Datasets:
File size: 81,036 Bytes
77023ed 6df4bcc 77023ed 6df4bcc 77023ed 6df4bcc 77023ed 6df4bcc 77023ed 6df4bcc 77023ed 6df4bcc 77023ed 6df4bcc 77023ed 6df4bcc f7549bd 77023ed f7549bd 6df4bcc f7549bd 6df4bcc f7549bd 6df4bcc f7549bd 6df4bcc f7549bd 6df4bcc f7549bd 6df4bcc f7549bd 6df4bcc f7549bd 6df4bcc f7549bd 6df4bcc f7549bd 6df4bcc f7549bd 6df4bcc 77023ed 6df4bcc 77023ed 6df4bcc 77023ed 6df4bcc 77023ed 6df4bcc 77023ed 6df4bcc 77023ed 6df4bcc 77023ed 6df4bcc 77023ed 6df4bcc 77023ed 6df4bcc 77023ed 6df4bcc 77023ed 6df4bcc 77023ed 6df4bcc 77023ed 6df4bcc 77023ed 6df4bcc 77023ed 6df4bcc 77023ed 6df4bcc 77023ed 6df4bcc 77023ed 6df4bcc 77023ed 6df4bcc 77023ed 6df4bcc 77023ed 6df4bcc 77023ed 6df4bcc 77023ed 6df4bcc 77023ed 6df4bcc 77023ed 6df4bcc 77023ed 6df4bcc 77023ed 6df4bcc 77023ed 6df4bcc 77023ed 6df4bcc 77023ed 6df4bcc 77023ed 6df4bcc 77023ed 6df4bcc 77023ed 6df4bcc 77023ed 6df4bcc 77023ed 6df4bcc 77023ed 6df4bcc 77023ed 6df4bcc 77023ed 6df4bcc 77023ed 6df4bcc 77023ed 6df4bcc 77023ed 6df4bcc 77023ed 6df4bcc 77023ed 6df4bcc 77023ed 6df4bcc 77023ed 6df4bcc 77023ed 6df4bcc 77023ed 6df4bcc 77023ed 6df4bcc 77023ed 6df4bcc 77023ed 6df4bcc 77023ed 6df4bcc 77023ed 6df4bcc 77023ed 6df4bcc 77023ed 6df4bcc 77023ed 6df4bcc 77023ed 6df4bcc 77023ed 6df4bcc 77023ed 6df4bcc 77023ed 6df4bcc 77023ed 6df4bcc 77023ed 6df4bcc 77023ed 6df4bcc 77023ed 6df4bcc 77023ed 6df4bcc 77023ed 6df4bcc 77023ed 6df4bcc 77023ed 6df4bcc 77023ed 6df4bcc 77023ed 6df4bcc 77023ed 6df4bcc 77023ed 6df4bcc 77023ed 6df4bcc 77023ed 6df4bcc 77023ed 6df4bcc 77023ed 6df4bcc 77023ed 6df4bcc 77023ed 6df4bcc 77023ed 6df4bcc 77023ed 6df4bcc 77023ed 6df4bcc 77023ed 6df4bcc 77023ed 6df4bcc 77023ed 6df4bcc 77023ed 6df4bcc 77023ed 6df4bcc 77023ed 6df4bcc 77023ed 6df4bcc 77023ed 6df4bcc 77023ed 6df4bcc 77023ed 6df4bcc 77023ed f7549bd 6df4bcc 2e02790 6df4bcc 77023ed 6df4bcc f7549bd 6df4bcc f7549bd 6df4bcc f7549bd 6df4bcc f7549bd 6df4bcc f7549bd 6df4bcc f7549bd 6df4bcc f7549bd 6df4bcc f7549bd 6df4bcc f7549bd 6df4bcc f7549bd 6df4bcc f7549bd 6df4bcc 77023ed f7549bd 6df4bcc 2e02790 6df4bcc f7549bd 6df4bcc 77023ed f7549bd 6df4bcc f7549bd 6df4bcc f7549bd 6df4bcc f7549bd 6df4bcc f7549bd 6df4bcc f7549bd 6df4bcc f7549bd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 |
---
annotations_creators:
- crowd-sourced
language_creators:
- unknown
languages:
- unknown
licenses:
- cc-by-4.0
multilinguality:
- unknown
pretty_name: RiSAWOZ
size_categories:
- unknown
source_datasets:
- original
task_categories:
- dialog-response-generation
task_ids:
- unknown
---
# Dataset Card for GEM/RiSAWOZ
## Dataset Description
- **Homepage:** https://terryqj0107.github.io/RiSAWOZ_webpage
- **Repository:** https://github.com/terryqj0107/RiSAWOZ
- **Paper:** https://aclanthology.org/2020.emnlp-main.67
- **Leaderboard:** N/A
- **Point of Contact:** Deyi Xiong
### Link to Main Data Card
You can find the main data card on the [GEM Website](https://gem-benchmark.com/data_cards/RiSAWOZ).
### Dataset Summary
RiSAWOZ is a Chinese dialog dataset. It can be used to study various dialogue tasks, such as Dialogue State Tracking, Dialogue Context-to-Text Generation, Coreference Resolution and Unified Generative Ellipsis and Coreference Resolution.
You can load the dataset via:
```
import datasets
data = datasets.load_dataset('GEM/RiSAWOZ')
```
The data loader can be found [here](https://huggingface.co/datasets/GEM/RiSAWOZ).
#### website
[Website](https://terryqj0107.github.io/RiSAWOZ_webpage)
#### paper
[ACL Anthology](https://aclanthology.org/2020.emnlp-main.67)
#### authors
Jun Quan (Soochow University, Suzhou, China), Shian Zhang (Soochow University, Suzhou, China), Qian Cao(Soochow University, Suzhou, China), Zizhong Li (Tianjin University, Tianjin, China), Deyi Xiong (Tianjin University, Tianjin, China)
## Dataset Overview
### Where to find the Data and its Documentation
#### Webpage
<!-- info: What is the webpage for the dataset (if it exists)? -->
<!-- scope: telescope -->
[Website](https://terryqj0107.github.io/RiSAWOZ_webpage)
#### Download
<!-- info: What is the link to where the original dataset is hosted? -->
<!-- scope: telescope -->
[Github](https://github.com/terryqj0107/RiSAWOZ)
#### Paper
<!-- info: What is the link to the paper describing the dataset (open access preferred)? -->
<!-- scope: telescope -->
[ACL Anthology](https://aclanthology.org/2020.emnlp-main.67)
#### BibTex
<!-- info: Provide the BibTex-formatted reference for the dataset. Please use the correct published version (ACL anthology, etc.) instead of google scholar created Bibtex. -->
<!-- scope: microscope -->
```
@inproceedings{quan-etal-2020-risawoz,
title = "{R}i{SAWOZ}: A Large-Scale Multi-Domain {W}izard-of-{O}z Dataset with Rich Semantic Annotations for Task-Oriented Dialogue Modeling",
author = "Quan, Jun and
Zhang, Shian and
Cao, Qian and
Li, Zizhong and
Xiong, Deyi",
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/2020.emnlp-main.67",
pages = "930--940",
}
```
#### Contact Name
<!-- quick -->
<!-- info: If known, provide the name of at least one person the reader can contact for questions about the dataset. -->
<!-- scope: periscope -->
Deyi Xiong
#### Contact Email
<!-- info: If known, provide the email of at least one person the reader can contact for questions about the dataset. -->
<!-- scope: periscope -->
[email protected]
#### Has a Leaderboard?
<!-- info: Does the dataset have an active leaderboard? -->
<!-- scope: telescope -->
no
### Languages and Intended Use
#### Multilingual?
<!-- quick -->
<!-- info: Is the dataset multilingual? -->
<!-- scope: telescope -->
no
#### Covered Dialects
<!-- info: What dialects are covered? Are there multiple dialects per language? -->
<!-- scope: periscope -->
Only Mandarin Chinese is covered in this dataset.
#### Covered Languages
<!-- quick -->
<!-- info: What languages/dialects are covered in the dataset? -->
<!-- scope: telescope -->
`Mandarin Chinese`
#### License
<!-- quick -->
<!-- info: What is the license of the dataset? -->
<!-- scope: telescope -->
cc-by-4.0: Creative Commons Attribution 4.0 International
#### Intended Use
<!-- info: What is the intended use of the dataset? -->
<!-- scope: microscope -->
RiSAWOZ can be used to support the study under various dialogue tasks, such as Natural Language Understanding, Dialogue State Tracking, Dialogue Context-to-Text Generation, Coreference Resolution and Unified Generative Ellipsis and Coreference Resolution.
#### Primary Task
<!-- info: What primary task does the dataset support? -->
<!-- scope: telescope -->
Dialog Response Generation
#### Communicative Goal
<!-- quick -->
<!-- info: Provide a short description of the communicative goal of a model trained for this task on this dataset. -->
<!-- scope: periscope -->
Generate system response given dialogue context across multiple domains.
### Credit
#### Curation Organization Type(s)
<!-- info: In what kind of organization did the dataset curation happen? -->
<!-- scope: telescope -->
`academic`
#### Curation Organization(s)
<!-- info: Name the organization(s). -->
<!-- scope: periscope -->
Soochow University and Tianjin University
#### Dataset Creators
<!-- info: Who created the original dataset? List the people involved in collecting the dataset and their affiliation(s). -->
<!-- scope: microscope -->
Jun Quan (Soochow University, Suzhou, China), Shian Zhang (Soochow University, Suzhou, China), Qian Cao(Soochow University, Suzhou, China), Zizhong Li (Tianjin University, Tianjin, China), Deyi Xiong (Tianjin University, Tianjin, China)
#### Funding
<!-- info: Who funded the data creation? -->
<!-- scope: microscope -->
the National Key Research and Development Project
#### Who added the Dataset to GEM?
<!-- info: Who contributed to the data card and adding the dataset to GEM? List the people+affiliations involved in creating this data card and who helped integrate this dataset into GEM. -->
<!-- scope: microscope -->
Tianhao Shen (Tianjin University, Tianjin, China), Chaobin You (Tianjin University, Tianjin, China), Deyi Xiong (Tianjin University, Tianjin, China)
### Dataset Structure
#### Data Fields
<!-- info: List and describe the fields present in the dataset. -->
<!-- scope: telescope -->
- gem_id (string): GEM-RiSAWOZ-{split}-{id}
- dialogue_id (string): dialogue ID
- goal (string): natural language descriptions of the user goal
- domains (list of strings): domains mentioned in current dialogue session
- dialogue (list of dicts): dialog turns and corresponding annotations. Each turn includes:
- turn_id (int): turn ID
- turn_domain (list of strings): domain mentioned in current turn
- user_utterance (string): user utterance
- system_utterance (string): system utterance
- belief_state (dict): dialogue state, including:
- inform slot-values (dict): the slots and corresponding values informed until current turn
- turn_inform (dict): the slots and corresponding values informed in current turn
- turn request (dict): the slots requested in current turn
- user_actions (list of lists): user dialogue acts in current turn
- user_actions (list of lists): system dialogue acts in current turn
- db_results (list of strings): database search results
- segmented_user_utterance (string): word segmentation result of user utterance
- segmented_system_utterance (string): word segmentation result of system utterance
#### Example Instance
<!-- info: Provide a JSON formatted example of a typical instance in the dataset. -->
<!-- scope: periscope -->
```
[
{
"dialogue_id": "attraction_goal_4-63###6177",
"goal": "attraction_goal_4-63: 你是苏州人,但不怎么出去玩。你朋友来苏州找你,你准备带他逛逛“水乡古镇”,你希望客服给你推荐个消费水平“中等”的地方。然后你要问清楚这地方“是否地铁直达”、“特点”、“门票价格”这些信息。最后,你要感谢客服的帮助,然后说再见。",
"domains": [
"旅游景点"
],
"dialogue": [
{
"turn_id": 0,
"turn_domain": [
"旅游景点"
],
"user_utterance": "你好,我是苏州人,但是不怎么出去玩,我朋友来苏州找我了,我准备带他逛逛水乡古镇,你能帮我推荐一下吗?",
"system_utterance": "推荐您去周庄古镇。",
"belief_state": {
"inform slot-values": {
"旅游景点-景点类型": "水乡 古镇"
},
"turn_inform": {
"旅游景点-景点类型": "水乡 古镇"
},
"turn request": []
},
"user_actions": [
[
"Inform",
"旅游景点",
"景点类型",
"水乡 古镇"
],
[
"Greeting",
"旅游景点",
"",
""
]
],
"system_actions": [
[
"Recommend",
"旅游景点",
"名称",
"周庄 古镇"
]
],
"db_results": [
"数据库检索结果:成功匹配个数为8",
"{'名称': '周庄古镇', '区域': '昆山', '景点类型': '水乡古镇', '最适合人群': '朋友出游', '消费': '偏贵', '是否地铁直达': '否', '门票价格': '100元', '电话号码': '400-8282900', '地址': '苏州市昆山市周庄镇全福路43号', '评分': 4.5, '开放时间': '07:30-18:50', '特点': '小桥流水与人家,双桥水巷摇橹船,还有沈万三的足迹待你寻访'}",
"{'名称': '同里古镇', '区域': '吴江', '景点类型': '水乡古镇', '最适合人群': '朋友出游', '消费': '偏贵', '是否地铁直达': '否', '门票价格': '100元', '电话号码': '0512-63325728', '地址': '苏州市吴江区同里古镇', '评分': 4.5, '开放时间': '07:30-17:30', '特点': '五湖环抱的江南水乡古镇,走三桥,参观小巧精致的园林退思园。'}",
"{'名称': '山塘街', '区域': '姑苏区', '景点类型': '水乡古镇', '最适合人群': '情侣约会', '消费': '中等', '是否地铁直达': '是', '门票价格': '免费', '电话号码': '0512-65314467', '地址': '苏州市姑苏区古城西北', '评分': 4.5, '开放时间': '08:30-21:00', '特点': '欣赏苏州老城风貌,参观会馆等古迹,乘游船,拍摄美丽的夜景。'}",
"{'名称': '平江路', '区域': '姑苏区', '景点类型': '水乡古镇', '最适合人群': '情侣约会', '消费': '中等', '是否地铁直达': '是', '门票价格': '免费', '电话号码': '0512-69163907', '地址': '江苏省苏州市姑苏区白塔东路65号', '评分': 4.5, '开放时间': '全天', '特点': '漫步保存完整的古街区,看小桥流水古宅,逛文艺小店,吃美食。'}",
"{'名称': '木渎古镇', '区域': '吴中区', '景点类型': '水乡古镇', '最适合人群': '朋友出游', '消费': '便宜', '是否地铁直达': '否', '门票价格': '免费', '电话号码': '0512-66514042', '地址': '苏州市吴中区木渎镇山塘街188号', '评分': 4.4, '开放时间': '08:30-17:00', '特点': '以园林为特色的古镇,游严家花园等古典园林,坐船看小桥流水。'}",
"{'名称': '甪直古镇', '区域': '吴中区', '景点类型': '水乡古镇', '最适合人群': '朋友出游', '消费': '便宜', '是否地铁直达': '否', '门票价格': '免费', '电话号码': '0512-66191668', '地址': '苏州市吴中区甪直镇晓市路21号', '评分': 4.3, '开放时间': '07:30-17:30', '特点': '甪直古镇有2500多年历史,甪直境内水流纵横,桥梁密布,有五湖之厅、六泽之冲之称。'}",
"{'名称': '千灯古镇', '区域': '昆山', '景点类型': '水乡古镇', '最适合人群': '朋友出游', '消费': '便宜', '是否地铁直达': '否', '门票价格': '免费', '电话号码': '0512-57472155', '地址': '苏州市昆山市千灯古镇尚书路1号', '评分': 4.3, '开放时间': '08:00-17:00', '特点': '千灯古镇,距今已有2500多年的历史,古镇白墙黑瓦,昆韵盎然。'}",
"{'名称': '锦溪古镇', '区域': '昆山', '景点类型': '水乡古镇', '最适合人群': '朋友出游', '消费': '中等', '是否地铁直达': '否', '门票价格': '65元', '电话号码': '0512-57224669', '地址': '苏州市昆山市锦溪镇邵甸港路18号', '评分': 4.4, '开放时间': '08:00-17:00', '特点': '锦溪古镇位于昆山南郊的淀山湖畔,是一座有千年历史的江南水乡。'}"
],
"segmented_user_utterance": "你好 , 我 是 苏州人 , 但是 不怎么 出去玩 , 我 朋友 来 苏州 找 我 了 , 我 准备 带 他 逛逛 水乡 古镇 , 你 能 帮 我 推荐 一下 吗 ?",
"segmented_system_utterance": "推荐 您 去 周庄 古镇 。"
},
{
"turn_id": 1,
"turn_domain": [
"旅游景点"
],
"user_utterance": "我希望这个地方消费水平适中的,这个是中等的吗?",
"system_utterance": "这个不是,我又重新帮您找了一家山塘街。",
"belief_state": {
"inform slot-values": {
"旅游景点-景点类型": "水乡 古镇",
"旅游景点-消费": "中等"
},
"turn_inform": {
"旅游景点-消费": "中等"
},
"turn request": []
},
"user_actions": [
[
"Inform",
"旅游景点",
"消费",
"中等"
]
],
"system_actions": [
[
"Recommend",
"旅游景点",
"名称",
"山塘 街"
]
],
"db_results": [
"数据库检索结果:成功匹配个数为3",
"{'名称': '山塘街', '区域': '姑苏区', '景点类型': '水乡古镇', '最适合人群': '情侣约会', '消费': '中等', '是否地铁直达': '是', '门票价格': '免费', '电话号码': '0512-65314467', '地址': '苏州市姑苏区古城西北', '评分': 4.5, '开放时间': '08:30-21:00', '特点': '欣赏苏州老城风貌,参观会馆等古迹,乘游船,拍摄美丽的夜景。'}",
"{'名称': '平江路', '区域': '姑苏区', '景点类型': '水乡古镇', '最适合人群': '情侣约会', '消费': '中等', '是否地铁直达': '是', '门票价格': '免费', '电话号码': '0512-69163907', '地址': '江苏省苏州市姑苏区白塔东路65号', '评分': 4.5, '开放时间': '全天', '特点': '漫步保存完整的古街区,看小桥流水古宅,逛文艺小店,吃美食。'}",
"{'名称': '锦溪古镇', '区域': '昆山', '景点类型': '水乡古镇', '最适合人群': '朋友出游', '消费': '中等', '是否地铁直达': '否', '门票价格': '65元', '电话号码': '0512-57224669', '地址': '苏州市昆山市锦溪镇邵甸港路18号', '评分': 4.4, '开放时间': '08:00-17:00', '特点': '锦溪古镇位于昆山南郊的淀山湖畔,是一座有千年历史的江南水乡。'}"
],
"segmented_user_utterance": "我 希望 这个 地方 消费水平 适中 的 , 这个 是 中等 的 吗 ?",
"segmented_system_utterance": "这个 不是 , 我 又 重新 帮 您 找 了 一家 山塘 街 。"
},
{
"turn_id": 2,
"turn_domain": [
"旅游景点"
],
"user_utterance": "听这地方应该挺好玩,他们家特点是什么?",
"system_utterance": "特点是欣赏苏州老城风貌,参观会馆等古迹,乘游船,拍摄美丽的夜景。",
"belief_state": {
"inform slot-values": {
"旅游景点-景点类型": "水乡 古镇",
"旅游景点-消费": "中等",
"旅游景点-名称": "山塘 街"
},
"turn_inform": {
"旅游景点-名称": "山塘 街"
},
"turn request": [
"特点"
]
},
"user_actions": [
[
"Inform",
"旅游景点",
"名称",
"山塘 街"
],
[
"Request",
"旅游景点",
"特点",
""
]
],
"system_actions": [
[
"Inform",
"旅游景点",
"特点",
"欣赏 苏州 老城 风貌 , 参观 会馆 等 古迹 , 乘 游船 , 拍摄 美丽 的 夜景"
]
],
"db_results": [
"数据库检索结果:成功匹配个数为1",
"{'名称': '山塘街', '区域': '姑苏区', '景点类型': '水乡古镇', '最适合人群': '情侣约会', '消费': '中等', '是否地铁直达': '是', '门票价格': '免费', '电话号码': '0512-65314467', '地址': '苏州市姑苏区古城西北', '评分': 4.5, '开放时间': '08:30-21:00', '特点': '欣赏苏州老城风貌,参观会馆等古迹,乘游船,拍摄美丽的夜景。'}"
],
"segmented_user_utterance": "听 这 地方 应该 挺好玩 , 他们 家 特点 是 什么 ?",
"segmented_system_utterance": "特点 是 欣赏 苏州 老城 风貌 , 参观 会馆 等 古迹 , 乘 游船 , 拍摄 美丽 的 夜景 。"
},
{
"turn_id": 3,
"turn_domain": [
"旅游景点"
],
"user_utterance": "听起来很不错,他们家门票是多少?",
"system_utterance": "门票免费。",
"belief_state": {
"inform slot-values": {
"旅游景点-景点类型": "水乡 古镇",
"旅游景点-消费": "中等",
"旅游景点-名称": "山塘 街"
},
"turn_inform": {},
"turn request": [
"门票价格"
]
},
"user_actions": [
[
"Request",
"旅游景点",
"门票价格",
""
]
],
"system_actions": [
[
"Inform",
"旅游景点",
"门票价格",
"免费"
]
],
"db_results": [
"数据库检索结果:成功匹配个数为1",
"{'名称': '山塘街', '区域': '姑苏区', '景点类型': '水乡古镇', '最适合人群': '情侣约会', '消费': '中等', '是否地铁直达': '是', '门票价格': '免费', '电话号码': '0512-65314467', '地址': '苏州市姑苏区古城西北', '评分': 4.5, '开放时间': '08:30-21:00', '特点': '欣赏苏州老城风貌,参观会馆等古迹,乘游船,拍摄美丽的夜景。'}"
],
"segmented_user_utterance": "听 起来 很 不错 , 他们 家 门票 是 多少 ?",
"segmented_system_utterance": "门票 免费 。"
},
{
"turn_id": 4,
"turn_domain": [
"旅游景点"
],
"user_utterance": "还行,那他们家是否有地铁直达呢?",
"system_utterance": "嗯嗯,可以地铁直达。",
"belief_state": {
"inform slot-values": {
"旅游景点-景点类型": "水乡 古镇",
"旅游景点-消费": "中等",
"旅游景点-名称": "山塘 街"
},
"turn_inform": {},
"turn request": [
"是否地铁直达"
]
},
"user_actions": [
[
"Request",
"旅游景点",
"是否地铁直达",
""
]
],
"system_actions": [
[
"Inform",
"旅游景点",
"是否地铁直达",
"是"
]
],
"db_results": [
"数据库检索结果:成功匹配个数为1",
"{'名称': '山塘街', '区域': '姑苏区', '景点类型': '水乡古镇', '最适合人群': '情侣约会', '消费': '中等', '是否地铁直达': '是', '门票价格': '免费', '电话号码': '0512-65314467', '地址': '苏州市姑苏区古城西北', '评分': 4.5, '开放时间': '08:30-21:00', '特点': '欣赏苏州老城风貌,参观会馆等古迹,乘游船,拍摄美丽的夜景。'}"
],
"segmented_user_utterance": "还 行 , 那 他们 家 是否 有 地铁 直达 呢 ?",
"segmented_system_utterance": "嗯 嗯 , 可以 地铁 直达 。"
},
{
"turn_id": 5,
"turn_domain": [
"通用"
],
"user_utterance": "谢谢你的帮助,再见!",
"system_utterance": "再见。",
"belief_state": {
"inform slot-values": {
"旅游景点-景点类型": "水乡 古镇",
"旅游景点-消费": "中等",
"旅游景点-名称": "山塘 街"
},
"turn_inform": {},
"turn request": []
},
"user_actions": [
[
"Bye",
"通用",
"",
""
]
],
"system_actions": [
[
"Bye",
"通用",
"",
""
]
],
"db_results": [],
"segmented_user_utterance": "谢谢 你 的 帮助 , 再见 !",
"segmented_system_utterance": "再见 。"
}
]
},
{
"dialogue_id": "attraction_goal_3-33_v2###7307",
"goal": "attraction_goal_3-33: 你和朋友一起来苏州出差,顺便想去“苏州乐园森林水世界”逛一逛。因此,你要询问客服这个地方“是否地铁直达”、“评分”、“特点”这些信息。最后,你向客服表示感谢,结束对话。",
"domains": [
"旅游景点"
],
"dialogue": [
{
"turn_id": 0,
"turn_domain": [
"旅游景点"
],
"user_utterance": "你好,我和朋友一起来苏州出差,顺便想去苏州乐园森林水世界玩玩,能否帮我看看这个地方是否有地铁直达呢?",
"system_utterance": "稍等,很抱歉,没有地铁能直接到这个景点呢。",
"belief_state": {
"inform slot-values": {
"旅游景点-名称": "苏州 乐园 森林 水 世界"
},
"turn_inform": {
"旅游景点-名称": "苏州 乐园 森林 水 世界"
},
"turn request": [
"是否地铁直达"
]
},
"user_actions": [
[
"Inform",
"旅游景点",
"名称",
"苏州 乐园 森林 水 世界"
],
[
"Request",
"旅游景点",
"是否地铁直达",
""
],
[
"Greeting",
"旅游景点",
"",
""
]
],
"system_actions": [
[
"Inform",
"旅游景点",
"是否地铁直达",
"否"
]
],
"db_results": [
"数据库检索结果:成功匹配个数为1",
"{'名称': '苏州乐园森林水世界', '区域': '高新区', '景点类型': '游乐场', '最适合人群': '情侣约会', '消费': '偏贵', '是否地铁直达': '否', '门票价格': '198元', '电话号码': '0512-68717107', '地址': '苏州市高新区阳山东路以西,山神湾路以东', '评分': 4.4, '开放时间': '09:00-17:00', '特点': '各项水上娱乐项目皆具森林特色,被赋予森林主题,让人身处浩瀚森林又能享受到海洋般的舒爽水游乐。'}"
],
"segmented_user_utterance": "你好 , 我 和 朋友 一 起来 苏州 出差 , 顺便 想 去 苏州 乐园 森林 水 世界 玩玩 , 能否 帮 我 看看 这个 地方 是否 有 地铁 直达 呢 ?",
"segmented_system_utterance": "稍 等 , 很 抱歉 , 没有 地铁 能 直接 到 这个 景点 呢 。"
},
{
"turn_id": 1,
"turn_domain": [
"旅游景点"
],
"user_utterance": "你再帮我看看景点的评分好吗?",
"system_utterance": "这个景点的评分是4.4分。",
"belief_state": {
"inform slot-values": {
"旅游景点-名称": "苏州 乐园 森林 水 世界"
},
"turn_inform": {},
"turn request": [
"评分"
]
},
"user_actions": [
[
"Request",
"旅游景点",
"评分",
""
]
],
"system_actions": [
[
"Inform",
"旅游景点",
"评分",
"4.4"
]
],
"db_results": [
"数据库检索结果:成功匹配个数为1",
"{'名称': '苏州乐园森林水世界', '区域': '高新区', '景点类型': '游乐场', '最适合人群': '情侣约会', '消费': '偏贵', '是否地铁直达': '否', '门票价格': '198元', '电话号码': '0512-68717107', '地址': '苏州市高新区阳山东路以西,山神湾路以东', '评分': 4.4, '开放时间': '09:00-17:00', '特点': '各项水上娱乐项目皆具森林特色,被赋予森林主题,让人身处浩瀚森林又能享受到海洋般的舒爽水游乐。'}"
],
"segmented_user_utterance": "你 再 帮 我 看看 景点 的 评分 好 吗 ?",
"segmented_system_utterance": "这个 景点 的 评分 是 4.4 分 。"
},
{
"turn_id": 2,
"turn_domain": [
"旅游景点"
],
"user_utterance": "这个景点有啥特点呢?",
"system_utterance": "这个景点的特点是各项水上娱乐项目皆具森林特色,被赋予森林主题,让人身处浩瀚森林又能享受到海洋般的舒爽水游乐。",
"belief_state": {
"inform slot-values": {
"旅游景点-名称": "苏州 乐园 森林 水 世界"
},
"turn_inform": {},
"turn request": [
"特点"
]
},
"user_actions": [
[
"Request",
"旅游景点",
"特点",
""
]
],
"system_actions": [
[
"Inform",
"旅游景点",
"特点",
"各项 水上 娱乐 项目 皆 具 森林 特色 , 被 赋予 森林 主题 , 让 人 身处 浩瀚 森林 又 能 享受 到 海洋 般的 舒爽 水 游乐 。"
]
],
"db_results": [
"数据库检索结果:成功匹配个数为1",
"{'名称': '苏州乐园森林水世界', '区域': '高新区', '景点类型': '游乐场', '最适合人群': '情侣约会', '消费': '偏贵', '是否地铁直达': '否', '门票价格': '198元', '电话号码': '0512-68717107', '地址': '苏州市高新区阳山东路以西,山神湾路以东', '评分': 4.4, '开放时间': '09:00-17:00', '特点': '各项水上娱乐项目皆具森林特色,被赋予森林主题,让人身处浩瀚森林又能享受到海洋般的舒爽水游乐。'}"
],
"segmented_user_utterance": "这个 景点 有 啥 特点 呢 ?",
"segmented_system_utterance": "这个 景点 的 特点 是 各项 水上 娱乐 项目 皆 具 森林 特色 , 被 赋予 森林 主题 , 让 人 身处 浩瀚 森林 又 能 享受 到 海洋 般的 舒爽 水 游乐 。"
},
{
"turn_id": 3,
"turn_domain": [
"通用"
],
"user_utterance": "太好了,我觉得我会很喜欢这个地方,哈哈。",
"system_utterance": "这个景点挺不错的,就是没有地铁需要您乘坐其它交通工具了。",
"belief_state": {
"inform slot-values": {
"旅游景点-名称": "苏州 乐园 森林 水 世界"
},
"turn_inform": {},
"turn request": []
},
"user_actions": [
[
"General",
"通用",
"",
""
]
],
"system_actions": [
[
"General",
"通用",
"",
""
]
],
"db_results": [],
"segmented_user_utterance": "太好了 , 我 觉得 我会 很 喜欢 这个 地方 , 哈哈 。",
"segmented_system_utterance": "这个 景点 挺不错 的 , 就是 没有 地铁 需要 您 乘坐 其它 交通工具 了 。"
},
{
"turn_id": 4,
"turn_domain": [
"通用"
],
"user_utterance": "我打出租车去吧,就是多花点车费,没事。",
"system_utterance": "请问您还有其他问题吗?",
"belief_state": {
"inform slot-values": {
"旅游景点-名称": "苏州 乐园 森林 水 世界"
},
"turn_inform": {},
"turn request": []
},
"user_actions": [
[
"General",
"通用",
"",
""
]
],
"system_actions": [
[
"General",
"通用",
"",
""
]
],
"db_results": [],
"segmented_user_utterance": "我 打 出租车 去 吧 , 就是 多花点 车费 , 没事 。",
"segmented_system_utterance": "请问 您 还有 其他 问题 吗 ?"
},
{
"turn_id": 5,
"turn_domain": [
"通用"
],
"user_utterance": "没有了。谢谢你,再见。",
"system_utterance": "再见。",
"belief_state": {
"inform slot-values": {
"旅游景点-名称": "苏州 乐园 森林 水 世界"
},
"turn_inform": {},
"turn request": []
},
"user_actions": [
[
"Bye",
"通用",
"",
""
]
],
"system_actions": [
[
"Bye",
"通用",
"",
""
]
],
"db_results": [],
"segmented_user_utterance": "没有 了 。 谢谢 你 , 再见 。",
"segmented_system_utterance": "再见 。"
}
]
}
]
```
#### Data Splits
<!-- info: Describe and name the splits in the dataset if there are more than one. -->
<!-- scope: periscope -->
- Train:
- dialogues: 10000
- turns: 134580
- Avg. turns: 13.5
- Valid:
- dialogues: 600
- turns: 8116
- Avg. turns: 13.5
- Test:
- dialogues: 600
- turn: 9286
- Avg. turns: 15.5
####
<!-- info: What does an outlier of the dataset in terms of length/perplexity/embedding look like? -->
<!-- scope: microscope -->
the most complex example (i.e. with the most domains):
```
{
"dialogue_id": "attraction_restaurant_hotel_goal_2-69_v2###8355",
"goal": "attraction_restaurant_hotel_goal_2-69: 公司派你去苏州出差,你准备抽空旅游一下。第一,你想去一个“山水景区”,消费水平最好是“偏贵”的,你需要问清楚这地方“开放时间”、“门票价格”这些信息。第二,你要找个地方住,让客服给你推荐一家价位“中等”的“商务出行”酒店,并且询问这家酒店的“停车场”、“电话号码”这些信息。第三,你还想拔草美食,问客服有没有价位“中等”的“江浙菜”餐厅推荐,然后了解这家餐厅的“是否地铁直达”、“人均消费”这些信息。最后你要感谢客服的帮助,并说再见。",
"domains": [
"旅游景点",
"餐厅",
"酒店"
],
"dialogue": [
{
"turn_id": 0,
"turn_domain": [
"旅游景点"
],
"user_utterance": "你好,来苏州出差,准备抽空旅游一下。我想去山水景区,消费水平偏贵点,帮忙推荐一个。",
"system_utterance": "你好,向您推荐金鸡湖景区,感受一下苏州现代化的一面。",
"belief_state": {
"inform slot-values": {
"旅游景点-景点类型": "山水 景区",
"旅游景点-消费": "偏贵"
},
"turn_inform": {
"旅游景点-景点类型": "山水 景区",
"旅游景点-消费": "偏贵"
},
"turn request": []
},
"user_actions": [
[
"Inform",
"旅游景点",
"景点类型",
"山水 景区"
],
[
"Inform",
"旅游景点",
"消费",
"偏贵"
],
[
"Greeting",
"旅游景点",
"",
""
],
[
"General",
"旅游景点",
"",
""
]
],
"system_actions": [
[
"Greeting",
"通用",
"",
""
],
[
"General",
"通用",
"",
""
],
[
"Recommend",
"旅游景点",
"名称",
"金鸡湖 景区"
]
],
"db_results": [
"数据库检索结果:成功匹配个数为2",
"{'名称': '金鸡湖景区', '区域': '工业园区', '景点类型': '山水景区', '最适合人群': '情侣约会', '消费': '偏贵', '是否地铁直达': '是', '门票价格': '免费', '电话号码': '400-7558558', '地址': '苏州市工业园区星港街158号', '评分': 4.5, '开放时间': '全天', '特点': '看东方之门等高楼,坐摩天轮,乘船夜游,感受苏州现代化的一面。'}",
"{'名称': '沙家浜风景区', '区域': '常熟', '景点类型': '山水景区', '最适合人群': '家庭亲子', '消费': '偏贵', '是否地铁直达': '否', '门票价格': '110元', '电话号码': '0512-52500000', '地址': '苏州市常熟市沙家浜镇', '评分': 4.5, '开放时间': '08:00-16:30', '特点': '京剧样板戏《沙家浜》的发源地,访剧中场景,坐船深入芦苇荡。'}"
],
"segmented_user_utterance": "你好 , 来 苏州 出差 , 准备 抽空 旅游 一下 。 我 想 去 山水 景区 , 消费水平 偏 贵点 , 帮忙 推荐 一个 。",
"segmented_system_utterance": "你好 , 向 您 推荐 金鸡湖 景区 , 感受一下 苏州 现代化 的 一面 。"
},
{
"turn_id": 1,
"turn_domain": [
"旅游景点"
],
"user_utterance": "这里开放时间?需要安排一下。",
"system_utterance": "景区是全天开放的,可以尽情游览!",
"belief_state": {
"inform slot-values": {
"旅游景点-景点类型": "山水 景区",
"旅游景点-消费": "偏贵",
"旅游景点-名称": "金鸡湖 景区"
},
"turn_inform": {
"旅游景点-名称": "金鸡湖 景区"
},
"turn request": [
"开放时间"
]
},
"user_actions": [
[
"Inform",
"旅游景点",
"名称",
"金鸡湖 景区"
],
[
"Request",
"旅游景点",
"开放时间",
""
],
[
"General",
"旅游景点",
"",
""
]
],
"system_actions": [
[
"Inform",
"旅游景点",
"开放时间",
"全天"
]
],
"db_results": [
"数据库检索结果:成功匹配个数为1",
"{'名称': '金鸡湖景区', '区域': '工业园区', '景点类型': '山水景区', '最适合人群': '情侣约会', '消费': '偏贵', '是否地铁直达': '是', '门票价格': '免费', '电话号码': '400-7558558', '地址': '苏州市工业园区星港街158号', '评分': 4.5, '开放时间': '全天', '特点': '看东方之门等高楼,坐摩天轮,乘船夜游,感受苏州现代化的一面。'}"
],
"segmented_user_utterance": "这里 开放 时间 ? 需要 安排 一下 。",
"segmented_system_utterance": "景区 是 全天 开放 的 , 可以 尽情 游览 !"
},
{
"turn_id": 2,
"turn_domain": [
"旅游景点"
],
"user_utterance": "门票多少钱?",
"system_utterance": "这里是免费景区。",
"belief_state": {
"inform slot-values": {
"旅游景点-景点类型": "山水 景区",
"旅游景点-消费": "偏贵",
"旅游景点-名称": "金鸡湖 景区"
},
"turn_inform": {},
"turn request": [
"门票价格"
]
},
"user_actions": [
[
"Request",
"旅游景点",
"门票价格",
""
]
],
"system_actions": [
[
"Inform",
"旅游景点",
"门票价格",
"免费"
]
],
"db_results": [
"数据库检索结果:成功匹配个数为1",
"{'名称': '金鸡湖景区', '区域': '工业园区', '景点类型': '山水景区', '最适合人群': '情侣约会', '消费': '偏贵', '是否地铁直达': '是', '门票价格': '免费', '电话号码': '400-7558558', '地址': '苏州市工业园区星港街158号', '评分': 4.5, '开放时间': '全天', '特点': '看东方之门等高楼,坐摩天轮,乘船夜游,感受苏州现代化的一面。'}"
],
"segmented_user_utterance": "门票 多少 钱 ?",
"segmented_system_utterance": "这里 是 免费 景区 。"
},
{
"turn_id": 3,
"turn_domain": [
"酒店"
],
"user_utterance": "哦,好的。还有酒店,帮我推荐个价位中等的商务酒店!",
"system_utterance": "推荐苏州金鸡湖李公堤瑞贝庭公寓酒店,在金鸡湖景区附近。",
"belief_state": {
"inform slot-values": {
"旅游景点-景点类型": "山水 景区",
"旅游景点-消费": "偏贵",
"旅游景点-名称": "金鸡湖 景区",
"酒店-价位": "中等",
"酒店-酒店类型": "商务 出行"
},
"turn_inform": {
"酒店-价位": "中等",
"酒店-酒店类型": "商务 出行"
},
"turn request": []
},
"user_actions": [
[
"Inform",
"酒店",
"价位",
"中等"
],
[
"Inform",
"酒店",
"酒店类型",
"商务 出行"
],
[
"General",
"酒店",
"",
""
]
],
"system_actions": [
[
"Recommend",
"酒店",
"名称",
"苏州 金鸡湖 李公堤 瑞贝庭 公寓 酒店"
],
[
"General",
"通用",
"",
""
]
],
"db_results": [
"数据库检索结果:成功匹配个数为16",
"{'名称': '苏州慢享主题酒店', '区域': '姑苏区', '星级': '3', '价位': '中等', '酒店类型': '商务出行', '房型': '大床房', '停车场': '收费', '房费': '266元', '地址': '苏州姑苏区景德路26-64号', '电话号码': '0512-67570999', '评分': 4.7}",
"{'名称': '苏州慢享主题酒店', '区域': '姑苏区', '星级': '3', '价位': '中等', '酒店类型': '商务出行', '房型': '标准间', '停车场': '收费', '房费': '278元', '地址': '苏州姑苏区景德路26-64号', '电话号码': '0512-67570999', '评分': 4.7}",
"{'名称': '美锦酒店', '区域': '高新区', '星级': '3', '价位': '中等', '酒店类型': '商务出行', '房型': '大床房', '停车场': '免费', '房费': '308元', '地址': '苏州高新区滨河路999号花样年喜年生活广场5栋1层', '电话号码': '0512-66053331', '评分': 4.8}",
"{'名称': '美锦酒店', '区域': '高新区', '星级': '3', '价位': '中等', '酒店类型': '商务出行', '房型': '标准间', '停车场': '免费', '房费': '349元', '地址': '苏州高新区滨河路999号花样年喜年生活广场5栋1层', '电话号码': '0512-66053331', '评分': 4.8}",
"{'名称': '苏州金鸡湖李公堤瑞贝庭公寓酒店', '区域': '工业园区', '星级': '4', '价位': '中等', '酒店类型': '商务出行', '房型': '大床房', '停车场': '免费', '房费': '438元', '地址': '苏州工业园区李公堤三期E区商业街9幢', '电话号码': '0512-69995666', '评分': 4.6}",
"{'名称': '苏州金鸡湖李公堤瑞贝庭公寓酒店', '区域': '工业园区', '星级': '4', '价位': '中等', '酒店类型': '商务出行', '房型': '标准间', '停车场': '免费', '房费': '438元', '地址': '苏州工业园区李公堤三期E区商业街9幢', '电话号码': '0512-69995666', '评分': 4.6}",
"{'名称': '苏州途乐酒店公寓', '区域': '工业园区', '星级': '2', '价位': '中等', '酒店类型': '商务出行', '房型': '大床房', '停车场': '收费', '房费': '486元', '地址': '苏州工业园区苏州丰隆城市中心T1楼', '电话号码': '151-5149-7911', '评分': 4.6}",
"{'名称': '苏州途乐酒店公寓', '区域': '工业园区', '星级': '2', '价位': '中等', '酒店类型': '商务出行', '房型': '标准间', '停车场': '收费', '房费': '486元', '地址': '苏州工业园区苏州丰隆城市中心T1楼', '电话号码': '151-5149-7911', '评分': 4.6}",
"{'名称': '万悦酒店', '区域': '吴中区', '星级': '3', '价位': '中等', '酒店类型': '商务出行', '房型': '大床房', '停车场': '免费', '房费': '346元', '地址': '苏州吴中区金山路47-2号', '电话号码': '0512-83808380', '评分': 4.5}",
"{'名称': '万悦酒店', '区域': '吴中区', '星级': '3', '价位': '中等', '酒店类型': '商务出行', '房型': '标准间', '停车场': '免费', '房费': '338元', '地址': '苏州吴中区金山路47-2号', '电话号码': '0512-83808380', '评分': 4.5}",
"{'名称': '周庄多瓦台临河客栈', '区域': '昆山', '星级': '3', '价位': '中等', '酒店类型': '商务出行', '房型': '大床房', '停车场': '收费', '房费': '279元', '地址': '昆山周庄镇东浜村75号', '电话号码': '181-3619-1632', '评分': 4.8}",
"{'名称': '周庄多瓦台临河客栈', '区域': '昆山', '星级': '3', '价位': '中等', '酒店类型': '商务出行', '房型': '标准间', '停车场': '收费', '房费': '279元', '地址': '昆山周庄镇东浜村75号', '电话号码': '181-3619-1632', '评分': 4.8}",
"{'名称': '常熟长江路亚朵酒店', '区域': '常熟', '星级': '4', '价位': '中等', '酒店类型': '商务出行', '房型': '大床房', '停车场': '免费', '房费': '312元', '地址': '常熟长江路268号', '电话号码': '0512-51661666', '评分': 4.8}",
"{'名称': '常熟长江路亚朵酒店', '区域': '常熟', '星级': '4', '价位': '中等', '酒店类型': '商务出行', '房型': '标准间', '停车场': '免费', '房费': '312元', '地址': '常熟长江路268号', '电话号码': '0512-51661666', '评分': 4.8}",
"{'名称': '维也纳酒店', '区域': '常熟', '星级': '3', '价位': '中等', '酒店类型': '商务出行', '房型': '大床房', '停车场': '免费', '房费': '322元', '地址': '常熟碧溪镇金港路8号', '电话号码': '0512-52018188', '评分': 4.8}",
"{'名称': '维也纳酒店', '区域': '常熟', '星级': '3', '价位': '中等', '酒店类型': '商务出行', '房型': '标准间', '停车场': '免费', '房费': '340元', '地址': '常熟碧溪镇金港路8号', '电话号码': '0512-52018188', '评分': 4.8}"
],
"segmented_user_utterance": "哦 , 好 的 。 还有 酒店 , 帮 我 推荐 个 价位 中等 的 商务酒店 !",
"segmented_system_utterance": "推荐 苏州 金鸡湖 李公堤 瑞贝庭 公寓 酒店 , 在 金鸡湖 景区 附近 。"
},
{
"turn_id": 4,
"turn_domain": [
"酒店"
],
"user_utterance": "你想得真周到!这家酒店有停车场吗?",
"system_utterance": "酒店配备有一个免费的停车场。",
"belief_state": {
"inform slot-values": {
"旅游景点-景点类型": "山水 景区",
"旅游景点-消费": "偏贵",
"旅游景点-名称": "金鸡湖 景区",
"酒店-价位": "中等",
"酒店-酒店类型": "商务 出行",
"酒店-名称": "苏州 金鸡湖 李公堤 瑞贝庭 公寓 酒店"
},
"turn_inform": {
"酒店-名称": "苏州 金鸡湖 李公堤 瑞贝庭 公寓 酒店"
},
"turn request": [
"停车场"
]
},
"user_actions": [
[
"Inform",
"酒店",
"名称",
"苏州 金鸡湖 李公堤 瑞贝庭 公寓 酒店"
],
[
"Request",
"酒店",
"停车场",
""
]
],
"system_actions": [
[
"Inform",
"酒店",
"停车场",
"免费"
]
],
"db_results": [
"数据库检索结果:成功匹配个数为2",
"{'名称': '苏州金鸡湖李公堤瑞贝庭公寓酒店', '区域': '工业园区', '星级': '4', '价位': '中等', '酒店类型': '商务出行', '房型': '大床房', '停车场': '免费', '房费': '438元', '地址': '苏州工业园区李公堤三期E区商业街9幢', '电话号码': '0512-69995666', '评分': 4.6}",
"{'名称': '苏州金鸡湖李公堤瑞贝庭公寓酒店', '区域': '工业园区', '星级': '4', '价位': '中等', '酒店类型': '商务出行', '房型': '标准间', '停车场': '免费', '房费': '438元', '地址': '苏州工业园区李公堤三期E区商业街9幢', '电话号码': '0512-69995666', '评分': 4.6}"
],
"segmented_user_utterance": "你 想 得 真 周到 ! 这家 酒店 有 停车场 吗 ?",
"segmented_system_utterance": "酒店 配备 有 一个 免费 的 停车场 。"
},
{
"turn_id": 5,
"turn_domain": [
"酒店"
],
"user_utterance": "酒店的电话告诉我一下。",
"system_utterance": "电话号码:0512-69995666。",
"belief_state": {
"inform slot-values": {
"旅游景点-景点类型": "山水 景区",
"旅游景点-消费": "偏贵",
"旅游景点-名称": "金鸡湖 景区",
"酒店-价位": "中等",
"酒店-酒店类型": "商务 出行",
"酒店-名称": "苏州 金鸡湖 李公堤 瑞贝庭 公寓 酒店"
},
"turn_inform": {},
"turn request": [
"电话号码"
]
},
"user_actions": [
[
"Request",
"酒店",
"电话号码",
""
]
],
"system_actions": [
[
"Inform",
"酒店",
"电话号码",
"0512 - 69995666"
]
],
"db_results": [
"数据库检索结果:成功匹配个数为2",
"{'名称': '苏州金鸡湖李公堤瑞贝庭公寓酒店', '区域': '工业园区', '星级': '4', '价位': '中等', '酒店类型': '商务出行', '房型': '大床房', '停车场': '免费', '房费': '438元', '地址': '苏州工业园区李公堤三期E区商业街9幢', '电话号码': '0512-69995666', '评分': 4.6}",
"{'名称': '苏州金鸡湖李公堤瑞贝庭公寓酒店', '区域': '工业园区', '星级': '4', '价位': '中等', '酒店类型': '商务出行', '房型': '标准间', '停车场': '免费', '房费': '438元', '地址': '苏州工业园区李公堤三期E区商业街9幢', '电话号码': '0512-69995666', '评分': 4.6}"
],
"segmented_user_utterance": "酒店 的 电话 告诉 我 一下 。",
"segmented_system_utterance": "电话号码 : 0512 - 69995666 。"
},
{
"turn_id": 6,
"turn_domain": [
"餐厅"
],
"user_utterance": "嗯,我还想拔草美食。有没有价位中等的江浙菜餐厅推荐一个。",
"system_utterance": "推荐老枫庭。",
"belief_state": {
"inform slot-values": {
"旅游景点-景点类型": "山水 景区",
"旅游景点-消费": "偏贵",
"旅游景点-名称": "金鸡湖 景区",
"餐厅-菜系": "江浙 菜",
"餐厅-价位": "中等",
"酒店-价位": "中等",
"酒店-酒店类型": "商务 出行",
"酒店-名称": "苏州 金鸡湖 李公堤 瑞贝庭 公寓 酒店"
},
"turn_inform": {
"餐厅-菜系": "江浙 菜",
"餐厅-价位": "中等"
},
"turn request": []
},
"user_actions": [
[
"Inform",
"餐厅",
"菜系",
"江浙 菜"
],
[
"Inform",
"餐厅",
"价位",
"中等"
],
[
"General",
"餐厅",
"",
""
]
],
"system_actions": [
[
"Recommend",
"餐厅",
"名称",
"老枫庭"
]
],
"db_results": [
"数据库检索结果:成功匹配个数为3",
"{'名称': '老枫庭', '区域': '吴中区', '菜系': '江浙菜', '价位': '中等', '是否地铁直达': '否', '人均消费': '94元', '地址': '木渎灵天路55号芭提雅休闲娱乐广场5号楼', '电话号码': '0512-66277557', '评分': 4.6, '营业时间': '周一至周日 11:00-13:30 17:00-20:30', '推荐菜': '松鼠桂鱼'}",
"{'名称': '同里老家', '区域': '吴江', '菜系': '江浙菜', '价位': '中等', '是否地铁直达': '否', '人均消费': '87元', '地址': '同里镇环湖西路318号', '电话号码': '0512-63339777', '评分': 4.5, '营业时间': '周一至周日 10:00-22:00', '推荐菜': '太湖三白'}",
"{'名称': '周庄花间堂桔梗餐厅', '区域': '昆山', '菜系': '江浙菜', '价位': '中等', '是否地铁直达': '否', '人均消费': '98元', '地址': '周庄镇中市街110号景点迷楼北10米', '电话号码': '138-1289-9961', '评分': 4.5, '营业时间': '周一至周日 07:00-20:30', '推荐菜': '银鱼炒蛋'}"
],
"segmented_user_utterance": "嗯 , 我 还 想 拔草 美食 。 有没有 价位 中等 的 江浙 菜 餐厅 推荐 一个 。",
"segmented_system_utterance": "推荐 老枫庭 。"
},
{
"turn_id": 7,
"turn_domain": [
"餐厅"
],
"user_utterance": "这家餐厅地铁直达吗?",
"system_utterance": "抱歉,餐厅没有地铁直达!",
"belief_state": {
"inform slot-values": {
"旅游景点-景点类型": "山水 景区",
"旅游景点-消费": "偏贵",
"旅游景点-名称": "金鸡湖 景区",
"餐厅-菜系": "江浙 菜",
"餐厅-价位": "中等",
"餐厅-名称": "老枫庭",
"酒店-价位": "中等",
"酒店-酒店类型": "商务 出行",
"酒店-名称": "苏州 金鸡湖 李公堤 瑞贝庭 公寓 酒店"
},
"turn_inform": {
"餐厅-名称": "老枫庭"
},
"turn request": [
"是否地铁直达"
]
},
"user_actions": [
[
"Inform",
"餐厅",
"名称",
"老枫庭"
],
[
"Request",
"餐厅",
"是否地铁直达",
""
]
],
"system_actions": [
[
"Inform",
"餐厅",
"是否地铁直达",
"否"
],
[
"General",
"通用",
"",
""
]
],
"db_results": [
"数据库检索结果:成功匹配个数为1",
"{'名称': '老枫庭', '区域': '吴中区', '菜系': '江浙菜', '价位': '中等', '是否地铁直达': '否', '人均消费': '94元', '地址': '木渎灵天路55号芭提雅休闲娱乐广场5号楼', '电话号码': '0512-66277557', '评分': 4.6, '营业时间': '周一至周日 11:00-13:30 17:00-20:30', '推荐菜': '松鼠桂鱼'}"
],
"segmented_user_utterance": "这家 餐厅 地铁 直达 吗 ?",
"segmented_system_utterance": "抱歉 , 餐厅 没有 地铁 直达 !"
},
{
"turn_id": 8,
"turn_domain": [
"餐厅"
],
"user_utterance": "人均消费呢?",
"system_utterance": "老枫庭人均消费在94元左右。",
"belief_state": {
"inform slot-values": {
"旅游景点-景点类型": "山水 景区",
"旅游景点-消费": "偏贵",
"旅游景点-名称": "金鸡湖 景区",
"餐厅-菜系": "江浙 菜",
"餐厅-价位": "中等",
"餐厅-名称": "老枫庭",
"酒店-价位": "中等",
"酒店-酒店类型": "商务 出行",
"酒店-名称": "苏州 金鸡湖 李公堤 瑞贝庭 公寓 酒店"
},
"turn_inform": {},
"turn request": [
"人均消费"
]
},
"user_actions": [
[
"Request",
"餐厅",
"人均消费",
""
]
],
"system_actions": [
[
"Inform",
"餐厅",
"人均消费",
"老枫庭"
]
],
"db_results": [
"数据库检索结果:成功匹配个数为1",
"{'名称': '老枫庭', '区域': '吴中区', '菜系': '江浙菜', '价位': '中等', '是否地铁直达': '否', '人均消费': '94元', '地址': '木渎灵天路55号芭提雅休闲娱乐广场5号楼', '电话号码': '0512-66277557', '评分': 4.6, '营业时间': '周一至周日 11:00-13:30 17:00-20:30', '推荐菜': '松鼠桂鱼'}"
],
"segmented_user_utterance": "人均 消费 呢 ?",
"segmented_system_utterance": "老枫庭 人均 消费 在 94 元 左右 。"
},
{
"turn_id": 9,
"turn_domain": [
"通用"
],
"user_utterance": "好,所有问题都解决了,谢谢你的帮助!再见!",
"system_utterance": "不客气!这是我应该做的!再见!",
"belief_state": {
"inform slot-values": {
"旅游景点-景点类型": "山水 景区",
"旅游景点-消费": "偏贵",
"旅游景点-名称": "金鸡湖 景区",
"餐厅-菜系": "江浙 菜",
"餐厅-价位": "中等",
"餐厅-名称": "老枫庭",
"酒店-价位": "中等",
"酒店-酒店类型": "商务 出行",
"酒店-名称": "苏州 金鸡湖 李公堤 瑞贝庭 公寓 酒店"
},
"turn_inform": {},
"turn request": []
},
"user_actions": [
[
"Bye",
"通用",
"",
""
],
[
"General",
"通用",
"",
""
]
],
"system_actions": [
[
"Bye",
"通用",
"",
""
],
[
"General",
"通用",
"",
""
]
],
"db_results": [],
"segmented_user_utterance": "好 , 所有 问题 都 解决 了 , 谢谢 你 的 帮助 ! 再见 !",
"segmented_system_utterance": "不 客气 ! 这 是 我 应该 做 的 ! 再见 !"
}
]
}
```
## Dataset in GEM
### Rationale for Inclusion in GEM
#### Why is the Dataset in GEM?
<!-- info: What does this dataset contribute toward better generation evaluation and why is it part of GEM? -->
<!-- scope: microscope -->
RiSAWOZ is the first large-scale multi-domain Chinese Wizard-of-Oz dataset with rich semantic annotations.
#### Similar Datasets
<!-- info: Do other datasets for the high level task exist? -->
<!-- scope: telescope -->
yes
#### Unique Language Coverage
<!-- info: Does this dataset cover other languages than other datasets for the same task? -->
<!-- scope: periscope -->
no
#### Difference from other GEM datasets
<!-- info: What else sets this dataset apart from other similar datasets in GEM? -->
<!-- scope: microscope -->
The corpus contains rich semantic annotations, such as ellipsis and coreference, in addition to traditional dialogue annotations (dialogue states, dialogue acts, etc.), which can be used in various tasks in dialogue system.
#### Ability that the Dataset measures
<!-- info: What aspect of model ability can be measured with this dataset? -->
<!-- scope: periscope -->
Natural Language Understanding, Dialogue State Tracking, Dialogue Context-to-Text Generation, Coreference Resolution, Unified Generative Ellipsis and Coreference Resolution
### GEM-Specific Curation
#### Modificatied for GEM?
<!-- info: Has the GEM version of the dataset been modified in any way (data, processing, splits) from the original curated data? -->
<!-- scope: telescope -->
no
#### Additional Splits?
<!-- info: Does GEM provide additional splits to the dataset? -->
<!-- scope: telescope -->
no
### Getting Started with the Task
#### Pointers to Resources
<!-- info: Getting started with in-depth research on the task. Add relevant pointers to resources that researchers can consult when they want to get started digging deeper into the task. -->
<!-- scope: microscope -->
[Website](https://terryqj0107.github.io/RiSAWOZ_webpage)
#### Technical Terms
<!-- info: Technical terms used in this card and the dataset and their definitions -->
<!-- scope: microscope -->
- In task-oriented dialogue system, the Natural Language Understanding (NLU) module aims to convert the user utterance into the representation that computer can understand, which includes intent and dialogue act (slot & value) detection.
- Dialogue State Tracking (DST) is a core component in task-oriented dialogue systems, which extracts dialogue states (user goals) embedded in dialogue context. It has progressed toward open-vocabulary or generation-based DST where state-of-the-art models can generate dialogue states from dialogue context directly.
- Context-to-Text Generation: encoding dialogue context to decode system response.
- Coreference Resolution: predict coreference clusters where all mentions are referring to the same entity for each dialogue.
- Unified Generative Ellipsis and Coreference Resolution: generating omitted or referred expressions from the dialogue context.
## Previous Results
### Previous Results
#### Measured Model Abilities
<!-- info: What aspect of model ability can be measured with this dataset? -->
<!-- scope: telescope -->
Natural Language Understanding, Dialogue State Tracking, Dialogue Context-to-Text Generation, Coreference Resolution, Unified Generative Ellipsis and Coreference Resolution
#### Metrics
<!-- info: What metrics are typically used for this task? -->
<!-- scope: periscope -->
`Other: Other Metrics`
#### Other Metrics
<!-- info: Definitions of other metrics -->
<!-- scope: periscope -->
- Natural Language Understanding:
- F1 score: F1 score of user intent.
- Dialogue State Tracking:
- Joint Accuracy: accuracy of turn-level dialogue states.
- Dialogue Context-to-Text Generation:
- inform rate: measures the percentage that the output contains the appropriate entity the user asks for.
- success rate: estimates the proportion that all the requested attributes have been answered.
- BLEU: the BLEU score of generated system response.
- Combined Score: (inform + success) ∗ 0.5 + BLEU as an overall
quality.
- Coreference Resolution:
- MUC F1 Score: a link-based metric. Mentions in the same entity/cluster are considered “linked”. MUC penalizes the missing links and incorrect links, each with the same weight.
- B3 F1 Score: a mention-based metric.The evaluation score depends on the fraction of the correct mentions included in the response entities (i.e. entities created by the system).
- CEAFφ4 F1 Score: a metric which assumes each key entity should only be mapped to one response entity, and vice versa. It aligns the key entities (clusters) with the response entities in the best way, and compute scores from that alignment.
- Average F1 Score: an average F1 score of the above three metrics.
- Unified Generative Ellipsis and Coreference Resolution:
- Exact Match Rate: measures whether the generated utterances exactly match the ground-truth utterances.
- BLEU: the BLEU score of generated utterances
- Resolution F1: comparing machine-generated words with ground-truth words only from the ellipsis/coreference part of user utterances.
#### Proposed Evaluation
<!-- info: List and describe the purpose of the metrics and evaluation methodology (including human evaluation) that the dataset creators used when introducing this task. -->
<!-- scope: microscope -->
see "Definitions of other metrics"
#### Previous results available?
<!-- info: Are previous results available? -->
<!-- scope: telescope -->
yes
#### Other Evaluation Approaches
<!-- info: What evaluation approaches have others used? -->
<!-- scope: periscope -->
same as our dataset
#### Relevant Previous Results
<!-- info: What are the most relevant previous results for this task/dataset? -->
<!-- scope: microscope -->
Joint Accuracy, Inform Rate, Success Rate, BLEU Score and Combined Score on MultiWOZ and CrossWOZ dataset.
## Dataset Curation
### Original Curation
#### Original Curation Rationale
<!-- info: Original curation rationale -->
<!-- scope: telescope -->
Gather human-to-human dialog in Chinese.
#### Communicative Goal
<!-- info: What was the communicative goal? -->
<!-- scope: periscope -->
Generate system response given dialogue context across multiple domains.
#### Sourced from Different Sources
<!-- info: Is the dataset aggregated from different data sources? -->
<!-- scope: telescope -->
no
### Language Data
#### How was Language Data Obtained?
<!-- info: How was the language data obtained? -->
<!-- scope: telescope -->
`Crowdsourced`
#### Where was it crowdsourced?
<!-- info: If crowdsourced, where from? -->
<!-- scope: periscope -->
`Other crowdworker platform`
#### Topics Covered
<!-- info: Does the language in the dataset focus on specific topics? How would you describe them? -->
<!-- scope: periscope -->
domains: Attraction, Restaurant, Hotel, Flight, Train, Weather, Movie, TV, Computer, Car, Hospital, Courses
#### Data Validation
<!-- info: Was the text validated by a different worker or a data curator? -->
<!-- scope: telescope -->
validated by data curator
#### Was Data Filtered?
<!-- info: Were text instances selected or filtered? -->
<!-- scope: telescope -->
hybrid
#### Filter Criteria
<!-- info: What were the selection criteria? -->
<!-- scope: microscope -->
Rule-based and manual selection criteria
### Structured Annotations
#### Additional Annotations?
<!-- quick -->
<!-- info: Does the dataset have additional annotations for each instance? -->
<!-- scope: telescope -->
crowd-sourced
#### Number of Raters
<!-- info: What is the number of raters -->
<!-- scope: telescope -->
51<n<100
#### Rater Qualifications
<!-- info: Describe the qualifications required of an annotator. -->
<!-- scope: periscope -->
Chinese native speaker
#### Raters per Training Example
<!-- info: How many annotators saw each training example? -->
<!-- scope: periscope -->
3
#### Raters per Test Example
<!-- info: How many annotators saw each test example? -->
<!-- scope: periscope -->
3
#### Annotation Service?
<!-- info: Was an annotation service used? -->
<!-- scope: telescope -->
no
#### Annotation Values
<!-- info: Purpose and values for each annotation -->
<!-- scope: microscope -->
- dialogue_id (string): dialogue ID
- goal (string): natural language descriptions of the user goal
- domains (list of strings): domains mentioned in current dialogue session
- turn_id (int): turn ID
- turn_domain (list of strings): domain mentioned in current turn
- belief_state (dict): dialogue state, including:
- inform slot-values (dict): the slots and corresponding values informed until current turn
- turn_inform (dict): the slots and corresponding values informed in current turn
- turn request (dict): the slots requested in current turn
- user_actions (list of lists): user dialogue acts in current turn
- user_actions (list of lists): system dialogue acts in current turn
- db_results (list of strings): database search results
- segmented_user_utterance (string): word segmentation result of user utterance
- segmented_system_utterance (string): word segmentation result of system utterance
#### Any Quality Control?
<!-- info: Quality control measures? -->
<!-- scope: telescope -->
unknown
### Consent
#### Any Consent Policy?
<!-- info: Was there a consent policy involved when gathering the data? -->
<!-- scope: telescope -->
yes
#### Consent Policy Details
<!-- info: What was the consent policy? -->
<!-- scope: microscope -->
Annotators agree using the dataset for research purpose.
#### Other Consented Downstream Use
<!-- info: What other downstream uses of the data did the original data creators and the data curators consent to? -->
<!-- scope: microscope -->
Any
### Private Identifying Information (PII)
#### Contains PII?
<!-- quick -->
<!-- info: Does the source language data likely contain Personal Identifying Information about the data creators or subjects? -->
<!-- scope: telescope -->
no PII
#### Justification for no PII
<!-- info: Provide a justification for selecting `no PII` above. -->
<!-- scope: periscope -->
The slots and values as well as utterances do not contain any personal information.
### Maintenance
#### Any Maintenance Plan?
<!-- info: Does the original dataset have a maintenance plan? -->
<!-- scope: telescope -->
yes
#### Maintenance Plan Details
<!-- info: Describe the original dataset's maintenance plan. -->
<!-- scope: microscope -->
Building a leaderboard webpage to trace and display the latest results on the [dataset](https://terryqj0107.github.io/RiSAWOZ_webpage/)
#### Maintainer Contact Information
<!-- info: Provide contact information of a person responsible for the dataset maintenance -->
<!-- scope: periscope -->
Deyi Xiong ([email protected])
#### Any Contestation Mechanism?
<!-- info: Does the maintenance plan include a contestation mechanism allowing individuals to request removal fo content? -->
<!-- scope: periscope -->
contact maintainer
#### Contestation Form Link
<!-- info: Provide the form link or contact information -->
<!-- scope: periscope -->
Deyi Xiong ([email protected])
## Broader Social Context
### Previous Work on the Social Impact of the Dataset
#### Usage of Models based on the Data
<!-- info: Are you aware of cases where models trained on the task featured in this dataset ore related tasks have been used in automated systems? -->
<!-- scope: telescope -->
no
### Impact on Under-Served Communities
#### Addresses needs of underserved Communities?
<!-- info: Does this dataset address the needs of communities that are traditionally underserved in language technology, and particularly language generation technology? Communities may be underserved for exemple because their language, language variety, or social or geographical context is underepresented in NLP and NLG resources (datasets and models). -->
<!-- scope: telescope -->
yes
#### Details on how Dataset Addresses the Needs
<!-- info: Describe how this dataset addresses the needs of underserved communities. -->
<!-- scope: microscope -->
RiSAWOZ is the first large-scale multi-domain Chinese Wizard-of-Oz dataset with rich semantic annotations.
### Discussion of Biases
#### Any Documented Social Biases?
<!-- info: Are there documented social biases in the dataset? Biases in this context are variations in the ways members of different social categories are represented that can have harmful downstream consequences for members of the more disadvantaged group. -->
<!-- scope: telescope -->
no
#### Are the Language Producers Representative of the Language?
<!-- info: Does the distribution of language producers in the dataset accurately represent the full distribution of speakers of the language world-wide? If not, how does it differ? -->
<!-- scope: periscope -->
yes
## Considerations for Using the Data
### PII Risks and Liability
#### Potential PII Risk
<!-- info: Considering your answers to the PII part of the Data Curation Section, describe any potential privacy to the data subjects and creators risks when using the dataset. -->
<!-- scope: microscope -->
None
### Licenses
#### Copyright Restrictions on the Dataset
<!-- info: Based on your answers in the Intended Use part of the Data Overview Section, which of the following best describe the copyright and licensing status of the dataset? -->
<!-- scope: periscope -->
`open license - commercial use allowed`
#### Copyright Restrictions on the Language Data
<!-- info: Based on your answers in the Language part of the Data Curation Section, which of the following best describe the copyright and licensing status of the underlying language data? -->
<!-- scope: periscope -->
`open license - commercial use allowed`
### Known Technical Limitations
#### Technical Limitations
<!-- info: Describe any known technical limitations, such as spurrious correlations, train/test overlap, annotation biases, or mis-annotations, and cite the works that first identified these limitations when possible. -->
<!-- scope: microscope -->
None
#### Unsuited Applications
<!-- info: When using a model trained on this dataset in a setting where users or the public may interact with its predictions, what are some pitfalls to look out for? In particular, describe some applications of the general task featured in this dataset that its curation or properties make it less suitable for. -->
<!-- scope: microscope -->
Using the trained model on domains that are not included in the 12 domains selected for this dataset.
#### Discouraged Use Cases
<!-- info: What are some discouraged use cases of a model trained to maximize the proposed metrics on this dataset? In particular, think about settings where decisions made by a model that performs reasonably well on the metric my still have strong negative consequences for user or members of the public. -->
<!-- scope: microscope -->
Designing models that leverage unknown bias in the dataset to optimize specific metrics.
|