Datasets:
GEM
/

Tasks:
Other
Modalities:
Text
Languages:
English
ArXiv:
Libraries:
Datasets
License:
File size: 6,187 Bytes
70bc399
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9563d4b
70bc399
 
eaca996
22e3128
 
 
 
 
 
 
 
 
 
 
eaca996
 
 
 
22e3128
 
 
70bc399
 
 
 
 
 
eaca996
70bc399
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eaca996
70bc399
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eaca996
70bc399
 
 
 
 
 
 
 
 
 
 
 
 
 
eaca996
 
70bc399
 
 
 
 
 
 
 
eaca996
 
70bc399
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import json
import os
import datasets

_CITATION = """\
@inproceedings{lin-etal-2020-commongen,
    title = "{C}ommon{G}en: A Constrained Text Generation Challenge for Generative Commonsense Reasoning",
    author = "Lin, Bill Yuchen  and
      Zhou, Wangchunshu  and
      Shen, Ming  and
      Zhou, Pei  and
      Bhagavatula, Chandra  and
      Choi, Yejin  and
      Ren, Xiang",
    booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
    month = nov,
    year = "2020",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://www.aclweb.org/anthology/2020.findings-emnlp.165",
    pages = "1823--1840",
}
"""

_DESCRIPTION = """\
CommonGen is a constrained text generation task, associated with a benchmark
dataset, to explicitly test machines for the ability of generative commonsense
reasoning. Given a set of common concepts; the task is to generate a coherent
sentence describing an everyday scenario using these concepts.
"""

_URLs = {
    "data": "https://storage.googleapis.com/huggingface-nlp/datasets/common_gen/commongen_data.zip",
    "challenge_set": "https://storage.googleapis.com/huggingface-nlp/datasets/gem/gem_challenge_sets/common_gen.zip",
}


class CommonGen(datasets.GeneratorBasedBuilder):
    VERSION = datasets.Version("1.0.0")
    DEFAULT_CONFIG_NAME = "common_gen"

    def _info(self):
        features = datasets.Features(
            {
                "gem_id": datasets.Value("string"),
                "gem_parent_id": datasets.Value("string"),
                "concept_set_id": datasets.Value("int32"),
                "concepts": [datasets.Value("string")],
                "target": datasets.Value("string"),  # single target for train
                "references": [
                    datasets.Value("string")
                ],  # multiple references for validation
            }
        )

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            supervised_keys=datasets.info.SupervisedKeysData(
                input="concepts", output="target"
            ),
            homepage="https://inklab.usc.edu/CommonGen/",
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        dl_dir = dl_manager.download_and_extract(_URLs)
        challenge_sets = [
            ("challenge_train_sample", "train_common_gen_RandomSample500.json"),
            (
                "challenge_validation_sample",
                "validation_common_gen_RandomSample500.json",
            ),
            (
                "challenge_test_scramble",
                "test_common_gen_ScrambleInputStructure500.json",
            ),
        ]
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "filepath": os.path.join(dl_dir["data"], "commongen.train.jsonl"),
                    "split": "train",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={
                    "filepath": os.path.join(dl_dir["data"], "commongen.dev.jsonl"),
                    "split": "validation",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "filepath": os.path.join(
                        dl_dir["data"], "commongen.test_noref.jsonl"
                    ),
                    "split": "test",
                },
            ),
        ] + [
            datasets.SplitGenerator(
                name=challenge_split,
                gen_kwargs={
                    "filepath": os.path.join(
                        dl_dir["challenge_set"], "common_gen", filename
                    ),
                    "split": challenge_split,
                },
            )
            for challenge_split, filename in challenge_sets
        ]

    def _generate_examples(self, filepath, split, filepaths=None, lang=None):
        """Yields examples."""
        if split.startswith("challenge"):
            exples = json.load(open(filepath, encoding="utf-8"))
            if isinstance(exples, dict):
                assert len(exples) == 1, "multiple entries found"
                exples = list(exples.values())[0]
            for id_, exple in enumerate(exples):
                if len(exple) == 0:
                    continue
                exple["gem_parent_id"] = exple["gem_id"]
                exple["gem_id"] = f"common_gen-{split}-{id_}"
                yield id_, exple
        else:
            with open(filepath, encoding="utf-8") as f:
                id_ = -1
                i = -1
                for row in f:
                    row = row.replace(", }", "}")  # Fix possible JSON format error
                    data = json.loads(row)
                    concepts = [word for word in data["concept_set"].split("#")]
                    if split == "train":
                        i += 1
                        for scene in data["scene"]:
                            id_ += 1
                            yield id_, {
                                "gem_id": f"common_gen-{split}-{id_}",
                                "gem_parent_id": f"common_gen-{split}-{id_}",
                                "concept_set_id": i,
                                "concepts": concepts,
                                "target": scene,
                                "references": [],
                            }
                    else:
                        id_ += 1
                        yield id_, {
                            "gem_id": f"common_gen-{split}-{id_}",
                            "gem_parent_id": f"common_gen-{split}-{id_}",
                            "concept_set_id": id_,
                            "concepts": concepts,
                            "target": "" if split == "test" else data["scene"][0],
                            "references": [] if split == "test" else data["scene"],
                        }