Feanix commited on
Commit
1ca266d
·
1 Parent(s): 986cd32

Upload 4 files

Browse files
Files changed (4) hide show
  1. README.md +161 -0
  2. data/genres.tar.gz +3 -0
  3. gtzan.py +93 -0
  4. split_audio_files.py +144 -0
README.md ADDED
@@ -0,0 +1,161 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ pretty_name: GTZAN
3
+ ---
4
+
5
+ # Dataset Card for GTZAN
6
+
7
+ ## Table of Contents
8
+ - [Dataset Card for GTZAN](#dataset-card-for-gtzan)
9
+ - [Table of Contents](#table-of-contents)
10
+ - [Dataset Description](#dataset-description)
11
+ - [Dataset Summary](#dataset-summary)
12
+ - [Languages](#languages)
13
+ - [Dataset Structure](#dataset-structure)
14
+ - [Data Instances](#data-instances)
15
+ - [Data Fields](#data-fields)
16
+ - [Data Splits](#data-splits)
17
+ - [Dataset Creation](#dataset-creation)
18
+ - [Curation Rationale](#curation-rationale)
19
+ - [Source Data](#source-data)
20
+ - [Initial Data Collection and Normalization](#initial-data-collection-and-normalization)
21
+ - [Who are the source language producers?](#who-are-the-source-language-producers)
22
+ - [Annotations](#annotations)
23
+ - [Annotation process](#annotation-process)
24
+ - [Who are the annotators?](#who-are-the-annotators)
25
+ - [Personal and Sensitive Information](#personal-and-sensitive-information)
26
+ - [Considerations for Using the Data](#considerations-for-using-the-data)
27
+ - [Social Impact of Dataset](#social-impact-of-dataset)
28
+ - [Discussion of Biases](#discussion-of-biases)
29
+ - [Other Known Limitations](#other-known-limitations)
30
+ - [Additional Information](#additional-information)
31
+ - [Dataset Curators](#dataset-curators)
32
+ - [Licensing Information](#licensing-information)
33
+ - [Citation Information](#citation-information)
34
+ - [Contributions](#contributions)
35
+
36
+ ## Dataset Description
37
+
38
+ - **Homepage:** [http://marsyas.info/downloads/datasets.html](http://marsyas.info/downloads/datasets.html)
39
+ - **Paper:** [http://ismir2001.ismir.net/pdf/tzanetakis.pdf](http://ismir2001.ismir.net/pdf/tzanetakis.pdf)
40
+ - **Point of Contact:**
41
+
42
+ ### Dataset Summary
43
+
44
+ GTZAN is a dataset for musical genre classification of audio signals. The dataset consists of 1,000 audio tracks, each of 30 seconds long. It contains 10 genres, each represented by 100 tracks. The tracks are all 22,050Hz Mono 16-bit audio files in WAV format. The genres are: blues, classical, country, disco, hiphop, jazz, metal, pop, reggae, and rock.
45
+
46
+ ### Languages
47
+
48
+ English
49
+
50
+ ## Dataset Structure
51
+
52
+ GTZAN is distributed as a single dataset without a predefined training and test split. The information below refers to the single `train` split that is assigned by default.
53
+
54
+ ### Data Instances
55
+
56
+ An example of GTZAN looks as follows:
57
+
58
+ ```python
59
+ {
60
+ "file": "/path/to/cache/genres/blues/blues.00000.wav",
61
+ "audio": {
62
+ "path": "/path/to/cache/genres/blues/blues.00000.wav",
63
+ "array": array(
64
+ [
65
+ 0.00732422,
66
+ 0.01660156,
67
+ 0.00762939,
68
+ ...,
69
+ -0.05560303,
70
+ -0.06106567,
71
+ -0.06417847,
72
+ ],
73
+ dtype=float32,
74
+ ),
75
+ "sampling_rate": 22050,
76
+ },
77
+ "genre": 0,
78
+ }
79
+ ```
80
+
81
+ ### Data Fields
82
+
83
+ The types associated with each of the data fields is as follows:
84
+
85
+ * `file`: a `string` feature.
86
+ * `audio`: an `Audio` feature containing the `path` of the sound file, the decoded waveform in the `array` field, and the `sampling_rate`.
87
+ * `genre`: a `ClassLabel` feature.
88
+
89
+ ### Data Splits
90
+
91
+ [More Information Needed]
92
+
93
+ ## Dataset Creation
94
+
95
+ ### Curation Rationale
96
+
97
+ [More Information Needed]
98
+
99
+ ### Source Data
100
+
101
+ #### Initial Data Collection and Normalization
102
+
103
+ [More Information Needed]
104
+
105
+ #### Who are the source language producers?
106
+
107
+ [More Information Needed]
108
+
109
+ ### Annotations
110
+
111
+ #### Annotation process
112
+
113
+ [More Information Needed]
114
+
115
+ #### Who are the annotators?
116
+
117
+ [More Information Needed]
118
+
119
+ ### Personal and Sensitive Information
120
+
121
+ [More Information Needed]
122
+
123
+ ## Considerations for Using the Data
124
+
125
+ ### Social Impact of Dataset
126
+
127
+ [More Information Needed]
128
+
129
+ ### Discussion of Biases
130
+
131
+ [More Information Needed]
132
+
133
+ ### Other Known Limitations
134
+
135
+ [More Information Needed]
136
+
137
+ ## Additional Information
138
+
139
+ ### Dataset Curators
140
+
141
+ [More Information Needed]
142
+
143
+ ### Licensing Information
144
+
145
+ [More Information Needed]
146
+
147
+ ### Citation Information
148
+
149
+ ```
150
+ @misc{tzanetakis_essl_cook_2001,
151
+ author = "Tzanetakis, George and Essl, Georg and Cook, Perry",
152
+ title = "Automatic Musical Genre Classification Of Audio Signals",
153
+ url = "http://ismir2001.ismir.net/pdf/tzanetakis.pdf",
154
+ publisher = "The International Society for Music Information Retrieval",
155
+ year = "2001"
156
+ }
157
+ ```
158
+
159
+ ### Contributions
160
+
161
+ Thanks to [@lewtun](https://github.com/lewtun) for adding this dataset.
data/genres.tar.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4d4d9cf786a531f4f10c8717bb941aa49cdd600163beb561b20463e7915a7d95
3
+ size 1218122680
gtzan.py ADDED
@@ -0,0 +1,93 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ """The GTZAN dataset."""
15
+
16
+
17
+ from pathlib import Path
18
+
19
+ import datasets
20
+ import pandas as pd
21
+
22
+ _CITATION = """\
23
+ @misc{tzanetakis_essl_cook_2001,
24
+ author = "Tzanetakis, George and Essl, Georg and Cook, Perry",
25
+ title = "Automatic Musical Genre Classification Of Audio Signals",
26
+ url = "http://ismir2001.ismir.net/pdf/tzanetakis.pdf",
27
+ publisher = "The International Society for Music Information Retrieval",
28
+ year = "2001"
29
+ }
30
+ """
31
+
32
+
33
+ _DESCRIPTION = """\
34
+ GTZAN is a dataset for musical genre classification of audio signals. The dataset consists of 1,000 audio tracks, each of 30 seconds long. It contains 10 genres, each represented by 100 tracks. The tracks are all 22,050Hz Mono 16-bit audio files in WAV format. The genres are: blues, classical, country, disco, hiphop, jazz, metal, pop, reggae, and rock.
35
+ """
36
+
37
+ _HOMEPAGE = "http://marsyas.info/downloads/datasets.html"
38
+
39
+ # TODO: Add the licence for the dataset here if you can find it
40
+ _LICENSE = ""
41
+
42
+ _URL = "http://opihi.cs.uvic.ca/sound/genres.tar.gz"
43
+
44
+ GENRES = ["blues", "classical", "country", "disco", "hiphop", "jazz", "metal", "pop", "reggae", "rock"]
45
+ CORRUPTED_FILES = ["jazz.00054.wav"]
46
+
47
+
48
+ class Gtzan(datasets.GeneratorBasedBuilder):
49
+ """The GTZAn dataset"""
50
+
51
+ def _info(self):
52
+ return datasets.DatasetInfo(
53
+ description=_DESCRIPTION,
54
+ features=datasets.Features(
55
+ {
56
+ "file": datasets.Value("string"),
57
+ "audio": datasets.Audio(sampling_rate=22_050),
58
+ "genre": datasets.ClassLabel(names=GENRES),
59
+ }
60
+ ),
61
+ homepage=_HOMEPAGE,
62
+ license=_LICENSE,
63
+ citation=_CITATION,
64
+ )
65
+
66
+ def _split_generators(self, dl_manager):
67
+ local_extracted_archive = dl_manager.download_and_extract("data/genres.tar.gz")
68
+ return [
69
+ datasets.SplitGenerator(
70
+ name=datasets.Split.TRAIN,
71
+ gen_kwargs={
72
+ "local_extracted_archive": local_extracted_archive,
73
+ },
74
+ )
75
+ ]
76
+
77
+ def _generate_examples(self, local_extracted_archive):
78
+ paths = list(Path(local_extracted_archive).glob("**/*.wav"))
79
+ paths = [p for p in paths if "._" not in p.name]
80
+ data = []
81
+
82
+ for path in paths:
83
+ label = str(path).split("/")[-2]
84
+ name = str(path).split("/")[-1]
85
+ if name in CORRUPTED_FILES:
86
+ continue
87
+
88
+ data.append({"file": str(path), "genre": label})
89
+ df = pd.DataFrame(data)
90
+ df.sort_values("file", inplace=True)
91
+
92
+ for idx_, row in df.iterrows():
93
+ yield idx_, {"file": row["file"], "audio": row["file"], "genre": row["genre"]}
split_audio_files.py ADDED
@@ -0,0 +1,144 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import librosa
3
+ import soundfile as sf
4
+
5
+ # Define the input directory relative to the current working directory
6
+ input_dir = os.path.join(os.getcwd(), 'data', 'genres') # Assumes the genres folder is inside the data folder
7
+
8
+ # Define the output directory relative to the current working directory
9
+ output_dir = os.path.join(os.getcwd(), 'data_5') # Replace 'output' with your desired output directory name
10
+
11
+ # Create the output directory if it doesn't exist
12
+ os.makedirs(output_dir, exist_ok=True)
13
+
14
+ # Define the segment duration in seconds
15
+ segment_duration = 5
16
+
17
+ # Iterate over the genre folders in the input directory
18
+ for genre_folder in os.listdir(input_dir):
19
+ print(f"Genre: {genre_folder} @ {segment_duration} seconds")
20
+ genre_path = os.path.join(input_dir, genre_folder)
21
+
22
+ # Create a corresponding genre folder in the output directory
23
+ output_genre_path = os.path.join(output_dir, genre_folder)
24
+ os.makedirs(output_genre_path, exist_ok=True)
25
+
26
+ # Iterate over all audio files in the genre folder
27
+ for filename in os.listdir(genre_path):
28
+ file_path = os.path.join(genre_path, filename)
29
+
30
+ # Check if the file is in WAV format
31
+ if filename.endswith('.wav'):
32
+ # Load the audio file using Librosa
33
+ audio, sr = librosa.load(file_path)
34
+
35
+ # Calculate the total number of segments
36
+ num_segments = len(audio) // (sr * segment_duration)
37
+
38
+ # Divide the audio into segments and save them individually
39
+ for i in range(num_segments):
40
+ start_sample = i * sr * segment_duration
41
+ end_sample = start_sample + sr * segment_duration
42
+ segment = audio[start_sample:end_sample]
43
+
44
+ # Create a new filename for the segment
45
+ segment_filename = f"{filename[:-4]}_{i+1}.wav"
46
+
47
+ # Save the segment to the genre folder in the output directory
48
+ segment_path = os.path.join(output_genre_path, segment_filename)
49
+ sf.write(segment_path, segment, sr)
50
+ else:
51
+ print(f"Skipping {filename} as it is not a WAV file.")
52
+
53
+
54
+ # Define the output directory relative to the current working directory
55
+ output_dir = os.path.join(os.getcwd(), 'data_10') # Replace 'output' with your desired output directory name
56
+
57
+ # Create the output directory if it doesn't exist
58
+ os.makedirs(output_dir, exist_ok=True)
59
+
60
+ # Define the segment duration in seconds
61
+ segment_duration = 10
62
+
63
+ # Iterate over the genre folders in the input directory
64
+ for genre_folder in os.listdir(input_dir):
65
+ print(f"Genre: {genre_folder} @ {segment_duration} seconds")
66
+ genre_path = os.path.join(input_dir, genre_folder)
67
+
68
+ # Create a corresponding genre folder in the output directory
69
+ output_genre_path = os.path.join(output_dir, genre_folder)
70
+ os.makedirs(output_genre_path, exist_ok=True)
71
+
72
+ # Iterate over all audio files in the genre folder
73
+ for filename in os.listdir(genre_path):
74
+ file_path = os.path.join(genre_path, filename)
75
+
76
+ # Check if the file is in WAV format
77
+ if filename.endswith('.wav'):
78
+ # Load the audio file using Librosa
79
+ audio, sr = librosa.load(file_path)
80
+
81
+ # Calculate the total number of segments
82
+ num_segments = len(audio) // (sr * segment_duration)
83
+
84
+ # Divide the audio into segments and save them individually
85
+ for i in range(num_segments):
86
+ start_sample = i * sr * segment_duration
87
+ end_sample = start_sample + sr * segment_duration
88
+ segment = audio[start_sample:end_sample]
89
+
90
+ # Create a new filename for the segment
91
+ segment_filename = f"{filename[:-4]}_{i+1}.wav"
92
+
93
+ # Save the segment to the genre folder in the output directory
94
+ segment_path = os.path.join(output_genre_path, segment_filename)
95
+ sf.write(segment_path, segment, sr)
96
+ else:
97
+ print(f"Skipping {filename} as it is not a WAV file.")
98
+
99
+
100
+ # Define the output directory relative to the current working directory
101
+ output_dir = os.path.join(os.getcwd(), 'data_15') # Replace 'output' with your desired output directory name
102
+
103
+ # Create the output directory if it doesn't exist
104
+ os.makedirs(output_dir, exist_ok=True)
105
+
106
+ # Define the segment duration in seconds
107
+ segment_duration = 15
108
+
109
+ # Iterate over the genre folders in the input directory
110
+ for genre_folder in os.listdir(input_dir):
111
+ print(f"Genre: {genre_folder} @ {segment_duration} seconds")
112
+ genre_path = os.path.join(input_dir, genre_folder)
113
+
114
+ # Create a corresponding genre folder in the output directory
115
+ output_genre_path = os.path.join(output_dir, genre_folder)
116
+ os.makedirs(output_genre_path, exist_ok=True)
117
+
118
+ # Iterate over all audio files in the genre folder
119
+ for filename in os.listdir(genre_path):
120
+ file_path = os.path.join(genre_path, filename)
121
+
122
+ # Check if the file is in WAV format
123
+ if filename.endswith('.wav'):
124
+ # Load the audio file using Librosa
125
+ audio, sr = librosa.load(file_path)
126
+
127
+ # Calculate the total number of segments
128
+ num_segments = len(audio) // (sr * segment_duration)
129
+
130
+ # Divide the audio into segments and save them individually
131
+ for i in range(num_segments):
132
+ start_sample = i * sr * segment_duration
133
+ end_sample = start_sample + sr * segment_duration
134
+ segment = audio[start_sample:end_sample]
135
+
136
+ # Create a new filename for the segment
137
+ segment_filename = f"{filename[:-4]}_{i+1}.wav"
138
+
139
+ # Save the segment to the genre folder in the output directory
140
+ segment_path = os.path.join(output_genre_path, segment_filename)
141
+ sf.write(segment_path, segment, sr)
142
+ else:
143
+ print(f"Skipping {filename} as it is not a WAV file.")
144
+