,
-0.133287698,
-0.2885743976,
-0.1448112726,
-0.2349161655,
0.2240303755,
-0.0890769437,
0.1189409196,
0.2076828629,
-0.8349127173,
0.056165576,
-0.1746172607,
-0.0080151781,
0.05945912,
0.189630419,
-0.1696867794,
0.172954008,
-0.3796273768,
-0.1412031949,
-0.0095264055,
0.632799089,
-0.157565698,
-0.325160265,
0.4551860094,
0.125176385,
-0.0939948484,
-0.1562014818,
0.3597621918,
-0.1781915128,
-0.2810076475,
-0.1570889652,
-0.1280913353,
0.0217506438,
-0.1071635336,
-0.0376138315,
0.2150372565,
-0.1415711045,
0.0009853393,
-0.4553615153,
-0.2899050415,
-0.0132944584,
-0.365115732,
0.0708681047,
-0.2607097626,
-0.354385823,
-0.2182279229,
0.2064196765,
-0.2022308111,
0.1624436826,
-0.2028406262,
-0.1324504018,
0.3135012686,
-0.1432559341,
0.2176747024,
-0.317787528,
-0.0388181657,
0.4003423452,
-0.1684274971,
-0.0534727946,
-0.3270485997,
0.1815369874,
0.1397498846,
0.3898147047,
0.1737303138,
-0.3615199327,
-0.0878408253,
0.0177420713,
0.0914111733,
0.2003787607,
0.1327968985,
-0.1036607027,
-0.0074625071,
0.8132434487,
-0.1819960326,
0.1114892364,
0.07929869,
-0.1420636326,
0.0595963635,
0.0092012165,
0.098899588,
0.261495769,
-0.5912234187,
0.0871782303,
0.0094876289,
0.1891732812,
0.3638573885,
-0.1222798526,
0.0873580277,
0.306260854,
0.2429112643,
0.3095578253,
0.1071132272,
-0.1949278116,
0.3150211871,
0.0827361345,
-0.1386361718,
-0.1861427277,
0.3364925981,
0.0000919215,
-0.0383741297,
-0.1212084815,
0.2178882211,
-0.2060881555,
-0.1286366284,
0.3628096581,
0.2267933041,
0.0419034995,
-0.1312206686,
-0.024187129,
0.1435375661,
0.1016446277,
0.151717186,
0.0697907209,
0.0558382422,
0.3068059087,
-0.383895576,
-0.0301959179,
-0.140351966,
0.1081609279,
0.0049636047,
-0.1297218651,
0.1225394905,
0.1950868368,
0.462955296,
0.1371623427,
-0.2884197831,
-0.061860431,
-0.3252460063,
-0.0417995825,
-0.0186614245,
0.194416523,
-0.1048465818,
-0.1307230592,
0.5430276394,
-0.0533542633,
-0.0094788373,
-0.2325726897,
0.1250624061,
0.1852503419,
-0.0379819348,
0.3821389377,
0.2015942037,
-0.1882232726,
-0.32952407,
0.0993862078,
0.2410274893,
-0.2834416032,
-0.139507547,
0.195046097,
0.1730167717,
0.1247149855,
0.0686642453,
0.2102265805,
0.3694635332,
-0.3128954768,
0.0123258419,
-0.1889054775,
-0.0972296372,
-0.0744771063,
0.3880663514,
-0.0245933495,
-0.0494765565,
0.1560750902,
0.018243555,
-0.203735128,
0.1637203395,
0.1346607953,
0.2287756503,
-0.1798714846,
0.3555245399,
0.3213665187,
0.2588978708,
0.1141775027,
0.3011617362,
-0.2230376303,
-0.1569639295,
0.0158118829,
0.1607815027,
0.0891636536,
-0.0217629503,
0.0613140278,
-0.2351770848,
0.294806093,
0.2314911634,
-0.0113277249,
-0.2304638028,
0.3384528756,
-0.6397737861,
0.1641094685,
-0.2192554921,
-0.4225709438,
-0.091371268,
0.2267868519,
0.2722914219,
0.229496479,
-0.0486786813,
0.0103651583,
-0.0766911581,
0.0255011469,
-0.2985698879,
0.2668830752,
0.2643014491,
-0.1601853073,
-0.1551840603,
-0.484521091,
-0.0849694461,
-0.1766766906,
0.0021153688,
0.0124988668,
-0.2989183366,
0.1190501899,
0.1107703075,
0.3183737099,
0.2013280243,
0.3909296393,
-0.0760906264,
-0.4142149687,
-0.5229350328,
-0.0357377604,
-0.1828191429,
-0.3264656961,
0.0246372074,
0.4542932212,
-0.6023716927,
-0.3832442164,
-0.3101326227,
0.4385448694,
-0.2643039823,
-0.245270893,
-0.3281895816,
0.1080600023,
-0.2162434459,
0.3898148537,
0.1635170281,
0.370090574,
0.1109336019,
0.2532014847,
-0.4738084972,
0.0268703774,
0.3253875971,
-0.4806061089,
-0.2813552618,
0.1587111205,
0.1845036149,
0.0396691076,
-0.2161519974,
-0.158162728,
0.3095881939,
0.0067396797,
-0.0276308209,
-0.0821890682,
0.0420229658,
0.0551395714,
0.0974707976,
-0.1874362975,
0.0811237544,
0.0602794103,
-0.1005466282,
-0.2201518118,
-0.0833189338
] |
https://github.com/huggingface/datasets/issues/329 | [Bug] FileLock dependency incompatible with filesystem | Looks like the `flock` syscall does not work on Lustre filesystems by default: https://github.com/benediktschmitt/py-filelock/issues/67.
I added the `-o flock` option when mounting the filesystem, as [described here](https://docs.aws.amazon.com/fsx/latest/LustreGuide/getting-started-step2.html), which fixed the issue. | I'm downloading a dataset successfully with
`load_dataset("wikitext", "wikitext-2-raw-v1")`
But when I attempt to cache it on an external volume, it hangs indefinitely:
`load_dataset("wikitext", "wikitext-2-raw-v1", cache_dir="/fsx") # /fsx is an external volume mount`
The filesystem when hanging looks like this:
```bash
/fsx
----downloads
----94be...73.lock
----wikitext
----wikitext-2-raw
----wikitext-2-raw-1.0.0.incomplete
```
It appears that on this filesystem, the FileLock object is forever stuck in its "acquire" stage. I have verified that the issue lies specifically with the `filelock` dependency:
```python
open("/fsx/hello.txt").write("hello") # succeeds
from filelock import FileLock
with FileLock("/fsx/hello.lock"):
open("/fsx/hello.txt").write("hello") # hangs indefinitely
```
Has anyone else run into this issue? I'd raise it directly on the FileLock repo, but that project appears abandoned with the last update over a year ago. Or if there's a solution that would remove the FileLock dependency from the project, I would appreciate that. | 31 | [Bug] FileLock dependency incompatible with filesystem
I'm downloading a dataset successfully with
`load_dataset("wikitext", "wikitext-2-raw-v1")`
But when I attempt to cache it on an external volume, it hangs indefinitely:
`load_dataset("wikitext", "wikitext-2-raw-v1", cache_dir="/fsx") # /fsx is an external volume mount`
The filesystem when hanging looks like this:
```bash
/fsx
----downloads
----94be...73.lock
----wikitext
----wikitext-2-raw
----wikitext-2-raw-1.0.0.incomplete
```
It appears that on this filesystem, the FileLock object is forever stuck in its "acquire" stage. I have verified that the issue lies specifically with the `filelock` dependency:
```python
open("/fsx/hello.txt").write("hello") # succeeds
from filelock import FileLock
with FileLock("/fsx/hello.lock"):
open("/fsx/hello.txt").write("hello") # hangs indefinitely
```
Has anyone else run into this issue? I'd raise it directly on the FileLock repo, but that project appears abandoned with the last update over a year ago. Or if there's a solution that would remove the FileLock dependency from the project, I would appreciate that.
Looks like the `flock` syscall does not work on Lustre filesystems by default: https://github.com/benediktschmitt/py-filelock/issues/67.
I added the `-o flock` option when mounting the filesystem, as [described here](https://docs.aws.amazon.com/fsx/latest/LustreGuide/getting-started-step2.html), which fixed the issue. | [
-0.0220689178,
-0.0703313053,
-0.0241179876,
0.0477824509,
0.064807117,
0.0538180023,
0.271902889,
-0.0904819593,
0.7102741003,
-0.0634488016,
-0.0230352599,
-0.0301011968,
0.1403869838,
-0.4040712416,
-0.2835732698,
0.2419640422,
0.2077274323,
0.0305832513,
-0.2452179193,
-0.0770897791,
-0.1613953263,
0.4342418909,
-0.0815223753,
-0.2347529978,
-0.5598561168,
0.1654609144,
-0.0396309309,
0.1403404027,
-0.3457122445,
0.1898195297,
0.3417887092,
0.6025446653,
-0.0452572703,
0.5372433662,
-0.0001287701,
-0.2627756298,
0.2452052832,
-0.0852421299,
-0.2170963883,
-0.1017387882,
-0.0870476961,
-0.1840787232,
0.2249265313,
-0.1094862819,
0.1608499289,
0.1228187233,
-0.0150861805,
-0.5285056233,
0.2650883496,
-0.1673846394,
-0.0002369881,
0.113112554,
0.1672378778,
-0.1510144621,
0.3145917952,
-0.2097323984,
-0.1848720014,
0.4976548553,
0.4717495441,
-0.090119198,
-0.2479740679,
0.0887353122,
0.0257887691,
0.0382367559,
0.604613483,
-0.295140028,
0.4669865966,
-0.2977612019,
-0.3035378456,
0.2270717472,
0.5503919125,
-0.0176634286,
-0.538492322,
-0.1820753664,
0.3580964208,
-0.0000864863,
0.4926610291,
0.0541596711,
-0.1355173886,
0.3503002524,
0.0152883828,
-0.1867277026,
0.0734808147,
0.0515655987,
-0.1668387353,
0.0551700741,
0.154046312,
0.0693726093,
0.23603338,
-0.1417634338,
0.004706379,
-0.2013446689,
-0.138934195,
0.0655193478,
-0.5184338093,
0.0440695807,
-0.0237708017,
0.0005390439,
0.001486741,
-0.1775714457,
-0.4711026847,
0.1959101856,
-0.1072872579,
0.4131367207,
0.1072751507,
0.1250374317,
0.1560993493,
-0.2706225514,
0.3129887879,
-0.0366702452,
-0.2005045414,
0.12349727,
-0.0997185782,
-0.2006221861,
-0.0706197321,
-0.0085441731,
0.0244505554,
-0.4772166014,
0.1940931827,
0.2955316305,
0.1394581646,
0.4006763399,
0.1581330895,
0.1941502392,
0.1847220957,
0.4262398183,
0.2075469792,
0.079327032,
-0.1944481134,
0.1226028502,
0.030518245,
-0.1448900402,
0.1050762758,
0.1360040456,
0.0371014625,
0.2895998657,
0.1767874658,
0.1284877956,
0.2166540027,
0.1174143702,
-0.0327689871,
-0.0519721061,
-0.193322584,
0.4518730044,
-0.1418787092,
0.1657256484,
0.0007302025,
0.1726855636,
-0.0379010588,
0.0773888826,
-0.3118939996,
-0.0237897262,
-0.1736698598,
-0.0390763916,
-0.4359889925,
0.0211997796,
-0.141653344,
-0.219877094,
-0.2442761064,
-0.3579334021,
0.0514368638,
-0.5044811964,
-0.0349154398,
0.0546139777,
-0.0038450733,
0.3324383199,
-0.4034097493,
-0.0246993005,
0.266372323,
-0.1798490733,
0.017475199,
0.3031404018,
-0.0489033274,
-0.0927235037,
-0.1638787687,
-0.0095841438,
0.1985514164,
-0.4244550467,
-0.6493108273,
0.1907724887,
-0.3349515498,
0.1472038627,
0.193184033,
0.2882730365,
-0.0813933387,
-0.12960127,
0.0087066106,
0.3986355662,
0.1607898176,
-0.1987581551,
-0.1371515989,
-0.2944771647,
-0.1860229671,
0.1477249712,
-0.0508103967,
0.1526191533,
0.0321161672,
0.5327262282,
0.233710438,
-0.0062226616,
-0.0406283513,
0.6131655574,
0.6778345108,
0.1461269855,
0.1264190376,
-0.1563684493,
-0.5479940772,
0.3858718872,
-0.3822481632,
0.0200355798,
-0.169359535,
-0.0390054509,
0.1234149411,
-0.022451099,
-0.0536843389,
0.161467284,
-0.0189639069,
-0.115492627,
0.0692484826,
0.0914663449,
0.1012218446,
0.4054678679,
-0.1135652363,
0.0921658725,
-0.1364718378,
-0.0361968167,
0.1138329133,
-0.2384925783,
0.0204267651,
-0.0355386771,
0.0971081182,
-0.2887969315,
-0.2271141708,
0.4242849052,
0.2979376018,
0.1792172939,
-0.0711192936,
0.3551245928,
0.0821089894,
0.5420105457,
-0.2560354471,
-0.1445956379,
0.0648708493,
-0.1487628371,
-0.1179765165,
0.0460428409,
-0.161824435,
0.1645621955,
-0.2425419688,
-0.0333045125,
0.1862595081,
0.1448425949,
-0.0942100585,
0.1040545404,
0.3544763327,
0.0335772522,
-0.1036464423,
-0.1695369482,
0.4346255064,
0.0932003558,
0.2976519167,
0.0829862282,
0.0781313926,
0.1071163118,
-0.0289709009,
-0.0915028825,
0.1539366394,
0.2255530506,
0.485483706,
0.0972240269,
0.120126605,
-0.3374756873,
0.1207469255,
-0.2458670586,
0.0951207802,
-0.0483834706,
-0.2100299597,
0.2208932638,
0.2606559694,
-0.1177730784,
0.0648324415,
-0.473108232,
0.108985424,
0.0579155758,
0.0545385182,
-0.0150620826,
-0.2951617837,
0.4948142767,
0.1755048037,
0.3769626617,
-0.2835222781,
-0.4526467025,
0.179809764,
0.8311288953,
0.1327476054,
0.0647039339,
-0.4011009634,
0.1000806764,
0.1955147982,
-0.3513922691,
-0.2648268342,
-0.2396949083,
0.0074710455,
-0.1677084863,
0.4072369933,
0.1740887463,
0.1044060513,
0.1826918423,
-0.1740868539,
-0.4815849364,
-0.1713531166,
0.2042212188,
-0.0078629376,
0.453990072,
0.0329960287,
0.1318004876,
-0.114172712,
-0.0199322142,
0.1900190711,
-0.3241443038,
-0.0359497666,
-0.0779609308,
-0.0392704494,
-0.152633965,
-0.2805638909,
0.2152978778,
-0.1210353523,
-0.3584308028,
0.2134420276,
-0.2896822691,
-0.2595072687,
0.0396316312,
0.0766237378,
0.2536055446,
-0.1284698844,
-0.1014172882,
0.0218410231,
-0.4564406276,
0.2862502933,
0.0493832305,
-0.5032615662,
-0.0686941594,
0.2903507948,
-0.4942882061,
0.1319267303,
-0.4954324365,
-0.3179024458,
-0.246088922,
0.1960784793,
0.0353221111,
-0.0818383172,
0.4039613008,
-0.2405235469,
0.0513252765,
-0.37431705,
0.2550768256,
0.1589967459,
0.1650803685,
0.0968527868,
-0.0252178013,
-0.1344373375,
-0.0114856511,
0.6712636948,
-0.1627850384,
-0.1171940714,
0.1715482473,
0.2996032536,
0.2783553302,
-0.3603676856,
-0.1101806164,
-0.0983456969,
-0.091698803,
0.0093126073,
0.021871388,
-0.01068707,
-0.109753333,
-0.1348102242,
-0.1368598044,
0.0612046197,
-0.3520060778,
0.0050270129,
0.2663821876,
-0.1018699706,
0.2015020251,
-0.1082895845,
-0.0589302927,
-0.1559252739,
0.2489110976,
0.4016431272,
0.4164844155,
0.0854803175,
-0.0278372616,
0.0806598514,
-0.1156343445,
0.2246976048,
-0.0763712823,
0.3127212524,
-0.0328803658,
0.0389625207,
0.0106729157,
-0.3546395898,
0.4242370725,
-0.0576989278,
0.1282719821,
0.1406540573,
0.0565009564,
-0.2863339484,
-0.1601760387,
-0.282854259,
-0.0436639376,
0.3871495426,
0.2369046211,
-0.1635141373,
-0.2345160246,
-0.4966440797,
0.3092569113,
-0.1080523878,
-0.5445774794,
-0.0965396687,
0.3303974271,
-0.3534879386,
0.0477931723,
-0.1198700964,
0.1562537849,
-0.013197612,
0.1064737439,
-0.2379442304,
-0.0273867026,
-0.0754134506,
-0.0080909841,
0.0163862146,
-0.0439743809,
0.2349881977,
0.0385370404,
-0.0726483986,
0.1333615482,
0.2118766159,
0.468526274,
0.2167076766,
0.4319482446,
-0.255948633,
-0.1288780272,
0.4705721736,
-0.0090790503,
-0.0429520532,
-0.1804578155,
0.081756711,
0.0764367431,
0.1618203968,
0.1221978962,
0.0046961941,
0.3768506348,
0.1502004266,
0.1201424748,
0.0793385655,
-0.2263433635,
0.5570190549,
0.4297813475,
0.1192742363,
0.1248107776,
-0.0013747551,
1.0098524094,
0.110224463,
0.0891089886,
0.1218448803,
0.0338148624,
0.2011276186,
-0.6567311287,
0.0791686103,
0.0160583183,
-0.2834215164,
-0.0612610243,
-0.2211586535,
0.383738935,
-0.2212115675,
0.1036455631,
0.2203224897,
0.1064145267,
-0.1884318888,
-0.1864147186,
0.3203712404,
-0.4331747293,
-0.4605294466,
0.046504125,
0.0883575082,
0.2271876782,
0.2807316184,
-0.0668823943,
-0.1008886993,
-0.1867898703,
-0.1367332935,
-0.2401667833,
0.0603207871,
-0.0571216606,
0.2376733422,
-0.642899394,
0.050337404,
-0.1325326711,
0.1312492192,
-0.0716647282,
0.2758538425,
-0.3406362534,
0.195692271,
0.0455399603,
-0.097159557,
0.1098519117,
-0.0986961424,
0.2272892147,
-0.1277886182,
-0.0428794399,
-0.2679035664,
-0.1020255983,
-0.1175597906,
0.1526533514,
-0.113096185,
0.0399342403,
0.1098318398,
-0.751541853,
0.1185877398,
-0.1799275726,
0.0076036304,
0.0078584468,
0.2270800173,
-0.2111289203,
0.0875641629,
-0.4490457177,
-0.1456819326,
-0.0969457626,
0.6907753944,
-0.1882466376,
-0.4291862547,
0.3878199756,
0.1820188165,
-0.0248330198,
-0.1662539393,
0.2785246968,
0.1498805285,
-0.5977127552,
-0.1147997528,
-0.0817320645,
-0.191628322,
0.073722586,
0.1710993052,
0.171240449,
-0.2321947515,
-0.0244570896,
-0.4262321591,
-0.1898559183,
0.0371152908,
-0.3765428662,
0.1015167087,
-0.1818583608,
-0.4537023902,
-0.1810140014,
0.0585200563,
-0.1408688128,
0.2131165862,
-0.1011468321,
-0.0680402517,
0.2884111404,
-0.0186859276,
0.2443310767,
-0.1946050525,
-0.0744402483,
0.3325655162,
-0.1290650964,
0.0094960183,
-0.3002606034,
0.1881703883,
0.1192867905,
0.4957101345,
0.1154989749,
-0.3775983453,
-0.0708094984,
-0.0054678153,
0.0890509933,
0.115648672,
0.080777809,
-0.1039889306,
0.3058718741,
0.6972973943,
-0.0860889181,
0.1983676851,
0.2485140264,
-0.0549643189,
-0.1351301819,
-0.101970166,
-0.0427582711,
0.1243595853,
-0.5576981902,
0.049953483,
0.0696816668,
0.3294984996,
0.3463844061,
-0.085084483,
0.0267596021,
0.2640785277,
0.437523663,
0.3466063142,
0.154382214,
-0.1451996863,
0.344172895,
0.075754039,
-0.1017274931,
-0.2094870061,
0.4380948246,
0.0302221142,
-0.0104043335,
-0.0076367632,
0.1041412875,
-0.1241198853,
0.1275943369,
0.3202591836,
0.4867451191,
-0.0664867014,
-0.1694220155,
0.1280145794,
0.1750626415,
0.0314672217,
0.2002258599,
0.100430049,
0.1505336314,
0.4474330842,
-0.3802277446,
0.0218058508,
0.239968285,
0.0390011072,
0.0401872359,
-0.0057543069,
-0.0691165254,
0.1953561008,
0.5384968519,
0.1521588266,
-0.252393961,
0.0875376165,
-0.3108754754,
-0.2210140824,
-0.1560129225,
0.2961384356,
-0.0756296217,
-0.0382717401,
0.3463687301,
-0.111404188,
0.0399674922,
-0.1754452735,
0.0525840707,
0.1362798661,
0.1210568547,
0.3864112496,
0.3674783707,
-0.395640403,
-0.3698975444,
0.0938782021,
0.2836428583,
-0.2083595395,
-0.0337963328,
0.2968215346,
0.0612662248,
0.3407030106,
0.0579258502,
0.2708123326,
0.2780503333,
-0.2221734524,
0.076917395,
-0.1248659641,
-0.0818739384,
-0.095093511,
0.3482889831,
0.0078958813,
-0.0478942208,
0.2252545953,
0.0160001256,
-0.1737379879,
0.1647749841,
0.0418880582,
0.2347174734,
-0.1700986177,
0.4057609737,
0.2302635312,
0.3443793654,
0.1322940141,
0.1089438945,
-0.2730688453,
-0.0650893897,
-0.0936829895,
0.0874610096,
0.0296585523,
-0.0366876945,
0.0316547602,
-0.2727530599,
0.2277413011,
0.2071666121,
-0.0866366774,
-0.2552131116,
0.3333529234,
-0.6523105502,
0.1505023539,
-0.1023137122,
-0.4395856261,
-0.2222523093,
0.3195895851,
0.2867956758,
0.2792308629,
-0.0373554006,
-0.1852325648,
-0.1396145523,
0.2462437451,
-0.3246273994,
0.3226271868,
0.1380728185,
-0.0423329324,
-0.1567664146,
-0.4385933876,
-0.0080303531,
-0.1300815642,
-0.0691765919,
0.163347587,
-0.3762868345,
0.1774117053,
0.0282085799,
0.2553617954,
0.1002024338,
0.3817992806,
0.0496048182,
-0.3303432763,
-0.5639333129,
-0.2779225707,
-0.0836468637,
-0.334669143,
-0.0548275486,
0.4474784434,
-0.5062483549,
-0.2603892982,
-0.3515317738,
0.2791647017,
-0.2844421268,
-0.110885933,
-0.3698861599,
0.1871894896,
-0.2657653689,
0.4052439034,
0.1279306263,
0.3573997319,
0.1689557284,
0.3010960221,
-0.4526658952,
-0.0991736278,
0.4318037629,
-0.476982832,
-0.2671387196,
0.1060704142,
0.246859625,
0.2311084569,
-0.1564674526,
-0.212507531,
0.2675847113,
-0.0525469445,
0.1363869905,
-0.037258856,
0.0257629566,
0.1732923537,
-0.0254706889,
-0.2425496876,
-0.0126666427,
0.061308071,
-0.0972380936,
-0.1867423654,
-0.1274039
] |
https://github.com/huggingface/datasets/issues/328 | Fork dataset | To be able to generate the Arrow dataset you need to either use our csv or json utilities `load_dataset("json", data_files=my_json_files)` OR write your own custom dataset script (you can find some inspiration from the [squad](https://github.com/huggingface/nlp/blob/master/datasets/squad/squad.py) script for example). Custom dataset scripts can be called locally with `nlp.load_dataset(path_to_my_script_directory)`.
This should help you get what you call "Dataset1".
Then using some dataset transforms like `.map` for example you can get to "DatasetNER" and "DatasetREL".
| We have a multi-task learning model training I'm trying to convert to using the Arrow-based nlp dataset.
We're currently training a custom TensorFlow model but the nlp paradigm should be a bridge for us to be able to use the wealth of pre-trained models in Transformers.
Our preprocessing flow parses raw text and json with Entity and Relations annotations and creates 2 datasets for training a NER and Relations prediction heads.
Is there some good way to "fork" dataset-
EG
1. text + json -> Dataset1
1. Dataset1 -> DatasetNER
1. Dataset1 -> DatasetREL
or
1. text + json -> Dataset1
1. Dataset1 -> DatasetNER
1. Dataset1 + DatasetNER -> DatasetREL
| 72 | Fork dataset
We have a multi-task learning model training I'm trying to convert to using the Arrow-based nlp dataset.
We're currently training a custom TensorFlow model but the nlp paradigm should be a bridge for us to be able to use the wealth of pre-trained models in Transformers.
Our preprocessing flow parses raw text and json with Entity and Relations annotations and creates 2 datasets for training a NER and Relations prediction heads.
Is there some good way to "fork" dataset-
EG
1. text + json -> Dataset1
1. Dataset1 -> DatasetNER
1. Dataset1 -> DatasetREL
or
1. text + json -> Dataset1
1. Dataset1 -> DatasetNER
1. Dataset1 + DatasetNER -> DatasetREL
To be able to generate the Arrow dataset you need to either use our csv or json utilities `load_dataset("json", data_files=my_json_files)` OR write your own custom dataset script (you can find some inspiration from the [squad](https://github.com/huggingface/nlp/blob/master/datasets/squad/squad.py) script for example). Custom dataset scripts can be called locally with `nlp.load_dataset(path_to_my_script_directory)`.
This should help you get what you call "Dataset1".
Then using some dataset transforms like `.map` for example you can get to "DatasetNER" and "DatasetREL".
| [
-0.2403901517,
-0.1519304961,
-0.0046682097,
0.1388017088,
-0.1991833746,
0.1661747396,
0.0855338126,
0.3236588538,
0.1992567629,
-0.1408095509,
0.0522019863,
0.676864922,
-0.4008251131,
0.161125347,
0.2155927122,
-0.2229902595,
0.1336965859,
0.0569899231,
0.1327418387,
0.1123378277,
0.0333926305,
-0.1810868233,
0.1336495578,
0.0569473729,
-0.0264416616,
-0.2280299067,
-0.1203991622,
0.111885801,
0.0269776322,
0.0009551719,
0.4616037905,
0.1885264367,
-0.0171259902,
0.3208824694,
-0.0001178061,
0.1305476427,
0.0574897416,
0.0988212824,
-0.2189418972,
-0.2057287544,
-0.1271965951,
-0.1774252504,
0.1727926433,
-0.187312454,
0.0866851658,
-0.3770359457,
0.1852134317,
-0.2320506871,
0.7697010636,
0.1443220377,
0.1043770537,
0.0922690779,
-0.1246084198,
0.2189230919,
-0.2451388985,
0.3413792253,
0.0497780666,
0.1736000627,
-0.0169575401,
-0.2067800313,
-0.075504452,
0.0774042904,
-0.1792523265,
0.0272164978,
0.2267157435,
-0.0575827695,
-0.0144063756,
-0.1606172323,
0.0055112932,
0.3372307718,
-0.0058293715,
-0.2154866159,
-0.207976684,
-0.6004969478,
0.1435127556,
-0.1713544428,
-0.1086235717,
0.2095339894,
-0.1596321613,
0.2616224289,
0.0679496527,
-0.5672593117,
-0.0091921836,
0.0720448866,
0.0448698103,
0.2262710184,
0.1848955005,
0.2127394229,
0.2443889976,
0.0795685202,
0.3197895885,
-0.2550049424,
-0.0211978462,
0.023416955,
-0.1553248912,
-0.2513638139,
-0.1570300758,
-0.5725245476,
0.078603819,
0.2976172268,
0.3420595825,
0.0134501252,
-0.3720589578,
0.1997282207,
0.1516209245,
-0.2357714772,
-0.1162771434,
0.3510946929,
-0.0139146112,
-0.2985034287,
0.0886314064,
0.1362759024,
-0.4068128467,
-0.024696121,
-0.2755963802,
-0.0017348081,
0.3039383888,
0.2416283935,
-0.1230669171,
-0.4214796424,
-0.2392183542,
-0.1486855149,
0.1763508767,
-0.0079227537,
0.0141328201,
0.5878418684,
-0.0423439592,
0.4042406678,
-0.1854725182,
-0.2160094678,
0.0273766704,
-0.0208286103,
-0.1518220752,
0.0427036956,
0.1486830115,
0.4183573723,
0.1775201261,
-0.0463541448,
-0.2537015676,
-0.0799316689,
0.4683655798,
0.0026973151,
-0.0315184593,
-0.0669803917,
-0.0444805399,
0.033809714,
0.0545954555,
-0.0170927197,
-0.2666883171,
0.147213757,
-0.1560298502,
-0.1347333491,
-0.0913871527,
0.0619668216,
-0.0013741106,
-0.2966219783,
-0.6264997721,
0.6202909946,
0.2018989921,
-0.0099179447,
0.0208920203,
-0.0113560809,
-0.3717826605,
-0.2209552079,
0.086706236,
0.1400283724,
-0.3647658527,
-0.3302683532,
-0.2051743865,
-0.0137739023,
-0.1466052979,
0.4300250411,
-0.2711235285,
0.1972017437,
0.0315717533,
-0.0230289027,
0.6090844274,
-0.2180973887,
-0.0365231596,
0.1634852886,
-0.1810099483,
-0.1027964801,
0.1132748276,
0.1215593815,
0.0628550872,
-0.1734140664,
-0.0528562963,
0.7855043411,
-0.3208650947,
0.0275787488,
0.174257949,
-0.2888344526,
0.2234943509,
0.2195892632,
-0.0326545574,
0.004539147,
-0.2716985643,
-0.0584676415,
0.2219851017,
-0.1346553415,
0.3524713516,
-0.0911046863,
-0.1485605538,
-0.0693354756,
-0.1277199388,
-0.2041726261,
-0.5392058492,
-0.0095580816,
0.0517538935,
-0.0288863517,
0.1372355819,
-0.1356147975,
0.052891843,
-0.0021246448,
0.0300062541,
0.0323187187,
-0.0159960724,
0.0022272244,
0.0753963441,
-0.309769541,
-0.3593777418,
0.0514096171,
0.0316318572,
0.1768801659,
-0.3762132227,
0.5385992527,
0.2853187025,
0.0463968143,
-0.0958447605,
0.2762736678,
-0.1842875034,
0.0196103267,
0.1722975671,
0.089477405,
-0.2095706463,
0.3988026083,
0.3215483129,
0.2255489677,
0.2627265751,
-0.4603497088,
0.3501002491,
0.0316815116,
-0.0697626024,
-0.1383181065,
-0.2709312737,
0.3280026913,
0.1001759022,
0.4635063708,
-0.0369857252,
0.2488964945,
0.1319746226,
-0.1381079555,
-0.2372633666,
0.1167025939,
0.0113798957,
-0.0981429815,
0.288834691,
-0.0873023495,
-0.445243448,
0.3614443541,
0.3100602627,
-0.0912932679,
0.0130848596,
0.0618506111,
-0.2570585608,
-0.0112766102,
-0.1076848283,
0.5400252938,
0.0879027322,
0.2115105242,
0.2821084857,
0.0279925968,
-0.2887629271,
0.0348276608,
0.2299977839,
0.1382595748,
0.5379909277,
-0.0090585891,
0.1656316817,
-0.2080514133,
0.0035573095,
-0.2566026449,
0.3904083371,
0.0426653773,
-0.0485816076,
0.4440460503,
-0.33024472,
-0.4055000544,
-0.6255347133,
-0.14469558,
-0.0908598751,
-0.2803326249,
-0.0969090164,
0.2085826099,
-0.0711977035,
0.2793180943,
-0.0553825796,
0.2379255295,
-0.2599778473,
-0.0371601805,
0.0208118856,
-0.51583606,
-0.0122364741,
0.0440673307,
0.5248748064,
0.2014621049,
0.228609696,
0.4384926558,
-0.2095716894,
-0.1107248142,
-0.1922596246,
0.1964454651,
-0.1147723347,
-0.0068919547,
0.1081256121,
-0.1384061277,
0.170103699,
-0.2603870928,
-0.1260143965,
-0.0806495696,
-0.1264219582,
-0.1522289515,
-0.1260613203,
0.2722682953,
-0.0650105923,
-0.194634065,
-0.3711027801,
-0.2666159272,
0.3674736619,
0.0190247297,
0.2201632857,
0.3498851657,
0.1230061278,
0.0886919349,
0.0806674063,
-0.0853572488,
0.1626692712,
-0.0287239477,
-0.0575834624,
-0.2798255682,
0.1778042018,
-0.2847961783,
-0.3303153515,
0.3567443192,
0.1205295622,
-0.2028898299,
0.3326490521,
-0.0591553375,
-0.0081523731,
-0.107824102,
-0.2849695385,
0.0736615136,
0.1092723608,
0.0739222765,
-0.0420349017,
0.1928339303,
0.171317637,
0.0816803649,
0.1657757014,
0.2389998734,
0.220533222,
0.1532524079,
0.8823807836,
0.0961879492,
-0.2332428843,
-0.2094872743,
0.1341322958,
-0.3067846894,
0.1412736177,
-0.0705723837,
-0.141685456,
-0.0307900533,
0.0928696692,
0.0504511446,
0.05446814,
-0.3637416661,
0.0279164538,
0.0164341331,
-0.0976037607,
-0.3104009926,
0.344476819,
-0.6596313119,
0.0089334827,
-0.046371989,
-0.3165361285,
-0.3431256115,
-0.0066953674,
-0.3269064724,
-0.068653211,
0.1676106453,
-0.0292695798,
-0.507126987,
0.2579825521,
-0.4315710962,
0.1202669889,
-0.0834001899,
0.0603629351,
0.2149149477,
-0.1606001258,
-0.0080817081,
-0.1677449197,
0.7057888508,
-0.0820005536,
0.0358327664,
-0.0929187685,
0.2638989091,
-0.5462856293,
0.1581642032,
-0.1408660561,
0.4263218641,
0.1450155526,
0.109265238,
-0.343611449,
-0.3307374418,
0.1954761446,
-0.0901961774,
-0.2377158999,
0.0916708261,
0.120443508,
-0.0763524994,
-0.2651779354,
-0.0840474665,
0.1225113943,
-0.1332663,
-0.1493368894,
-0.0854699165,
-0.2304701656,
-0.0773838907,
0.1313547045,
-0.0339745581,
-0.1385276318,
0.0584504865,
0.2399110943,
-0.0263400488,
0.1379602551,
0.1820327938,
0.4787064791,
0.0689760149,
-0.4266799092,
-0.0599453859,
0.1805773526,
0.3776088655,
-0.0757102221,
0.3494693935,
0.4628928006,
0.5009767413,
-0.1913426518,
-0.2140135169,
0.147513777,
-0.1411331296,
0.1573562324,
-0.4000529647,
-0.5321151018,
0.4567711055,
0.2663405538,
0.0034417212,
0.3851113021,
-0.2737950683,
-0.3635835946,
0.3545494378,
0.1856123805,
0.7174009085,
-0.1879118532,
0.2493954152,
0.2364904284,
-0.4876545072,
0.8625795841,
-0.4363300502,
0.0064867958,
-0.1172528565,
0.0915807784,
-0.0858600289,
-0.1608453691,
-0.130258888,
0.6075695753,
-0.0718341544,
0.1753157228,
0.2298946679,
-0.3705947995,
-0.0043975711,
0.4035181999,
-0.0108019542,
-0.321025908,
-0.0747727975,
-0.0025707409,
-0.3699762821,
-0.2056079209,
0.0852034986,
-0.221065104,
-0.1099658757,
0.0532784611,
-0.1914250106,
0.1074025333,
0.055404447,
0.0998195708,
0.1233318821,
-0.4270583987,
0.2436648905,
-0.0507094041,
0.1934253722,
-0.309584111,
-0.1150324792,
0.0610687435,
-0.1171872169,
0.0524725355,
-0.0921590403,
-0.2186586708,
0.3866887689,
0.1606970727,
-0.2823699117,
-0.1151412576,
0.0793832242,
-0.2370331138,
0.0405815244,
-0.1036421955,
0.1019343361,
0.32121557,
-0.1311905086,
0.4480584264,
-0.3300968707,
-0.1316240579,
0.0037201783,
0.0989345983,
-0.1084953398,
-0.1570861489,
-0.0438497476,
-0.0517287552,
0.1102960482,
-0.0456444211,
0.1898002177,
0.0328045115,
0.4517894387,
0.4382622838,
0.1849961132,
-0.1834536642,
-0.1205482408,
0.3161777556,
-0.5272358656,
0.0348595865,
-0.2859779,
-0.1961445957,
0.1881089211,
-0.1107749343,
0.0254112408,
0.3236619234,
-0.1766673326,
-0.3987575173,
-0.2347109318,
0.5112708211,
-0.1878655106,
0.0873797685,
-0.0445178524,
0.2155914456,
-0.0062346533,
0.3952153623,
-0.1837540865,
0.2079981267,
0.1332277805,
0.3373392522,
0.0425124727,
-0.0526202843,
-0.0974913016,
0.078047052,
-0.0534387864,
-0.0628124923,
0.0414901525,
-0.1153305992,
-0.2196516395,
0.1184237748,
-0.0277113765,
-0.1209555715,
0.0800829381,
-0.2183680832,
-0.0677794665,
-0.0934068114,
-0.1152937636,
-0.2885547876,
0.0195915736,
0.2287471741,
0.0717818886,
0.0809649825,
-0.2614688277,
0.1132055372,
0.1173840165,
-0.0293145366,
-0.1184696332,
0.4501014352,
0.2463175654,
-0.1423182338,
-0.5291053057,
-0.0361754708,
0.2934220135,
0.0178206973,
0.0412507989,
-0.063545838,
-0.0937135369,
-0.0815749168,
0.2306851298,
0.4306108952,
0.0399844237,
0.2269212455,
0.2728827298,
0.1234996915,
-0.076157175,
0.131649524,
0.4431098104,
-0.2541211843,
0.1279862821,
0.3206242323,
-0.1318928003,
0.1309421211,
-0.2874298096,
0.0343134329,
-0.0642108694,
-0.2025074959,
0.4111101627,
0.2690483332,
-0.1702832282,
-0.1183944494,
0.1516783088,
-0.0685794577,
0.3975033164,
0.1099757925,
0.2115634531,
0.4511908591,
0.2925951481,
-0.0665417388,
0.5318662524,
-0.1450626552,
-0.3541171253,
-0.132411778,
0.1264007688,
0.2644670606,
0.2252120823,
0.6926087737,
0.2272462845,
-0.2828001082,
0.0556716099,
0.4929942787,
0.0644735545,
-0.3106921911,
-0.6167652607,
0.1454282105,
-0.1103954613,
-0.035738498,
0.014125309,
-0.2954677343,
0.2550459206,
0.1459863931,
0.1808392704,
-0.3622284532,
0.2633670866,
0.192780748,
0.0450938717,
-0.0546776205,
0.1777573228,
0.1717293561,
-0.1702222228,
0.020948723,
0.0810636654,
0.0977049619,
-0.0676144511,
-0.4525374472,
0.0962839574,
0.1943969876,
-0.0693977326,
-0.137186408,
0.1222015545,
0.2356627285,
0.0084833894,
0.2597688437,
0.0195142068,
-0.1069609225,
-0.0792252123,
0.3964881897,
-0.0399051458,
-0.3999810219,
0.4468275011,
0.2478087097,
-0.2203110307,
0.206221655,
0.2295761555,
-0.374043107,
-0.1238934249,
0.3689208627,
-0.2390843034,
-0.050556086,
0.0956807435,
0.0219324566,
-0.0627147406,
0.4967686832,
0.1408806145,
0.4004292786,
0.038427528,
0.0547650754,
-0.3039271235,
-0.1496275067,
-0.1999979317,
-0.0380622558,
-0.3141908348,
0.1837073416,
0.2592155337,
0.3747391701,
-0.1363189816,
0.0206897855,
0.2875969112,
0.3725078702,
-0.0866804644,
-0.2635839581,
0.0417831838,
0.3251542151,
0.2149628699,
-0.3820337355,
-0.1086413339,
0.4458054006,
-0.2035887837,
0.0533742569,
-0.0341529325,
0.3256239295,
-0.1564892232,
0.0859086886,
0.0061815362,
0.3960806727,
-0.053664133,
-0.3540637791,
-0.3446361423,
-0.1459412277,
-0.5333602428,
0.2980468273,
-0.0745124668,
0.5710756779,
-0.5824337006,
0.199221462,
-0.0548032522,
-0.5520592928,
-0.0332468934,
-0.0165011752,
-0.4366422892,
0.2478283346,
-0.2463940084,
0.1747564226,
0.0671190619,
0.4830775559,
0.0326567367,
0.0731238574,
-0.1083627045,
0.0193063468,
0.2219753861,
-0.1630265266,
-0.0337867253,
0.0701636672,
-0.0563481823,
0.1557715386,
0.1068741381,
-0.5881656408,
-0.045723632,
0.2437052727,
-0.2993690372,
-0.0371274166,
0.1695756316,
0.2203141898,
-0.0677682906,
-0.1151804328,
0.3601843417,
0.0467817709,
-0.3041183352,
0.0224006921,
-0.3639564514
] |
https://github.com/huggingface/datasets/issues/328 | Fork dataset | Thanks for the helpful advice, @lhoestq -- I wasn't quite able to get the json recipe working -
```
~/.virtualenvs/inv-text2struct/lib/python3.6/site-packages/pyarrow/ipc.py in __init__(self, source)
60
61 def __init__(self, source):
---> 62 self._open(source)
63
64
~/.virtualenvs/inv-text2struct/lib/python3.6/site-packages/pyarrow/ipc.pxi in pyarrow.lib._RecordBatchStreamReader._open()
~/.virtualenvs/inv-text2struct/lib/python3.6/site-packages/pyarrow/error.pxi in pyarrow.lib.pyarrow_internal_check_status()
~/.virtualenvs/inv-text2struct/lib/python3.6/site-packages/pyarrow/error.pxi in pyarrow.lib.check_status()
ArrowInvalid: Tried reading schema message, was null or length 0
```
But I'm going to give the generator_dataset_builder a try.
1 more quick question -- can .map be used to output different length mappings -- could I skip one, or yield 2, can you map_batch | We have a multi-task learning model training I'm trying to convert to using the Arrow-based nlp dataset.
We're currently training a custom TensorFlow model but the nlp paradigm should be a bridge for us to be able to use the wealth of pre-trained models in Transformers.
Our preprocessing flow parses raw text and json with Entity and Relations annotations and creates 2 datasets for training a NER and Relations prediction heads.
Is there some good way to "fork" dataset-
EG
1. text + json -> Dataset1
1. Dataset1 -> DatasetNER
1. Dataset1 -> DatasetREL
or
1. text + json -> Dataset1
1. Dataset1 -> DatasetNER
1. Dataset1 + DatasetNER -> DatasetREL
| 87 | Fork dataset
We have a multi-task learning model training I'm trying to convert to using the Arrow-based nlp dataset.
We're currently training a custom TensorFlow model but the nlp paradigm should be a bridge for us to be able to use the wealth of pre-trained models in Transformers.
Our preprocessing flow parses raw text and json with Entity and Relations annotations and creates 2 datasets for training a NER and Relations prediction heads.
Is there some good way to "fork" dataset-
EG
1. text + json -> Dataset1
1. Dataset1 -> DatasetNER
1. Dataset1 -> DatasetREL
or
1. text + json -> Dataset1
1. Dataset1 -> DatasetNER
1. Dataset1 + DatasetNER -> DatasetREL
Thanks for the helpful advice, @lhoestq -- I wasn't quite able to get the json recipe working -
```
~/.virtualenvs/inv-text2struct/lib/python3.6/site-packages/pyarrow/ipc.py in __init__(self, source)
60
61 def __init__(self, source):
---> 62 self._open(source)
63
64
~/.virtualenvs/inv-text2struct/lib/python3.6/site-packages/pyarrow/ipc.pxi in pyarrow.lib._RecordBatchStreamReader._open()
~/.virtualenvs/inv-text2struct/lib/python3.6/site-packages/pyarrow/error.pxi in pyarrow.lib.pyarrow_internal_check_status()
~/.virtualenvs/inv-text2struct/lib/python3.6/site-packages/pyarrow/error.pxi in pyarrow.lib.check_status()
ArrowInvalid: Tried reading schema message, was null or length 0
```
But I'm going to give the generator_dataset_builder a try.
1 more quick question -- can .map be used to output different length mappings -- could I skip one, or yield 2, can you map_batch | [
-0.2709982395,
-0.1708686054,
-0.0142525434,
0.2424220592,
-0.0901530534,
0.0373773724,
0.0722798854,
0.3559108675,
0.0219822302,
-0.1569154561,
0.0568320453,
0.6875866652,
-0.3158582449,
0.023822628,
0.1384806782,
-0.1774831414,
0.1697378159,
0.0175789595,
0.1954476535,
0.1319139004,
0.0567812026,
-0.1072146147,
0.0791317374,
0.1026269048,
-0.1071950197,
-0.2519373298,
-0.0987825543,
0.0902696326,
-0.0763716623,
-0.1416806877,
0.3796569407,
0.1386339217,
-0.0551864207,
0.3206909001,
-0.0001226709,
0.2056132406,
0.1715610325,
0.1351353079,
-0.200448826,
-0.1448926181,
-0.1280783117,
-0.1294979453,
0.1882865727,
-0.188958317,
0.1550606638,
-0.3981490135,
0.0495884717,
-0.1102557778,
0.7451305985,
0.2432463765,
0.0788234919,
0.0991888419,
-0.0036852881,
0.226628691,
-0.1186309904,
0.345507443,
0.0820628479,
0.2443717867,
0.0720902085,
-0.2155694664,
-0.1497941613,
0.1466435045,
-0.1729082912,
0.0248668194,
0.2092567533,
-0.0760234445,
0.1784174442,
-0.0695760101,
0.083177574,
0.3103860319,
0.0022010021,
-0.2151123583,
-0.2066606283,
-0.5397032499,
0.127053991,
-0.2709566951,
-0.0706040859,
0.2371489704,
-0.2252682596,
0.2454847544,
-0.0589898005,
-0.4718380272,
-0.0915907025,
0.0282219909,
-0.0222261325,
0.2925260663,
0.2098951042,
0.3022346497,
0.1680293977,
0.0337276943,
0.3152107,
-0.2900066376,
-0.0619789697,
0.0518530533,
-0.1652065963,
-0.2472956181,
-0.0889396891,
-0.5191532373,
0.0715016425,
0.2056322992,
0.3251101375,
-0.0732595921,
-0.2554786801,
0.1540991962,
0.1518896669,
-0.225780189,
-0.1276623756,
0.3733851314,
-0.0609765798,
-0.2684908509,
0.0765160173,
0.125982821,
-0.2788674831,
-0.1188946366,
-0.16056934,
0.0677717179,
0.2837854028,
0.2333720922,
-0.1346602887,
-0.3933132589,
-0.3864339888,
-0.2138631493,
0.1876252741,
0.0308066718,
0.0291463397,
0.5331360102,
-0.0671075135,
0.4122141898,
-0.2591353655,
-0.2082478106,
0.0152529702,
-0.0591532327,
-0.2480620593,
-0.0027152114,
0.1099965349,
0.4786128104,
0.1313547492,
-0.0131075196,
-0.2265707403,
-0.0390043594,
0.3589455187,
-0.1173251197,
0.0950446352,
-0.0254521668,
-0.17836079,
0.0185402781,
0.0100761764,
-0.0709418431,
-0.3327420354,
0.2551266253,
-0.1009526998,
-0.1926939785,
0.0021888409,
0.0228182748,
-0.0413331389,
-0.1952397525,
-0.4399902523,
0.6162858605,
0.3059455752,
-0.0188297108,
0.0528093539,
-0.1076049879,
-0.2903373241,
-0.2586707771,
0.1246924475,
0.1132110879,
-0.4203319848,
-0.2970166206,
-0.0107076615,
-0.0253953356,
-0.111226052,
0.4214459658,
-0.2157960385,
0.1598105729,
0.0871577188,
0.0753270835,
0.6000874639,
-0.2497991472,
-0.0632774308,
0.2026134729,
-0.1168497056,
-0.156263411,
0.1286629736,
0.0331945233,
0.0206195302,
-0.0945706367,
0.0209351275,
0.6081793308,
-0.3583090007,
0.0410199538,
0.0095209852,
-0.3130631447,
0.2251249254,
0.2373590171,
0.0278311186,
-0.1905456483,
-0.3208425343,
-0.195650965,
0.2701670825,
-0.0993386358,
0.3689213693,
-0.0595752038,
-0.0842379183,
-0.1394957751,
-0.0287111122,
-0.1532605886,
-0.5317851305,
0.0004238337,
-0.0153502747,
0.09285862,
-0.0442912765,
-0.1126268059,
0.0699825212,
0.0900172815,
-0.0436854959,
-0.0526156873,
-0.0137467422,
-0.0741431266,
0.1348848194,
-0.2574141026,
-0.3342533112,
-0.1103569791,
0.0086054727,
0.2037964463,
-0.3359618187,
0.5445892215,
0.2347193509,
-0.0095278844,
-0.1654924601,
0.2517215312,
-0.0922928378,
0.0961075276,
0.121493198,
0.1124426872,
-0.1708136946,
0.3681159914,
0.1516940892,
0.1806009561,
0.3069012463,
-0.4986453652,
0.4170790911,
0.0051070005,
-0.1247825772,
-0.146301344,
-0.2852312326,
0.2827926874,
0.0896429047,
0.5726413727,
0.0074498951,
0.116155602,
0.010554567,
-0.1423981339,
-0.2524622083,
0.1537436992,
-0.0168347843,
-0.0068358388,
0.3308140635,
-0.0498397797,
-0.4534568191,
0.3651576638,
0.3189688921,
-0.079039149,
-0.1559528261,
0.0444513634,
-0.2688312531,
-0.018726673,
0.0327849314,
0.4359912276,
0.1295997649,
0.2646864057,
0.3439452648,
-0.0234306362,
-0.2978407443,
-0.0521948785,
0.2612976432,
0.1168891191,
0.5971406698,
0.0559233949,
0.2753998041,
-0.2705340981,
-0.0698104054,
-0.2716560364,
0.4424144626,
0.0593965873,
-0.1237623245,
0.4224996567,
-0.2999274135,
-0.4046643078,
-0.6216883063,
-0.2262639999,
-0.1811689883,
-0.333344698,
0.0100122504,
0.1288981736,
-0.1645740122,
0.3371835351,
0.0312467068,
0.0554592311,
-0.1915541291,
0.0031763893,
-0.0736341029,
-0.4876656532,
-0.0550175086,
0.0224791989,
0.5342304111,
0.1249971166,
0.2216805518,
0.5519186258,
-0.3891837597,
-0.0377631448,
-0.3224723935,
0.2598617375,
-0.1278276891,
-0.0251386203,
0.1154050902,
-0.1412089765,
0.2514172494,
-0.2100854218,
0.0457227789,
-0.0451227389,
-0.1329952478,
-0.1487722099,
-0.1853575557,
0.2294773906,
-0.0772328377,
-0.1576831639,
-0.3379788399,
-0.2774730325,
0.4277980924,
0.0270630345,
0.1580069661,
0.3351550102,
0.1768138707,
0.0498503558,
0.0437800623,
-0.0661600083,
0.1313048452,
0.0498721004,
-0.0275702588,
-0.1940675825,
0.2004647404,
-0.3057992756,
-0.3318732381,
0.454798162,
0.215854615,
-0.2086229026,
0.346501708,
-0.0335923582,
0.1218095794,
-0.0845842957,
-0.2690053582,
0.1025605723,
0.1928118169,
0.0899641514,
-0.0179422051,
0.2616141737,
0.174037993,
0.0247753151,
0.1520761997,
0.2242884636,
0.2025142759,
0.135582298,
0.961514473,
0.0917426199,
-0.1690104306,
-0.2594363987,
0.0101257171,
-0.3711107671,
0.1074111685,
0.045949243,
-0.1450533569,
-0.0656832606,
-0.0021033958,
-0.0002099685,
0.0568529293,
-0.4240121841,
0.0956173465,
0.0687124059,
-0.1075340807,
-0.306242317,
0.3730203509,
-0.5912074447,
0.1180318147,
-0.0506454185,
-0.2795494199,
-0.3265397847,
0.0445424914,
-0.2696339786,
-0.1826971471,
0.1530708522,
-0.1265439391,
-0.4512417316,
0.092433244,
-0.5370237231,
0.1233643591,
-0.0071196221,
-0.096801579,
0.2267797142,
-0.2825101018,
0.0064116605,
-0.2530959547,
0.7298451066,
-0.0977634639,
0.0527746566,
0.0396027565,
0.2298909277,
-0.5488436818,
0.1013630033,
-0.1378297061,
0.3780579865,
0.2070141137,
0.195491761,
-0.4321470857,
-0.3591596484,
0.2859166265,
-0.1534584612,
-0.2045989931,
0.003412921,
0.1774919033,
-0.0738246292,
-0.2873134017,
-0.0029662661,
0.1983369142,
-0.0111112855,
-0.1593708843,
-0.0543314852,
-0.1382427365,
-0.0134039968,
0.0286666267,
0.0071774349,
-0.0436877087,
-0.1088056788,
0.2084572315,
-0.0966156945,
0.0845699012,
0.2789641917,
0.522051096,
0.0554296263,
-0.3628227413,
-0.090518713,
0.1511204243,
0.3655588627,
0.1464166641,
0.3258496821,
0.4495046139,
0.38985461,
-0.0241512507,
-0.1499518752,
0.0184978172,
-0.1162967905,
0.1519060284,
-0.3429194093,
-0.3364131153,
0.5278539062,
0.2442139536,
-0.0316028222,
0.4288014472,
-0.2757225931,
-0.3967438936,
0.2894905806,
0.2824400663,
0.8820123672,
-0.0412438847,
0.2451676726,
0.42885831,
-0.4744341373,
0.6899801493,
-0.5011777878,
-0.0081261136,
-0.2250356078,
0.1768210083,
-0.0109701417,
-0.1766534746,
-0.1450345218,
0.6129159331,
-0.0589899048,
0.0663666055,
0.329128623,
-0.3208192885,
0.0056245402,
0.3306921124,
-0.0575522222,
-0.1969763041,
-0.110647507,
-0.0546384752,
-0.26958251,
-0.2840955555,
0.0886819586,
-0.3098032475,
-0.183822915,
-0.0833680406,
-0.1295929253,
0.0842533112,
-0.0685076416,
0.0788905919,
0.2631236613,
-0.4813997149,
0.2369749844,
-0.0980197862,
0.0542124659,
-0.4273022115,
-0.1175628901,
0.1090058684,
-0.0264747962,
0.0396041535,
-0.108383745,
-0.2043939978,
0.3602647483,
0.0853195786,
-0.2321542352,
-0.121341899,
-0.046810165,
-0.0623495243,
0.0017220527,
-0.1963728368,
0.151937902,
0.2448464036,
-0.01998711,
0.4476199746,
-0.3700376153,
-0.0860669985,
-0.0133535853,
0.0342978612,
-0.1728718281,
-0.0901797414,
-0.0315408483,
-0.0473659933,
0.0888057947,
-0.0653010756,
0.3045381904,
0.0887991786,
0.4743164182,
0.4823843241,
0.1281764656,
-0.1675910354,
-0.1615800261,
0.3642777801,
-0.6409150958,
0.0868003964,
-0.2537642717,
-0.1523723006,
0.173775956,
-0.0462127961,
0.0672977865,
0.4354808927,
-0.1906709224,
-0.2262095064,
-0.2581787109,
0.5244816542,
-0.1452919543,
0.1204875112,
-0.1918350756,
0.3252473176,
0.0749841481,
0.4396362901,
-0.1820241064,
0.2253146768,
0.09793441,
0.388269335,
-0.072396487,
-0.1090586558,
-0.1132065058,
0.0705180541,
-0.072480768,
-0.0643317178,
0.0123353079,
-0.0894462094,
-0.1491756439,
0.1177711487,
0.0603622086,
-0.1018852219,
0.1024393961,
-0.187331751,
-0.0094599323,
-0.0369714648,
-0.076271981,
-0.3490603566,
-0.073324129,
0.1595446914,
0.151701048,
0.1069021672,
-0.3149267435,
0.1749273688,
0.1201314703,
0.0713577867,
-0.0852649286,
0.4262805581,
0.2302992493,
-0.1162018627,
-0.4974856377,
-0.0258679092,
0.1137558818,
-0.0623672046,
0.1227826625,
-0.1025783345,
-0.134192571,
-0.2581682503,
0.2884766459,
0.4120495915,
0.0171678476,
0.197301954,
0.10099639,
0.1181038171,
-0.1254901141,
0.1502049863,
0.3381064534,
-0.3637134135,
0.1236135736,
0.2436730862,
-0.1666871905,
0.1396009922,
-0.2355642319,
0.1679412127,
-0.0064404495,
-0.2678121328,
0.3055498302,
0.3528037369,
-0.1886676848,
-0.0293507762,
0.2828594446,
-0.0730521828,
0.3902783394,
0.0133101698,
0.1955377907,
0.4305588603,
0.2297837287,
-0.0683114678,
0.441704452,
-0.0561186522,
-0.4187364578,
-0.0846247673,
0.1200662628,
0.1204310879,
0.2948899567,
0.7293599248,
0.3205151856,
-0.3478201628,
0.1853824556,
0.5375404358,
-0.0106575377,
-0.2062983513,
-0.7132183909,
0.0688481182,
-0.1676314324,
-0.0260274224,
-0.1149514243,
-0.2241876274,
0.3993256986,
0.1802768409,
0.2019369006,
-0.4201064408,
0.2862583995,
0.1332343072,
0.1023655981,
-0.1227316409,
0.2345302701,
0.2515217066,
-0.1935738921,
0.0052808793,
0.1113870442,
0.2373286784,
0.0086043552,
-0.4945700765,
0.0074290968,
0.2081178129,
-0.1191314161,
-0.133026436,
0.143383503,
0.366199255,
0.0611305013,
0.3061697483,
-0.0200904012,
-0.0907649994,
-0.0039543808,
0.3932207823,
-0.0377741493,
-0.2537739575,
0.5006625056,
0.1897699088,
-0.3410306871,
0.2525041699,
0.1708344221,
-0.4054372311,
-0.0208985414,
0.329230994,
-0.2298856378,
-0.0052023605,
0.0529686324,
0.0116045289,
-0.0510988235,
0.5025141239,
0.2102504671,
0.4353621602,
-0.1251080483,
-0.0355422199,
-0.3355430365,
-0.1686945558,
-0.3205323815,
0.0130568817,
-0.243704468,
0.2071515173,
0.2902576923,
0.3711935282,
-0.0773663223,
0.083468169,
0.2264583111,
0.4366154671,
-0.1140754521,
-0.2237606645,
0.1184249222,
0.2578311563,
0.1375680566,
-0.3139264882,
-0.0115693361,
0.3504675627,
-0.2153018266,
0.0389458425,
-0.008033134,
0.4428019524,
-0.0256607644,
0.0372274071,
0.0445507392,
0.4479849041,
-0.0112553313,
-0.2736092806,
-0.1870454848,
-0.1563465744,
-0.5374305844,
0.3463814855,
-0.0637222528,
0.6216837764,
-0.5220502615,
0.1028238237,
-0.0278850608,
-0.5713894367,
-0.136396125,
0.0437543243,
-0.3469470739,
0.1673678607,
-0.1485081166,
0.2270119041,
-0.0076645128,
0.4074023068,
0.1073877215,
0.0546126291,
-0.2766762972,
-0.0632089302,
0.2735039294,
-0.1833560467,
-0.0337593816,
0.0563396513,
-0.1401642859,
0.1763141155,
0.1132686287,
-0.6911991835,
-0.0561759919,
0.2711663842,
-0.330892086,
-0.0930015892,
0.1532911956,
0.3074655831,
-0.0901588574,
-0.1591700464,
0.2922632396,
0.0803829432,
-0.3020389676,
-0.1117159277,
-0.4423950315
] |
https://github.com/huggingface/datasets/issues/328 | Fork dataset | Thanks this answers my question. I think the issue I was having using the json loader were due to using gzipped jsonl files.
The error I get now is :
```
Using custom data configuration test
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-38-29082a31e5b2> in <module>
5 print(ner_datafiles)
6
----> 7 ds = nlp.load_dataset("json", "test", data_files=ner_datafiles[0])
8
~/.virtualenvs/inv-text2struct/lib/python3.6/site-packages/nlp/load.py in load_dataset(path, name, version, data_dir, data_files, split, cache_dir, download_config, download_mode, ignore_verifications, save_infos, **config_kwargs)
522 download_mode=download_mode,
523 ignore_verifications=ignore_verifications,
--> 524 save_infos=save_infos,
525 )
526
~/.virtualenvs/inv-text2struct/lib/python3.6/site-packages/nlp/builder.py in download_and_prepare(self, download_config, download_mode, ignore_verifications, save_infos, try_from_hf_gcs, dl_manager, **download_and_prepare_kwargs)
430 verify_infos = not save_infos and not ignore_verifications
431 self._download_and_prepare(
--> 432 dl_manager=dl_manager, verify_infos=verify_infos, **download_and_prepare_kwargs
433 )
434 # Sync info
~/.virtualenvs/inv-text2struct/lib/python3.6/site-packages/nlp/builder.py in _download_and_prepare(self, dl_manager, verify_infos, **prepare_split_kwargs)
481 try:
482 # Prepare split will record examples associated to the split
--> 483 self._prepare_split(split_generator, **prepare_split_kwargs)
484 except OSError:
485 raise OSError("Cannot find data file. " + (self.manual_download_instructions or ""))
~/.virtualenvs/inv-text2struct/lib/python3.6/site-packages/nlp/builder.py in _prepare_split(self, split_generator)
736 schema_dict[field.name] = Value(str(field.type))
737
--> 738 parse_schema(writer.schema, features)
739 self.info.features = Features(features)
740
~/.virtualenvs/inv-text2struct/lib/python3.6/site-packages/nlp/builder.py in parse_schema(schema, schema_dict)
734 parse_schema(field.type.value_type, schema_dict[field.name])
735 else:
--> 736 schema_dict[field.name] = Value(str(field.type))
737
738 parse_schema(writer.schema, features)
<string> in __init__(self, dtype, id, _type)
~/.virtualenvs/inv-text2struct/lib/python3.6/site-packages/nlp/features.py in __post_init__(self)
55
56 def __post_init__(self):
---> 57 self.pa_type = string_to_arrow(self.dtype)
58
59 def __call__(self):
~/.virtualenvs/inv-text2struct/lib/python3.6/site-packages/nlp/features.py in string_to_arrow(type_str)
32 if str(type_str + "_") not in pa.__dict__:
33 raise ValueError(
---> 34 f"Neither {type_str} nor {type_str + '_'} seems to be a pyarrow data type. "
35 f"Please make sure to use a correct data type, see: "
36 f"https://arrow.apache.org/docs/python/api/datatypes.html#factory-functions"
ValueError: Neither list<item: int64> nor list<item: int64>_ seems to be a pyarrow data type. Please make sure to use a correct data type, see: https://arrow.apache.org/docs/python/api/datatypes.html#factory-functions.
```
If I just create a pa- table manually like is done in the jsonloader -- it seems to work fine. Ths JSON I'm trying to load isn't overly complex - 1 integer field, the rest text fields with a nested list of objects with text fields . | We have a multi-task learning model training I'm trying to convert to using the Arrow-based nlp dataset.
We're currently training a custom TensorFlow model but the nlp paradigm should be a bridge for us to be able to use the wealth of pre-trained models in Transformers.
Our preprocessing flow parses raw text and json with Entity and Relations annotations and creates 2 datasets for training a NER and Relations prediction heads.
Is there some good way to "fork" dataset-
EG
1. text + json -> Dataset1
1. Dataset1 -> DatasetNER
1. Dataset1 -> DatasetREL
or
1. text + json -> Dataset1
1. Dataset1 -> DatasetNER
1. Dataset1 + DatasetNER -> DatasetREL
| 324 | Fork dataset
We have a multi-task learning model training I'm trying to convert to using the Arrow-based nlp dataset.
We're currently training a custom TensorFlow model but the nlp paradigm should be a bridge for us to be able to use the wealth of pre-trained models in Transformers.
Our preprocessing flow parses raw text and json with Entity and Relations annotations and creates 2 datasets for training a NER and Relations prediction heads.
Is there some good way to "fork" dataset-
EG
1. text + json -> Dataset1
1. Dataset1 -> DatasetNER
1. Dataset1 -> DatasetREL
or
1. text + json -> Dataset1
1. Dataset1 -> DatasetNER
1. Dataset1 + DatasetNER -> DatasetREL
Thanks this answers my question. I think the issue I was having using the json loader were due to using gzipped jsonl files.
The error I get now is :
```
Using custom data configuration test
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-38-29082a31e5b2> in <module>
5 print(ner_datafiles)
6
----> 7 ds = nlp.load_dataset("json", "test", data_files=ner_datafiles[0])
8
~/.virtualenvs/inv-text2struct/lib/python3.6/site-packages/nlp/load.py in load_dataset(path, name, version, data_dir, data_files, split, cache_dir, download_config, download_mode, ignore_verifications, save_infos, **config_kwargs)
522 download_mode=download_mode,
523 ignore_verifications=ignore_verifications,
--> 524 save_infos=save_infos,
525 )
526
~/.virtualenvs/inv-text2struct/lib/python3.6/site-packages/nlp/builder.py in download_and_prepare(self, download_config, download_mode, ignore_verifications, save_infos, try_from_hf_gcs, dl_manager, **download_and_prepare_kwargs)
430 verify_infos = not save_infos and not ignore_verifications
431 self._download_and_prepare(
--> 432 dl_manager=dl_manager, verify_infos=verify_infos, **download_and_prepare_kwargs
433 )
434 # Sync info
~/.virtualenvs/inv-text2struct/lib/python3.6/site-packages/nlp/builder.py in _download_and_prepare(self, dl_manager, verify_infos, **prepare_split_kwargs)
481 try:
482 # Prepare split will record examples associated to the split
--> 483 self._prepare_split(split_generator, **prepare_split_kwargs)
484 except OSError:
485 raise OSError("Cannot find data file. " + (self.manual_download_instructions or ""))
~/.virtualenvs/inv-text2struct/lib/python3.6/site-packages/nlp/builder.py in _prepare_split(self, split_generator)
736 schema_dict[field.name] = Value(str(field.type))
737
--> 738 parse_schema(writer.schema, features)
739 self.info.features = Features(features)
740
~/.virtualenvs/inv-text2struct/lib/python3.6/site-packages/nlp/builder.py in parse_schema(schema, schema_dict)
734 parse_schema(field.type.value_type, schema_dict[field.name])
735 else:
--> 736 schema_dict[field.name] = Value(str(field.type))
737
738 parse_schema(writer.schema, features)
<string> in __init__(self, dtype, id, _type)
~/.virtualenvs/inv-text2struct/lib/python3.6/site-packages/nlp/features.py in __post_init__(self)
55
56 def __post_init__(self):
---> 57 self.pa_type = string_to_arrow(self.dtype)
58
59 def __call__(self):
~/.virtualenvs/inv-text2struct/lib/python3.6/site-packages/nlp/features.py in string_to_arrow(type_str)
32 if str(type_str + "_") not in pa.__dict__:
33 raise ValueError(
---> 34 f"Neither {type_str} nor {type_str + '_'} seems to be a pyarrow data type. "
35 f"Please make sure to use a correct data type, see: "
36 f"https://arrow.apache.org/docs/python/api/datatypes.html#factory-functions"
ValueError: Neither list<item: int64> nor list<item: int64>_ seems to be a pyarrow data type. Please make sure to use a correct data type, see: https://arrow.apache.org/docs/python/api/datatypes.html#factory-functions.
```
If I just create a pa- table manually like is done in the jsonloader -- it seems to work fine. Ths JSON I'm trying to load isn't overly complex - 1 integer field, the rest text fields with a nested list of objects with text fields . | [
-0.2616365254,
-0.2061420381,
0.0375020057,
0.3549159169,
-0.1682423502,
0.1174598634,
0.1433505565,
0.4742084444,
0.3013391495,
-0.0251566321,
-0.0413275287,
0.7794693112,
-0.438065052,
-0.0006891936,
-0.0343452357,
-0.1329028308,
0.0780564398,
0.0321563184,
0.1479656249,
0.1702058017,
-0.0766773969,
0.0815187544,
0.140575245,
0.0701384619,
-0.0335837863,
-0.2355921566,
-0.0052829459,
0.3222763538,
-0.0223018639,
-0.0998791903,
0.3949324191,
0.0254253298,
0.012165986,
0.3701488972,
-0.0001212367,
0.2414509505,
0.1444251388,
0.0434314907,
-0.2983268499,
-0.1597699523,
-0.1191834807,
-0.2082094103,
0.2016610801,
-0.171454832,
0.0930439681,
-0.3221848607,
0.0103636533,
-0.2175858915,
0.8227089047,
0.1959590614,
0.0853803009,
0.0941180438,
-0.0375260264,
0.1864819974,
-0.1528877914,
0.2486982197,
0.0706448704,
0.4197850227,
-0.0719190091,
-0.1584838033,
-0.1350350827,
0.1528038234,
-0.2114889771,
0.1532353163,
0.1155335456,
-0.0662335157,
0.1061296687,
-0.0129738906,
-0.0425174534,
0.2376263738,
-0.0137329474,
-0.1154450327,
-0.2180213034,
-0.596321106,
0.0687734932,
-0.3153631985,
0.1451150924,
0.1890842021,
-0.259025842,
0.2256517857,
0.1236031651,
-0.5307230353,
-0.0557471439,
0.1267887652,
-0.0098406151,
0.3766199052,
0.1091583222,
0.2603285611,
0.277929455,
0.0567413196,
0.1978458017,
-0.1859575212,
-0.1330090165,
-0.0677111521,
-0.1957907528,
-0.2723723054,
-0.1936010271,
-0.7956871986,
-0.03010251,
0.2747702599,
0.4105610251,
-0.0649345517,
-0.2221662849,
0.2716937363,
0.2230013609,
-0.1622830927,
-0.1264722794,
0.3251130879,
0.0797920227,
-0.1740468442,
0.1110331267,
0.142398864,
-0.3329448104,
-0.1393825412,
-0.2668759227,
0.0358177349,
0.3838409483,
0.1243889779,
-0.1721631885,
-0.3282210827,
-0.4179406762,
-0.1695618629,
0.124330759,
0.0437094495,
0.0265699625,
0.499204427,
0.0284121856,
0.3907044828,
-0.1886148155,
-0.2341750264,
0.0649520978,
-0.0155808805,
-0.1154916957,
0.0258707218,
0.2306986749,
0.3936815858,
0.2521829009,
0.0243463926,
-0.2440886497,
-0.0843083635,
0.3822432756,
-0.0215821043,
-0.0870609283,
0.088529408,
-0.0290044658,
0.0562347919,
0.1478366703,
-0.1695773304,
-0.3286601901,
0.2814543843,
-0.2943266332,
-0.1961503625,
-0.0213514566,
0.0327283219,
-0.037471652,
-0.2179764956,
-0.5268859863,
0.3935557306,
0.3471506238,
-0.1026955098,
-0.0189553238,
-0.1631552726,
-0.3421742022,
-0.2664161921,
-0.0560862236,
0.1445370317,
-0.4778347611,
-0.325025171,
-0.2092006207,
0.0039789043,
0.0233761426,
0.5663743615,
-0.285020858,
0.2381999791,
-0.0070043989,
0.0657347292,
0.5314773321,
-0.2201386243,
-0.1084621549,
0.3468540907,
-0.1492506564,
0.0518523306,
0.1439967602,
0.039588917,
0.0526149496,
-0.1308285594,
0.1937214583,
0.6393966079,
-0.234477073,
-0.0323568359,
-0.0442834087,
-0.2477200329,
0.4179077744,
0.2243717015,
-0.0949273705,
0.0199597627,
-0.3340429068,
-0.0949612856,
0.1253611892,
-0.1228607148,
0.2665154636,
0.0090405233,
0.0167940464,
-0.0821826756,
-0.0557358488,
-0.0020880774,
-0.5716662407,
0.0258832872,
-0.1563592106,
0.0483758897,
0.0367052704,
0.0840056017,
0.0246531591,
0.0242608637,
-0.1075539738,
-0.1872882843,
-0.0309740491,
0.1321421564,
0.0364428386,
-0.3403077424,
-0.3291965425,
0.2118787318,
-0.0324940421,
0.2425682396,
-0.4329966605,
0.5431375504,
0.2083958387,
-0.1171970069,
-0.0873503238,
0.0489442647,
-0.0986334831,
-0.0070059821,
0.0019493811,
0.194214493,
-0.0757217407,
0.2442177534,
0.1699141711,
0.0654744655,
0.1595389992,
-0.3383496106,
0.3486055136,
0.222818777,
-0.0673018247,
-0.1175184026,
-0.2634736598,
0.4534843266,
0.0424076542,
0.4329807758,
-0.1104205847,
0.1415628642,
0.228517592,
-0.1195354983,
-0.2843778133,
0.075517185,
0.0381107852,
-0.1989935935,
0.2602617741,
-0.07587073,
-0.5680074692,
0.1407357901,
0.2386334538,
-0.0199065991,
-0.0573452041,
0.1785093248,
-0.1155243218,
-0.0487363413,
-0.0507613383,
0.5043224096,
0.3902945817,
0.2023363411,
0.1330364048,
0.0527731404,
-0.3332379758,
-0.0390538946,
0.2645004094,
0.0731953532,
0.572296381,
0.1111421958,
0.1884941459,
-0.2298465818,
-0.0260420442,
-0.2259597778,
0.3757135272,
0.1960819662,
-0.2328561693,
0.3923483491,
-0.3859460354,
-0.3946232796,
-0.6372320652,
-0.126498729,
-0.2228473872,
-0.4076818824,
-0.0596625283,
0.2941823006,
-0.2008381784,
0.3044980466,
-0.0083962306,
0.2533293962,
-0.096976608,
-0.0633146539,
-0.0650339797,
-0.3226172626,
-0.0971215367,
0.0095734484,
0.4663540423,
0.0486905202,
0.1779368818,
0.4626572728,
-0.3111796975,
0.0040366836,
-0.233050853,
0.2138882279,
-0.1255088151,
0.0886383876,
0.1230220944,
-0.0334315486,
0.3305613995,
-0.3943109512,
0.0101413392,
-0.0132070519,
-0.2062788606,
-0.0949025378,
0.028606575,
0.3486718237,
-0.1070188358,
-0.3093833029,
-0.3159707487,
-0.3946546316,
0.2259317786,
0.0516271368,
0.2161052525,
0.4295204878,
0.1762687862,
0.0463484749,
0.1555678844,
-0.0262173526,
0.0147959068,
-0.0455985367,
0.0338851884,
-0.3673448861,
0.1897360235,
-0.2843198478,
-0.2059621215,
0.4252788126,
0.1152257323,
-0.3176315129,
0.3440879583,
-0.0434317701,
-0.0167127773,
-0.2224957347,
-0.362252295,
0.0244200528,
0.1780633777,
0.045270741,
-0.0338766389,
0.1468674839,
0.2260790914,
0.1121600121,
0.2324396223,
0.2633697987,
0.3287667334,
0.1926620603,
0.8260396123,
0.0851391107,
-0.1176847368,
-0.0616797432,
0.0974352136,
-0.2724162042,
0.0375082195,
-0.0940984786,
-0.2391367853,
-0.0824231505,
0.0699938238,
-0.0274067819,
0.060734503,
-0.4748287797,
-0.0164988637,
0.038460739,
-0.0694507957,
-0.3480143845,
0.4364903271,
-0.5182206035,
0.0621526353,
-0.1140318066,
-0.3119460344,
-0.2559910417,
0.0514922813,
-0.2783668041,
-0.052095145,
0.1209160984,
-0.0720346943,
-0.413158536,
0.199345991,
-0.3643966913,
0.2030836344,
-0.1106474847,
0.2612339854,
0.0975525677,
-0.2444995046,
-0.0281410255,
-0.2486937493,
0.7580450773,
-0.0748399198,
0.1026744992,
0.0970804542,
0.1042808741,
-0.5244823098,
0.0219221935,
-0.2186836898,
0.4839400947,
0.3086547554,
0.3903082609,
-0.3387848139,
-0.2800486088,
0.1992183924,
-0.1463641077,
-0.2613397241,
-0.0154224336,
0.0275570452,
-0.1254512519,
-0.4156193733,
-0.0843990818,
0.0651165396,
0.0581830777,
-0.1375561953,
0.0462694317,
-0.1992904693,
-0.1609224975,
0.0917419344,
-0.0153532214,
-0.1788315773,
0.0135655329,
0.2081344426,
-0.1128672361,
0.2214398086,
0.1589305103,
0.6004505157,
0.2492438108,
-0.3162971735,
-0.0304802358,
0.1683485955,
0.2941428423,
0.0430312455,
0.1952894777,
0.3621750474,
0.3023659587,
-0.0650164932,
-0.1220985278,
0.1000130773,
-0.0910298675,
0.0835951418,
-0.4143508077,
-0.3978823125,
0.4033086002,
0.2466862947,
-0.0018950403,
0.4153802395,
-0.3548697233,
-0.3739947081,
0.2413827628,
0.2081925869,
0.8665279746,
-0.0116077121,
0.1625169516,
0.4749661386,
-0.506637454,
0.7132516503,
-0.4881284833,
0.0508989505,
-0.1740195453,
0.2263570577,
-0.03867485,
-0.160079211,
0.0653528795,
0.5145102739,
-0.12492349,
0.1910089254,
0.2115528286,
-0.4104619622,
-0.0267950855,
0.4065256715,
-0.0034952387,
-0.2639393806,
-0.2312749922,
-0.0425961465,
-0.4342304766,
-0.0986036137,
0.1533997357,
-0.3186725378,
-0.210912019,
-0.1321126819,
-0.1447938085,
0.1191678345,
0.1216171086,
0.2122846544,
0.2192083597,
-0.4170315266,
0.210544467,
-0.1337067634,
0.0080591403,
-0.2745542824,
-0.0473291725,
-0.0342729837,
-0.2372590005,
0.0514210053,
-0.0789105743,
-0.1207422614,
0.3871479034,
0.0204419047,
-0.1895026565,
-0.0873412937,
0.0075708777,
-0.3587483466,
0.12812379,
-0.043203596,
-0.0922149271,
0.0538497344,
-0.2129107118,
0.3441675901,
-0.3149490058,
-0.1751491725,
-0.0147760268,
0.0627151802,
-0.1868643463,
-0.1603602618,
-0.0179924555,
-0.1548303664,
0.0377542377,
0.1175944284,
0.208721593,
0.1184317768,
0.5312076211,
0.370981425,
0.2150757015,
-0.1885429025,
-0.0057038143,
0.2521183491,
-0.4778158367,
0.1372614354,
-0.2956437767,
-0.1687814295,
0.0575585105,
-0.0778491944,
0.1326598823,
0.4425212145,
-0.0469455868,
-0.3981655836,
-0.2747644484,
0.455752492,
-0.110333845,
0.0998242721,
-0.1173509359,
0.2304959148,
-0.0533958226,
0.3978672922,
-0.1770789027,
0.2526503801,
-0.00482703,
0.3383485377,
0.0565913059,
-0.0688424706,
-0.0623675957,
0.1294478774,
-0.0358809978,
-0.056073878,
0.0516229421,
-0.0848976225,
-0.198664099,
0.1135849208,
0.009809589,
-0.1401913613,
0.0715757757,
-0.2780888379,
-0.0606758222,
0.039938353,
-0.1343805343,
-0.3121048808,
-0.0911647603,
0.3229661584,
0.0029086033,
0.0850498676,
-0.1496040821,
0.2255052477,
0.0032475144,
0.1173818558,
-0.0654401034,
0.3353914022,
0.1935217232,
-0.0999348015,
-0.6856936216,
-0.0532719307,
0.0523255467,
0.0030714981,
0.1092380583,
-0.2000800669,
-0.1315525174,
-0.28988868,
0.2536651492,
0.4463510513,
-0.0739395022,
0.195803225,
0.2406321168,
0.0633561909,
-0.063495934,
0.0882204026,
0.4835498631,
-0.3166552484,
0.0711582154,
0.3000302315,
-0.1604160666,
0.147309497,
-0.3009883761,
0.0527182743,
0.0822554752,
-0.1254574507,
0.3439553976,
0.3214911819,
-0.3618199229,
-0.0401012748,
0.1614881605,
-0.1193917245,
0.4025027752,
0.0484442636,
0.2046438456,
0.3204607368,
0.2750093937,
-0.0557660125,
0.4221300483,
-0.3098086715,
-0.3592760861,
-0.0007551908,
0.0358415805,
0.2483558655,
0.2836800516,
0.59216398,
0.1722435653,
-0.2773670554,
0.0916702747,
0.5221626759,
-0.0121866688,
-0.2795135975,
-0.613896966,
0.0627856553,
-0.223459661,
0.0579085648,
-0.0424850211,
-0.2430526465,
0.2019946128,
0.1961254925,
0.0460901372,
-0.4166123569,
0.3033426404,
0.1623998582,
-0.0245266072,
-0.2011001855,
0.2490917146,
0.2544411421,
-0.1284005195,
0.0705222189,
0.0348294824,
0.3172625303,
0.0864617229,
-0.3684064448,
-0.0089645982,
0.1396890879,
-0.0774105489,
-0.1733276397,
0.1853988767,
0.2654222846,
0.0629158393,
0.3606317639,
0.0076659359,
-0.0907964334,
0.0281156488,
0.4000336528,
0.0957028419,
-0.3185195923,
0.5138177276,
0.1729287654,
-0.214408949,
0.3287231922,
0.0866153538,
-0.4180999398,
-0.1664090753,
0.2632785141,
-0.0345894471,
0.0029008836,
0.145898819,
0.0150297992,
-0.0731465966,
0.6327579021,
0.1750954837,
0.2684527934,
-0.0302806348,
0.048775509,
-0.3237715364,
-0.096686244,
-0.2670507133,
-0.0193458274,
-0.2650860846,
0.2112198174,
0.3434880972,
0.4839077592,
-0.1652049422,
0.0860878006,
0.2459124029,
0.2894407213,
-0.1610228419,
-0.3069117963,
0.2202851474,
0.3486302793,
0.1889547706,
-0.3502086401,
-0.0686326027,
0.4095512927,
-0.1618711352,
0.0464933552,
-0.0674896538,
0.2403896749,
0.0328009501,
0.04901639,
0.1321928203,
0.4877570868,
-0.0335556455,
-0.3763454258,
-0.2149565816,
-0.1724826545,
-0.4667955041,
0.2378896773,
-0.0185568426,
0.7020075321,
-0.5233490467,
0.143680498,
-0.2510556877,
-0.360283345,
-0.1742965877,
0.0690402985,
-0.3635819554,
0.2612661123,
-0.1166175231,
0.1927617341,
-0.0447854102,
0.4278227389,
0.0420893356,
0.1251773238,
-0.3780815601,
0.0384441912,
0.3709775209,
-0.2145701945,
-0.126593411,
0.2050527185,
-0.1225412637,
0.1562440693,
0.1938427538,
-0.5580325723,
-0.0503833666,
0.2729423642,
-0.2999857962,
-0.1132787913,
0.166077897,
0.2374655008,
-0.1107978672,
-0.0310582332,
0.2576286793,
0.1307674199,
-0.2719534039,
0.0382675678,
-0.3147013485
] |
https://github.com/huggingface/datasets/issues/328 | Fork dataset | I'll close this -- It's still unclear how to go about troubleshooting the json example as I mentioned above. If I decide it's worth the trouble, I'll create another issue, or wait for a better support for using nlp for making custom data-loaders. | We have a multi-task learning model training I'm trying to convert to using the Arrow-based nlp dataset.
We're currently training a custom TensorFlow model but the nlp paradigm should be a bridge for us to be able to use the wealth of pre-trained models in Transformers.
Our preprocessing flow parses raw text and json with Entity and Relations annotations and creates 2 datasets for training a NER and Relations prediction heads.
Is there some good way to "fork" dataset-
EG
1. text + json -> Dataset1
1. Dataset1 -> DatasetNER
1. Dataset1 -> DatasetREL
or
1. text + json -> Dataset1
1. Dataset1 -> DatasetNER
1. Dataset1 + DatasetNER -> DatasetREL
| 43 | Fork dataset
We have a multi-task learning model training I'm trying to convert to using the Arrow-based nlp dataset.
We're currently training a custom TensorFlow model but the nlp paradigm should be a bridge for us to be able to use the wealth of pre-trained models in Transformers.
Our preprocessing flow parses raw text and json with Entity and Relations annotations and creates 2 datasets for training a NER and Relations prediction heads.
Is there some good way to "fork" dataset-
EG
1. text + json -> Dataset1
1. Dataset1 -> DatasetNER
1. Dataset1 -> DatasetREL
or
1. text + json -> Dataset1
1. Dataset1 -> DatasetNER
1. Dataset1 + DatasetNER -> DatasetREL
I'll close this -- It's still unclear how to go about troubleshooting the json example as I mentioned above. If I decide it's worth the trouble, I'll create another issue, or wait for a better support for using nlp for making custom data-loaders. | [
-0.2255922854,
-0.2139755189,
0.0137120858,
0.1874609143,
-0.2855696082,
0.1027284712,
0.0859781802,
0.309071064,
0.2629742026,
-0.1347025782,
0.0771385804,
0.675709486,
-0.3767237067,
0.1300157756,
0.1040433794,
-0.2021782994,
0.1567044258,
0.0305682197,
0.2432403117,
0.1246741265,
-0.0030576736,
-0.140422672,
0.1567753553,
0.0151137412,
-0.0611150935,
-0.2410474122,
-0.1119403541,
0.1831780523,
0.0436235145,
0.0080808848,
0.424289912,
0.1682476699,
-0.0357530303,
0.3314850032,
-0.0001182204,
0.1242473647,
0.108248651,
0.1458238065,
-0.2584878504,
-0.1556642652,
-0.1127672344,
-0.1371058226,
0.2131113708,
-0.1448482126,
0.1367440075,
-0.3278984725,
0.1708427668,
-0.1297237426,
0.7699856162,
0.1334999055,
0.1088852361,
0.0454336703,
-0.1247143149,
0.2250992805,
-0.2478452772,
0.2831080258,
0.0789029971,
0.2020102739,
0.0115348008,
-0.162136972,
-0.1638325602,
0.0203954987,
-0.1525955796,
0.1096808016,
0.1250387132,
-0.1221602112,
0.0543629937,
-0.0273973141,
-0.027714638,
0.3535753787,
-0.0114998929,
-0.1214190423,
-0.1666322649,
-0.6308937669,
0.0714958459,
-0.1956180334,
-0.0327245966,
0.1070845798,
-0.1702801585,
0.2213972509,
0.1279788166,
-0.5801433325,
0.0357809365,
0.1103353798,
-0.0623916946,
0.3296542764,
0.1729610115,
0.1976506412,
0.2552986145,
0.0594153628,
0.3220237195,
-0.2034488618,
-0.0187664162,
-0.0308436137,
-0.1546313763,
-0.2607318759,
-0.1478805393,
-0.6261650324,
-0.0011973679,
0.2987723053,
0.3444442153,
0.0295497701,
-0.3762352765,
0.2349633127,
0.1856472939,
-0.2687038183,
-0.1834815145,
0.2808963358,
0.0147726489,
-0.2175780833,
0.0500678867,
0.145563364,
-0.3928110301,
0.0109010525,
-0.3534696698,
-0.0636657625,
0.3451402187,
0.1989929378,
-0.1900560111,
-0.4027469754,
-0.2324142456,
-0.1443459988,
0.143420279,
0.0017939284,
0.0272263438,
0.5649724007,
-0.0731390119,
0.3858675659,
-0.2132072747,
-0.2311057597,
0.0232886449,
-0.0543792546,
-0.1361838877,
0.0107971951,
0.1071932465,
0.5068044662,
0.1511090398,
-0.0194064006,
-0.3058051467,
-0.0769732296,
0.4386522174,
-0.0546706952,
-0.0773441046,
-0.0458454154,
-0.0622553416,
0.0818977579,
0.0954196975,
-0.0816647857,
-0.2606015205,
0.2103665918,
-0.1766936034,
-0.1315815598,
0.0219497774,
0.0671398789,
0.0027992055,
-0.3125675917,
-0.5295149684,
0.6395689845,
0.1960006654,
-0.0690217838,
0.0101075172,
-0.0039351806,
-0.3481337428,
-0.2317089438,
-0.0104250908,
0.0529445484,
-0.3890052438,
-0.3615548909,
-0.2279180735,
0.011745315,
-0.0676149577,
0.4565347135,
-0.2434231043,
0.1787768006,
0.0341736525,
0.0166953355,
0.5639643669,
-0.1810500622,
-0.0599436797,
0.2342610657,
-0.2342587113,
0.0363016725,
0.0825455338,
0.1439548135,
-0.0381683446,
-0.1814541817,
0.0570443347,
0.7605225444,
-0.2868874073,
-0.0040727407,
0.0645713806,
-0.238610357,
0.3192776442,
0.2190307081,
-0.0627649724,
0.0548266545,
-0.3312347531,
-0.0223841481,
0.2203794867,
-0.0492090471,
0.3052372932,
-0.1040294766,
-0.1216969267,
-0.0869738013,
-0.1141553521,
-0.1505256444,
-0.4700719416,
-0.0176503807,
0.0689649284,
0.0118586719,
0.2829799354,
-0.0816037431,
0.0552299768,
-0.0188467875,
-0.0217030048,
-0.0096869692,
-0.0076297298,
0.0964446366,
0.0328530893,
-0.2809765935,
-0.3709950447,
0.1122867018,
-0.0472181216,
0.2059129626,
-0.3807470202,
0.4885465503,
0.2925764024,
0.0159943514,
-0.0933833197,
0.2137661129,
-0.1594693959,
0.0417958312,
0.180248335,
0.0719095245,
-0.2072030455,
0.4196846783,
0.1911342442,
0.1224552169,
0.1848060638,
-0.3710253239,
0.2803334892,
0.1075650007,
-0.1018232107,
-0.1790728271,
-0.277540803,
0.3033385277,
0.1036185175,
0.4381714165,
-0.0083157718,
0.1538198888,
0.1474599391,
-0.1902008951,
-0.2445548326,
0.1409133077,
0.0918477029,
-0.1703172326,
0.2928296626,
-0.0660920739,
-0.5334091187,
0.2663096189,
0.2597097456,
-0.0231011994,
-0.0067643207,
0.0656958073,
-0.2278889418,
-0.0272636041,
-0.0800403878,
0.5746639967,
0.1669400036,
0.2245683223,
0.3080444932,
0.0128026884,
-0.3045586646,
-0.0158982277,
0.2137684971,
0.1295598745,
0.5631983876,
0.0116662979,
0.2122719437,
-0.2407270074,
-0.0450092815,
-0.20996584,
0.4044646025,
0.0407782793,
-0.0848147422,
0.3655424416,
-0.3508614302,
-0.4246229529,
-0.6468884945,
-0.1850212961,
-0.1552050859,
-0.3520291448,
-0.0254887976,
0.3039807975,
-0.1339467764,
0.2258614898,
-0.0123560354,
0.293217957,
-0.3522543311,
0.0089810695,
0.0060004219,
-0.416336298,
-0.0330902264,
0.0651343688,
0.523452282,
0.1799546778,
0.2201525271,
0.4802731276,
-0.2884743512,
0.0228922516,
-0.1987534165,
0.2183101475,
-0.0874337852,
-0.0297722239,
0.0596474856,
-0.1122587696,
0.2067916989,
-0.2833405137,
-0.1018211395,
-0.0160409063,
-0.1360420734,
-0.1377630234,
-0.0377467796,
0.3285042644,
-0.0629630312,
-0.1650237143,
-0.3227212727,
-0.3119983673,
0.3506129384,
0.0368763208,
0.1655423194,
0.3113003075,
0.079717204,
0.0510157309,
0.1713955402,
-0.0293926429,
0.1030352414,
-0.0683859289,
-0.1436235011,
-0.277015835,
0.2035322189,
-0.2974311709,
-0.2434926927,
0.3983848095,
0.1282063276,
-0.237173304,
0.4022568762,
-0.0576604903,
-0.0482840128,
-0.145352602,
-0.3861068189,
0.0729034171,
0.0853463113,
0.0584494546,
-0.038155023,
0.222804904,
0.1892828494,
0.1013860554,
0.1968122125,
0.2205892205,
0.1887683868,
0.1956258118,
0.8005094528,
0.026444748,
-0.1882139742,
-0.1373375505,
0.1523603946,
-0.3494239151,
0.0859078765,
-0.0366806723,
-0.1492536068,
-0.0511700511,
0.0791836828,
0.0792011097,
0.0323401392,
-0.3823568523,
0.0108706504,
-0.0044436306,
-0.084059082,
-0.2789995074,
0.3753067851,
-0.6413502693,
-0.0014685653,
-0.0366076343,
-0.3795253634,
-0.281398952,
0.0255271606,
-0.3960126638,
-0.0763847381,
0.1283547431,
-0.0253086071,
-0.5550844669,
0.2587538064,
-0.4043117166,
0.1065526307,
-0.1497114152,
0.1082974225,
0.1337042749,
-0.2157500982,
-0.0077800229,
-0.2512640655,
0.7265211344,
-0.0621117204,
0.0774378031,
-0.0218978375,
0.2443380356,
-0.5533460975,
0.1186912954,
-0.1643367559,
0.4846509993,
0.2180555463,
0.1855856478,
-0.3536522388,
-0.2611514926,
0.1544139832,
-0.1339900047,
-0.2371198982,
0.0346157253,
0.0901249945,
-0.0753722638,
-0.2876885235,
-0.049199421,
0.1133303717,
-0.0835008547,
-0.2009039372,
-0.0356262773,
-0.229389146,
-0.1023474038,
0.1347273141,
-0.0209326819,
-0.2114557475,
0.0026982948,
0.1948814094,
-0.0913314968,
0.2166854441,
0.1778641343,
0.5501309037,
0.108002007,
-0.4033301175,
-0.0694690049,
0.1753068268,
0.3590192199,
0.0023796558,
0.4114624262,
0.504976511,
0.4489443302,
-0.2014080733,
-0.1918384433,
0.1467469931,
-0.1210087985,
0.1619017124,
-0.4613930285,
-0.3900198936,
0.4433451593,
0.2551625967,
-0.0187099203,
0.3786333799,
-0.292050451,
-0.3776566088,
0.3467845321,
0.0968669951,
0.7605611682,
-0.1275996268,
0.246556744,
0.2234187424,
-0.4836925864,
0.8631591797,
-0.4748441875,
0.044469174,
-0.0999276787,
0.1351713687,
-0.0582547709,
-0.15133816,
-0.0857990533,
0.5734063983,
-0.0948486701,
0.1130849794,
0.2172959447,
-0.3962776363,
0.0110708438,
0.4008002281,
0.0025827345,
-0.2414871156,
-0.1234061643,
-0.0043783374,
-0.3816987276,
-0.169863075,
0.078413263,
-0.1844024062,
-0.1299358457,
0.0124697462,
-0.1374909133,
0.1000868753,
0.1305063665,
0.0557213128,
0.1529756188,
-0.4156392813,
0.1985136271,
-0.1558769643,
0.1504122019,
-0.3637368381,
-0.0930847079,
0.0381141379,
-0.1674919426,
0.0735985339,
-0.0941919535,
-0.2420563847,
0.4414747357,
0.1090821922,
-0.2119496018,
-0.1252067834,
0.0377470888,
-0.2322395146,
-0.0288278461,
-0.0495091006,
0.0902471989,
0.235270083,
-0.2116116583,
0.4793803692,
-0.3060405552,
-0.1758314371,
0.0093610883,
0.051783286,
-0.0910813361,
-0.2078319341,
-0.0366811305,
-0.0514278114,
0.0955742076,
0.0240052901,
0.2492678761,
0.0429393649,
0.4369224906,
0.3884038329,
0.2362613678,
-0.1736460477,
-0.1126043797,
0.3920326531,
-0.4630274177,
0.0654895902,
-0.3011799157,
-0.2409798354,
0.1630826145,
-0.0893410966,
0.0437428877,
0.3343805075,
-0.1670923829,
-0.3785148561,
-0.2100017965,
0.5031383634,
-0.1560941935,
0.1168875545,
-0.0720456764,
0.2750500441,
0.0285883993,
0.4572605491,
-0.1817756891,
0.2492100745,
0.0724970773,
0.3490794897,
0.0043701101,
-0.0120644327,
-0.1322570592,
0.1297163665,
-0.0616888031,
-0.0028905682,
0.1225641742,
-0.1128114164,
-0.1961970776,
0.1171424538,
0.0778802484,
-0.1447003186,
0.0897050649,
-0.2446610034,
0.0302842185,
0.0119503029,
-0.1140209734,
-0.3234209418,
-0.0676848143,
0.2282808572,
0.0907382518,
0.179673329,
-0.2158172876,
0.1726084948,
0.1036064997,
-0.0081807114,
-0.1344134212,
0.3630345464,
0.2937323749,
-0.0827693939,
-0.5364311337,
-0.063245967,
0.2846280038,
0.0123417638,
-0.0230604745,
-0.1194344759,
-0.0778794885,
-0.2318904102,
0.2651407123,
0.4332118034,
0.0061928034,
0.1934038699,
0.2808111012,
0.1222850755,
-0.049934797,
0.0790430456,
0.4891519248,
-0.345067203,
0.0849793702,
0.2614117265,
-0.1177533343,
0.1229927391,
-0.308047533,
0.0012802929,
-0.0316970907,
-0.2097049057,
0.3735482395,
0.2310182452,
-0.2958545685,
-0.0831738114,
0.1448841393,
-0.1254051775,
0.3239156902,
0.1188217849,
0.279705435,
0.492556572,
0.3353673816,
-0.0945812166,
0.5092290044,
-0.1900790781,
-0.332526803,
-0.0650515184,
0.1259598583,
0.2740228176,
0.2377757579,
0.6080207229,
0.2367739826,
-0.2535491884,
0.0960949659,
0.4803633094,
-0.0080235703,
-0.2975947559,
-0.6598876715,
0.1000540555,
-0.1282502115,
-0.0272627547,
-0.0683545917,
-0.2648772299,
0.2347921431,
0.1211790219,
0.1713860035,
-0.3783199787,
0.2370423824,
0.1215775311,
0.0208648127,
-0.0896722302,
0.1988063306,
0.199697718,
-0.1532539725,
0.1174786985,
0.0530361608,
0.1160582453,
-0.0431920961,
-0.4731791019,
0.0513174608,
0.1138662398,
-0.058520887,
-0.2365322709,
0.1224346161,
0.2920627892,
0.0109610502,
0.3345225751,
0.0191291422,
-0.1169026792,
0.0096038794,
0.4403292537,
-0.0293265078,
-0.4878628552,
0.4588005245,
0.2077513337,
-0.2303960621,
0.2585621178,
0.2308829427,
-0.3879237771,
-0.1584391892,
0.3280765414,
-0.2374747992,
-0.0505246483,
0.1283553243,
0.0263886042,
-0.0424834341,
0.5274131298,
0.1472372413,
0.3815222681,
0.046757888,
-0.0388127714,
-0.3185812831,
-0.0278858691,
-0.2809955776,
-0.0226376206,
-0.3062280715,
0.1478826404,
0.3063933849,
0.3770582974,
-0.2242880762,
0.0479023345,
0.2318757772,
0.3143719733,
-0.0799176842,
-0.2844036222,
0.1349050105,
0.2836178839,
0.1767904907,
-0.2951724827,
-0.0581761859,
0.5080991387,
-0.1928968728,
0.0708646625,
-0.0207992345,
0.2869109511,
-0.0296809096,
0.04831817,
0.0642771944,
0.4536289573,
-0.0697834343,
-0.4069776535,
-0.2457738519,
-0.1326286942,
-0.562746644,
0.2836138606,
-0.090764083,
0.6159164906,
-0.5590016842,
0.2587599456,
-0.0405212753,
-0.5787867904,
-0.0762958229,
0.0816040263,
-0.4081574082,
0.250302732,
-0.2056224048,
0.1880092472,
0.076292716,
0.5517149568,
0.0693135932,
0.0199300125,
-0.2070098072,
0.0604481548,
0.2192195356,
-0.1770369709,
-0.0585654974,
0.0832620785,
-0.0925602019,
0.1186421216,
0.1360613406,
-0.5521399379,
-0.1466622204,
0.2632935047,
-0.304400593,
-0.0315192156,
0.1822449863,
0.2029423267,
-0.1305775493,
-0.0826252773,
0.3133209944,
0.1231721044,
-0.3210165799,
0.0717635304,
-0.3371943831
] |
https://github.com/huggingface/datasets/issues/326 | Large dataset in Squad2-format | I'm pretty sure you can get some inspiration from the squad_v2 script. It looks like the dataset is quite big so it will take some time for the users to generate it, but it should be reasonable.
Also you are saying that you are still making the dataset grow in size right ?
It's probably good practice to let the users do their training/evaluations with the exact same version of the dataset.
We allow for each dataset to specify a version (ex: 1.0.0) and increment this number every time there are new samples in the dataset for example. Does it look like a good solution for you ? Or would you rather have one final version with the full dataset ? | At the moment we are building an large question answering dataset and think about sharing it with the huggingface community.
Caused the computing power we splitted it into multiple tiles, but they are all in the same format.
Right now the most important facts about are this:
- Contexts: 1.047.671
- questions: 1.677.732
- Answers: 6.742.406
- unanswerable: 377.398
It is already cleaned
<pre><code>
train_data = [
{
'context': "this is the context",
'qas': [
{
'id': "00002",
'is_impossible': False,
'question': "whats is this",
'answers': [
{
'text': "answer",
'answer_start': 0
}
]
},
{
'id': "00003",
'is_impossible': False,
'question': "question2",
'answers': [
{
'text': "answer2",
'answer_start': 1
}
]
}
]
}
]
</code></pre>
Cause it is growing every day we are thinking about an structure like this:
We host an Json file, containing all the download links and the script can load it dynamically.
At the moment it is around ~20GB
Any advice how to handle this, or an ready to use template ? | 121 | Large dataset in Squad2-format
At the moment we are building an large question answering dataset and think about sharing it with the huggingface community.
Caused the computing power we splitted it into multiple tiles, but they are all in the same format.
Right now the most important facts about are this:
- Contexts: 1.047.671
- questions: 1.677.732
- Answers: 6.742.406
- unanswerable: 377.398
It is already cleaned
<pre><code>
train_data = [
{
'context': "this is the context",
'qas': [
{
'id': "00002",
'is_impossible': False,
'question': "whats is this",
'answers': [
{
'text': "answer",
'answer_start': 0
}
]
},
{
'id': "00003",
'is_impossible': False,
'question': "question2",
'answers': [
{
'text': "answer2",
'answer_start': 1
}
]
}
]
}
]
</code></pre>
Cause it is growing every day we are thinking about an structure like this:
We host an Json file, containing all the download links and the script can load it dynamically.
At the moment it is around ~20GB
Any advice how to handle this, or an ready to use template ?
I'm pretty sure you can get some inspiration from the squad_v2 script. It looks like the dataset is quite big so it will take some time for the users to generate it, but it should be reasonable.
Also you are saying that you are still making the dataset grow in size right ?
It's probably good practice to let the users do their training/evaluations with the exact same version of the dataset.
We allow for each dataset to specify a version (ex: 1.0.0) and increment this number every time there are new samples in the dataset for example. Does it look like a good solution for you ? Or would you rather have one final version with the full dataset ? | [
-0.0997778401,
-0.2414994091,
-0.1118133217,
0.1810318232,
0.1970848143,
-0.0152268633,
0.023252625,
0.488534838,
-0.0912803262,
0.1816320866,
-0.2126612812,
0.0559426732,
-0.2452745587,
0.3290417194,
0.2647453547,
-0.0670855343,
0.0118725486,
-0.0230085701,
-0.1232940257,
0.052579999,
0.0917730629,
-0.1653290093,
0.09191145,
-0.120542869,
-0.2654372454,
-0.1660659015,
-0.2189669311,
0.0960970223,
-0.3439056575,
-0.4318134785,
-0.1703832746,
0.2185880244,
0.3581572771,
0.6168691516,
-0.0001192068,
-0.2639676034,
-0.1069824696,
-0.3270838261,
-0.3645771742,
0.0406496413,
-0.0091299266,
-0.3253714442,
-0.1189130321,
-0.1130117178,
-0.1868098974,
-0.2391310036,
0.1240134165,
-0.2879823446,
0.8988136053,
-0.2257034779,
0.0568251014,
-0.0995191634,
-0.1425753534,
0.0200344212,
0.1949754655,
0.2649680674,
-0.0998329818,
0.0275652856,
0.7631841302,
0.2729377449,
-0.1379783005,
0.1158569604,
0.1028818265,
-0.2239881158,
0.0953694284,
-0.2059375942,
-0.0160017535,
-0.3111698031,
-0.0992635116,
0.22546269,
0.4971258342,
-0.2312158197,
-0.2989941239,
-0.3494286537,
0.0848998129,
0.0883637443,
-0.0953718275,
0.3142318726,
-0.0064444989,
0.301677227,
-0.3257999122,
-0.4009292126,
-0.4019840956,
-0.0720781386,
0.2573391497,
-0.1161984801,
-0.0808774605,
0.0244953334,
-0.1471564919,
-0.2198116481,
-0.0584720373,
-0.1525379419,
0.0715531111,
0.2345583737,
-0.0675152391,
-0.3732773662,
-0.1337951273,
-0.1824215949,
0.6460014582,
0.1989935488,
0.1953392178,
-0.092970714,
0.1765872538,
-0.086455673,
0.3882072866,
-0.0132765733,
0.0069347899,
-0.3535682261,
0.1602532268,
0.0566457026,
0.0154520124,
-0.0166389327,
-0.3482203484,
0.1194506958,
-0.078094475,
-0.1198166162,
0.2012992501,
0.1279422045,
0.1323252618,
0.1488921642,
-0.1224228293,
0.0335175134,
0.1445461512,
0.2388260663,
-0.1281580627,
0.1534228921,
-0.0863455683,
0.0834686458,
0.1609511226,
-0.2093751281,
0.0299156494,
-0.0308845211,
-0.1051059142,
0.3303557038,
0.2067348361,
-0.071058169,
0.0653582737,
0.024782192,
0.360222578,
-0.4267212451,
0.1748330295,
0.1002819389,
0.0175223965,
-0.1147703975,
0.1647481471,
0.0815892592,
-0.2149351388,
-0.1712434441,
-0.2071364969,
0.129435569,
-0.1964802742,
-0.2423824519,
-0.0544870347,
0.0102975806,
-0.3162893057,
0.2142869383,
0.0043269061,
0.3083494306,
0.0286602862,
-0.026775822,
-0.090551421,
0.2809023261,
-0.2474738359,
-0.2410405874,
0.1092096865,
0.6122671366,
-0.2852085233,
-0.0807598233,
0.6636142731,
0.0836109817,
-0.5348962545,
0.3374618888,
-0.0009946711,
0.1033220366,
0.1066336706,
-0.2227984816,
0.3268618286,
-0.4240094423,
-0.3810767531,
0.4306105077,
-0.2452858835,
-0.1893833876,
0.3636599183,
-0.0155092925,
0.7288662195,
-0.2947200239,
-0.0227383487,
0.3314572275,
-0.0771263838,
0.2354422361,
-0.3025572896,
-0.3982690573,
-0.2546402216,
0.2839323282,
-0.2140711099,
-0.1160832196,
-0.179930672,
0.2502494156,
0.2469003499,
-0.1099308282,
0.31650576,
-0.1018159539,
0.3639544845,
0.0839584395,
-0.0795995295,
-0.0867857933,
-0.7564767003,
-0.1431137621,
-0.0840264037,
-0.3280593455,
0.186029315,
-0.4696926475,
-0.3212249875,
-0.095061563,
-0.0712462068,
-0.0954313055,
-0.0386249423,
-0.1620655954,
0.2539695203,
-0.079683885,
-0.3652377129,
0.1896633208,
-0.0390118174,
0.1111781597,
-0.1952000856,
0.1073800772,
0.1137764677,
-0.014933886,
0.207732752,
0.2578846812,
0.0083846143,
-0.3317627609,
0.3545593917,
0.1319758743,
-0.133644551,
0.0812667012,
0.1226987392,
0.1317264885,
0.3408952951,
0.2437701821,
0.3483716547,
-0.0439618602,
-0.0989810973,
-0.1442311406,
-0.500867486,
0.370668292,
-0.2921046615,
0.1103615612,
-0.1532381624,
-0.134547919,
0.1723107696,
0.0691112429,
-0.261306107,
0.0681075156,
-0.1646813154,
0.110144712,
0.3442865014,
0.0879936889,
-0.0871090442,
0.1333631277,
0.3919230103,
-0.216986686,
0.0179703459,
0.0516891591,
0.1255052984,
-0.0312475152,
-0.0564962327,
-0.2630297542,
0.1382659525,
0.1746780127,
-0.1283717304,
0.064728491,
0.4244444072,
-0.0671783537,
-0.0462362394,
0.0543141998,
0.229889065,
0.2028608322,
0.3700594306,
-0.1126023531,
0.1116560251,
0.0417752713,
0.1205796897,
-0.0568959564,
-0.1817299575,
0.0054913908,
0.1262895465,
0.2495282292,
-0.2198903412,
0.235609889,
-0.2114341408,
0.2134432346,
0.2909428179,
0.1771948189,
0.1042566448,
0.0839726254,
0.2970294952,
0.8125567436,
0.071054168,
-0.251211971,
0.1529861093,
-0.2007251531,
0.3018532693,
-0.03714443,
0.3549653888,
-0.4794062972,
0.2100300044,
-0.108979255,
0.035224773,
-0.2428149879,
-0.1994037181,
0.1299564093,
-0.0244707465,
0.1560817659,
-0.1350114048,
0.272175163,
-0.2808154523,
-0.0307090506,
0.1175480783,
-0.0479572341,
-0.1901570708,
-0.265065223,
0.019728452,
-0.0658900365,
0.0830075294,
-0.3270969689,
-0.2798151672,
-0.2791699469,
0.5616508722,
0.1398444176,
0.0851488933,
-0.3313439488,
0.1775344014,
-0.152815491,
-0.4699177742,
-0.0373298861,
-0.1394499987,
-0.6506544352,
0.1868299097,
-0.2666993737,
-0.2523922324,
-0.1978533715,
0.0946913809,
-0.1084745079,
-0.0140736513,
-0.2855155766,
-0.3582028151,
0.1891209632,
0.094120644,
-0.1096182019,
0.2015243918,
0.3242133558,
-0.2208330184,
0.1413422376,
0.0029684827,
-0.1006144509,
0.2027542889,
0.2374795079,
0.355915904,
-0.1488822252,
0.395999074,
0.1915976554,
0.829472065,
0.6231411099,
0.1226649433,
-0.1924658716,
0.1587832719,
0.2736451328,
0.0276941136,
0.0053975731,
0.4714066982,
0.0324956104,
-0.0321165808,
0.24363482,
0.4521153271,
0.1945266575,
-0.0915699378,
-0.1980015337,
-0.1404837668,
-0.2652004361,
0.3011284471,
0.3607006967,
0.109663181,
-0.093091011,
-0.1706571281,
-0.1621373743,
-0.2697303295,
-0.1159676462,
0.1859959513,
0.3794801533,
0.2098850906,
-0.5740669966,
0.3515957594,
-0.2495235801,
0.1586683989,
0.1407620609,
-0.1898963302,
0.104237929,
-0.0806930661,
0.1455285847,
-0.050393112,
0.697308898,
0.2146671563,
-0.1506149322,
-0.2447743118,
-0.0417031907,
-0.3592647612,
0.1269329786,
-0.1086165681,
0.4451127052,
0.4036062062,
0.377109319,
-0.4491508603,
-0.2118763179,
0.1248537078,
0.1288120896,
-0.2049937248,
-0.1730587333,
-0.1876724362,
-0.1642362475,
-0.3772870004,
0.2050736994,
0.1352117807,
-0.0898914486,
0.1681877375,
-0.0176591277,
0.0716030672,
0.0904714912,
0.074008435,
0.2989821732,
0.0289301462,
0.2948356271,
0.1590927243,
0.2529342175,
0.1572228372,
0.050047569,
0.2393590212,
-0.0101686064,
0.0080415308,
0.2292131037,
-0.119032979,
0.5664661527,
0.5696610212,
0.1238994896,
-0.1912187934,
-0.4843904376,
0.2945773005,
-0.347984612,
-0.1847196817,
0.181892544,
-0.1415814757,
-0.2552081943,
-0.2871853113,
0.4790968299,
-0.0409043953,
-0.0847547501,
-0.0073114214,
0.2140122652,
0.0477847233,
0.3040319085,
0.0754181817,
1.2021837234,
-0.374240309,
0.4124625921,
0.0296177231,
0.0230725184,
0.5967460275,
-0.6018072367,
0.0579551049,
-0.4674829543,
0.3419055641,
0.0099590197,
-0.1942117512,
0.0003663646,
0.4258295596,
-0.3690878451,
0.1852416992,
-0.0992700309,
0.4017495215,
-0.2606291175,
0.665448904,
-0.1651359499,
-0.2708649933,
-0.5053535104,
0.026853662,
-0.1865068078,
-0.1574735194,
-0.124391593,
-0.1319152117,
-0.1164252609,
0.0982787386,
0.0090546161,
-0.2376280576,
-0.18585217,
0.0519592464,
0.2512975335,
-0.4156518579,
0.3881490827,
0.2541195154,
0.0387783647,
0.2174841464,
-0.0712954029,
0.155649066,
-0.2833271623,
-0.1055983901,
0.0734280497,
0.0579538532,
0.1931799203,
-0.047286801,
-0.2664125562,
0.1490267515,
0.279137969,
0.0264126211,
-0.5276993513,
0.1213887036,
0.3254840374,
-0.6069250107,
-0.1746606529,
0.0657305643,
-0.1984007359,
0.0847044364,
-0.0115273185,
0.1129428595,
-0.0726878941,
0.3060575724,
0.5014001131,
-0.1398215443,
0.0687151998,
0.1370408535,
-0.1541066468,
-0.2838393152,
0.1902317405,
0.0829014778,
-0.0459967889,
-0.1814293861,
0.7017866373,
-0.0522637814,
-0.165468961,
0.002363611,
-0.0472077951,
-0.2197890878,
-0.2392237484,
-0.1758704484,
0.3445549607,
-0.0046087727,
0.3115483522,
-0.1323166192,
-0.3046637177,
0.2430797964,
0.1918097734,
-0.0892833173,
0.1325089782,
0.0541322269,
-0.0426909924,
0.3417141438,
-0.2071314454,
0.1975443214,
0.0837184265,
0.09735021,
-0.0291049257,
-0.2228956968,
0.0407825038,
-0.1490175426,
-0.1275974512,
0.0000935346,
-0.4162391722,
-0.1089007407,
-0.1852499247,
0.2129579335,
-0.0048156884,
0.0500319675,
-0.1606010795,
-0.2276466042,
-0.0708595589,
-0.070478946,
0.2910273671,
0.1154294237,
0.359573245,
-0.2725120783,
-0.1087476537,
-0.2252639234,
-0.0278411508,
0.1439147443,
0.2232495695,
0.3191731572,
0.177395463,
0.170198977,
-0.030684527,
-0.1751805097,
-0.0639682114,
0.4981129467,
0.5956968665,
0.1428245604,
0.2591726184,
-0.0916398242,
0.0654430762,
0.1437785327,
0.1729607731,
0.4379864335,
-0.2449675053,
0.1943521649,
0.0463158041,
0.0678836852,
0.0662234202,
0.151655063,
0.4133434296,
0.055579409,
-0.0465087444,
0.4429086447,
-0.0431634113,
-0.0476901755,
-0.1148667783,
0.1415473521,
0.5450333953,
0.1170207188,
-0.1232801527,
-0.0620593689,
-0.0437413305,
-0.2136625648,
0.4176064134,
0.2818899453,
0.1486145854,
-0.0748077333,
-0.1218435094,
0.1668073684,
-0.0911476091,
-0.0005371412,
0.2861868739,
0.0570838228,
-0.2213194817,
0.3472090364,
0.3019323349,
-0.0726385638,
-0.0794750676,
0.7899214625,
0.2486386895,
-0.3020102084,
-0.1370297819,
0.1681549251,
0.0844281018,
-0.1639668941,
-0.1675733328,
-0.1863091886,
-0.2095088959,
0.0558711514,
-0.2976077497,
-0.5191305876,
0.2120484412,
0.2914508879,
0.3409848213,
-0.1082469076,
0.1394076645,
0.1057221368,
0.3179251254,
-0.2273092866,
0.2871837616,
0.1986708194,
0.2035992593,
0.1773166358,
0.1962612122,
0.1064814106,
-0.1156355292,
-0.2542614937,
0.3833445609,
-0.3681044579,
0.0694549456,
0.1000267267,
0.0070876814,
0.1284898371,
-0.3347002864,
0.2503021359,
-0.0142430943,
-0.0067665912,
-0.1343012154,
0.1866583228,
-0.4374964535,
-0.2581467032,
-0.2774604857,
-0.1609301716,
-0.2395213246,
-0.1330560297,
-0.0723276138,
-0.4454120398,
0.0130425356,
0.162160188,
-0.141896233,
0.2449498773,
-0.0729928315,
0.030272115,
-0.0948013216,
0.2382569909,
0.0311887525,
-0.1155204326,
0.0092397556,
-0.1175479218,
-0.2322067618,
0.0562545024,
-0.1899390519,
0.1283695996,
-0.1862630844,
0.5108601451,
0.1144765764,
0.5743864775,
-0.1525536776,
-0.0378384665,
-0.4141388535,
-0.1009270996,
-0.4872947931,
0.0679346919,
0.0629954785,
0.5794433355,
0.2389269322,
-0.0967682675,
0.2277923673,
0.0356468521,
-0.1824698001,
-0.0455812924,
0.1363379061,
-0.3447842598,
-0.5008978248,
0.0660583824,
-0.0611399487,
0.0389655493,
0.0871230811,
-0.2023593187,
-0.2704789042,
-0.0451457947,
-0.1055661291,
0.2444248199,
0.2704151869,
0.1172905862,
-0.3241795301,
-0.3725758493,
0.0234500058,
0.0022238418,
-0.1681121588,
-0.1866528243,
-0.1840443015,
-0.2977955341,
-0.0467763618,
0.2462061346,
-0.051611051,
0.5003600121,
-0.427384764,
0.1211482808,
-0.1787669957,
-0.0257163234,
0.6111913323,
-0.1560890079,
-0.2255623788,
0.0675888136,
0.3299674392,
0.2188190669,
-0.1582419127,
-0.2939792573,
0.3241057396,
0.1196348518,
-0.0128140673,
-0.1734107733,
0.1478220224,
-0.3205632567,
-0.28970474,
-0.1444608271,
0.2264082432,
-0.0070547098,
-0.071931839,
-0.1444688141,
-0.2662912011
] |
https://github.com/huggingface/datasets/issues/326 | Large dataset in Squad2-format | It would also be good if there is any possibility for versioning, I think this way is much better than the dynamic way.
If you mean that part to put the tiles into one is the generation it would take up to 15-20 minutes on home computer hardware.
Are there any compression or optimization algorithms while generating the dataset ?
Otherwise the hardware limit is around 32 GB ram at the moment.
If everything works well we will add some more gigabytes of data in future what would make it pretty memory costly. | At the moment we are building an large question answering dataset and think about sharing it with the huggingface community.
Caused the computing power we splitted it into multiple tiles, but they are all in the same format.
Right now the most important facts about are this:
- Contexts: 1.047.671
- questions: 1.677.732
- Answers: 6.742.406
- unanswerable: 377.398
It is already cleaned
<pre><code>
train_data = [
{
'context': "this is the context",
'qas': [
{
'id': "00002",
'is_impossible': False,
'question': "whats is this",
'answers': [
{
'text': "answer",
'answer_start': 0
}
]
},
{
'id': "00003",
'is_impossible': False,
'question': "question2",
'answers': [
{
'text': "answer2",
'answer_start': 1
}
]
}
]
}
]
</code></pre>
Cause it is growing every day we are thinking about an structure like this:
We host an Json file, containing all the download links and the script can load it dynamically.
At the moment it is around ~20GB
Any advice how to handle this, or an ready to use template ? | 93 | Large dataset in Squad2-format
At the moment we are building an large question answering dataset and think about sharing it with the huggingface community.
Caused the computing power we splitted it into multiple tiles, but they are all in the same format.
Right now the most important facts about are this:
- Contexts: 1.047.671
- questions: 1.677.732
- Answers: 6.742.406
- unanswerable: 377.398
It is already cleaned
<pre><code>
train_data = [
{
'context': "this is the context",
'qas': [
{
'id': "00002",
'is_impossible': False,
'question': "whats is this",
'answers': [
{
'text': "answer",
'answer_start': 0
}
]
},
{
'id': "00003",
'is_impossible': False,
'question': "question2",
'answers': [
{
'text': "answer2",
'answer_start': 1
}
]
}
]
}
]
</code></pre>
Cause it is growing every day we are thinking about an structure like this:
We host an Json file, containing all the download links and the script can load it dynamically.
At the moment it is around ~20GB
Any advice how to handle this, or an ready to use template ?
It would also be good if there is any possibility for versioning, I think this way is much better than the dynamic way.
If you mean that part to put the tiles into one is the generation it would take up to 15-20 minutes on home computer hardware.
Are there any compression or optimization algorithms while generating the dataset ?
Otherwise the hardware limit is around 32 GB ram at the moment.
If everything works well we will add some more gigabytes of data in future what would make it pretty memory costly. | [
-0.0783766359,
-0.3369029164,
-0.1021033376,
0.3794318438,
0.2913856804,
-0.0967132896,
-0.1217118949,
0.5122987032,
-0.0272253305,
0.1946524233,
-0.2856160104,
0.0614133701,
-0.2502671182,
0.2593446076,
0.3205595911,
-0.0886084959,
0.1549794674,
0.0823777094,
-0.2040605545,
0.0569107234,
0.0637135953,
-0.103285186,
0.0612257272,
-0.1653318256,
-0.3009233177,
-0.1412980109,
-0.2881738842,
0.1138915718,
-0.3934971392,
-0.3375559449,
-0.244866699,
0.2171661854,
0.161169529,
0.6473468542,
-0.0001227837,
-0.1961067021,
-0.14377895,
-0.34958148,
-0.289480865,
0.1330740452,
-0.0990352556,
-0.3333494663,
-0.1614258736,
-0.1127132177,
-0.1404913962,
-0.258402288,
0.1062345952,
-0.3380096257,
0.7726528645,
-0.1852616072,
0.0068998784,
-0.1393992305,
-0.048321981,
0.0074564703,
0.2478704005,
0.2530170679,
-0.1029359102,
0.0350582004,
0.6240148544,
0.3569604158,
-0.0175894275,
0.0792304277,
0.0387503281,
-0.1803487539,
0.0834916681,
-0.1305763423,
-0.0905051008,
-0.3459357321,
-0.088446945,
0.2567330599,
0.4648338556,
-0.2146344483,
-0.2226942629,
-0.1702958345,
-0.0250917282,
0.1221157238,
0.06248983,
0.4120576382,
-0.1602801085,
0.3520799279,
-0.3435668647,
-0.4413897097,
-0.3995462656,
-0.0935542732,
0.2771207988,
-0.0322671309,
-0.1175546646,
-0.0084749162,
-0.1265730113,
-0.1373980194,
-0.1024047136,
-0.1397244632,
0.0183653049,
0.1883070767,
-0.0581439622,
-0.3634130359,
-0.3048735261,
-0.2218261361,
0.7251418233,
0.2197365761,
0.3265010715,
-0.0457130782,
0.3206257224,
-0.0938947052,
0.2684268355,
-0.0021524094,
-0.2191834897,
-0.4172416329,
0.1518898457,
-0.0420654453,
0.005760029,
-0.0518731028,
-0.29565534,
0.1691857278,
-0.1634947658,
-0.2331246585,
0.286166966,
0.1393415332,
0.0892821699,
-0.0214982852,
-0.2318848521,
0.0085957944,
0.0988225415,
0.2212496996,
-0.1391445398,
0.1223290563,
-0.1243350208,
-0.0346260034,
0.2165812701,
-0.2578244209,
0.0529311001,
0.0112323873,
-0.071439974,
0.3470554948,
0.2074624598,
-0.0121730398,
0.0128071532,
0.0960279554,
0.3481052518,
-0.3639533222,
0.1384863108,
-0.0333422758,
0.1040718704,
0.0320235491,
0.144400239,
0.0015518591,
-0.264488101,
-0.0145268887,
-0.2976856828,
0.0540184043,
-0.2035523653,
-0.3303639889,
-0.0882693082,
-0.0250276998,
-0.1353704333,
0.31161502,
-0.1619095802,
0.3599740565,
0.0874315053,
0.0490740389,
-0.113786146,
0.4489845037,
-0.2182917297,
-0.2930985987,
0.1602416337,
0.5045282245,
-0.200754106,
0.0229595602,
0.6979806423,
0.0560174659,
-0.2464075834,
0.4481517076,
-0.0043967962,
0.1359651089,
0.0660852343,
-0.1463229805,
0.2523390651,
-0.4034127593,
-0.393864423,
0.5243746638,
-0.1237470955,
-0.2651093304,
0.5103115439,
0.0308407731,
0.7380934358,
-0.204179883,
0.0067875478,
0.4657241404,
-0.0756597221,
0.2678141892,
-0.2925254703,
-0.3666587472,
-0.1064670011,
0.1976787299,
-0.3410527706,
-0.1301354915,
-0.174299404,
0.2694675624,
0.085177891,
-0.1051845029,
0.3670707941,
-0.1038182601,
0.3626271486,
0.0368108563,
-0.0351079181,
-0.0798207298,
-0.7069565654,
-0.1754608154,
-0.1475103199,
-0.1815340817,
0.1756396592,
-0.4423540235,
-0.2127517313,
-0.0871235952,
-0.0436071157,
-0.0111227045,
-0.0349131599,
-0.1196976453,
0.2897202373,
-0.2063935995,
-0.4174757004,
0.3462843895,
-0.0044270083,
0.094224669,
-0.0401617214,
0.1176769286,
0.0820624381,
-0.0380721502,
0.2208340466,
0.1245051324,
-0.0227845274,
-0.3221156001,
0.2823003531,
0.1625126898,
-0.1242315546,
0.051511623,
0.1698485762,
0.0649462119,
0.3528204262,
0.1846912503,
0.4536723197,
0.0004363693,
-0.0661332756,
-0.1742686927,
-0.5200109482,
0.2481521517,
-0.3177942932,
0.1537082195,
-0.0739713386,
-0.1496351808,
0.2833904624,
0.0238924325,
-0.17688936,
0.012962237,
-0.0836063325,
0.1472509503,
0.3329173028,
0.2726942301,
-0.1475751996,
0.1436814517,
0.3839885592,
-0.1751170754,
0.0854557753,
0.1256881207,
0.1638945788,
-0.2880839705,
-0.0547322333,
-0.2870209813,
0.0964187533,
0.2132015526,
-0.1603956521,
0.0219212491,
0.3833085001,
-0.0723187998,
-0.0162217095,
0.0359263048,
0.2771426737,
0.2381759584,
0.3160497546,
-0.0604217611,
0.0092024803,
-0.0110465139,
0.2079132497,
-0.0585526451,
-0.0915654227,
-0.0322171338,
0.0701840743,
0.2753455639,
-0.0765451342,
0.2308811247,
-0.2097187638,
0.256120801,
0.2956337929,
0.0528661087,
0.1372467577,
0.0791643932,
0.4016389251,
0.7862682939,
0.049003996,
-0.1759122908,
0.039161548,
-0.1600472033,
0.3815578818,
-0.0766044781,
0.3648779094,
-0.2340539098,
0.2852953076,
-0.0613860935,
-0.0187285244,
-0.208034128,
-0.0753425062,
0.2011942565,
0.0141334403,
0.1661957055,
-0.1607530415,
0.2517767847,
-0.2142984867,
-0.0036300495,
0.1522033215,
0.100091897,
-0.3120243847,
-0.1916680038,
-0.1176367253,
-0.1503311247,
0.0887133107,
-0.2238153219,
-0.2860087156,
-0.3231349885,
0.5092950463,
0.0681105927,
0.1934665143,
-0.4624146223,
0.1838062704,
-0.0821281224,
-0.4521042705,
0.032298319,
-0.1644721478,
-0.6774639487,
0.2262758613,
-0.2423988134,
-0.2435351908,
-0.3196679056,
0.1436236799,
-0.0644798726,
0.1405667961,
-0.1824053824,
-0.1861158609,
0.0617913753,
0.0786859244,
-0.043822296,
0.1198416203,
0.4211660028,
-0.1456257701,
0.0989598632,
-0.0075254887,
-0.0118149146,
0.1747244596,
0.2913618386,
0.2135712355,
0.085298121,
0.45124951,
0.1385155022,
0.7558047175,
0.6317540407,
0.2200106978,
0.0183602944,
0.1004882902,
0.2332384437,
-0.069992125,
0.0299025476,
0.4696426988,
0.0082809702,
0.0165154263,
0.2120721191,
0.3998869956,
0.1686699539,
-0.1937045902,
-0.2370008677,
-0.1864971817,
-0.1431632936,
0.3246117234,
0.3430018723,
0.146507889,
-0.1356236339,
-0.3484303951,
-0.1745056212,
-0.2955265045,
-0.1150361598,
0.1036041752,
0.3208524883,
0.1508603394,
-0.5605384111,
0.2728165984,
-0.3879011571,
0.0726885796,
0.1514028311,
-0.229163602,
0.0294447541,
0.0330012292,
0.205822438,
-0.1313831657,
0.6935654283,
0.2362893373,
-0.2052286267,
-0.2848112285,
-0.0359154008,
-0.2962577045,
0.2041635513,
-0.1618209183,
0.5082672238,
0.4002023637,
0.4520648122,
-0.5513499379,
-0.29691571,
0.0719210953,
0.1676054746,
-0.1722215116,
-0.1284495741,
-0.1660271585,
-0.2056509256,
-0.4376522005,
0.0472211353,
0.2290112674,
-0.0335301012,
0.3272568285,
-0.2375562191,
0.0065541957,
0.1567456126,
0.1071838588,
0.2076041251,
0.0108362325,
0.0887905136,
0.1709646583,
0.1252227426,
0.1800392866,
0.0761864036,
0.2360605896,
-0.008259099,
0.1217343211,
0.1745821536,
-0.0739693195,
0.5832383037,
0.5046691298,
0.1077760309,
-0.2305306345,
-0.4071766138,
0.3388228118,
-0.4252403378,
-0.2050825953,
0.1855164468,
-0.1453351229,
-0.3102446795,
-0.1364735961,
0.5063798428,
0.02552367,
-0.0999761075,
0.0701602697,
0.3052080274,
-0.0552938432,
0.3334281445,
0.2119612247,
1.346303463,
-0.4943514168,
0.3390040994,
0.0765282214,
0.0472705886,
0.5080575943,
-0.6566590071,
0.1013209,
-0.3028968573,
0.4036858678,
-0.0521731116,
-0.1514640749,
0.0093570054,
0.4282869101,
-0.4516573846,
0.0899514556,
-0.0964669287,
0.5072119236,
-0.2389474809,
0.6394395232,
-0.1891429871,
-0.4351727366,
-0.5924045444,
-0.0121849366,
-0.2395352721,
-0.2794210017,
-0.0270985533,
-0.1196105629,
-0.1436288655,
0.1217975318,
-0.0202174559,
-0.1796540022,
-0.1806990951,
0.1566819847,
0.2039217055,
-0.3671701252,
0.2174378335,
0.1902775019,
0.0093961991,
0.1367940605,
-0.0319667161,
0.0622280501,
-0.2395302653,
-0.2782290578,
-0.0029729158,
0.0376255587,
0.0989114493,
-0.1177293137,
-0.2227038145,
0.0241679475,
0.2037926167,
-0.0684638396,
-0.3939574063,
0.0621112436,
0.22432217,
-0.561993897,
-0.1515210122,
0.0598463416,
-0.2130894363,
0.0352247804,
-0.0463197306,
0.1275072992,
-0.1143171936,
0.3470392525,
0.497238934,
-0.0826010033,
0.0394035131,
0.1234401911,
0.0842715651,
-0.2444637269,
0.0904162228,
0.0175518841,
-0.147063449,
-0.1831601858,
0.6808387041,
-0.1280508935,
-0.1843752265,
0.1817663312,
-0.1097552776,
-0.2629247606,
-0.293628186,
-0.1062052697,
0.3944666088,
0.0346631892,
0.2410096079,
-0.1528387815,
-0.3036344945,
0.3529013991,
0.1658287346,
-0.0642144233,
0.0199691579,
-0.032263115,
-0.0536762215,
0.411174953,
-0.1823551208,
0.1870316565,
-0.0284990184,
0.1000977308,
0.0070200898,
-0.2458523959,
0.0349533148,
-0.0541426316,
-0.1004568189,
-0.0587203354,
-0.3416644335,
-0.0649622008,
-0.1126519442,
0.228274554,
0.0350274816,
-0.005163677,
-0.1717701107,
-0.2853631079,
-0.2156923413,
-0.1201680601,
0.2445328385,
0.1376596987,
0.2847688198,
-0.4812833667,
-0.070033282,
-0.2733207941,
-0.020881772,
0.1764972657,
0.2403641045,
0.4069955945,
0.0657457933,
0.1164229885,
0.0257408507,
-0.2583560944,
-0.1290076971,
0.5130094886,
0.6452718377,
-0.04998466,
0.2964615822,
-0.1205545515,
-0.0449701063,
0.1943710893,
0.088743262,
0.3183447421,
-0.2586115003,
0.2076938748,
-0.0824157745,
0.003308855,
-0.0045900196,
0.0779856294,
0.4187327623,
-0.0612085462,
-0.0862051398,
0.3684053123,
0.0509826019,
-0.1309066415,
-0.196129784,
0.0988645032,
0.5369048119,
0.1139392927,
-0.2775098085,
-0.1387203783,
0.044436723,
-0.1400185823,
0.3737180829,
0.3407342434,
0.2538031042,
0.1215059981,
-0.0502985455,
0.2065766603,
-0.0334899053,
0.1297721416,
0.3383569121,
0.1459895372,
-0.1616296321,
0.5025841594,
0.189735055,
-0.0794503838,
-0.1083899885,
0.7325361371,
0.2057285309,
-0.2239215076,
-0.1951460391,
0.2171822041,
0.0751383305,
-0.0824081674,
-0.1666916311,
-0.2654818296,
-0.1495414227,
0.1284293532,
-0.1550439149,
-0.412145406,
0.3357383907,
0.3109164834,
0.3543129563,
-0.0016941056,
0.304844141,
0.1883203685,
0.2788807452,
-0.2487303615,
0.3172354698,
0.2447415888,
0.0605279543,
0.0113727897,
0.2793510556,
0.186078608,
0.0290330574,
-0.3341404498,
0.4661573172,
-0.29914698,
-0.0593524203,
0.0884760171,
0.0756328925,
0.188512221,
-0.2831535637,
0.0932003185,
-0.0624142662,
0.0152814835,
-0.285553515,
0.2223766744,
-0.291785121,
0.0057016648,
-0.3255162835,
-0.2108809948,
-0.2124381363,
-0.035538882,
-0.0335168876,
-0.4937590361,
-0.1424139142,
0.0535328314,
-0.2226224393,
0.1521715522,
-0.002152279,
0.0078373775,
-0.1211434454,
0.3348331749,
-0.0853760839,
-0.0122721195,
0.0159888752,
-0.2567746937,
-0.1191207319,
0.0258224756,
-0.221897006,
0.095595628,
-0.1849512756,
0.6031036377,
0.0857094675,
0.6102773547,
-0.2274640501,
0.0018809289,
-0.3210498393,
-0.0815697908,
-0.4122189283,
0.1538253725,
0.1515187323,
0.5324698687,
0.2032713741,
-0.2592147589,
0.4004767835,
-0.0103032701,
-0.1934350282,
-0.1263654083,
0.2541640997,
-0.2773373127,
-0.414360255,
0.0231939536,
0.0662835091,
0.0857777074,
0.0313287452,
-0.2379298955,
-0.0508215725,
-0.0020786375,
-0.0265586115,
0.1445010006,
0.4534950256,
-0.0059602931,
-0.3527193367,
-0.2872932255,
0.107269004,
0.2053967118,
-0.206651032,
-0.1218011454,
-0.0356565043,
-0.3302614391,
-0.096976757,
0.1723271012,
0.0188211724,
0.3120369911,
-0.3507348597,
-0.0494742505,
-0.2220903039,
-0.0489438772,
0.4450860322,
-0.0950234681,
-0.2620288134,
-0.0134485923,
0.2686889768,
0.1577759683,
-0.067322284,
-0.3039141595,
0.2149631828,
0.0775249153,
-0.04270906,
-0.2025124133,
0.2626699507,
-0.1757561415,
-0.2539327145,
-0.1284459531,
0.1256451011,
-0.0831005871,
-0.1376435161,
-0.2562361062,
-0.1987882257
] |
https://github.com/huggingface/datasets/issues/326 | Large dataset in Squad2-format | 15-20 minutes is fine !
Also there's no RAM limitations as we save to disk every 1000 elements while generating the dataset by default.
After generation, the dataset is ready to use with (again) no RAM limitations as we do memory-mapping. | At the moment we are building an large question answering dataset and think about sharing it with the huggingface community.
Caused the computing power we splitted it into multiple tiles, but they are all in the same format.
Right now the most important facts about are this:
- Contexts: 1.047.671
- questions: 1.677.732
- Answers: 6.742.406
- unanswerable: 377.398
It is already cleaned
<pre><code>
train_data = [
{
'context': "this is the context",
'qas': [
{
'id': "00002",
'is_impossible': False,
'question': "whats is this",
'answers': [
{
'text': "answer",
'answer_start': 0
}
]
},
{
'id': "00003",
'is_impossible': False,
'question': "question2",
'answers': [
{
'text': "answer2",
'answer_start': 1
}
]
}
]
}
]
</code></pre>
Cause it is growing every day we are thinking about an structure like this:
We host an Json file, containing all the download links and the script can load it dynamically.
At the moment it is around ~20GB
Any advice how to handle this, or an ready to use template ? | 41 | Large dataset in Squad2-format
At the moment we are building an large question answering dataset and think about sharing it with the huggingface community.
Caused the computing power we splitted it into multiple tiles, but they are all in the same format.
Right now the most important facts about are this:
- Contexts: 1.047.671
- questions: 1.677.732
- Answers: 6.742.406
- unanswerable: 377.398
It is already cleaned
<pre><code>
train_data = [
{
'context': "this is the context",
'qas': [
{
'id': "00002",
'is_impossible': False,
'question': "whats is this",
'answers': [
{
'text': "answer",
'answer_start': 0
}
]
},
{
'id': "00003",
'is_impossible': False,
'question': "question2",
'answers': [
{
'text': "answer2",
'answer_start': 1
}
]
}
]
}
]
</code></pre>
Cause it is growing every day we are thinking about an structure like this:
We host an Json file, containing all the download links and the script can load it dynamically.
At the moment it is around ~20GB
Any advice how to handle this, or an ready to use template ?
15-20 minutes is fine !
Also there's no RAM limitations as we save to disk every 1000 elements while generating the dataset by default.
After generation, the dataset is ready to use with (again) no RAM limitations as we do memory-mapping. | [
-0.1409040838,
-0.2805249095,
-0.1005572528,
0.2925080955,
0.2343990058,
-0.0667673498,
-0.0066275783,
0.4827183783,
-0.0046401396,
0.101257883,
-0.2878576219,
0.0170631669,
-0.2403967679,
0.2706011534,
0.277870208,
-0.0782353878,
0.0859453082,
-0.0013716221,
-0.1129797697,
0.0685323849,
0.1218711883,
-0.1785970479,
0.0677226186,
-0.1662177742,
-0.3052944541,
-0.1456223875,
-0.1592086852,
0.1375639439,
-0.3753186166,
-0.3739069998,
-0.2109327316,
0.261287421,
0.2146434635,
0.5602199435,
-0.0001202043,
-0.1613313556,
-0.0782381594,
-0.3438848853,
-0.3753679097,
0.1145758778,
-0.1013672799,
-0.3235391676,
-0.1401281208,
-0.1104311422,
-0.2038573474,
-0.1932179332,
0.1400705129,
-0.3323161006,
0.7989581227,
-0.1259249747,
0.0317238271,
-0.0380412415,
-0.040326409,
-0.0242629461,
0.2425184846,
0.2816531658,
-0.0964004993,
0.018755205,
0.6647381186,
0.3354048133,
-0.1760165244,
0.0907358974,
-0.0098590255,
-0.1400217265,
0.109808892,
-0.1842202246,
-0.1575746834,
-0.2615040839,
-0.0657867938,
0.2858432233,
0.5030139685,
-0.2781630158,
-0.1896306574,
-0.2847802639,
-0.0658234432,
0.1196045727,
0.0054942798,
0.3605890572,
-0.087571986,
0.3904541731,
-0.2851333022,
-0.4337236881,
-0.3542932868,
-0.0511342362,
0.2782337964,
-0.0421495363,
-0.1095746309,
0.0358319543,
-0.1736289561,
-0.1611449271,
-0.1055145413,
-0.1820172071,
-0.0435580127,
0.1951273978,
-0.050038714,
-0.3236090541,
-0.1228350997,
-0.2667886913,
0.737346828,
0.2351020575,
0.2762565017,
-0.0252916943,
0.2214843631,
-0.0559958629,
0.349958837,
0.0007974282,
-0.1983938217,
-0.3956948817,
0.1951480657,
0.0411391854,
-0.0147487596,
-0.1023096666,
-0.2278902084,
0.1696135253,
-0.1113715693,
-0.2389044613,
0.2255724967,
0.1624681801,
0.0749959275,
0.0988058448,
-0.1190229878,
-0.0564195439,
0.1590622813,
0.2800045907,
-0.100872308,
0.1065985858,
-0.0931565315,
0.042695079,
0.2466721088,
-0.2234213501,
0.0033721216,
-0.0549613163,
-0.1067693084,
0.2609634995,
0.249768734,
0.0787077099,
0.0633993894,
-0.0406716987,
0.3254792392,
-0.2624430954,
0.1954027116,
-0.0300891288,
0.055643525,
0.0270403083,
0.1214145645,
0.0723469853,
-0.2507170737,
-0.0373626128,
-0.2716752887,
0.066434592,
-0.170202598,
-0.3618005216,
-0.0369639844,
-0.0000426145,
-0.2681351304,
0.2985503376,
-0.1272269934,
0.3165004551,
0.021192709,
0.0033347234,
-0.0748794004,
0.4382682145,
-0.2252083421,
-0.2618329525,
0.0783001781,
0.558811903,
-0.1850252151,
-0.0162684172,
0.6108691692,
-0.0059924163,
-0.3543796837,
0.394806385,
0.0075895675,
0.1504805982,
0.034625344,
-0.1278948635,
0.2690080404,
-0.4436068833,
-0.4289491177,
0.5240530372,
-0.1946698576,
-0.2246603668,
0.4402689338,
0.0410947725,
0.6278263927,
-0.2429336756,
0.0849851891,
0.4986980259,
-0.0221913531,
0.3013452888,
-0.2948738337,
-0.3466868103,
-0.1763312668,
0.3227973878,
-0.237001881,
-0.1950384676,
-0.2147207111,
0.2757805884,
0.1182711571,
-0.0507150665,
0.345800966,
-0.0659846216,
0.3465014398,
-0.0189718977,
-0.1091036275,
-0.0796734095,
-0.7441958785,
-0.1172304377,
-0.0487520844,
-0.1769841611,
0.124254927,
-0.3950257301,
-0.2437807173,
-0.0272528566,
-0.0753840804,
-0.0389589742,
-0.0110307932,
-0.1466056108,
0.2431039512,
-0.0624294914,
-0.4239656627,
0.2198779881,
0.0312687457,
0.1088760048,
-0.051749438,
0.1104809195,
0.1083667278,
0.0403883904,
0.2250186801,
0.1406450719,
-0.0452483259,
-0.2843994796,
0.3054433763,
0.1263498962,
-0.1156672761,
0.0338575989,
0.0939448625,
0.1244289726,
0.3205663264,
0.213187933,
0.3468076587,
-0.0148211624,
-0.0581186861,
-0.242077738,
-0.5757759809,
0.2814452052,
-0.3202790916,
0.1856943965,
-0.1016293243,
-0.1921319067,
0.3548841178,
0.0224587992,
-0.2167509496,
0.0203056633,
-0.093908757,
0.1647085249,
0.4010160565,
0.2314787805,
-0.1395998001,
0.1183309183,
0.4107490778,
-0.1698397547,
0.0859564543,
0.1295028031,
0.1112829,
-0.2252752781,
-0.0007229596,
-0.3508839607,
0.1351929754,
0.1990706325,
-0.133120358,
-0.0045661125,
0.4250624776,
-0.1296107024,
-0.0679170191,
-0.0029468294,
0.227908358,
0.2689401507,
0.4185391665,
-0.1249465495,
0.0409379676,
-0.0680259317,
0.1883977354,
-0.0257453639,
-0.0917410851,
-0.0187233724,
0.1817602515,
0.2700442672,
0.0131419487,
0.2449392676,
-0.1544848084,
0.2557692826,
0.3178782165,
0.1129627079,
0.027743116,
0.0555842593,
0.3220248222,
0.7086131573,
0.1092418209,
-0.3408539295,
0.0270894468,
-0.211209774,
0.4393977225,
-0.054904066,
0.4286056161,
-0.318097651,
0.2616627216,
-0.0354953483,
-0.0042357296,
-0.1711004823,
-0.0890165046,
0.215425998,
0.0497114472,
0.2052056491,
-0.117955856,
0.3070599437,
-0.2029968053,
-0.0046428777,
0.1793079972,
0.1094411016,
-0.2314155996,
-0.1409713775,
-0.0624788925,
-0.139859274,
0.0873496383,
-0.1704576313,
-0.2106008232,
-0.3970166147,
0.5515094399,
0.0806929544,
0.0940167904,
-0.4090307653,
0.1804582626,
-0.1239489466,
-0.4157427251,
0.0509494171,
-0.1454325914,
-0.7269207835,
0.2046375871,
-0.1891166568,
-0.2277169526,
-0.3275859952,
0.0779179633,
-0.03049016,
0.0789900944,
-0.3037672937,
-0.2016588151,
0.086892873,
0.1434854716,
-0.0471300855,
0.0897521302,
0.3968954384,
-0.1114340276,
0.0900501013,
0.0583491996,
-0.0112754107,
0.1375247985,
0.2120559216,
0.248374939,
-0.0091642151,
0.4458045065,
0.1821140796,
0.7829380631,
0.4851697683,
0.2196803838,
0.0542256869,
0.1727015078,
0.2754837573,
-0.1015146151,
0.0198385492,
0.4424996674,
0.0342322513,
-0.0314425193,
0.1802770644,
0.3919912875,
0.1098085195,
-0.205675751,
-0.2954730392,
-0.157094419,
-0.2163414359,
0.3759022951,
0.4015353024,
0.1393619031,
-0.0524313003,
-0.2696833611,
-0.1410927474,
-0.2912503183,
-0.120814614,
0.1347863078,
0.4174839556,
0.1133312508,
-0.5920680761,
0.3075259626,
-0.3974336386,
0.0312746279,
0.032543391,
-0.2528341413,
-0.0121986419,
-0.0051421896,
0.1667621434,
-0.1427385807,
0.6802514195,
0.2327903509,
-0.0449019,
-0.1984282881,
-0.0244638547,
-0.3251377344,
0.2406825423,
-0.1463398933,
0.496902138,
0.4652555287,
0.4515279233,
-0.5926407576,
-0.2258889526,
0.0128850266,
0.1392450333,
-0.1968649626,
-0.2128097564,
-0.1484230161,
-0.218244791,
-0.4754293561,
0.1036964059,
0.238309741,
-0.0439609215,
0.3554884791,
-0.0784144998,
-0.0193682462,
0.1624200791,
0.0449252576,
0.2307016999,
-0.0484962873,
0.0834057629,
0.2023899555,
0.1278289109,
0.1726062894,
0.1032775566,
0.281863451,
0.0337034427,
0.0903194845,
0.1233191788,
-0.0085222907,
0.4882118404,
0.5183212161,
0.143508628,
-0.1499528289,
-0.4515407383,
0.3554840982,
-0.4063184857,
-0.1295848787,
0.1299922168,
-0.1523330808,
-0.3432391882,
-0.177595675,
0.465143919,
-0.0613241754,
-0.115196228,
-0.0126701174,
0.2484809607,
-0.0358064361,
0.3706605434,
0.1062935293,
1.2893743515,
-0.4414869547,
0.3910546899,
0.0752180517,
0.0515570939,
0.5166640282,
-0.7395319343,
0.0685655326,
-0.3477134705,
0.3740770817,
0.0072499439,
-0.179178074,
-0.0398701467,
0.4383761287,
-0.3424454331,
0.1081089899,
-0.1384111792,
0.4814705253,
-0.2609600127,
0.7284734249,
-0.1351395845,
-0.3896681666,
-0.5786439776,
0.0151581429,
-0.2396694869,
-0.2095902562,
-0.0710888356,
-0.1450630128,
-0.0771520659,
0.0842654109,
-0.0611643717,
-0.2490497828,
-0.1270483136,
0.1089502051,
0.2076440454,
-0.3685162067,
0.2751115263,
0.2031453848,
-0.040327888,
0.2738543749,
-0.0496899597,
0.1429560035,
-0.2844429016,
-0.2363251746,
0.0290144309,
0.0374844447,
0.1495348513,
-0.0959479585,
-0.2634082437,
0.0929511413,
0.1497383118,
-0.0544796325,
-0.3979585171,
0.1247567832,
0.2053519487,
-0.5689501762,
-0.2819281816,
-0.0178320557,
-0.2618293166,
0.0751779228,
-0.0253004972,
0.1577109247,
-0.0735867769,
0.240054369,
0.4915740192,
-0.0909969509,
-0.0074916082,
0.1820626706,
-0.0016057324,
-0.2429554164,
0.1702007502,
0.1188002676,
-0.1442970037,
-0.1969185024,
0.6800793409,
-0.0105391182,
-0.1847032458,
0.1404964626,
-0.0037367009,
-0.2887128592,
-0.3659247756,
-0.209934935,
0.3386264443,
-0.060895469,
0.3054255843,
-0.1639449447,
-0.369194746,
0.3123012781,
0.1857188046,
-0.0890099704,
0.0912585929,
-0.0316652656,
-0.0656613782,
0.3900133967,
-0.2072121501,
0.2037011683,
-0.0131287947,
0.0936943144,
-0.015510994,
-0.2478204817,
0.0741374642,
-0.1320338994,
-0.0739759654,
-0.0639435798,
-0.3755154014,
-0.1119010001,
-0.1430517435,
0.2250719368,
0.0496234559,
-0.0759968832,
-0.1169420928,
-0.3477752209,
-0.1839901656,
-0.1219804138,
0.2752687633,
0.1719343513,
0.2944324911,
-0.4831787646,
-0.103686139,
-0.2874077857,
-0.0232176036,
0.2090700418,
0.2285811603,
0.4083469212,
0.1109563112,
0.0994685218,
0.051755771,
-0.1989714503,
-0.0265357699,
0.5146843791,
0.6444920897,
0.097329393,
0.3506824672,
-0.1245427132,
-0.0084527284,
0.180965662,
0.1210119948,
0.2879492044,
-0.279102236,
0.2501029968,
-0.0425306261,
0.0509490706,
-0.0465703122,
0.0771990418,
0.3802140653,
0.0022437833,
0.0142666623,
0.3488172889,
-0.0120911673,
-0.0625250787,
-0.1603214592,
0.1511817276,
0.5711219907,
0.2238799036,
-0.2705692947,
-0.1246124059,
-0.0449255332,
-0.1669440418,
0.397762388,
0.3459734917,
0.2794701755,
0.0859217197,
0.0093364678,
0.1830568314,
-0.019101236,
0.0822952539,
0.2479449362,
0.0310270712,
-0.1983716339,
0.4128298163,
0.2662299275,
-0.0667297617,
-0.1031135768,
0.6514556408,
0.2968399227,
-0.1370080411,
-0.1608633995,
0.1697642505,
0.0429077446,
-0.1430211216,
-0.1048240289,
-0.2766441107,
-0.1550353169,
0.151058659,
-0.2287660241,
-0.4610015154,
0.205851689,
0.2624770999,
0.3755552769,
-0.0212112367,
0.3653201759,
0.180487588,
0.2209101617,
-0.2141545266,
0.309176445,
0.2817085385,
0.126626417,
0.1267702579,
0.2018477172,
0.1727317572,
-0.0063073495,
-0.3402140737,
0.4396516979,
-0.3761491477,
-0.053526096,
-0.0502602607,
0.1068721414,
0.2075186819,
-0.2797420025,
0.1731985062,
-0.0248784572,
-0.0364815146,
-0.208784461,
0.2289432585,
-0.3709005117,
-0.0412516072,
-0.3318807781,
-0.2246048301,
-0.2519367337,
-0.0864917487,
-0.128493011,
-0.4553543925,
-0.0998795182,
0.1338513047,
-0.1839458048,
0.2526098788,
-0.0441517644,
0.0109281577,
-0.1301107109,
0.3143855333,
-0.0782674327,
-0.0487821288,
-0.0527888574,
-0.1989184618,
-0.201716125,
0.0232770182,
-0.2842140496,
0.154001385,
-0.1881955415,
0.5003315806,
0.1217843741,
0.5847209096,
-0.2400675118,
0.0708100498,
-0.3883979023,
-0.0536923818,
-0.3941106796,
0.0806148574,
0.0448236912,
0.5533951521,
0.1747606993,
-0.2300332785,
0.2786178887,
0.0650686622,
-0.1497411132,
-0.1604815125,
0.2179169208,
-0.3197430074,
-0.4120727181,
0.1225443631,
0.0465590656,
0.0845951289,
0.005330354,
-0.2420699298,
-0.1329423636,
-0.0373047292,
-0.0050695054,
0.1964520961,
0.3821803331,
0.0558501184,
-0.3367772102,
-0.3499858975,
0.0738332421,
0.120198831,
-0.2507035434,
-0.1465728879,
-0.1684763134,
-0.3080816567,
-0.1748037338,
0.273537159,
-0.0702431723,
0.3493781984,
-0.3827399015,
-0.0261936747,
-0.201138407,
-0.0583674572,
0.501427114,
-0.1039117873,
-0.2714810371,
0.0784859955,
0.1943379492,
0.1541588008,
-0.0468973592,
-0.356761694,
0.2978198528,
0.0858595446,
-0.0381604135,
-0.2461088002,
0.1744015962,
-0.2112903297,
-0.2963833809,
-0.1303199679,
0.17460832,
-0.0511538275,
-0.1387958676,
-0.2719123363,
-0.1896781027
] |
https://github.com/huggingface/datasets/issues/326 | Large dataset in Squad2-format | Wow, that sounds pretty cool.
Actually I have the problem of running out of memory while tokenization on our local machine.
That wouldn't happen again, would it ? | At the moment we are building an large question answering dataset and think about sharing it with the huggingface community.
Caused the computing power we splitted it into multiple tiles, but they are all in the same format.
Right now the most important facts about are this:
- Contexts: 1.047.671
- questions: 1.677.732
- Answers: 6.742.406
- unanswerable: 377.398
It is already cleaned
<pre><code>
train_data = [
{
'context': "this is the context",
'qas': [
{
'id': "00002",
'is_impossible': False,
'question': "whats is this",
'answers': [
{
'text': "answer",
'answer_start': 0
}
]
},
{
'id': "00003",
'is_impossible': False,
'question': "question2",
'answers': [
{
'text': "answer2",
'answer_start': 1
}
]
}
]
}
]
</code></pre>
Cause it is growing every day we are thinking about an structure like this:
We host an Json file, containing all the download links and the script can load it dynamically.
At the moment it is around ~20GB
Any advice how to handle this, or an ready to use template ? | 28 | Large dataset in Squad2-format
At the moment we are building an large question answering dataset and think about sharing it with the huggingface community.
Caused the computing power we splitted it into multiple tiles, but they are all in the same format.
Right now the most important facts about are this:
- Contexts: 1.047.671
- questions: 1.677.732
- Answers: 6.742.406
- unanswerable: 377.398
It is already cleaned
<pre><code>
train_data = [
{
'context': "this is the context",
'qas': [
{
'id': "00002",
'is_impossible': False,
'question': "whats is this",
'answers': [
{
'text': "answer",
'answer_start': 0
}
]
},
{
'id': "00003",
'is_impossible': False,
'question': "question2",
'answers': [
{
'text': "answer2",
'answer_start': 1
}
]
}
]
}
]
</code></pre>
Cause it is growing every day we are thinking about an structure like this:
We host an Json file, containing all the download links and the script can load it dynamically.
At the moment it is around ~20GB
Any advice how to handle this, or an ready to use template ?
Wow, that sounds pretty cool.
Actually I have the problem of running out of memory while tokenization on our local machine.
That wouldn't happen again, would it ? | [
-0.0048634186,
-0.2359239012,
-0.0683035553,
0.2993224859,
0.2564298809,
-0.1159562245,
0.0191385224,
0.4660231769,
-0.0981997028,
0.1532812864,
-0.2599273026,
0.0292080715,
-0.2432349622,
0.2509177327,
0.3011701107,
-0.0480411649,
0.166487515,
-0.0175050832,
-0.0354579538,
0.0578788072,
0.1524415314,
-0.1213407815,
0.0502192825,
-0.1121686101,
-0.3433028758,
-0.1410205364,
-0.2227211595,
0.1154346168,
-0.3829270601,
-0.3995327353,
-0.3136947155,
0.256659925,
0.2417446971,
0.5677554011,
-0.000122708,
-0.201859355,
-0.0883842334,
-0.340364933,
-0.3112195432,
0.0545599088,
-0.000679113,
-0.343896687,
-0.1172074899,
-0.1090764478,
-0.1672703922,
-0.2621131837,
0.1045964807,
-0.2872915864,
0.8023915291,
-0.1858514249,
0.0164926257,
-0.0162656344,
-0.102080144,
0.0746310353,
0.1943786889,
0.32183972,
-0.040247608,
-0.014388334,
0.6634315848,
0.2563690245,
-0.1557705998,
0.0979115814,
-0.0329955406,
-0.1636566222,
0.0506474487,
-0.1566651613,
-0.1782920957,
-0.1981962323,
-0.0039008912,
0.1783850491,
0.3981476128,
-0.3300258815,
-0.1373392344,
-0.2405590713,
-0.1100011915,
0.0567665845,
0.0279385671,
0.3217482567,
-0.0983808711,
0.3943791091,
-0.3018193841,
-0.4261780977,
-0.3479033113,
-0.0081261247,
0.1863963753,
0.0747399554,
-0.1123985201,
0.016232308,
-0.2107525915,
-0.2084164619,
-0.1750331819,
-0.1212715805,
-0.0562754646,
0.1857765168,
-0.0294533856,
-0.3806008995,
-0.1769758761,
-0.3344236016,
0.7397294641,
0.2407939732,
0.2041114867,
0.0006106487,
0.2247764915,
-0.0235043131,
0.4215138555,
0.0339770019,
-0.1606850475,
-0.2854783237,
0.1769556552,
-0.0767193139,
0.0071585178,
-0.126748994,
-0.2901687622,
0.2594231069,
-0.1199790239,
-0.1985274255,
0.2078862339,
0.1181466728,
0.125008136,
0.1459032297,
-0.153206259,
-0.0004800409,
0.1926342845,
0.2919615209,
-0.0999254361,
0.1251992583,
-0.1555044353,
0.0132865012,
0.1941235214,
-0.220000729,
0.01518723,
-0.0488923863,
-0.1426733434,
0.2775089145,
0.1601998508,
0.1904595494,
0.0550612137,
-0.031302169,
0.3454266191,
-0.3316128254,
0.1718171835,
-0.0120869428,
0.0918694884,
-0.0871024877,
0.096674338,
0.1071955934,
-0.186013326,
-0.0634553581,
-0.2804773748,
0.0286113918,
-0.159073174,
-0.2859142125,
-0.0899712369,
-0.0131995687,
-0.2573438883,
0.2753226757,
-0.1556988358,
0.3370767534,
0.0433545224,
0.0276190788,
-0.0760419443,
0.4177354574,
-0.1996266544,
-0.2468785793,
0.0862543583,
0.526491642,
-0.2127527893,
-0.058916986,
0.7256121635,
0.0039113574,
-0.2323840559,
0.452206403,
0.034119565,
0.0996496528,
0.0330233723,
0.0171206445,
0.1975418925,
-0.508415103,
-0.3917007446,
0.4872524142,
-0.2710967064,
-0.2888269424,
0.4501450658,
-0.0021805577,
0.7244880795,
-0.1779855341,
0.1248249263,
0.4527075887,
-0.0112071708,
0.2866778374,
-0.3418311775,
-0.3517704606,
-0.1432752162,
0.2145601362,
-0.2476700991,
-0.2337249219,
-0.1678471267,
0.3443211019,
0.1442342103,
-0.0370382257,
0.3658797741,
-0.1258070171,
0.408176899,
0.0815367103,
-0.1075154692,
-0.0453488715,
-0.6363105774,
-0.1759150624,
-0.0668964311,
-0.2045733929,
0.087546736,
-0.4391717613,
-0.2339884341,
-0.0397207215,
-0.0037448583,
-0.0227724966,
-0.0105005763,
-0.0721693262,
0.1975912452,
0.0416512191,
-0.4777804613,
0.1027797312,
0.0681988671,
0.0919447243,
0.0677359998,
0.1153926626,
0.0635745674,
-0.0278060399,
0.1835618019,
0.1694444269,
0.0132660791,
-0.2761826813,
0.3075851202,
0.1365493238,
-0.1376120746,
0.0771178454,
0.06437134,
0.1885316223,
0.3677640259,
0.2471437156,
0.3335406184,
-0.0359486528,
-0.0795967132,
-0.1956493258,
-0.4011146128,
0.2823255062,
-0.2059860677,
0.1607316732,
-0.1087658107,
-0.163089186,
0.3603008389,
0.0271318853,
-0.1765020937,
-0.0072295666,
-0.1080074757,
0.1386487931,
0.3167695403,
0.2005202621,
-0.1099157035,
0.150492996,
0.4193855226,
-0.1662425995,
0.1410765797,
0.0860972255,
0.065781191,
-0.2105071545,
0.0731403455,
-0.4206043482,
0.1161376387,
0.1916219741,
-0.1124329567,
0.0174666625,
0.4644152522,
-0.1069169492,
-0.054423511,
0.06150233,
0.1119858623,
0.206802696,
0.3783845901,
-0.151543662,
0.0632617176,
-0.0613132045,
0.1851514429,
-0.0180074759,
-0.1255823374,
0.0122133493,
0.0384270549,
0.2140255272,
-0.0323153809,
0.1993451118,
-0.1337940395,
0.2352689952,
0.3411101699,
0.1273875833,
-0.0041494519,
0.0475617945,
0.3337053061,
0.7932180762,
0.0033718497,
-0.2434072495,
0.0602371395,
-0.273308605,
0.3194570839,
-0.0889339969,
0.4855740964,
-0.3599856496,
0.3138051629,
0.0023291185,
-0.0271194354,
-0.1954463273,
-0.123683013,
0.2514012456,
0.0595036037,
0.1228086203,
-0.1811424792,
0.2243698835,
-0.3469933867,
-0.0619622581,
0.1353168041,
0.0441456735,
-0.2819416225,
-0.1478098929,
-0.0207598694,
-0.1053288355,
0.0789894462,
-0.1557480246,
-0.2638138831,
-0.3474766016,
0.5619256496,
0.0495656133,
0.0918336734,
-0.4269667268,
0.1237895116,
-0.0336595103,
-0.4764588773,
-0.0442669392,
-0.2064770162,
-0.6906927824,
0.1290421039,
-0.2044291347,
-0.1791324317,
-0.2571057677,
0.1340751946,
-0.0105616916,
0.026633203,
-0.2865178585,
-0.2164182663,
0.1734155715,
0.0656812564,
-0.0573249124,
0.103461951,
0.3878519535,
-0.1101517081,
0.0678932071,
0.0896942317,
0.0188466758,
0.1214544624,
0.1467285752,
0.2475131303,
-0.0135704475,
0.4285879433,
0.2638728023,
0.790101409,
0.3915771246,
0.1970972568,
0.0834624171,
0.1033207476,
0.2767245173,
-0.0046273991,
-0.0110786706,
0.4460400343,
0.0492831096,
-0.0639375299,
0.2406003475,
0.3872228563,
0.1359609365,
-0.1608261168,
-0.3288180232,
-0.1550689042,
-0.2619348168,
0.3843186498,
0.360247165,
0.0998755097,
-0.0669144467,
-0.263720274,
-0.1609508693,
-0.348664999,
-0.091217801,
0.1258563399,
0.310337007,
0.1596031189,
-0.6825460792,
0.3048124909,
-0.3812510967,
0.0732673332,
0.0437279306,
-0.1244024858,
-0.0309956819,
-0.040683005,
0.1786161512,
-0.1328397095,
0.6704140902,
0.3626084328,
-0.1161904633,
-0.257966578,
-0.1084467694,
-0.2668249905,
0.1988125145,
-0.1225395948,
0.4609363377,
0.4595270157,
0.4718096852,
-0.5613793135,
-0.2062009275,
-0.0660790801,
0.0868468881,
-0.2086281478,
-0.1341801733,
-0.1570606828,
-0.1778689921,
-0.5508028865,
0.1023479104,
0.2720918953,
-0.0412045419,
0.3813019097,
-0.1734057963,
0.0085245501,
0.0298009664,
0.089356415,
0.2183732539,
-0.0154075511,
0.1148337945,
0.0835983679,
0.169461906,
0.2123950422,
0.1255597919,
0.1472935081,
0.1005317867,
0.051870022,
0.1355921924,
0.03174055,
0.6307211518,
0.5391399264,
0.1274539232,
-0.0374041125,
-0.4805538058,
0.3121168017,
-0.4224784672,
-0.0316599607,
0.0885876343,
-0.1388894022,
-0.301427871,
-0.0881085396,
0.3730335832,
-0.0140162893,
-0.1200723946,
0.0496168919,
0.251534313,
-0.1055440828,
0.452306807,
0.1032070965,
1.3929840326,
-0.451472044,
0.4316121638,
0.0266741961,
0.0658515543,
0.6378901601,
-0.8194288015,
0.075372614,
-0.3553822637,
0.4845208526,
0.0279835239,
-0.1089505553,
-0.0716068,
0.3980711997,
-0.3112868071,
0.0931035429,
-0.179370448,
0.5494173169,
-0.3038335145,
0.6470787525,
-0.1158555597,
-0.3888771236,
-0.5553724766,
0.0002270155,
-0.2226498425,
-0.2617733479,
-0.1231742948,
-0.0763363168,
-0.0987591594,
0.0765955746,
-0.0189998671,
-0.2811445594,
-0.130640015,
0.1832185686,
0.1906514913,
-0.2936614752,
0.1789597273,
0.1591618657,
0.0245652124,
0.3643524647,
-0.0403413214,
0.0743633062,
-0.2797785401,
-0.2025120556,
0.0273781084,
0.0013688058,
0.1315411776,
-0.0915794671,
-0.2976221144,
0.1341985911,
0.2777326703,
-0.0907613561,
-0.5014804602,
0.1273466051,
0.3642624319,
-0.5198204517,
-0.2096788287,
-0.0355665684,
-0.243825227,
0.0729559585,
-0.0320860259,
0.1741947532,
-0.153153792,
0.2272577882,
0.5170199871,
-0.0452105477,
0.0120191798,
0.1995545328,
-0.0853142589,
-0.3673036695,
0.2237198055,
0.0613768101,
-0.1142333746,
-0.1685552001,
0.6826546788,
0.0097083822,
-0.1210052073,
0.0746247321,
0.0038238093,
-0.3500803411,
-0.3896214962,
-0.1243440807,
0.3901156187,
-0.0413381346,
0.2755551934,
-0.1811109781,
-0.4285439253,
0.3383809924,
0.110834077,
-0.0619492233,
0.1698968261,
0.1088582724,
-0.1757755578,
0.3394352198,
-0.1865462512,
0.1728895605,
-0.1168089435,
0.1082863882,
-0.0540542454,
-0.2186050862,
-0.0072935857,
-0.1137071252,
-0.0955778062,
0.0397074521,
-0.2682881355,
-0.0903342664,
-0.1170665175,
0.2406667769,
0.1114388406,
-0.0461361147,
-0.1293831915,
-0.2641300559,
-0.0955238864,
-0.1117088497,
0.2225820124,
0.2459101677,
0.2900204062,
-0.4254911542,
-0.0774688274,
-0.2499215603,
0.0075124428,
0.1698829085,
0.3039050698,
0.4021050632,
0.1170346588,
0.097874783,
0.0417184196,
-0.1809552908,
-0.0057736151,
0.5137708187,
0.7084441781,
0.0902368575,
0.2484450042,
-0.0522912666,
-0.0526191629,
0.1871722937,
-0.0088202283,
0.2816485465,
-0.2950820923,
0.1594909579,
0.1631024778,
0.0380955935,
0.0317639187,
0.0598829091,
0.363710165,
-0.0215350278,
-0.0839361772,
0.3634068966,
0.0386961997,
-0.0915407464,
-0.1826538444,
0.1232215166,
0.5751818419,
0.214414537,
-0.273064971,
-0.2374277115,
-0.1275797188,
-0.1843099296,
0.3792660832,
0.2954373956,
0.2662118971,
0.071753636,
-0.0446469299,
0.2154884636,
-0.059990298,
0.1828855574,
0.2250171304,
0.0842247233,
-0.2262141556,
0.33780545,
0.3512512147,
-0.028763961,
-0.1293133646,
0.6900856495,
0.3549059033,
-0.1810750663,
-0.0834743306,
0.2515940964,
0.0005787686,
-0.1217796355,
-0.1444712728,
-0.2440911829,
-0.1194602549,
0.1371260136,
-0.1653462052,
-0.472370863,
0.1429693401,
0.3088825643,
0.3158619106,
-0.0227741562,
0.3322772086,
0.2209156156,
0.2178190351,
-0.2352553606,
0.3177048266,
0.2284140289,
0.2080640793,
0.1335498691,
0.1596848816,
0.1499283761,
0.0468913987,
-0.2949415743,
0.4081040025,
-0.438806653,
0.0154485181,
-0.0470499061,
0.1584737599,
0.19520998,
-0.2692920566,
0.0826458558,
-0.0452421382,
-0.0166304801,
-0.2600595653,
0.2939868867,
-0.4036774337,
-0.020677384,
-0.2553529739,
-0.1937346756,
-0.2414625883,
-0.0963662267,
-0.1352775097,
-0.5302699208,
-0.0924403369,
0.1397973597,
-0.1652861238,
0.2769560814,
-0.0640743822,
0.0000355877,
-0.0711739659,
0.268617034,
-0.0679077357,
-0.1023268998,
-0.0763240904,
-0.1858237386,
-0.2031056285,
0.1488702744,
-0.2374667227,
0.1368873268,
-0.2526889443,
0.4799547493,
0.1438125074,
0.5463255048,
-0.3531478643,
0.139550209,
-0.4323920906,
-0.1334949732,
-0.4240529835,
0.1600685269,
0.0628733635,
0.5529721975,
0.2093481272,
-0.1600459814,
0.281763196,
0.0416957065,
-0.1844716519,
-0.1637284011,
0.1966310292,
-0.3929296434,
-0.4286780953,
0.1412266791,
0.0723455474,
0.1066840738,
0.0655793697,
-0.2056895494,
-0.1574924439,
-0.0432485752,
-0.0586748868,
0.1555758566,
0.3227588236,
-0.0323969945,
-0.3471819758,
-0.3678293526,
0.0114203319,
0.1143781096,
-0.235673219,
-0.1969193369,
-0.1125312746,
-0.2713982761,
-0.1514755189,
0.2202938199,
-0.1036950201,
0.3974572122,
-0.3559353948,
0.0480311066,
-0.2433429956,
-0.0645575598,
0.458535552,
-0.1786570251,
-0.305634439,
0.0793513507,
0.2447961867,
0.2134696543,
-0.0733822659,
-0.4194642603,
0.2626647353,
0.080445461,
0.044742249,
-0.2134111524,
0.1362760067,
-0.2202364504,
-0.2952006459,
-0.1171934158,
0.1270846128,
-0.0512988418,
-0.0708282962,
-0.1670588851,
-0.1908709109
] |
https://github.com/huggingface/datasets/issues/326 | Large dataset in Squad2-format | You can do the tokenization step using `my_tokenized_dataset = my_dataset.map(my_tokenize_function)` that writes the tokenized texts on disk as well. And then `my_tokenized_dataset` will be a memory-mapped dataset too, so you should be fine :) | At the moment we are building an large question answering dataset and think about sharing it with the huggingface community.
Caused the computing power we splitted it into multiple tiles, but they are all in the same format.
Right now the most important facts about are this:
- Contexts: 1.047.671
- questions: 1.677.732
- Answers: 6.742.406
- unanswerable: 377.398
It is already cleaned
<pre><code>
train_data = [
{
'context': "this is the context",
'qas': [
{
'id': "00002",
'is_impossible': False,
'question': "whats is this",
'answers': [
{
'text': "answer",
'answer_start': 0
}
]
},
{
'id': "00003",
'is_impossible': False,
'question': "question2",
'answers': [
{
'text': "answer2",
'answer_start': 1
}
]
}
]
}
]
</code></pre>
Cause it is growing every day we are thinking about an structure like this:
We host an Json file, containing all the download links and the script can load it dynamically.
At the moment it is around ~20GB
Any advice how to handle this, or an ready to use template ? | 34 | Large dataset in Squad2-format
At the moment we are building an large question answering dataset and think about sharing it with the huggingface community.
Caused the computing power we splitted it into multiple tiles, but they are all in the same format.
Right now the most important facts about are this:
- Contexts: 1.047.671
- questions: 1.677.732
- Answers: 6.742.406
- unanswerable: 377.398
It is already cleaned
<pre><code>
train_data = [
{
'context': "this is the context",
'qas': [
{
'id': "00002",
'is_impossible': False,
'question': "whats is this",
'answers': [
{
'text': "answer",
'answer_start': 0
}
]
},
{
'id': "00003",
'is_impossible': False,
'question': "question2",
'answers': [
{
'text': "answer2",
'answer_start': 1
}
]
}
]
}
]
</code></pre>
Cause it is growing every day we are thinking about an structure like this:
We host an Json file, containing all the download links and the script can load it dynamically.
At the moment it is around ~20GB
Any advice how to handle this, or an ready to use template ?
You can do the tokenization step using `my_tokenized_dataset = my_dataset.map(my_tokenize_function)` that writes the tokenized texts on disk as well. And then `my_tokenized_dataset` will be a memory-mapped dataset too, so you should be fine :) | [
-0.0358469002,
-0.2477779388,
-0.0586997792,
0.2463890612,
0.2725088894,
-0.0800487101,
0.0325773209,
0.4199477732,
-0.129150793,
0.0406963192,
-0.2698199451,
0.1034106761,
-0.2411337197,
0.2175490856,
0.2678770721,
-0.000174992,
0.1660441011,
-0.0381547809,
0.0205729827,
0.1060393602,
0.1364686489,
-0.0983713269,
0.0692258775,
-0.0980453491,
-0.3837282062,
-0.2225390375,
-0.2114025056,
0.0674205273,
-0.3816430271,
-0.4354844987,
-0.298379302,
0.292907387,
0.2630603313,
0.5424137115,
-0.0001224383,
-0.2122876495,
-0.0822099075,
-0.3558513522,
-0.3333754838,
0.0622421242,
-0.0192778707,
-0.3454461992,
-0.111713469,
-0.1266127676,
-0.157775566,
-0.2789116204,
0.1271947622,
-0.2555704117,
0.8061010838,
-0.1531661749,
0.0214495007,
-0.021572765,
-0.0481797345,
0.051800143,
0.1918321997,
0.3268027902,
-0.0728116706,
-0.04471156,
0.6106309891,
0.2984128296,
-0.1840127409,
0.1200441644,
-0.0851199031,
-0.1498505175,
0.1096881032,
-0.1629780531,
-0.1704000533,
-0.1921744496,
-0.0237779655,
0.203716889,
0.4221998751,
-0.3385160565,
-0.186222896,
-0.330515027,
-0.1230704188,
0.050873287,
0.0350258462,
0.3019004762,
0.0060198531,
0.3412300944,
-0.3143233359,
-0.4462242723,
-0.3264683485,
-0.01310651,
0.1752524823,
0.1036070585,
-0.1256474555,
0.025293611,
-0.1996138692,
-0.2140207738,
-0.1439001411,
-0.1332380921,
-0.0655245334,
0.1886090189,
-0.0463634841,
-0.3719007969,
-0.2080019265,
-0.3558419049,
0.7443715334,
0.2502104044,
0.1825267375,
-0.0044431994,
0.1786465794,
-0.0180106964,
0.3476020098,
0.0791963115,
-0.1344193518,
-0.2228824496,
0.2056195736,
-0.0692040473,
0.0441736653,
-0.1626305282,
-0.2966944873,
0.3006077111,
-0.1087575406,
-0.2092299461,
0.1497641653,
0.1247981042,
0.0862498805,
0.1220534593,
-0.1460026652,
0.0125118792,
0.1612526923,
0.3237170279,
-0.0606553666,
0.1013346836,
-0.1591730118,
0.0791070163,
0.2510313392,
-0.139331013,
0.0203040279,
-0.0825998932,
-0.0755885839,
0.2826262116,
0.1692110896,
0.1916385293,
0.1067389771,
-0.094866097,
0.3511992395,
-0.3164987564,
0.1982141733,
-0.0433666222,
0.1172584146,
-0.053599786,
0.1517842412,
0.1754226089,
-0.2161431015,
-0.0682597905,
-0.2824197412,
0.0142465141,
-0.2111286819,
-0.3164356351,
-0.0480194166,
-0.0132392077,
-0.2957740724,
0.2394761145,
-0.1990531087,
0.3587204218,
0.0694442019,
0.0011229813,
-0.0613629185,
0.3853584528,
-0.2045325786,
-0.2523868084,
0.1157237962,
0.4234722853,
-0.1651448011,
-0.0755066052,
0.6700637937,
0.0387736075,
-0.2569371462,
0.4542049766,
0.0799490213,
0.1556760222,
0.0222006589,
0.1333846748,
0.1889384091,
-0.5267195106,
-0.4063302279,
0.4948350489,
-0.1921534091,
-0.2608955801,
0.3926098645,
-0.0273622237,
0.7847685218,
-0.2248372436,
0.0983914733,
0.4408169985,
0.0235164333,
0.3045355976,
-0.3460556269,
-0.3247423172,
-0.1307468116,
0.2371605337,
-0.2409183532,
-0.2785599232,
-0.1992862076,
0.3613541126,
0.0979595184,
0.0059876139,
0.3558787107,
-0.0728292018,
0.445025444,
0.0458202809,
-0.1008841842,
-0.0343792401,
-0.6144989729,
-0.1862876415,
-0.0533255935,
-0.1896259636,
0.0219224934,
-0.4489985108,
-0.2040058672,
-0.0548462905,
-0.0650103986,
-0.0996524394,
-0.0107853934,
-0.0867552683,
0.1808195412,
0.0646055713,
-0.4297646284,
0.0958201587,
0.0679552481,
0.121974811,
0.108054705,
0.0707083195,
0.1028698385,
-0.0089803766,
0.1983804852,
0.1354855448,
0.0338135622,
-0.2850414813,
0.2865190208,
0.1933012903,
-0.1225527227,
0.0360600762,
0.0323347114,
0.1992413998,
0.376542449,
0.2387426645,
0.3395579755,
-0.0528758354,
-0.1034860089,
-0.2263322324,
-0.4660381377,
0.3321809173,
-0.1722447574,
0.1516905427,
-0.1176440641,
-0.1708734035,
0.3835430145,
0.0604184046,
-0.1853942871,
0.011660561,
-0.1172104925,
0.1202116609,
0.3583419323,
0.1511690021,
-0.0837308466,
0.1534200311,
0.4169469774,
-0.1880873442,
0.1579306722,
0.0922690481,
0.0193207357,
-0.2057335377,
0.0339046344,
-0.3745422959,
0.1113106459,
0.2045273185,
-0.1165309176,
-0.0320331901,
0.435426712,
-0.0989616215,
-0.0211150721,
0.0098217148,
0.0550685301,
0.2727505565,
0.3929626942,
-0.1295706332,
0.028975673,
-0.0325896032,
0.2021358311,
0.0086921994,
-0.1281422824,
-0.0460869148,
0.0887815356,
0.1770051569,
0.003802903,
0.2265067399,
-0.1486003846,
0.1947258711,
0.3439483047,
0.1537314951,
0.0585658997,
0.1289348602,
0.3415543139,
0.7686249018,
0.0309740752,
-0.3049441278,
0.0493487418,
-0.2318971753,
0.3245337605,
-0.0766606331,
0.431039989,
-0.361748755,
0.2851541638,
0.0097457543,
-0.0011518821,
-0.2504858375,
-0.1496310085,
0.2477438152,
0.0177355334,
0.1506178081,
-0.1847648919,
0.2407237589,
-0.3253256977,
-0.0264815688,
0.1529538035,
0.0557002947,
-0.2686524391,
-0.1509210914,
-0.0527386442,
-0.1377537549,
0.0886374414,
-0.1250998825,
-0.274423331,
-0.330799222,
0.5167524815,
0.0543537214,
0.0817121416,
-0.3696945608,
0.0508887842,
-0.0841613859,
-0.4887422919,
-0.0598634258,
-0.1891507804,
-0.6689901948,
0.226743564,
-0.2004956752,
-0.1961241961,
-0.2640035152,
0.1212446317,
-0.0289269052,
0.0722713023,
-0.2839438021,
-0.2136156261,
0.1547725052,
0.0793501586,
-0.0785545111,
0.0479096919,
0.39095819,
-0.0872958153,
0.0794653893,
0.0557641089,
-0.0035897493,
0.1672793925,
0.1231796816,
0.2721036077,
-0.024619827,
0.4078184962,
0.2914269269,
0.8061865568,
0.3848921061,
0.1959756315,
0.0897486061,
0.1119623631,
0.2658499777,
-0.0288793594,
-0.0075314566,
0.4521796703,
0.0277558938,
-0.0088194981,
0.2692958117,
0.383859396,
0.1242354661,
-0.0907758549,
-0.3080968261,
-0.190618366,
-0.2369173467,
0.3694246411,
0.3165633976,
0.1075834483,
-0.0840523168,
-0.1937537342,
-0.1551178694,
-0.319857806,
-0.0943364203,
0.1596545875,
0.3163717687,
0.1879040599,
-0.6765276194,
0.3549474776,
-0.4088257849,
0.0791273564,
0.0022837892,
-0.1083038151,
0.005581148,
-0.0226308927,
0.1526864767,
-0.1477397084,
0.6616026759,
0.3229280114,
-0.091445744,
-0.2203116417,
-0.0861199349,
-0.2898355722,
0.1937619448,
-0.1531155109,
0.4884577096,
0.4400159717,
0.5459083319,
-0.6200934649,
-0.1717020273,
-0.1250704825,
0.0530037358,
-0.207223177,
-0.1415389031,
-0.1294431239,
-0.1883383095,
-0.5278850198,
0.1244240701,
0.2873000801,
-0.0425460674,
0.3593448997,
-0.1278075725,
-0.0597835556,
0.0075279251,
0.0739028752,
0.2289946675,
0.0508404076,
0.0989776775,
0.1173746288,
0.1709471047,
0.2239159346,
0.1616593599,
0.1182695031,
0.0529997014,
0.0410055928,
0.1208058149,
0.0097250268,
0.5497875214,
0.4826794565,
0.1355559081,
-0.0334792137,
-0.4917349815,
0.2676378787,
-0.402707994,
0.0017772801,
0.0890906304,
-0.0926764309,
-0.396080792,
-0.0910903066,
0.3552252054,
-0.0016621426,
-0.1386160105,
0.0111439833,
0.2135968506,
-0.1599933654,
0.4445261061,
0.1186920628,
1.3274309635,
-0.4156692028,
0.4368343353,
0.0171289369,
0.1409616917,
0.6164471507,
-0.8450109959,
0.0388021171,
-0.3598651886,
0.4247413278,
0.0297948197,
-0.1085488945,
-0.0936313421,
0.4053989351,
-0.3267579079,
0.1037574783,
-0.109000966,
0.5489721298,
-0.2766167819,
0.6767639518,
-0.1359957904,
-0.3900085986,
-0.5071850419,
0.0100567006,
-0.2479691356,
-0.2652215958,
-0.076932773,
-0.1078801677,
-0.0773209184,
0.0363464877,
-0.0582710803,
-0.2953856289,
-0.1762770712,
0.1564577818,
0.1803081036,
-0.2939795256,
0.1962887347,
0.1551854163,
0.070406355,
0.3557057083,
-0.0940312818,
0.1165556163,
-0.3090681732,
-0.1790237725,
0.0290013067,
-0.0475665703,
0.1323618442,
-0.0566532202,
-0.208013773,
0.0645952821,
0.2362640798,
-0.0711735114,
-0.4781262279,
0.0709455684,
0.3397390544,
-0.5559620857,
-0.2173308432,
-0.0462065451,
-0.2046854496,
0.0542464405,
-0.0296259597,
0.1538579017,
-0.0953052491,
0.2320223004,
0.5043819547,
-0.0577850938,
-0.0062327543,
0.2101410925,
-0.1361910254,
-0.30360955,
0.2424918711,
0.0141587108,
-0.1571896076,
-0.1543039083,
0.6779857874,
-0.0044225976,
-0.0961272866,
0.0694540963,
-0.0159719102,
-0.3258944452,
-0.4036072493,
-0.1101429164,
0.3476113975,
-0.0562407337,
0.2685331404,
-0.2250956744,
-0.4499085546,
0.3364259303,
0.0950101018,
-0.0445494764,
0.1758457124,
0.0866957679,
-0.1857729107,
0.3449878097,
-0.1888075471,
0.1834845394,
-0.05588907,
0.1168350279,
-0.0679827034,
-0.2087296396,
0.0415926762,
-0.121060133,
-0.0929047316,
0.0625024289,
-0.2411756217,
-0.0948669761,
-0.1557495147,
0.2416904271,
0.1395375133,
-0.059477441,
-0.1366855353,
-0.2649315596,
-0.1226403862,
-0.137650907,
0.226023823,
0.232733354,
0.2882921398,
-0.378151387,
-0.0213643387,
-0.1897070557,
-0.0122639313,
0.1488156319,
0.2742528021,
0.3308253884,
0.1299727559,
0.1034356505,
0.0452061221,
-0.1667613089,
0.0202368982,
0.5075791478,
0.7554009557,
0.0878292322,
0.2576688528,
-0.0609875023,
0.002305828,
0.1873066127,
0.0194993541,
0.303278774,
-0.2602254748,
0.1139059663,
0.1739159822,
0.0579106137,
0.0190149173,
0.0631898865,
0.3593918979,
-0.0394089594,
-0.08871153,
0.3182041645,
0.0547093451,
-0.0583629459,
-0.1832579821,
0.1159027815,
0.7018382549,
0.1988416612,
-0.2889249921,
-0.2357716113,
-0.1047817469,
-0.1645621359,
0.3734858036,
0.2908746004,
0.2932786047,
0.1042087078,
-0.0919697285,
0.2733825743,
-0.0017067771,
0.0982303917,
0.2374658585,
0.0866241008,
-0.2261621356,
0.3672833443,
0.3661678135,
-0.0586355589,
-0.1150513589,
0.7066925168,
0.2983395159,
-0.195927918,
-0.0657619685,
0.2664954364,
-0.0261349902,
-0.1698411703,
-0.2138807327,
-0.228664428,
-0.1545484215,
0.1448761076,
-0.239397645,
-0.4700554609,
0.0861262977,
0.2842108309,
0.357147187,
-0.0751370415,
0.3392663598,
0.1775910258,
0.2466923445,
-0.2510384023,
0.3707903028,
0.2150049657,
0.1839132309,
0.1710401177,
0.1525609195,
0.2048100829,
0.0100606382,
-0.2900559902,
0.3880849481,
-0.490367353,
0.0233792365,
-0.0258816108,
0.1521198452,
0.1927024871,
-0.2843942046,
0.1054354981,
-0.0499684215,
-0.0337047763,
-0.2527795732,
0.2708312869,
-0.4384323061,
0.0505166911,
-0.2957764268,
-0.2173883468,
-0.2327021062,
-0.0732440948,
-0.1300656199,
-0.4757881761,
-0.0652545542,
0.1769822389,
-0.1273903698,
0.3105270565,
-0.046152994,
0.0060549602,
-0.0735064521,
0.2283281088,
-0.0213605277,
-0.1428963095,
-0.1040665731,
-0.1637127697,
-0.2287213504,
0.1267681271,
-0.1789250225,
0.1197195426,
-0.2743477225,
0.4088411331,
0.1407325566,
0.5077562332,
-0.3582146764,
0.2111836225,
-0.419911921,
-0.1195107102,
-0.4327722192,
0.1643105149,
0.0219518319,
0.5623589158,
0.2280699313,
-0.1457136422,
0.2083119452,
0.1127192825,
-0.1706878841,
-0.1604552269,
0.1779021621,
-0.3798595667,
-0.4262799621,
0.101280421,
0.1023628265,
0.1308808476,
0.0253150687,
-0.1624242365,
-0.0846510381,
0.0042988136,
-0.0882553309,
0.1528507024,
0.3082259595,
0.0007682666,
-0.3237610459,
-0.3393218815,
0.0228499584,
0.0924472064,
-0.2554953396,
-0.2394741327,
-0.2016499937,
-0.2231935859,
-0.1314104646,
0.1888442934,
-0.1389203668,
0.3724322319,
-0.3437930942,
0.0827577636,
-0.2518283129,
-0.1133993939,
0.4629924297,
-0.212074399,
-0.2136947811,
0.1079557836,
0.1733541489,
0.2590770423,
-0.0126359127,
-0.4606679678,
0.2509461939,
0.1250086129,
0.0348836929,
-0.2539893389,
0.1203561872,
-0.1843299419,
-0.3070385456,
-0.1378577501,
0.1933945417,
-0.0168407764,
-0.1057634801,
-0.2072906345,
-0.1747219563
] |
https://github.com/huggingface/datasets/issues/326 | Large dataset in Squad2-format | In your training loop, loading the tokenized texts is going to be fast and pretty much negligible compared to a forward pass. You shouldn't expect any slow down. | At the moment we are building an large question answering dataset and think about sharing it with the huggingface community.
Caused the computing power we splitted it into multiple tiles, but they are all in the same format.
Right now the most important facts about are this:
- Contexts: 1.047.671
- questions: 1.677.732
- Answers: 6.742.406
- unanswerable: 377.398
It is already cleaned
<pre><code>
train_data = [
{
'context': "this is the context",
'qas': [
{
'id': "00002",
'is_impossible': False,
'question': "whats is this",
'answers': [
{
'text': "answer",
'answer_start': 0
}
]
},
{
'id': "00003",
'is_impossible': False,
'question': "question2",
'answers': [
{
'text': "answer2",
'answer_start': 1
}
]
}
]
}
]
</code></pre>
Cause it is growing every day we are thinking about an structure like this:
We host an Json file, containing all the download links and the script can load it dynamically.
At the moment it is around ~20GB
Any advice how to handle this, or an ready to use template ? | 28 | Large dataset in Squad2-format
At the moment we are building an large question answering dataset and think about sharing it with the huggingface community.
Caused the computing power we splitted it into multiple tiles, but they are all in the same format.
Right now the most important facts about are this:
- Contexts: 1.047.671
- questions: 1.677.732
- Answers: 6.742.406
- unanswerable: 377.398
It is already cleaned
<pre><code>
train_data = [
{
'context': "this is the context",
'qas': [
{
'id': "00002",
'is_impossible': False,
'question': "whats is this",
'answers': [
{
'text': "answer",
'answer_start': 0
}
]
},
{
'id': "00003",
'is_impossible': False,
'question': "question2",
'answers': [
{
'text': "answer2",
'answer_start': 1
}
]
}
]
}
]
</code></pre>
Cause it is growing every day we are thinking about an structure like this:
We host an Json file, containing all the download links and the script can load it dynamically.
At the moment it is around ~20GB
Any advice how to handle this, or an ready to use template ?
In your training loop, loading the tokenized texts is going to be fast and pretty much negligible compared to a forward pass. You shouldn't expect any slow down. | [
-0.0998463854,
-0.3400498033,
-0.0722545534,
0.2740523219,
0.2330144346,
-0.1341191828,
0.0534662157,
0.486687988,
-0.0811552852,
0.0389791504,
-0.237141788,
0.0705095455,
-0.2566494048,
0.309555769,
0.2704544067,
-0.0745398626,
0.1412347108,
-0.0320493132,
0.0148960296,
0.0299363583,
0.1451998353,
-0.1339218467,
0.0269510001,
-0.0343345441,
-0.331261605,
-0.1478407234,
-0.165500164,
0.1486866474,
-0.3085707426,
-0.4827931821,
-0.3069816828,
0.2874171734,
0.2753961384,
0.4879117608,
-0.0001232336,
-0.1371825188,
-0.0272385515,
-0.3751020432,
-0.3914619982,
0.0622952245,
0.0496607721,
-0.2882881165,
-0.064924255,
-0.0946048647,
-0.1764810979,
-0.2693073153,
0.1124375165,
-0.1765538305,
0.9333481789,
-0.0912949145,
-0.0013209581,
-0.0185959525,
-0.1706781387,
0.0342925712,
0.2240022123,
0.1699865162,
-0.0316279083,
0.0094062947,
0.6531956196,
0.3252059221,
-0.2057895958,
0.1627473682,
0.0076427832,
-0.1622393131,
0.0985208154,
-0.1589536816,
-0.0159672014,
-0.1528656185,
-0.090006426,
0.2489255071,
0.3597230017,
-0.2345627397,
-0.2427046299,
-0.3881297708,
-0.0316076651,
0.0084955767,
0.0847674012,
0.2578561306,
-0.0303196125,
0.4028696716,
-0.3450417519,
-0.4935598969,
-0.3452896476,
-0.0025278311,
0.1328750849,
0.0023261793,
-0.0820587277,
-0.019572217,
-0.1442518681,
-0.1430078894,
-0.0312884152,
-0.1512056291,
0.0573585406,
0.1760595441,
0.0076764319,
-0.3633483052,
-0.1832550019,
-0.3150159717,
0.6128089428,
0.2020139694,
0.1659011394,
0.0921715498,
0.1930483878,
-0.0760330185,
0.3041756749,
0.0039586313,
-0.1741166711,
-0.2357873917,
0.1530187726,
0.0032973997,
-0.0408498943,
-0.0910828412,
-0.4117304683,
0.2907011807,
-0.2795985937,
-0.2131227702,
0.0398324952,
0.1076258719,
0.0285531953,
0.1241716519,
-0.1663440764,
-0.0343137905,
0.1978091449,
0.3367664516,
-0.1896686554,
0.200999707,
-0.0523399897,
0.0550012998,
0.1931464672,
-0.2182548791,
0.0245846845,
-0.0677966923,
-0.1678190529,
0.3149713576,
0.1374839693,
0.0973453,
0.1068065166,
-0.0808862224,
0.3495574892,
-0.2923623621,
0.0944589227,
0.0606516823,
0.0520382524,
-0.1030231118,
0.0815092772,
0.0854250863,
-0.2245242745,
-0.0646581426,
-0.2271315604,
0.0724638402,
-0.3223102093,
-0.3137339354,
0.0708981231,
-0.0243881866,
-0.2372407913,
0.2669648528,
-0.1464354098,
0.4468390644,
-0.0667434409,
-0.0000228733,
-0.0586483888,
0.3950932622,
-0.2568888366,
-0.1637606323,
0.1426976025,
0.4170691669,
-0.2085472196,
-0.1686364859,
0.7675309181,
0.1190060824,
-0.2828910649,
0.4321812987,
-0.0407250077,
0.1763844341,
0.0575945824,
0.0287946463,
0.2927297354,
-0.6150717735,
-0.3437722325,
0.5754368901,
-0.2338035703,
-0.2194791138,
0.4251845479,
-0.0181345269,
0.7501605749,
-0.2715398371,
0.1670279354,
0.5265707374,
0.0275566,
0.2613634765,
-0.3428588808,
-0.3132779598,
-0.113017574,
0.3522660434,
-0.2507224083,
-0.2015242875,
-0.2499055713,
0.3206184804,
0.1277272999,
-0.039945934,
0.2356549501,
-0.0552046783,
0.1949425787,
0.1072162613,
-0.1261139214,
0.0686763376,
-0.6354450583,
-0.1800170839,
-0.035304755,
-0.2504535913,
0.073932156,
-0.4319307208,
-0.2057414353,
-0.0524759367,
-0.0826047063,
0.0094187744,
-0.0734385177,
-0.1099153459,
0.1536716521,
0.0892746001,
-0.4430949688,
0.1576542854,
-0.0317028947,
0.1350346059,
0.1033673733,
0.0933031291,
0.1940135658,
0.0167996138,
0.2226583958,
0.1754047275,
0.0196641348,
-0.3061255515,
0.3164181709,
0.2310007215,
-0.1803947091,
0.107821092,
0.0286295433,
0.1224041954,
0.3870014846,
0.2914453447,
0.2757454813,
-0.0204012357,
-0.0890708491,
-0.2014704645,
-0.4354260564,
0.4695910811,
-0.1399256885,
0.102919504,
-0.0469947308,
-0.1922258735,
0.2470766902,
0.0279655084,
-0.3278743029,
0.0785479546,
-0.0411313362,
0.1010356098,
0.3779505491,
0.188398242,
-0.2185823619,
0.1035121977,
0.5042096972,
-0.2499511391,
0.0631479919,
0.1456292421,
0.0739468932,
-0.1624069512,
-0.0654812455,
-0.3691547513,
0.1035002321,
0.1509123147,
-0.1132978573,
0.0365011916,
0.3595153689,
-0.141489163,
-0.0264401659,
0.0400508754,
0.1576575786,
0.2307529151,
0.3362638354,
-0.1535274982,
-0.0125931725,
-0.0430570543,
0.1768822372,
-0.020825712,
-0.1473271549,
0.0703124702,
0.108173579,
0.2291820198,
-0.1080216169,
0.092398718,
-0.0407779999,
0.2209892869,
0.3710329831,
0.1220969558,
0.0494287834,
0.1232843027,
0.3574222326,
0.7777608037,
0.0740787983,
-0.2954418361,
0.0345302373,
-0.2509974539,
0.2499701381,
-0.1099033356,
0.406691432,
-0.392388314,
0.2088253945,
-0.1002373844,
-0.0704728588,
-0.0881016999,
-0.1080948263,
0.2357535362,
-0.0128255505,
0.0402288213,
-0.2133983225,
0.2169341147,
-0.3434369862,
-0.0746851563,
0.1513519436,
-0.0094622299,
-0.2644821405,
-0.1470507085,
-0.0022058152,
-0.0863668621,
0.088857308,
-0.2968889773,
-0.2773436308,
-0.2985849977,
0.4928016365,
0.0754603297,
0.064089708,
-0.3779040575,
0.0815674663,
-0.0153706484,
-0.4000912905,
-0.0691245794,
-0.1580913067,
-0.6986128688,
0.2222498953,
-0.1657125652,
-0.2289097756,
-0.2681019604,
0.082232371,
-0.0588761903,
0.0815772712,
-0.3671658039,
-0.201613605,
0.2188032717,
0.0321707502,
-0.1601274759,
0.0376337618,
0.3266258836,
-0.1108787358,
0.0910379663,
0.0565656424,
0.0788846388,
0.1923376173,
0.0437464193,
0.2103665769,
-0.045557186,
0.5006766319,
0.2444776744,
0.8879318237,
0.4185721278,
0.1632732749,
-0.0356383435,
0.0654543638,
0.1641030163,
-0.0016241036,
0.0714652538,
0.4287313223,
-0.0277690813,
-0.0217477232,
0.283886373,
0.3437900245,
0.0208334439,
-0.2105357945,
-0.2243258655,
-0.1663824618,
-0.2680466771,
0.3488027751,
0.3016022146,
0.0969366133,
-0.0536189154,
-0.1421070397,
-0.1444647014,
-0.2485814542,
-0.0418125764,
0.0893358514,
0.3514489532,
0.1249717921,
-0.6669868827,
0.2719280124,
-0.375092417,
0.0028047413,
0.1075822264,
-0.1016042456,
0.0590998828,
-0.0626869947,
0.1974935532,
-0.1959409416,
0.6504686475,
0.3883800209,
-0.08287929,
-0.2534452081,
-0.1487043798,
-0.308142066,
0.1487339586,
-0.1808010936,
0.4100212753,
0.4926868379,
0.4620291889,
-0.5409816504,
-0.2708088458,
-0.029010728,
-0.0087574981,
-0.1661586761,
-0.0959240049,
-0.1718362868,
-0.1978625655,
-0.5452144742,
0.181825757,
0.3202820718,
-0.0085402131,
0.2829555273,
-0.1344593018,
0.0567006469,
0.0850091055,
0.1073693782,
0.1872836351,
0.0188478045,
0.1781823337,
0.0895373002,
0.2845399082,
0.2857453823,
0.0903422236,
0.1812292486,
0.1071603894,
0.0152677856,
0.1032185704,
0.0495481715,
0.5974901915,
0.65480721,
0.1536562741,
-0.0044995807,
-0.4806954265,
0.282987237,
-0.3764104843,
0.0277699083,
0.1394286752,
-0.0948397517,
-0.3397717178,
-0.1617486775,
0.4260540605,
0.0052199736,
-0.1099753007,
-0.0014933257,
0.1072564125,
-0.1306722164,
0.4067907333,
0.0306713656,
1.3512597084,
-0.356382072,
0.4912475944,
0.1727321148,
0.21684964,
0.5118806958,
-0.8861694932,
0.0963311493,
-0.3162590861,
0.387607336,
-0.0304383226,
-0.1310205162,
-0.104438521,
0.3876614273,
-0.2980626822,
0.1057265922,
-0.0487180203,
0.5162263513,
-0.2545678616,
0.6119434237,
-0.0532314107,
-0.3716336489,
-0.6192557216,
-0.0415629894,
-0.1461668015,
-0.2977317274,
-0.0556898825,
-0.1509176493,
-0.0802605599,
0.0464855433,
0.0569288135,
-0.2324221581,
-0.1602409929,
0.1106452346,
0.3232055902,
-0.3037290573,
0.229035899,
0.2459356934,
0.0530673042,
0.2225885093,
-0.0827511102,
0.2005007863,
-0.4225774109,
-0.1420374066,
0.0488646664,
-0.0342629924,
0.2505092919,
-0.0836917162,
-0.2108561248,
0.2170354426,
0.1719898731,
-0.0862250477,
-0.4488447905,
0.0593669452,
0.3781778812,
-0.5011566281,
-0.2208089232,
0.0211801622,
-0.1953941584,
0.0459365994,
-0.0510656498,
0.1341561228,
-0.2042078376,
0.2137428969,
0.5658396482,
-0.1569907218,
0.0337467492,
0.2941561639,
-0.1210549027,
-0.3052668571,
0.3507452607,
0.0744544417,
-0.1224071234,
-0.1303797513,
0.6699301004,
0.0875536501,
-0.1203660667,
0.1151727438,
0.0244879387,
-0.3150229752,
-0.3878086805,
0.0355336592,
0.2949036062,
-0.0681041777,
0.2688263953,
-0.1532765478,
-0.3670751452,
0.322594732,
0.0986826122,
-0.0811855942,
0.1734329909,
0.1403613538,
-0.1298323423,
0.2685954869,
-0.1680328846,
0.2072603703,
-0.0626907125,
0.1555482745,
-0.0826554298,
-0.2120367587,
0.0756014735,
-0.0420161709,
-0.118465811,
0.071389854,
-0.2838528454,
-0.0739535391,
-0.1143836156,
0.2430031598,
0.0862277821,
-0.0285965037,
-0.1452965438,
-0.2620362043,
-0.1635839492,
-0.0432468727,
0.2405249029,
0.1436325312,
0.3013539612,
-0.389383018,
-0.1232065037,
-0.1667734981,
0.0185695887,
0.1054695472,
0.2372739911,
0.3904151022,
0.0940390974,
0.0173792727,
-0.0278386977,
-0.2103466988,
-0.0388991237,
0.5302077532,
0.7436000705,
0.1578488052,
0.3064255416,
-0.1554284841,
0.0537385792,
0.1845119745,
0.0057742074,
0.3656205535,
-0.3396033049,
0.0393394157,
0.193620339,
0.0008064911,
-0.0336846933,
0.040430773,
0.3611765802,
-0.0661933571,
-0.0720050037,
0.3435067832,
0.0511192232,
-0.0448913053,
-0.1086416468,
0.1211733818,
0.4851035774,
0.1997785866,
-0.2774344981,
-0.1347249597,
-0.062521942,
-0.1407151818,
0.2962173223,
0.3051091731,
0.1989795715,
0.1717758626,
-0.0957491547,
0.1877717525,
-0.0528710186,
0.1498082578,
0.066477716,
0.0434194058,
-0.2457432747,
0.3780346215,
0.2527339458,
-0.0672856495,
-0.120933488,
0.714161396,
0.3640084267,
-0.3019387722,
-0.0925268829,
0.2697066665,
-0.0135871852,
-0.2406309545,
-0.2118635774,
-0.1876574457,
-0.2100353837,
0.2540384531,
-0.2479700893,
-0.331410259,
0.1338114887,
0.3403823674,
0.4442261159,
-0.0892456621,
0.2357782423,
0.1061918288,
0.327431798,
-0.2305298895,
0.3929681182,
0.1338682473,
0.2263186872,
0.2677950263,
0.0403168947,
0.0432623252,
-0.0105759175,
-0.3140464127,
0.3602119386,
-0.4900687933,
0.0539305955,
0.0804794133,
0.1562832594,
0.311476171,
-0.2725020647,
0.165448606,
-0.0721388906,
-0.0426065177,
-0.0997515842,
0.1755211651,
-0.4402991235,
-0.0918198675,
-0.2306336164,
-0.1336797923,
-0.1629971415,
-0.2142194808,
-0.1493446976,
-0.4683658481,
-0.0881213769,
0.119765915,
-0.1382948756,
0.2415236086,
-0.0225759763,
0.0092841946,
-0.0779879391,
0.3606650233,
0.0151164364,
0.0071029975,
-0.1119026244,
-0.1744413376,
-0.166172713,
0.0979150236,
-0.168189168,
0.1738527417,
-0.1981573254,
0.4040406644,
0.1810652167,
0.5885440707,
-0.3318028748,
0.1254520118,
-0.3861024082,
-0.1623786688,
-0.4126796722,
0.1704028249,
0.0535810292,
0.6294960976,
0.1562552154,
-0.1591608673,
0.2456201911,
0.0447323844,
-0.1992176771,
-0.0732057542,
0.1863847971,
-0.4293971062,
-0.4038076997,
0.0291540157,
-0.0140284775,
0.0959748775,
0.0468867868,
-0.1298424602,
-0.117643714,
-0.0317667797,
-0.0767432824,
0.0994959697,
0.3009851575,
-0.0041390657,
-0.3351780772,
-0.2618255615,
0.0422282964,
0.0629856214,
-0.1492687464,
-0.1760755181,
-0.2143102884,
-0.1981462091,
-0.1694892943,
0.2960018516,
-0.073969081,
0.4579182267,
-0.3707359731,
0.0830328986,
-0.2062579989,
-0.0976959392,
0.5351343155,
-0.289750278,
-0.2838287055,
0.1446028501,
0.1777912527,
0.3432669938,
0.0217708517,
-0.4834474027,
0.2382179201,
0.0589201003,
0.0281441063,
-0.3584786654,
0.1546437442,
-0.1518533826,
-0.2857324183,
-0.1427769959,
0.1686157584,
-0.0352784432,
-0.1014002636,
-0.2121014148,
-0.2255221754
] |
https://github.com/huggingface/datasets/issues/324 | Error when calculating glue score | The glue metric for cola is a metric for classification. It expects label ids as integers as inputs. | I was trying glue score along with other metrics here. But glue gives me this error;
```
import nlp
glue_metric = nlp.load_metric('glue',name="cola")
glue_score = glue_metric.compute(predictions, references)
```
```
---------------------------------------------------------------------------
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-8-b9210a524504> in <module>()
----> 1 glue_score = glue_metric.compute(predictions, references)
6 frames
/usr/local/lib/python3.6/dist-packages/nlp/metric.py in compute(self, predictions, references, timeout, **metrics_kwargs)
191 """
192 if predictions is not None:
--> 193 self.add_batch(predictions=predictions, references=references)
194 self.finalize(timeout=timeout)
195
/usr/local/lib/python3.6/dist-packages/nlp/metric.py in add_batch(self, predictions, references, **kwargs)
207 if self.writer is None:
208 self._init_writer()
--> 209 self.writer.write_batch(batch)
210
211 def add(self, prediction=None, reference=None, **kwargs):
/usr/local/lib/python3.6/dist-packages/nlp/arrow_writer.py in write_batch(self, batch_examples, writer_batch_size)
155 if self.pa_writer is None:
156 self._build_writer(pa_table=pa.Table.from_pydict(batch_examples))
--> 157 pa_table: pa.Table = pa.Table.from_pydict(batch_examples, schema=self._schema)
158 if writer_batch_size is None:
159 writer_batch_size = self.writer_batch_size
/usr/local/lib/python3.6/dist-packages/pyarrow/types.pxi in __iter__()
/usr/local/lib/python3.6/dist-packages/pyarrow/array.pxi in pyarrow.lib.asarray()
/usr/local/lib/python3.6/dist-packages/pyarrow/array.pxi in pyarrow.lib.array()
/usr/local/lib/python3.6/dist-packages/pyarrow/array.pxi in pyarrow.lib._sequence_to_array()
TypeError: an integer is required (got type str)
```
I'm not sure whether I'm doing this wrong or whether it's an issue. I would like to know a workaround. Thank you. | 18 | Error when calculating glue score
I was trying glue score along with other metrics here. But glue gives me this error;
```
import nlp
glue_metric = nlp.load_metric('glue',name="cola")
glue_score = glue_metric.compute(predictions, references)
```
```
---------------------------------------------------------------------------
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-8-b9210a524504> in <module>()
----> 1 glue_score = glue_metric.compute(predictions, references)
6 frames
/usr/local/lib/python3.6/dist-packages/nlp/metric.py in compute(self, predictions, references, timeout, **metrics_kwargs)
191 """
192 if predictions is not None:
--> 193 self.add_batch(predictions=predictions, references=references)
194 self.finalize(timeout=timeout)
195
/usr/local/lib/python3.6/dist-packages/nlp/metric.py in add_batch(self, predictions, references, **kwargs)
207 if self.writer is None:
208 self._init_writer()
--> 209 self.writer.write_batch(batch)
210
211 def add(self, prediction=None, reference=None, **kwargs):
/usr/local/lib/python3.6/dist-packages/nlp/arrow_writer.py in write_batch(self, batch_examples, writer_batch_size)
155 if self.pa_writer is None:
156 self._build_writer(pa_table=pa.Table.from_pydict(batch_examples))
--> 157 pa_table: pa.Table = pa.Table.from_pydict(batch_examples, schema=self._schema)
158 if writer_batch_size is None:
159 writer_batch_size = self.writer_batch_size
/usr/local/lib/python3.6/dist-packages/pyarrow/types.pxi in __iter__()
/usr/local/lib/python3.6/dist-packages/pyarrow/array.pxi in pyarrow.lib.asarray()
/usr/local/lib/python3.6/dist-packages/pyarrow/array.pxi in pyarrow.lib.array()
/usr/local/lib/python3.6/dist-packages/pyarrow/array.pxi in pyarrow.lib._sequence_to_array()
TypeError: an integer is required (got type str)
```
I'm not sure whether I'm doing this wrong or whether it's an issue. I would like to know a workaround. Thank you.
The glue metric for cola is a metric for classification. It expects label ids as integers as inputs. | [
-0.1694529057,
-0.2395814806,
-0.0304732304,
0.1611587554,
0.2367402017,
-0.0491651297,
0.107300505,
0.3623580337,
0.4330273867,
0.0516284443,
-0.3168227971,
0.2763478756,
-0.0798074752,
-0.0241099559,
0.1026183292,
-0.2831493616,
-0.1162881851,
0.1604489535,
-0.2202494144,
0.3102565706,
-0.324511081,
0.2713671923,
-0.1858564168,
0.3197875023,
-0.1767066419,
-0.0903879255,
0.0204838961,
-0.1961708367,
-0.3263725042,
-0.3629352748,
0.2481627315,
-0.1168349385,
0.02158577,
0.1766418666,
-0.0001102634,
-0.0120565742,
0.458953172,
0.0023093969,
0.1588459164,
-0.1421632022,
-0.3889806271,
-0.0834810436,
0.0444145575,
-0.2361499071,
0.1346657872,
0.2275209427,
0.0206139628,
-0.1826080978,
0.2193332613,
0.2709798813,
0.2774610519,
0.3871144056,
0.3126000762,
-0.1989936829,
0.1724912822,
-0.2082324922,
0.0265881121,
0.8870652318,
-0.3272165954,
-0.465189606,
-0.007801827,
0.2069443315,
-0.1057074368,
0.2180076838,
0.2240164727,
0.0521959476,
0.3717001081,
-0.3202621937,
-0.1326412559,
-0.0713141859,
-0.2181351036,
-0.2285419554,
-0.1499314606,
0.0416571796,
0.0471171029,
-0.3763106465,
0.0972395986,
-0.0726784766,
0.0581605025,
-0.2293188274,
-0.0549695902,
0.1402761489,
-0.1144137904,
0.275296241,
0.2400903106,
0.3214467764,
-0.1981529295,
0.2969002128,
0.4147275388,
0.2154423445,
-0.1390431225,
0.0435458235,
-0.2401259243,
0.165335089,
-0.2926102579,
-0.0423278064,
-0.0104529895,
0.1914088577,
0.0239260867,
-0.2354668677,
0.0487306975,
-0.208005473,
0.4857491255,
0.342795372,
0.0602981448,
0.3389249444,
0.3534550965,
0.1564650536,
0.1274251193,
0.2417823821,
0.0023344681,
-0.1694934219,
0.2388440818,
-0.3881974518,
0.3655793071,
0.2413903028,
0.1085238159,
0.0770598501,
-0.4262589216,
-0.1771683842,
-0.0480153263,
-0.0049845651,
0.0369215645,
0.0718622953,
-0.0187911615,
0.0006606383,
0.1049903184,
0.1906935573,
-0.1910690665,
0.0570396632,
-0.134284988,
0.4053151011,
-0.3368170857,
0.121516943,
0.1513898969,
-0.0332917422,
0.204357639,
-0.1073042601,
0.1692518145,
-0.1872260571,
0.0212523863,
-0.245053038,
-0.0659326017,
0.195442304,
0.0480440408,
0.0028144568,
0.3261824548,
-0.5611883402,
-0.1635350585,
-0.2155401856,
-0.228336677,
-0.3000669181,
-0.1469434351,
0.2351694107,
-0.1796005219,
0.0300377049,
-0.4003528953,
-0.1805468947,
0.2377262861,
0.0449477434,
0.1126897484,
-0.2676101029,
-0.248490423,
-0.2921720743,
0.2016494274,
0.1388747692,
-0.0817249194,
-0.1147434711,
-0.1918641478,
-0.1030077711,
0.1174748167,
0.314473182,
0.1723899841,
0.4397913218,
-0.23195225,
0.1515318155,
0.5892595649,
-0.634714067,
-0.2369814217,
0.100708656,
0.0968756378,
-0.2819083929,
-0.0695398599,
0.0950887799,
0.2874577045,
0.0750939846,
0.469304651,
0.1775257885,
-0.1200406477,
-0.1910818815,
-0.3003587127,
0.034559831,
0.0852226019,
0.0522735566,
0.2045295537,
-0.0504427999,
0.1096886396,
-0.0649215654,
-0.1438206285,
0.19733724,
0.0194499753,
0.030141931,
0.3318206072,
-0.2376647741,
0.0082451887,
-0.5078003407,
-0.0287529342,
0.0765153319,
-0.553920269,
0.1985280365,
0.096285522,
-0.0163019523,
-0.5231425166,
0.1050594598,
-0.0699510425,
-0.0393083468,
0.2326909155,
-0.2064476013,
0.304690659,
0.0231797025,
-0.0384821333,
0.1710435152,
0.0765675977,
0.0847157985,
-0.0891412199,
0.2145029902,
-0.276211977,
-0.4148797691,
0.1382678002,
0.3498588204,
0.2727719843,
0.0353047103,
-0.1092618108,
0.4997553825,
-0.1424183846,
-0.2285173237,
0.0557277128,
-0.0633074045,
-0.0071698939,
0.0306295753,
-0.0186235849,
-0.1132494211,
0.190681994,
-0.029351972,
0.3210165203,
0.1958457828,
0.0103194015,
0.2974861562,
-0.1180675253,
0.3273963928,
-0.1225318611,
-0.0584308393,
-0.1500231326,
-0.1341113895,
0.4181140959,
-0.2973013818,
-0.0799400583,
-0.1827301979,
0.3219169378,
-0.2306054085,
0.3350417316,
-0.0496506169,
0.1854763627,
-0.0289645791,
-0.2190925032,
0.1075793207,
-0.153714329,
0.1282525659,
0.5975931883,
-0.0049647614,
-0.1247711778,
0.0250172969,
-0.1926959455,
-0.0234322399,
0.175401181,
0.0674827844,
0.03081958,
0.1081279367,
0.168819502,
-0.028177537,
-0.0380483977,
0.1020592079,
-0.231318593,
0.2311968207,
-0.3220552206,
-0.0178318657,
-0.0451468192,
-0.4319619536,
-0.1677065939,
-0.1099136397,
-0.2902901471,
-0.6119656563,
-0.0572346896,
0.051368732,
0.0873180032,
0.1892627478,
0.3226220012,
0.0651795343,
0.1116789654,
0.0968880355,
0.0522671491,
-0.2201308459,
-0.029467715,
0.0525178164,
0.0137359947,
0.2037273049,
0.4438384175,
-0.1036848202,
-0.0145902634,
-0.1050944477,
-0.3087322712,
0.0173459239,
-0.2842086554,
0.603397429,
0.4132930636,
-0.1238142848,
-0.0578883104,
-0.3781408072,
0.4658440351,
-0.4250401855,
0.0171626955,
0.2245610058,
-0.2028575987,
-0.0457107089,
-0.1568724215,
0.0534096658,
-0.287055552,
-0.3602619767,
0.3244149089,
0.1362112463,
0.0870975405,
0.0247131661,
-0.2230973095,
0.3781212568,
-0.190291822,
-0.1985461265,
-0.1898383498,
-0.0287202746,
0.3248328567,
-0.2061113417,
-0.341391921,
-0.0886325613,
-0.0667743906,
0.3206014633,
-0.241028145,
-0.2447150201,
-0.5733765364,
-0.1851421148,
0.0286151767,
-0.1296884865,
0.1928844601,
0.0440017357,
-0.1671076119,
-0.064908579,
-0.0949190557,
-0.2339581847,
0.1628338695,
0.2192822695,
0.0926075578,
-0.1301687509,
0.3421752453,
0.0853844136,
0.3098371625,
0.1036002114,
-0.0924216285,
0.2702832818,
0.0431023389,
0.2309779525,
0.00654779,
-0.4910922647,
0.1871617734,
-0.1212335676,
0.3261257708,
-0.1169687361,
-0.0228458736,
-0.0533292778,
-0.2160977125,
-0.1429288685,
-0.123520568,
-0.2217901051,
0.0744249001,
0.0152619742,
0.1742430925,
0.0593148917,
-0.2170495093,
-0.2897801101,
-0.2181468308,
0.1944757104,
0.2156713605,
0.0103606768,
-0.0712357461,
-0.0382274128,
-0.2960556448,
-0.3888407648,
0.4718077183,
0.143494904,
0.3303482533,
-0.1176616326,
0.299841404,
-0.1516718268,
0.1147292331,
0.2170620412,
-0.356043309,
0.0797641799,
0.2898914218,
0.1962630451,
-0.5538410544,
-0.1381313056,
-0.4275739193,
0.3352840245,
0.5549219251,
0.4441613555,
-0.2514419556,
0.0707288086,
0.4990738928,
-0.057781361,
-0.0494859703,
-0.4405652881,
-0.4276402593,
-0.1975729764,
-0.1345929801,
-0.0735197589,
0.1434215903,
0.2061714232,
0.3873666227,
0.071451053,
-0.0928123444,
-0.201071322,
0.0717372,
-0.2025195509,
0.0308997557,
0.0319243968,
0.0896565542,
-0.2613339424,
-0.0328471214,
-0.516364634,
-0.1181044579,
-0.0492083356,
-0.0583244376,
0.116223976,
0.0065507926,
0.3921331763,
-0.1031671688,
-0.1336189806,
0.2324882597,
-0.2945848107,
0.4098881781,
0.0433741063,
0.0918038785,
0.3446732163,
0.2249438763,
-0.1188234538,
0.1059010997,
0.4642906785,
0.2396438718,
0.0409608334,
0.3867135048,
0.230350107,
-0.2547430098,
0.2100533247,
0.1255098283,
0.7316868305,
-0.0363745317,
-0.2081696093,
0.2821580172,
-0.1958428919,
0.6601782441,
0.2018425763,
0.2584861517,
-0.2552501559,
-0.2401175499,
0.0362042487,
-0.1886273921,
0.1207553297,
-0.2527750731,
-0.4338816702,
0.490259409,
0.0216533095,
0.1240032017,
-0.1225315109,
0.1950634867,
-0.1712215245,
-0.1687160432,
-0.0379027054,
0.1914610863,
-0.3335971236,
0.1056698188,
-0.0188455507,
-0.0623409301,
0.1282526553,
-0.0751281679,
-0.2535687685,
-0.1657012105,
-0.3714181483,
0.1900475323,
0.2342687994,
0.0006982684,
0.0667432249,
-0.2564370334,
0.2165789306,
0.1683936566,
-0.0986778736,
-0.0945843756,
-0.010704115,
-0.246931091,
0.1475563943,
0.122889325,
-0.1027313769,
-0.1388569474,
-0.1170230582,
0.0286960006,
0.0947816893,
-0.2603459954,
0.2329950929,
0.111067988,
0.0089349169,
-0.2510279417,
-0.2027097642,
-0.1664212644,
-0.0228835531,
-0.0703513324,
0.1712867767,
0.0046733245,
-0.1367907077,
0.2804690599,
-0.0659420192,
-0.1624078006,
0.0864235163,
0.2396940738,
-0.0793859959,
-0.0198112726,
0.116060093,
-0.1933649331,
-0.2555320859,
-0.075857617,
-0.153219983,
-0.2182992101,
-0.283637166,
0.1234617382,
-0.1197278574,
-0.0283318162,
-0.1401842386,
0.1114250645,
0.4184069037,
0.2592691481,
0.0969694406,
-0.4761910439,
-0.1332364529,
0.277235955,
-0.0170343425,
-0.1239775345,
-0.147087276,
0.322176069,
0.1539586633,
0.3371093571,
-0.340765357,
-0.0861639678,
-0.3368873298,
0.1727567315,
0.5577085018,
-0.3882576823,
0.0320822932,
0.0896285325,
0.1925500482,
0.2407436967,
-0.1684651673,
-0.2781485319,
-0.0453975648,
0.0884146839,
-0.0080468692,
-0.1094611958,
0.1246855557,
0.0089912266,
-0.1972404718,
-0.07058613,
-0.2875489295,
-0.1359249502,
-0.191049546,
0.0623337589,
-0.039948903,
0.197951749,
0.385212481,
0.3219555616,
-0.0956421047,
0.145547986,
-0.1070941687,
0.1637580544,
0.0806569085,
0.0923647135,
-0.1439361721,
-0.1045833677,
-0.1080605239,
-0.0023586359,
0.2476173043,
-0.2170478553,
-0.2661935091,
-0.141935885,
0.3768402338,
-0.0228840187,
-0.035823714,
-0.0351779982,
-0.1800118685,
0.1641356349,
-0.1655008048,
0.1204650104,
0.2528319061,
0.204555884,
0.1759785414,
0.1867296398,
-0.0148430765,
0.0641107708,
0.0059585795,
0.0965783298,
0.3417925835,
-0.1481130868,
-0.1568119973,
-0.3146479726,
0.2342945337,
-0.0372504927,
0.3855210245,
-0.1936480701,
0.1915560216,
-0.1926369369,
0.0036957934,
0.157413289,
-0.0652417839,
0.0030422118,
0.2391292155,
0.1975851655,
-0.1815178692,
0.2595296204,
0.146670267,
0.1041983366,
-0.0200801454,
0.5160805583,
-0.3852642775,
-0.0782807991,
0.0359458551,
0.1538162529,
0.0529214442,
0.0623454973,
0.0045071095,
-0.0066834837,
-0.3290792108,
-0.1553047895,
0.0652151629,
0.1220389754,
0.3950310647,
0.1611400545,
0.0191940702,
-0.0486888736,
-0.2124672234,
0.358358413,
0.1800562888,
-0.3143036366,
0.1221408322,
0.1270217448,
0.2304645032,
-0.236788556,
0.6592803001,
0.5281543732,
0.313331306,
-0.3758440912,
0.1271787733,
-0.0340992436,
-0.1760198772,
0.2069449723,
0.1847516298,
0.3671350777,
0.0971977636,
0.2671824694,
0.2085579336,
-0.2633957565,
-0.0485938452,
-0.0723656267,
-0.0130670816,
-0.1685702205,
0.4525225461,
-0.2508077621,
-0.2331059426,
-0.153624773,
0.0573430806,
-0.4240995944,
0.1701421142,
0.035439197,
-0.0223803129,
0.0756966025,
-0.2836799622,
0.0981924385,
-0.023902921,
0.5166298151,
0.1721063256,
0.5441961288,
-0.58940202,
-0.224374935,
-0.4315946102,
0.0422829837,
-0.0980619341,
-0.0537154637,
0.016972702,
0.0522210971,
-0.240683794,
0.3361570835,
0.1721649617,
0.4982781708,
-0.1158369333,
-0.2824457884,
-0.302873224,
-0.0565930679,
0.0526055023,
-0.4606128633,
0.2394748032,
-0.223123908,
0.0929036587,
-0.100292787,
0.1403830647,
-0.0083691636,
-0.239048332,
0.2770602703,
0.5875074267,
0.0879225433,
0.2794113457,
0.5532600284,
-0.0172405243,
-0.0034356862,
0.0521477945,
-0.3737611771,
-0.136623174,
0.0499606878,
0.0168514792,
0.2484905571,
-0.0875721574,
-0.0866055042,
-0.3632864654,
0.5056174994,
-0.1624266803,
0.0168919601,
-0.0326468833,
0.0752587095,
0.1267987639,
0.0208195671,
-0.041823186,
0.0828975439,
-0.0186353922,
0.3271137476,
-0.2005009949,
-0.2827179432,
0.3735975921,
-0.4797986746,
-0.3367663324,
0.0954474807,
0.2530972362,
0.2006331384,
-0.0931802765,
-0.6303012371,
-0.2510201335,
0.3387458324,
0.0636694282,
-0.180123359,
0.3238254786,
-0.1578466594,
0.1805448532,
0.1582315415,
0.0388479903,
0.1575520635,
-0.3089760542,
0.0498126596,
-0.2299157381
] |
https://github.com/huggingface/datasets/issues/324 | Error when calculating glue score | I want to evaluate a sentence pair whether they are semantically equivalent, so I used MRPC and it gives the same error, does that mean we have to encode the sentences and parse as input?
using BertTokenizer;
```
encoded_reference=tokenizer.encode(reference, add_special_tokens=False)
encoded_prediction=tokenizer.encode(prediction, add_special_tokens=False)
```
`glue_score = glue_metric.compute(encoded_prediction, encoded_reference)`
```
ValueError Traceback (most recent call last)
<ipython-input-9-4c3a3ce7b583> in <module>()
----> 1 glue_score = glue_metric.compute(encoded_prediction, encoded_reference)
6 frames
/usr/local/lib/python3.6/dist-packages/nlp/metric.py in compute(self, predictions, references, timeout, **metrics_kwargs)
198 predictions = self.data["predictions"]
199 references = self.data["references"]
--> 200 output = self._compute(predictions=predictions, references=references, **metrics_kwargs)
201 return output
202
/usr/local/lib/python3.6/dist-packages/nlp/metrics/glue/27b1bc63e520833054bd0d7a8d0bc7f6aab84cc9eed1b576e98c806f9466d302/glue.py in _compute(self, predictions, references)
101 return pearson_and_spearman(predictions, references)
102 elif self.config_name in ["mrpc", "qqp"]:
--> 103 return acc_and_f1(predictions, references)
104 elif self.config_name in ["sst2", "mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]:
105 return {"accuracy": simple_accuracy(predictions, references)}
/usr/local/lib/python3.6/dist-packages/nlp/metrics/glue/27b1bc63e520833054bd0d7a8d0bc7f6aab84cc9eed1b576e98c806f9466d302/glue.py in acc_and_f1(preds, labels)
60 def acc_and_f1(preds, labels):
61 acc = simple_accuracy(preds, labels)
---> 62 f1 = f1_score(y_true=labels, y_pred=preds)
63 return {
64 "accuracy": acc,
/usr/local/lib/python3.6/dist-packages/sklearn/metrics/_classification.py in f1_score(y_true, y_pred, labels, pos_label, average, sample_weight, zero_division)
1097 pos_label=pos_label, average=average,
1098 sample_weight=sample_weight,
-> 1099 zero_division=zero_division)
1100
1101
/usr/local/lib/python3.6/dist-packages/sklearn/metrics/_classification.py in fbeta_score(y_true, y_pred, beta, labels, pos_label, average, sample_weight, zero_division)
1224 warn_for=('f-score',),
1225 sample_weight=sample_weight,
-> 1226 zero_division=zero_division)
1227 return f
1228
/usr/local/lib/python3.6/dist-packages/sklearn/metrics/_classification.py in precision_recall_fscore_support(y_true, y_pred, beta, labels, pos_label, average, warn_for, sample_weight, zero_division)
1482 raise ValueError("beta should be >=0 in the F-beta score")
1483 labels = _check_set_wise_labels(y_true, y_pred, average, labels,
-> 1484 pos_label)
1485
1486 # Calculate tp_sum, pred_sum, true_sum ###
/usr/local/lib/python3.6/dist-packages/sklearn/metrics/_classification.py in _check_set_wise_labels(y_true, y_pred, average, labels, pos_label)
1314 raise ValueError("Target is %s but average='binary'. Please "
1315 "choose another average setting, one of %r."
-> 1316 % (y_type, average_options))
1317 elif pos_label not in (None, 1):
1318 warnings.warn("Note that pos_label (set to %r) is ignored when "
ValueError: Target is multiclass but average='binary'. Please choose another average setting, one of [None, 'micro', 'macro', 'weighted'].
``` | I was trying glue score along with other metrics here. But glue gives me this error;
```
import nlp
glue_metric = nlp.load_metric('glue',name="cola")
glue_score = glue_metric.compute(predictions, references)
```
```
---------------------------------------------------------------------------
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-8-b9210a524504> in <module>()
----> 1 glue_score = glue_metric.compute(predictions, references)
6 frames
/usr/local/lib/python3.6/dist-packages/nlp/metric.py in compute(self, predictions, references, timeout, **metrics_kwargs)
191 """
192 if predictions is not None:
--> 193 self.add_batch(predictions=predictions, references=references)
194 self.finalize(timeout=timeout)
195
/usr/local/lib/python3.6/dist-packages/nlp/metric.py in add_batch(self, predictions, references, **kwargs)
207 if self.writer is None:
208 self._init_writer()
--> 209 self.writer.write_batch(batch)
210
211 def add(self, prediction=None, reference=None, **kwargs):
/usr/local/lib/python3.6/dist-packages/nlp/arrow_writer.py in write_batch(self, batch_examples, writer_batch_size)
155 if self.pa_writer is None:
156 self._build_writer(pa_table=pa.Table.from_pydict(batch_examples))
--> 157 pa_table: pa.Table = pa.Table.from_pydict(batch_examples, schema=self._schema)
158 if writer_batch_size is None:
159 writer_batch_size = self.writer_batch_size
/usr/local/lib/python3.6/dist-packages/pyarrow/types.pxi in __iter__()
/usr/local/lib/python3.6/dist-packages/pyarrow/array.pxi in pyarrow.lib.asarray()
/usr/local/lib/python3.6/dist-packages/pyarrow/array.pxi in pyarrow.lib.array()
/usr/local/lib/python3.6/dist-packages/pyarrow/array.pxi in pyarrow.lib._sequence_to_array()
TypeError: an integer is required (got type str)
```
I'm not sure whether I'm doing this wrong or whether it's an issue. I would like to know a workaround. Thank you. | 297 | Error when calculating glue score
I was trying glue score along with other metrics here. But glue gives me this error;
```
import nlp
glue_metric = nlp.load_metric('glue',name="cola")
glue_score = glue_metric.compute(predictions, references)
```
```
---------------------------------------------------------------------------
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-8-b9210a524504> in <module>()
----> 1 glue_score = glue_metric.compute(predictions, references)
6 frames
/usr/local/lib/python3.6/dist-packages/nlp/metric.py in compute(self, predictions, references, timeout, **metrics_kwargs)
191 """
192 if predictions is not None:
--> 193 self.add_batch(predictions=predictions, references=references)
194 self.finalize(timeout=timeout)
195
/usr/local/lib/python3.6/dist-packages/nlp/metric.py in add_batch(self, predictions, references, **kwargs)
207 if self.writer is None:
208 self._init_writer()
--> 209 self.writer.write_batch(batch)
210
211 def add(self, prediction=None, reference=None, **kwargs):
/usr/local/lib/python3.6/dist-packages/nlp/arrow_writer.py in write_batch(self, batch_examples, writer_batch_size)
155 if self.pa_writer is None:
156 self._build_writer(pa_table=pa.Table.from_pydict(batch_examples))
--> 157 pa_table: pa.Table = pa.Table.from_pydict(batch_examples, schema=self._schema)
158 if writer_batch_size is None:
159 writer_batch_size = self.writer_batch_size
/usr/local/lib/python3.6/dist-packages/pyarrow/types.pxi in __iter__()
/usr/local/lib/python3.6/dist-packages/pyarrow/array.pxi in pyarrow.lib.asarray()
/usr/local/lib/python3.6/dist-packages/pyarrow/array.pxi in pyarrow.lib.array()
/usr/local/lib/python3.6/dist-packages/pyarrow/array.pxi in pyarrow.lib._sequence_to_array()
TypeError: an integer is required (got type str)
```
I'm not sure whether I'm doing this wrong or whether it's an issue. I would like to know a workaround. Thank you.
I want to evaluate a sentence pair whether they are semantically equivalent, so I used MRPC and it gives the same error, does that mean we have to encode the sentences and parse as input?
using BertTokenizer;
```
encoded_reference=tokenizer.encode(reference, add_special_tokens=False)
encoded_prediction=tokenizer.encode(prediction, add_special_tokens=False)
```
`glue_score = glue_metric.compute(encoded_prediction, encoded_reference)`
```
ValueError Traceback (most recent call last)
<ipython-input-9-4c3a3ce7b583> in <module>()
----> 1 glue_score = glue_metric.compute(encoded_prediction, encoded_reference)
6 frames
/usr/local/lib/python3.6/dist-packages/nlp/metric.py in compute(self, predictions, references, timeout, **metrics_kwargs)
198 predictions = self.data["predictions"]
199 references = self.data["references"]
--> 200 output = self._compute(predictions=predictions, references=references, **metrics_kwargs)
201 return output
202
/usr/local/lib/python3.6/dist-packages/nlp/metrics/glue/27b1bc63e520833054bd0d7a8d0bc7f6aab84cc9eed1b576e98c806f9466d302/glue.py in _compute(self, predictions, references)
101 return pearson_and_spearman(predictions, references)
102 elif self.config_name in ["mrpc", "qqp"]:
--> 103 return acc_and_f1(predictions, references)
104 elif self.config_name in ["sst2", "mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]:
105 return {"accuracy": simple_accuracy(predictions, references)}
/usr/local/lib/python3.6/dist-packages/nlp/metrics/glue/27b1bc63e520833054bd0d7a8d0bc7f6aab84cc9eed1b576e98c806f9466d302/glue.py in acc_and_f1(preds, labels)
60 def acc_and_f1(preds, labels):
61 acc = simple_accuracy(preds, labels)
---> 62 f1 = f1_score(y_true=labels, y_pred=preds)
63 return {
64 "accuracy": acc,
/usr/local/lib/python3.6/dist-packages/sklearn/metrics/_classification.py in f1_score(y_true, y_pred, labels, pos_label, average, sample_weight, zero_division)
1097 pos_label=pos_label, average=average,
1098 sample_weight=sample_weight,
-> 1099 zero_division=zero_division)
1100
1101
/usr/local/lib/python3.6/dist-packages/sklearn/metrics/_classification.py in fbeta_score(y_true, y_pred, beta, labels, pos_label, average, sample_weight, zero_division)
1224 warn_for=('f-score',),
1225 sample_weight=sample_weight,
-> 1226 zero_division=zero_division)
1227 return f
1228
/usr/local/lib/python3.6/dist-packages/sklearn/metrics/_classification.py in precision_recall_fscore_support(y_true, y_pred, beta, labels, pos_label, average, warn_for, sample_weight, zero_division)
1482 raise ValueError("beta should be >=0 in the F-beta score")
1483 labels = _check_set_wise_labels(y_true, y_pred, average, labels,
-> 1484 pos_label)
1485
1486 # Calculate tp_sum, pred_sum, true_sum ###
/usr/local/lib/python3.6/dist-packages/sklearn/metrics/_classification.py in _check_set_wise_labels(y_true, y_pred, average, labels, pos_label)
1314 raise ValueError("Target is %s but average='binary'. Please "
1315 "choose another average setting, one of %r."
-> 1316 % (y_type, average_options))
1317 elif pos_label not in (None, 1):
1318 warnings.warn("Note that pos_label (set to %r) is ignored when "
ValueError: Target is multiclass but average='binary'. Please choose another average setting, one of [None, 'micro', 'macro', 'weighted'].
``` | [
-0.1694529057,
-0.2395814806,
-0.0304732304,
0.1611587554,
0.2367402017,
-0.0491651297,
0.107300505,
0.3623580337,
0.4330273867,
0.0516284443,
-0.3168227971,
0.2763478756,
-0.0798074752,
-0.0241099559,
0.1026183292,
-0.2831493616,
-0.1162881851,
0.1604489535,
-0.2202494144,
0.3102565706,
-0.324511081,
0.2713671923,
-0.1858564168,
0.3197875023,
-0.1767066419,
-0.0903879255,
0.0204838961,
-0.1961708367,
-0.3263725042,
-0.3629352748,
0.2481627315,
-0.1168349385,
0.02158577,
0.1766418666,
-0.0001102634,
-0.0120565742,
0.458953172,
0.0023093969,
0.1588459164,
-0.1421632022,
-0.3889806271,
-0.0834810436,
0.0444145575,
-0.2361499071,
0.1346657872,
0.2275209427,
0.0206139628,
-0.1826080978,
0.2193332613,
0.2709798813,
0.2774610519,
0.3871144056,
0.3126000762,
-0.1989936829,
0.1724912822,
-0.2082324922,
0.0265881121,
0.8870652318,
-0.3272165954,
-0.465189606,
-0.007801827,
0.2069443315,
-0.1057074368,
0.2180076838,
0.2240164727,
0.0521959476,
0.3717001081,
-0.3202621937,
-0.1326412559,
-0.0713141859,
-0.2181351036,
-0.2285419554,
-0.1499314606,
0.0416571796,
0.0471171029,
-0.3763106465,
0.0972395986,
-0.0726784766,
0.0581605025,
-0.2293188274,
-0.0549695902,
0.1402761489,
-0.1144137904,
0.275296241,
0.2400903106,
0.3214467764,
-0.1981529295,
0.2969002128,
0.4147275388,
0.2154423445,
-0.1390431225,
0.0435458235,
-0.2401259243,
0.165335089,
-0.2926102579,
-0.0423278064,
-0.0104529895,
0.1914088577,
0.0239260867,
-0.2354668677,
0.0487306975,
-0.208005473,
0.4857491255,
0.342795372,
0.0602981448,
0.3389249444,
0.3534550965,
0.1564650536,
0.1274251193,
0.2417823821,
0.0023344681,
-0.1694934219,
0.2388440818,
-0.3881974518,
0.3655793071,
0.2413903028,
0.1085238159,
0.0770598501,
-0.4262589216,
-0.1771683842,
-0.0480153263,
-0.0049845651,
0.0369215645,
0.0718622953,
-0.0187911615,
0.0006606383,
0.1049903184,
0.1906935573,
-0.1910690665,
0.0570396632,
-0.134284988,
0.4053151011,
-0.3368170857,
0.121516943,
0.1513898969,
-0.0332917422,
0.204357639,
-0.1073042601,
0.1692518145,
-0.1872260571,
0.0212523863,
-0.245053038,
-0.0659326017,
0.195442304,
0.0480440408,
0.0028144568,
0.3261824548,
-0.5611883402,
-0.1635350585,
-0.2155401856,
-0.228336677,
-0.3000669181,
-0.1469434351,
0.2351694107,
-0.1796005219,
0.0300377049,
-0.4003528953,
-0.1805468947,
0.2377262861,
0.0449477434,
0.1126897484,
-0.2676101029,
-0.248490423,
-0.2921720743,
0.2016494274,
0.1388747692,
-0.0817249194,
-0.1147434711,
-0.1918641478,
-0.1030077711,
0.1174748167,
0.314473182,
0.1723899841,
0.4397913218,
-0.23195225,
0.1515318155,
0.5892595649,
-0.634714067,
-0.2369814217,
0.100708656,
0.0968756378,
-0.2819083929,
-0.0695398599,
0.0950887799,
0.2874577045,
0.0750939846,
0.469304651,
0.1775257885,
-0.1200406477,
-0.1910818815,
-0.3003587127,
0.034559831,
0.0852226019,
0.0522735566,
0.2045295537,
-0.0504427999,
0.1096886396,
-0.0649215654,
-0.1438206285,
0.19733724,
0.0194499753,
0.030141931,
0.3318206072,
-0.2376647741,
0.0082451887,
-0.5078003407,
-0.0287529342,
0.0765153319,
-0.553920269,
0.1985280365,
0.096285522,
-0.0163019523,
-0.5231425166,
0.1050594598,
-0.0699510425,
-0.0393083468,
0.2326909155,
-0.2064476013,
0.304690659,
0.0231797025,
-0.0384821333,
0.1710435152,
0.0765675977,
0.0847157985,
-0.0891412199,
0.2145029902,
-0.276211977,
-0.4148797691,
0.1382678002,
0.3498588204,
0.2727719843,
0.0353047103,
-0.1092618108,
0.4997553825,
-0.1424183846,
-0.2285173237,
0.0557277128,
-0.0633074045,
-0.0071698939,
0.0306295753,
-0.0186235849,
-0.1132494211,
0.190681994,
-0.029351972,
0.3210165203,
0.1958457828,
0.0103194015,
0.2974861562,
-0.1180675253,
0.3273963928,
-0.1225318611,
-0.0584308393,
-0.1500231326,
-0.1341113895,
0.4181140959,
-0.2973013818,
-0.0799400583,
-0.1827301979,
0.3219169378,
-0.2306054085,
0.3350417316,
-0.0496506169,
0.1854763627,
-0.0289645791,
-0.2190925032,
0.1075793207,
-0.153714329,
0.1282525659,
0.5975931883,
-0.0049647614,
-0.1247711778,
0.0250172969,
-0.1926959455,
-0.0234322399,
0.175401181,
0.0674827844,
0.03081958,
0.1081279367,
0.168819502,
-0.028177537,
-0.0380483977,
0.1020592079,
-0.231318593,
0.2311968207,
-0.3220552206,
-0.0178318657,
-0.0451468192,
-0.4319619536,
-0.1677065939,
-0.1099136397,
-0.2902901471,
-0.6119656563,
-0.0572346896,
0.051368732,
0.0873180032,
0.1892627478,
0.3226220012,
0.0651795343,
0.1116789654,
0.0968880355,
0.0522671491,
-0.2201308459,
-0.029467715,
0.0525178164,
0.0137359947,
0.2037273049,
0.4438384175,
-0.1036848202,
-0.0145902634,
-0.1050944477,
-0.3087322712,
0.0173459239,
-0.2842086554,
0.603397429,
0.4132930636,
-0.1238142848,
-0.0578883104,
-0.3781408072,
0.4658440351,
-0.4250401855,
0.0171626955,
0.2245610058,
-0.2028575987,
-0.0457107089,
-0.1568724215,
0.0534096658,
-0.287055552,
-0.3602619767,
0.3244149089,
0.1362112463,
0.0870975405,
0.0247131661,
-0.2230973095,
0.3781212568,
-0.190291822,
-0.1985461265,
-0.1898383498,
-0.0287202746,
0.3248328567,
-0.2061113417,
-0.341391921,
-0.0886325613,
-0.0667743906,
0.3206014633,
-0.241028145,
-0.2447150201,
-0.5733765364,
-0.1851421148,
0.0286151767,
-0.1296884865,
0.1928844601,
0.0440017357,
-0.1671076119,
-0.064908579,
-0.0949190557,
-0.2339581847,
0.1628338695,
0.2192822695,
0.0926075578,
-0.1301687509,
0.3421752453,
0.0853844136,
0.3098371625,
0.1036002114,
-0.0924216285,
0.2702832818,
0.0431023389,
0.2309779525,
0.00654779,
-0.4910922647,
0.1871617734,
-0.1212335676,
0.3261257708,
-0.1169687361,
-0.0228458736,
-0.0533292778,
-0.2160977125,
-0.1429288685,
-0.123520568,
-0.2217901051,
0.0744249001,
0.0152619742,
0.1742430925,
0.0593148917,
-0.2170495093,
-0.2897801101,
-0.2181468308,
0.1944757104,
0.2156713605,
0.0103606768,
-0.0712357461,
-0.0382274128,
-0.2960556448,
-0.3888407648,
0.4718077183,
0.143494904,
0.3303482533,
-0.1176616326,
0.299841404,
-0.1516718268,
0.1147292331,
0.2170620412,
-0.356043309,
0.0797641799,
0.2898914218,
0.1962630451,
-0.5538410544,
-0.1381313056,
-0.4275739193,
0.3352840245,
0.5549219251,
0.4441613555,
-0.2514419556,
0.0707288086,
0.4990738928,
-0.057781361,
-0.0494859703,
-0.4405652881,
-0.4276402593,
-0.1975729764,
-0.1345929801,
-0.0735197589,
0.1434215903,
0.2061714232,
0.3873666227,
0.071451053,
-0.0928123444,
-0.201071322,
0.0717372,
-0.2025195509,
0.0308997557,
0.0319243968,
0.0896565542,
-0.2613339424,
-0.0328471214,
-0.516364634,
-0.1181044579,
-0.0492083356,
-0.0583244376,
0.116223976,
0.0065507926,
0.3921331763,
-0.1031671688,
-0.1336189806,
0.2324882597,
-0.2945848107,
0.4098881781,
0.0433741063,
0.0918038785,
0.3446732163,
0.2249438763,
-0.1188234538,
0.1059010997,
0.4642906785,
0.2396438718,
0.0409608334,
0.3867135048,
0.230350107,
-0.2547430098,
0.2100533247,
0.1255098283,
0.7316868305,
-0.0363745317,
-0.2081696093,
0.2821580172,
-0.1958428919,
0.6601782441,
0.2018425763,
0.2584861517,
-0.2552501559,
-0.2401175499,
0.0362042487,
-0.1886273921,
0.1207553297,
-0.2527750731,
-0.4338816702,
0.490259409,
0.0216533095,
0.1240032017,
-0.1225315109,
0.1950634867,
-0.1712215245,
-0.1687160432,
-0.0379027054,
0.1914610863,
-0.3335971236,
0.1056698188,
-0.0188455507,
-0.0623409301,
0.1282526553,
-0.0751281679,
-0.2535687685,
-0.1657012105,
-0.3714181483,
0.1900475323,
0.2342687994,
0.0006982684,
0.0667432249,
-0.2564370334,
0.2165789306,
0.1683936566,
-0.0986778736,
-0.0945843756,
-0.010704115,
-0.246931091,
0.1475563943,
0.122889325,
-0.1027313769,
-0.1388569474,
-0.1170230582,
0.0286960006,
0.0947816893,
-0.2603459954,
0.2329950929,
0.111067988,
0.0089349169,
-0.2510279417,
-0.2027097642,
-0.1664212644,
-0.0228835531,
-0.0703513324,
0.1712867767,
0.0046733245,
-0.1367907077,
0.2804690599,
-0.0659420192,
-0.1624078006,
0.0864235163,
0.2396940738,
-0.0793859959,
-0.0198112726,
0.116060093,
-0.1933649331,
-0.2555320859,
-0.075857617,
-0.153219983,
-0.2182992101,
-0.283637166,
0.1234617382,
-0.1197278574,
-0.0283318162,
-0.1401842386,
0.1114250645,
0.4184069037,
0.2592691481,
0.0969694406,
-0.4761910439,
-0.1332364529,
0.277235955,
-0.0170343425,
-0.1239775345,
-0.147087276,
0.322176069,
0.1539586633,
0.3371093571,
-0.340765357,
-0.0861639678,
-0.3368873298,
0.1727567315,
0.5577085018,
-0.3882576823,
0.0320822932,
0.0896285325,
0.1925500482,
0.2407436967,
-0.1684651673,
-0.2781485319,
-0.0453975648,
0.0884146839,
-0.0080468692,
-0.1094611958,
0.1246855557,
0.0089912266,
-0.1972404718,
-0.07058613,
-0.2875489295,
-0.1359249502,
-0.191049546,
0.0623337589,
-0.039948903,
0.197951749,
0.385212481,
0.3219555616,
-0.0956421047,
0.145547986,
-0.1070941687,
0.1637580544,
0.0806569085,
0.0923647135,
-0.1439361721,
-0.1045833677,
-0.1080605239,
-0.0023586359,
0.2476173043,
-0.2170478553,
-0.2661935091,
-0.141935885,
0.3768402338,
-0.0228840187,
-0.035823714,
-0.0351779982,
-0.1800118685,
0.1641356349,
-0.1655008048,
0.1204650104,
0.2528319061,
0.204555884,
0.1759785414,
0.1867296398,
-0.0148430765,
0.0641107708,
0.0059585795,
0.0965783298,
0.3417925835,
-0.1481130868,
-0.1568119973,
-0.3146479726,
0.2342945337,
-0.0372504927,
0.3855210245,
-0.1936480701,
0.1915560216,
-0.1926369369,
0.0036957934,
0.157413289,
-0.0652417839,
0.0030422118,
0.2391292155,
0.1975851655,
-0.1815178692,
0.2595296204,
0.146670267,
0.1041983366,
-0.0200801454,
0.5160805583,
-0.3852642775,
-0.0782807991,
0.0359458551,
0.1538162529,
0.0529214442,
0.0623454973,
0.0045071095,
-0.0066834837,
-0.3290792108,
-0.1553047895,
0.0652151629,
0.1220389754,
0.3950310647,
0.1611400545,
0.0191940702,
-0.0486888736,
-0.2124672234,
0.358358413,
0.1800562888,
-0.3143036366,
0.1221408322,
0.1270217448,
0.2304645032,
-0.236788556,
0.6592803001,
0.5281543732,
0.313331306,
-0.3758440912,
0.1271787733,
-0.0340992436,
-0.1760198772,
0.2069449723,
0.1847516298,
0.3671350777,
0.0971977636,
0.2671824694,
0.2085579336,
-0.2633957565,
-0.0485938452,
-0.0723656267,
-0.0130670816,
-0.1685702205,
0.4525225461,
-0.2508077621,
-0.2331059426,
-0.153624773,
0.0573430806,
-0.4240995944,
0.1701421142,
0.035439197,
-0.0223803129,
0.0756966025,
-0.2836799622,
0.0981924385,
-0.023902921,
0.5166298151,
0.1721063256,
0.5441961288,
-0.58940202,
-0.224374935,
-0.4315946102,
0.0422829837,
-0.0980619341,
-0.0537154637,
0.016972702,
0.0522210971,
-0.240683794,
0.3361570835,
0.1721649617,
0.4982781708,
-0.1158369333,
-0.2824457884,
-0.302873224,
-0.0565930679,
0.0526055023,
-0.4606128633,
0.2394748032,
-0.223123908,
0.0929036587,
-0.100292787,
0.1403830647,
-0.0083691636,
-0.239048332,
0.2770602703,
0.5875074267,
0.0879225433,
0.2794113457,
0.5532600284,
-0.0172405243,
-0.0034356862,
0.0521477945,
-0.3737611771,
-0.136623174,
0.0499606878,
0.0168514792,
0.2484905571,
-0.0875721574,
-0.0866055042,
-0.3632864654,
0.5056174994,
-0.1624266803,
0.0168919601,
-0.0326468833,
0.0752587095,
0.1267987639,
0.0208195671,
-0.041823186,
0.0828975439,
-0.0186353922,
0.3271137476,
-0.2005009949,
-0.2827179432,
0.3735975921,
-0.4797986746,
-0.3367663324,
0.0954474807,
0.2530972362,
0.2006331384,
-0.0931802765,
-0.6303012371,
-0.2510201335,
0.3387458324,
0.0636694282,
-0.180123359,
0.3238254786,
-0.1578466594,
0.1805448532,
0.1582315415,
0.0388479903,
0.1575520635,
-0.3089760542,
0.0498126596,
-0.2299157381
] |
https://github.com/huggingface/datasets/issues/324 | Error when calculating glue score | MRPC is also a binary classification task, so its metric is a binary classification metric.
To evaluate if pairs of sentences are semantically equivalent, maybe you could take a look at models that compute if one sentence entails the other or not (typically the kinds of model that could work well on the MRPC task). | I was trying glue score along with other metrics here. But glue gives me this error;
```
import nlp
glue_metric = nlp.load_metric('glue',name="cola")
glue_score = glue_metric.compute(predictions, references)
```
```
---------------------------------------------------------------------------
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-8-b9210a524504> in <module>()
----> 1 glue_score = glue_metric.compute(predictions, references)
6 frames
/usr/local/lib/python3.6/dist-packages/nlp/metric.py in compute(self, predictions, references, timeout, **metrics_kwargs)
191 """
192 if predictions is not None:
--> 193 self.add_batch(predictions=predictions, references=references)
194 self.finalize(timeout=timeout)
195
/usr/local/lib/python3.6/dist-packages/nlp/metric.py in add_batch(self, predictions, references, **kwargs)
207 if self.writer is None:
208 self._init_writer()
--> 209 self.writer.write_batch(batch)
210
211 def add(self, prediction=None, reference=None, **kwargs):
/usr/local/lib/python3.6/dist-packages/nlp/arrow_writer.py in write_batch(self, batch_examples, writer_batch_size)
155 if self.pa_writer is None:
156 self._build_writer(pa_table=pa.Table.from_pydict(batch_examples))
--> 157 pa_table: pa.Table = pa.Table.from_pydict(batch_examples, schema=self._schema)
158 if writer_batch_size is None:
159 writer_batch_size = self.writer_batch_size
/usr/local/lib/python3.6/dist-packages/pyarrow/types.pxi in __iter__()
/usr/local/lib/python3.6/dist-packages/pyarrow/array.pxi in pyarrow.lib.asarray()
/usr/local/lib/python3.6/dist-packages/pyarrow/array.pxi in pyarrow.lib.array()
/usr/local/lib/python3.6/dist-packages/pyarrow/array.pxi in pyarrow.lib._sequence_to_array()
TypeError: an integer is required (got type str)
```
I'm not sure whether I'm doing this wrong or whether it's an issue. I would like to know a workaround. Thank you. | 55 | Error when calculating glue score
I was trying glue score along with other metrics here. But glue gives me this error;
```
import nlp
glue_metric = nlp.load_metric('glue',name="cola")
glue_score = glue_metric.compute(predictions, references)
```
```
---------------------------------------------------------------------------
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-8-b9210a524504> in <module>()
----> 1 glue_score = glue_metric.compute(predictions, references)
6 frames
/usr/local/lib/python3.6/dist-packages/nlp/metric.py in compute(self, predictions, references, timeout, **metrics_kwargs)
191 """
192 if predictions is not None:
--> 193 self.add_batch(predictions=predictions, references=references)
194 self.finalize(timeout=timeout)
195
/usr/local/lib/python3.6/dist-packages/nlp/metric.py in add_batch(self, predictions, references, **kwargs)
207 if self.writer is None:
208 self._init_writer()
--> 209 self.writer.write_batch(batch)
210
211 def add(self, prediction=None, reference=None, **kwargs):
/usr/local/lib/python3.6/dist-packages/nlp/arrow_writer.py in write_batch(self, batch_examples, writer_batch_size)
155 if self.pa_writer is None:
156 self._build_writer(pa_table=pa.Table.from_pydict(batch_examples))
--> 157 pa_table: pa.Table = pa.Table.from_pydict(batch_examples, schema=self._schema)
158 if writer_batch_size is None:
159 writer_batch_size = self.writer_batch_size
/usr/local/lib/python3.6/dist-packages/pyarrow/types.pxi in __iter__()
/usr/local/lib/python3.6/dist-packages/pyarrow/array.pxi in pyarrow.lib.asarray()
/usr/local/lib/python3.6/dist-packages/pyarrow/array.pxi in pyarrow.lib.array()
/usr/local/lib/python3.6/dist-packages/pyarrow/array.pxi in pyarrow.lib._sequence_to_array()
TypeError: an integer is required (got type str)
```
I'm not sure whether I'm doing this wrong or whether it's an issue. I would like to know a workaround. Thank you.
MRPC is also a binary classification task, so its metric is a binary classification metric.
To evaluate if pairs of sentences are semantically equivalent, maybe you could take a look at models that compute if one sentence entails the other or not (typically the kinds of model that could work well on the MRPC task). | [
-0.1694529057,
-0.2395814806,
-0.0304732304,
0.1611587554,
0.2367402017,
-0.0491651297,
0.107300505,
0.3623580337,
0.4330273867,
0.0516284443,
-0.3168227971,
0.2763478756,
-0.0798074752,
-0.0241099559,
0.1026183292,
-0.2831493616,
-0.1162881851,
0.1604489535,
-0.2202494144,
0.3102565706,
-0.324511081,
0.2713671923,
-0.1858564168,
0.3197875023,
-0.1767066419,
-0.0903879255,
0.0204838961,
-0.1961708367,
-0.3263725042,
-0.3629352748,
0.2481627315,
-0.1168349385,
0.02158577,
0.1766418666,
-0.0001102634,
-0.0120565742,
0.458953172,
0.0023093969,
0.1588459164,
-0.1421632022,
-0.3889806271,
-0.0834810436,
0.0444145575,
-0.2361499071,
0.1346657872,
0.2275209427,
0.0206139628,
-0.1826080978,
0.2193332613,
0.2709798813,
0.2774610519,
0.3871144056,
0.3126000762,
-0.1989936829,
0.1724912822,
-0.2082324922,
0.0265881121,
0.8870652318,
-0.3272165954,
-0.465189606,
-0.007801827,
0.2069443315,
-0.1057074368,
0.2180076838,
0.2240164727,
0.0521959476,
0.3717001081,
-0.3202621937,
-0.1326412559,
-0.0713141859,
-0.2181351036,
-0.2285419554,
-0.1499314606,
0.0416571796,
0.0471171029,
-0.3763106465,
0.0972395986,
-0.0726784766,
0.0581605025,
-0.2293188274,
-0.0549695902,
0.1402761489,
-0.1144137904,
0.275296241,
0.2400903106,
0.3214467764,
-0.1981529295,
0.2969002128,
0.4147275388,
0.2154423445,
-0.1390431225,
0.0435458235,
-0.2401259243,
0.165335089,
-0.2926102579,
-0.0423278064,
-0.0104529895,
0.1914088577,
0.0239260867,
-0.2354668677,
0.0487306975,
-0.208005473,
0.4857491255,
0.342795372,
0.0602981448,
0.3389249444,
0.3534550965,
0.1564650536,
0.1274251193,
0.2417823821,
0.0023344681,
-0.1694934219,
0.2388440818,
-0.3881974518,
0.3655793071,
0.2413903028,
0.1085238159,
0.0770598501,
-0.4262589216,
-0.1771683842,
-0.0480153263,
-0.0049845651,
0.0369215645,
0.0718622953,
-0.0187911615,
0.0006606383,
0.1049903184,
0.1906935573,
-0.1910690665,
0.0570396632,
-0.134284988,
0.4053151011,
-0.3368170857,
0.121516943,
0.1513898969,
-0.0332917422,
0.204357639,
-0.1073042601,
0.1692518145,
-0.1872260571,
0.0212523863,
-0.245053038,
-0.0659326017,
0.195442304,
0.0480440408,
0.0028144568,
0.3261824548,
-0.5611883402,
-0.1635350585,
-0.2155401856,
-0.228336677,
-0.3000669181,
-0.1469434351,
0.2351694107,
-0.1796005219,
0.0300377049,
-0.4003528953,
-0.1805468947,
0.2377262861,
0.0449477434,
0.1126897484,
-0.2676101029,
-0.248490423,
-0.2921720743,
0.2016494274,
0.1388747692,
-0.0817249194,
-0.1147434711,
-0.1918641478,
-0.1030077711,
0.1174748167,
0.314473182,
0.1723899841,
0.4397913218,
-0.23195225,
0.1515318155,
0.5892595649,
-0.634714067,
-0.2369814217,
0.100708656,
0.0968756378,
-0.2819083929,
-0.0695398599,
0.0950887799,
0.2874577045,
0.0750939846,
0.469304651,
0.1775257885,
-0.1200406477,
-0.1910818815,
-0.3003587127,
0.034559831,
0.0852226019,
0.0522735566,
0.2045295537,
-0.0504427999,
0.1096886396,
-0.0649215654,
-0.1438206285,
0.19733724,
0.0194499753,
0.030141931,
0.3318206072,
-0.2376647741,
0.0082451887,
-0.5078003407,
-0.0287529342,
0.0765153319,
-0.553920269,
0.1985280365,
0.096285522,
-0.0163019523,
-0.5231425166,
0.1050594598,
-0.0699510425,
-0.0393083468,
0.2326909155,
-0.2064476013,
0.304690659,
0.0231797025,
-0.0384821333,
0.1710435152,
0.0765675977,
0.0847157985,
-0.0891412199,
0.2145029902,
-0.276211977,
-0.4148797691,
0.1382678002,
0.3498588204,
0.2727719843,
0.0353047103,
-0.1092618108,
0.4997553825,
-0.1424183846,
-0.2285173237,
0.0557277128,
-0.0633074045,
-0.0071698939,
0.0306295753,
-0.0186235849,
-0.1132494211,
0.190681994,
-0.029351972,
0.3210165203,
0.1958457828,
0.0103194015,
0.2974861562,
-0.1180675253,
0.3273963928,
-0.1225318611,
-0.0584308393,
-0.1500231326,
-0.1341113895,
0.4181140959,
-0.2973013818,
-0.0799400583,
-0.1827301979,
0.3219169378,
-0.2306054085,
0.3350417316,
-0.0496506169,
0.1854763627,
-0.0289645791,
-0.2190925032,
0.1075793207,
-0.153714329,
0.1282525659,
0.5975931883,
-0.0049647614,
-0.1247711778,
0.0250172969,
-0.1926959455,
-0.0234322399,
0.175401181,
0.0674827844,
0.03081958,
0.1081279367,
0.168819502,
-0.028177537,
-0.0380483977,
0.1020592079,
-0.231318593,
0.2311968207,
-0.3220552206,
-0.0178318657,
-0.0451468192,
-0.4319619536,
-0.1677065939,
-0.1099136397,
-0.2902901471,
-0.6119656563,
-0.0572346896,
0.051368732,
0.0873180032,
0.1892627478,
0.3226220012,
0.0651795343,
0.1116789654,
0.0968880355,
0.0522671491,
-0.2201308459,
-0.029467715,
0.0525178164,
0.0137359947,
0.2037273049,
0.4438384175,
-0.1036848202,
-0.0145902634,
-0.1050944477,
-0.3087322712,
0.0173459239,
-0.2842086554,
0.603397429,
0.4132930636,
-0.1238142848,
-0.0578883104,
-0.3781408072,
0.4658440351,
-0.4250401855,
0.0171626955,
0.2245610058,
-0.2028575987,
-0.0457107089,
-0.1568724215,
0.0534096658,
-0.287055552,
-0.3602619767,
0.3244149089,
0.1362112463,
0.0870975405,
0.0247131661,
-0.2230973095,
0.3781212568,
-0.190291822,
-0.1985461265,
-0.1898383498,
-0.0287202746,
0.3248328567,
-0.2061113417,
-0.341391921,
-0.0886325613,
-0.0667743906,
0.3206014633,
-0.241028145,
-0.2447150201,
-0.5733765364,
-0.1851421148,
0.0286151767,
-0.1296884865,
0.1928844601,
0.0440017357,
-0.1671076119,
-0.064908579,
-0.0949190557,
-0.2339581847,
0.1628338695,
0.2192822695,
0.0926075578,
-0.1301687509,
0.3421752453,
0.0853844136,
0.3098371625,
0.1036002114,
-0.0924216285,
0.2702832818,
0.0431023389,
0.2309779525,
0.00654779,
-0.4910922647,
0.1871617734,
-0.1212335676,
0.3261257708,
-0.1169687361,
-0.0228458736,
-0.0533292778,
-0.2160977125,
-0.1429288685,
-0.123520568,
-0.2217901051,
0.0744249001,
0.0152619742,
0.1742430925,
0.0593148917,
-0.2170495093,
-0.2897801101,
-0.2181468308,
0.1944757104,
0.2156713605,
0.0103606768,
-0.0712357461,
-0.0382274128,
-0.2960556448,
-0.3888407648,
0.4718077183,
0.143494904,
0.3303482533,
-0.1176616326,
0.299841404,
-0.1516718268,
0.1147292331,
0.2170620412,
-0.356043309,
0.0797641799,
0.2898914218,
0.1962630451,
-0.5538410544,
-0.1381313056,
-0.4275739193,
0.3352840245,
0.5549219251,
0.4441613555,
-0.2514419556,
0.0707288086,
0.4990738928,
-0.057781361,
-0.0494859703,
-0.4405652881,
-0.4276402593,
-0.1975729764,
-0.1345929801,
-0.0735197589,
0.1434215903,
0.2061714232,
0.3873666227,
0.071451053,
-0.0928123444,
-0.201071322,
0.0717372,
-0.2025195509,
0.0308997557,
0.0319243968,
0.0896565542,
-0.2613339424,
-0.0328471214,
-0.516364634,
-0.1181044579,
-0.0492083356,
-0.0583244376,
0.116223976,
0.0065507926,
0.3921331763,
-0.1031671688,
-0.1336189806,
0.2324882597,
-0.2945848107,
0.4098881781,
0.0433741063,
0.0918038785,
0.3446732163,
0.2249438763,
-0.1188234538,
0.1059010997,
0.4642906785,
0.2396438718,
0.0409608334,
0.3867135048,
0.230350107,
-0.2547430098,
0.2100533247,
0.1255098283,
0.7316868305,
-0.0363745317,
-0.2081696093,
0.2821580172,
-0.1958428919,
0.6601782441,
0.2018425763,
0.2584861517,
-0.2552501559,
-0.2401175499,
0.0362042487,
-0.1886273921,
0.1207553297,
-0.2527750731,
-0.4338816702,
0.490259409,
0.0216533095,
0.1240032017,
-0.1225315109,
0.1950634867,
-0.1712215245,
-0.1687160432,
-0.0379027054,
0.1914610863,
-0.3335971236,
0.1056698188,
-0.0188455507,
-0.0623409301,
0.1282526553,
-0.0751281679,
-0.2535687685,
-0.1657012105,
-0.3714181483,
0.1900475323,
0.2342687994,
0.0006982684,
0.0667432249,
-0.2564370334,
0.2165789306,
0.1683936566,
-0.0986778736,
-0.0945843756,
-0.010704115,
-0.246931091,
0.1475563943,
0.122889325,
-0.1027313769,
-0.1388569474,
-0.1170230582,
0.0286960006,
0.0947816893,
-0.2603459954,
0.2329950929,
0.111067988,
0.0089349169,
-0.2510279417,
-0.2027097642,
-0.1664212644,
-0.0228835531,
-0.0703513324,
0.1712867767,
0.0046733245,
-0.1367907077,
0.2804690599,
-0.0659420192,
-0.1624078006,
0.0864235163,
0.2396940738,
-0.0793859959,
-0.0198112726,
0.116060093,
-0.1933649331,
-0.2555320859,
-0.075857617,
-0.153219983,
-0.2182992101,
-0.283637166,
0.1234617382,
-0.1197278574,
-0.0283318162,
-0.1401842386,
0.1114250645,
0.4184069037,
0.2592691481,
0.0969694406,
-0.4761910439,
-0.1332364529,
0.277235955,
-0.0170343425,
-0.1239775345,
-0.147087276,
0.322176069,
0.1539586633,
0.3371093571,
-0.340765357,
-0.0861639678,
-0.3368873298,
0.1727567315,
0.5577085018,
-0.3882576823,
0.0320822932,
0.0896285325,
0.1925500482,
0.2407436967,
-0.1684651673,
-0.2781485319,
-0.0453975648,
0.0884146839,
-0.0080468692,
-0.1094611958,
0.1246855557,
0.0089912266,
-0.1972404718,
-0.07058613,
-0.2875489295,
-0.1359249502,
-0.191049546,
0.0623337589,
-0.039948903,
0.197951749,
0.385212481,
0.3219555616,
-0.0956421047,
0.145547986,
-0.1070941687,
0.1637580544,
0.0806569085,
0.0923647135,
-0.1439361721,
-0.1045833677,
-0.1080605239,
-0.0023586359,
0.2476173043,
-0.2170478553,
-0.2661935091,
-0.141935885,
0.3768402338,
-0.0228840187,
-0.035823714,
-0.0351779982,
-0.1800118685,
0.1641356349,
-0.1655008048,
0.1204650104,
0.2528319061,
0.204555884,
0.1759785414,
0.1867296398,
-0.0148430765,
0.0641107708,
0.0059585795,
0.0965783298,
0.3417925835,
-0.1481130868,
-0.1568119973,
-0.3146479726,
0.2342945337,
-0.0372504927,
0.3855210245,
-0.1936480701,
0.1915560216,
-0.1926369369,
0.0036957934,
0.157413289,
-0.0652417839,
0.0030422118,
0.2391292155,
0.1975851655,
-0.1815178692,
0.2595296204,
0.146670267,
0.1041983366,
-0.0200801454,
0.5160805583,
-0.3852642775,
-0.0782807991,
0.0359458551,
0.1538162529,
0.0529214442,
0.0623454973,
0.0045071095,
-0.0066834837,
-0.3290792108,
-0.1553047895,
0.0652151629,
0.1220389754,
0.3950310647,
0.1611400545,
0.0191940702,
-0.0486888736,
-0.2124672234,
0.358358413,
0.1800562888,
-0.3143036366,
0.1221408322,
0.1270217448,
0.2304645032,
-0.236788556,
0.6592803001,
0.5281543732,
0.313331306,
-0.3758440912,
0.1271787733,
-0.0340992436,
-0.1760198772,
0.2069449723,
0.1847516298,
0.3671350777,
0.0971977636,
0.2671824694,
0.2085579336,
-0.2633957565,
-0.0485938452,
-0.0723656267,
-0.0130670816,
-0.1685702205,
0.4525225461,
-0.2508077621,
-0.2331059426,
-0.153624773,
0.0573430806,
-0.4240995944,
0.1701421142,
0.035439197,
-0.0223803129,
0.0756966025,
-0.2836799622,
0.0981924385,
-0.023902921,
0.5166298151,
0.1721063256,
0.5441961288,
-0.58940202,
-0.224374935,
-0.4315946102,
0.0422829837,
-0.0980619341,
-0.0537154637,
0.016972702,
0.0522210971,
-0.240683794,
0.3361570835,
0.1721649617,
0.4982781708,
-0.1158369333,
-0.2824457884,
-0.302873224,
-0.0565930679,
0.0526055023,
-0.4606128633,
0.2394748032,
-0.223123908,
0.0929036587,
-0.100292787,
0.1403830647,
-0.0083691636,
-0.239048332,
0.2770602703,
0.5875074267,
0.0879225433,
0.2794113457,
0.5532600284,
-0.0172405243,
-0.0034356862,
0.0521477945,
-0.3737611771,
-0.136623174,
0.0499606878,
0.0168514792,
0.2484905571,
-0.0875721574,
-0.0866055042,
-0.3632864654,
0.5056174994,
-0.1624266803,
0.0168919601,
-0.0326468833,
0.0752587095,
0.1267987639,
0.0208195671,
-0.041823186,
0.0828975439,
-0.0186353922,
0.3271137476,
-0.2005009949,
-0.2827179432,
0.3735975921,
-0.4797986746,
-0.3367663324,
0.0954474807,
0.2530972362,
0.2006331384,
-0.0931802765,
-0.6303012371,
-0.2510201335,
0.3387458324,
0.0636694282,
-0.180123359,
0.3238254786,
-0.1578466594,
0.1805448532,
0.1582315415,
0.0388479903,
0.1575520635,
-0.3089760542,
0.0498126596,
-0.2299157381
] |