Ethan Cao
commited on
Commit
Β·
913e0c1
1
Parent(s):
c9d225b
24/6/20 18:27
Browse files- .gitignore +9 -0
- app.ipynb +149 -0
- labels/classes.txt +0 -4
.gitignore
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
__pycache__
|
2 |
+
train
|
3 |
+
valid
|
4 |
+
data.yaml
|
5 |
+
|
6 |
+
runs
|
7 |
+
wandb
|
8 |
+
YOLOv8
|
9 |
+
*.pt
|
app.ipynb
ADDED
@@ -0,0 +1,149 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [],
|
8 |
+
"source": [
|
9 |
+
"import os\n",
|
10 |
+
"import yaml\n",
|
11 |
+
"import shutil\n",
|
12 |
+
"from pathlib import Path\n",
|
13 |
+
"\n",
|
14 |
+
"import torch\n",
|
15 |
+
"from tqdm import tqdm\n",
|
16 |
+
"from ultralytics import YOLO\n",
|
17 |
+
"from sklearn import model_selection"
|
18 |
+
]
|
19 |
+
},
|
20 |
+
{
|
21 |
+
"cell_type": "code",
|
22 |
+
"execution_count": 5,
|
23 |
+
"metadata": {},
|
24 |
+
"outputs": [],
|
25 |
+
"source": [
|
26 |
+
"image_files = sorted(os.listdir(\"images\"))\n",
|
27 |
+
"label_files = sorted(os.listdir(\"labels\"))\n",
|
28 |
+
"train_images, valid_images, train_labels, valid_labels = (\n",
|
29 |
+
" model_selection.train_test_split(image_files, label_files, test_size=0.1)\n",
|
30 |
+
")"
|
31 |
+
]
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"cell_type": "code",
|
35 |
+
"execution_count": 11,
|
36 |
+
"metadata": {},
|
37 |
+
"outputs": [],
|
38 |
+
"source": [
|
39 |
+
"def create_folder(\n",
|
40 |
+
" image_names: list[str],\n",
|
41 |
+
" label_names: list[str],\n",
|
42 |
+
" img_src_dir: str,\n",
|
43 |
+
" label_src_dir: str,\n",
|
44 |
+
" img_dest_dir: str,\n",
|
45 |
+
" label_dest_dir: str,\n",
|
46 |
+
"):\n",
|
47 |
+
" if os.path.exists(img_dest_dir) == True:\n",
|
48 |
+
" shutil.rmtree(img_dest_dir)\n",
|
49 |
+
" os.makedirs(img_dest_dir)\n",
|
50 |
+
"\n",
|
51 |
+
" if os.path.exists(label_dest_dir) == True:\n",
|
52 |
+
" shutil.rmtree(label_dest_dir)\n",
|
53 |
+
" os.makedirs(label_dest_dir)\n",
|
54 |
+
"\n",
|
55 |
+
" for i in tqdm(range(len(image_names))):\n",
|
56 |
+
" img_path = Path(img_src_dir) / image_names[i]\n",
|
57 |
+
" img_dest = Path(img_dest_dir) / image_names[i]\n",
|
58 |
+
" if os.path.exists(img_dest) == False:\n",
|
59 |
+
" shutil.copy(img_path, img_dest)\n",
|
60 |
+
"\n",
|
61 |
+
" label_path = Path(label_src_dir) / label_names[i]\n",
|
62 |
+
" label_dest = Path(label_dest_dir) / label_names[i]\n",
|
63 |
+
" if os.path.exists(label_dest) == False:\n",
|
64 |
+
" shutil.copy(label_path, label_dest)\n",
|
65 |
+
"\n",
|
66 |
+
" assert img_path.stem == label_path.stem"
|
67 |
+
]
|
68 |
+
},
|
69 |
+
{
|
70 |
+
"cell_type": "code",
|
71 |
+
"execution_count": 12,
|
72 |
+
"metadata": {},
|
73 |
+
"outputs": [
|
74 |
+
{
|
75 |
+
"name": "stderr",
|
76 |
+
"output_type": "stream",
|
77 |
+
"text": [
|
78 |
+
" 0%| | 0/690 [00:00<?, ?it/s]"
|
79 |
+
]
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"name": "stderr",
|
83 |
+
"output_type": "stream",
|
84 |
+
"text": [
|
85 |
+
"100%|ββββββββββ| 690/690 [00:00<00:00, 8986.54it/s]\n",
|
86 |
+
"100%|ββββββββββ| 77/77 [00:00<00:00, 8794.77it/s]\n"
|
87 |
+
]
|
88 |
+
}
|
89 |
+
],
|
90 |
+
"source": [
|
91 |
+
"create_folder(\n",
|
92 |
+
" image_names=train_images,\n",
|
93 |
+
" label_names=train_labels,\n",
|
94 |
+
" img_src_dir=\"images\",\n",
|
95 |
+
" label_src_dir=\"labels\",\n",
|
96 |
+
" img_dest_dir=\"train/images\",\n",
|
97 |
+
" label_dest_dir=\"train/labels\",\n",
|
98 |
+
")\n",
|
99 |
+
"\n",
|
100 |
+
"create_folder(\n",
|
101 |
+
" image_names=valid_images,\n",
|
102 |
+
" label_names=valid_labels,\n",
|
103 |
+
" img_src_dir=\"images\",\n",
|
104 |
+
" label_src_dir=\"labels\",\n",
|
105 |
+
" img_dest_dir=\"valid/images\",\n",
|
106 |
+
" label_dest_dir=\"valid/labels\",\n",
|
107 |
+
")"
|
108 |
+
]
|
109 |
+
},
|
110 |
+
{
|
111 |
+
"cell_type": "code",
|
112 |
+
"execution_count": 13,
|
113 |
+
"metadata": {},
|
114 |
+
"outputs": [],
|
115 |
+
"source": [
|
116 |
+
"dict_file = {\n",
|
117 |
+
" \"train\": f\"{Path(\"./train\").resolve()}\",\n",
|
118 |
+
" \"val\": f\"{Path(\"./valid\").resolve()}\",\n",
|
119 |
+
" \"nc\": 3,\n",
|
120 |
+
" \"names\": {0: \"circle\", 1: \"oval\", 2: \"teardrop\"},\n",
|
121 |
+
"}\n",
|
122 |
+
"\n",
|
123 |
+
"with open(\"data.yaml\", \"w\") as f:\n",
|
124 |
+
" yaml.dump(dict_file, f)"
|
125 |
+
]
|
126 |
+
}
|
127 |
+
],
|
128 |
+
"metadata": {
|
129 |
+
"kernelspec": {
|
130 |
+
"display_name": "base",
|
131 |
+
"language": "python",
|
132 |
+
"name": "python3"
|
133 |
+
},
|
134 |
+
"language_info": {
|
135 |
+
"codemirror_mode": {
|
136 |
+
"name": "ipython",
|
137 |
+
"version": 3
|
138 |
+
},
|
139 |
+
"file_extension": ".py",
|
140 |
+
"mimetype": "text/x-python",
|
141 |
+
"name": "python",
|
142 |
+
"nbconvert_exporter": "python",
|
143 |
+
"pygments_lexer": "ipython3",
|
144 |
+
"version": "3.12.3"
|
145 |
+
}
|
146 |
+
},
|
147 |
+
"nbformat": 4,
|
148 |
+
"nbformat_minor": 2
|
149 |
+
}
|
labels/classes.txt
DELETED
@@ -1,4 +0,0 @@
|
|
1 |
-
circle
|
2 |
-
oval
|
3 |
-
teardrop
|
4 |
-
drop
|
|
|
|
|
|
|
|
|
|