File size: 6,282 Bytes
6e83e03
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b016b17
 
 
6e83e03
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b016b17
6e83e03
 
b016b17
6e83e03
a167b33
6e83e03
 
 
 
 
 
 
 
 
 
 
 
 
 
a167b33
 
 
 
 
 
 
 
 
 
 
b016b17
a167b33
b016b17
a167b33
 
b016b17
 
 
 
 
 
a167b33
 
b016b17
 
 
a167b33
 
6e83e03
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b016b17
 
 
 
6e83e03
 
 
 
 
 
 
 
 
 
 
 
b016b17
6e83e03
b016b17
 
 
6e83e03
 
b016b17
 
6e83e03
 
 
 
 
 
 
 
 
 
 
 
 
b016b17
 
 
 
 
 
 
6e83e03
 
b016b17
 
 
6e83e03
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import json
from typing import List

import datasets

from datasets import BuilderConfig
from datasets.features import Features

MAX_DIRECTORY_NAME_LENGTH = 255


_CITATION = """\
@article{kim2020domain,
  title={Beyond Domain APIs: Task-oriented Conversational Modeling with Unstructured Knowledge Access},
  author={Seokhwan Kim and Mihail Eric and Karthik Gopalakrishnan and Behnam Hedayatnia and Yang Liu and Dilek Hakkani-Tur},
  journal={arXiv preprint arXiv:2006.03533}
  year={2020}
}
"""

_HOMEPAGE = "https://github.com/alexa/alexa-with-dstc10-track2-dataset"


_DESCRIPTION = """\

"""

_BASE_URL_DSTC10 = "https://raw.githubusercontent.com/alexa/alexa-with-dstc10-track2-dataset/main/task2"
_BASE_URL_DSTC9 = (
    "https://raw.githubusercontent.com/alexa/alexa-with-dstc9-track1-dataset/master"
)
_URLs = {
    "train": {
        "logs": f"{_BASE_URL_DSTC9}/data/train/logs.json",
        "labels": f"{_BASE_URL_DSTC9}/data/train/labels.json",
        "knowledge": f"{_BASE_URL_DSTC9}/data/knowledge.json",
    },
    "validation": {
        "logs": f"{_BASE_URL_DSTC10}/data/val/logs.json",
        "labels": f"{_BASE_URL_DSTC10}/data/val/labels.json",
        "knowledge": f"{_BASE_URL_DSTC10}/data/knowledge.json",
    },
    "test": {
        "logs": f"{_BASE_URL_DSTC10}/data/test/logs.json",
        "labels": f"{_BASE_URL_DSTC10}/data/test/labels.json",
        "knowledge": f"{_BASE_URL_DSTC10}/data/knowledge.json",
    },
}


class DSTC10Track2Task2(datasets.GeneratorBasedBuilder):

    VERSION = datasets.Version("1.0.0")

    BUILDER_CONFIGS = [
        BuilderConfig(
            name="generation",
            version=VERSION,
            description="",
        ),
    ]

    DEFAULT_CONFIG_NAME = "generation"

    def _info(self):

        features = datasets.Features(
            {
                "id": datasets.Value("string"),
                "gem_id": datasets.Value("string"),
                "turns": [
                    {
                        "speaker": datasets.Value("string"),
                        "text": datasets.Value("string"),
                        "nbest": [
                            {
                                "hyp": datasets.Value("string"),
                                "score": datasets.Value("float"),
                            }
                        ],
                    }
                ],
                "knowledge": {
                    "domain": datasets.Value("string"),
                    "entity_name": datasets.Value("string"),
                    "title": datasets.Value("string"),
                    "body": datasets.Value("string"),
                },
                "response": datasets.Value("string"),
                "source": datasets.Value("string"),
                "linearized_input": datasets.Value("string"),
                "target": datasets.Value("string"),
                "references": [datasets.Value("string")],
            }
        )

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            supervised_keys=None,
            homepage=_HOMEPAGE,
            citation=_CITATION,
        )

    def _generate_examples(self, logs, knowledge, labels, split=None):
        with open(logs) as fp:
            logs_data = json.load(fp)
        with open(labels) as fp:
            labels_data = json.load(fp)
        with open(knowledge) as fp:
            knowledge_data = json.load(fp)

        i = 0

        for log, label in zip(logs_data, labels_data):
            if not label["target"]:
                continue

            # Ensure that nbest is in all turns
            for turn in log:
                if "nbest" not in turn:
                    turn["nbest"] = []

            if "source" not in label:
                source = "multiwoz"
            else:
                source = label["source"]

            domain, entity_id, doc_id = (
                label["knowledge"][0].get(key)
                for key in ["domain", "entity_id", "doc_id"]
            )
            entity_name = knowledge_data[domain][str(entity_id)]["name"]
            snippet = knowledge_data[domain][str(entity_id)]["docs"][str(doc_id)]

            x = {
                "id": str(i),
                "gem_id": f"GEM-dstc10_track2_task2-{split}-{i}",
                "turns": log,
                "source": source,
                "knowledge": {
                    "domain": domain,
                    "entity_name": entity_name,
                    "title": snippet["title"],
                    "body": snippet["body"],
                },
                "response": label["response"],
                "target": label["response"],
                "references": [label["response"]],
            }

            x["linearized_input"] = self._linearize_example(x)

            i += 1

            yield x["id"], x

    def _download_files(self, urls, data_files, dl_manager):
        if data_files is not None:
            for split, update_dict in data_files.items():
                if isinstance(update_dict, dict):
                    for key, value in update_dict.items():
                        urls[split][key] = value

        return dl_manager.download_and_extract(urls)

    def _linearize_example(self, d):
        repr_string = ""
        for t in d["turns"]:
            repr_string += f"<{t['speaker']}> {t['text']} "
        repr_string += f"|| knowledge domain: {d['knowledge']['domain']}, entity: {d['knowledge']['entity_name']}, title: {d['knowledge']['title']}, information: {d['knowledge']['body']}"
        return repr_string

    def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]:
        urls_to_download = _URLs
        downloaded_files = self._download_files(
            urls_to_download, self.config.data_files, dl_manager
        )
        for split in ["train", "validation", "test"]:
            downloaded_files[split]["split"] = split

        return [
            datasets.SplitGenerator(name=ds_split, gen_kwargs=downloaded_files[split])
            for ds_split, split in (
                (datasets.Split.TRAIN, "train"),
                (datasets.Split.VALIDATION, "validation"),
                (datasets.Split.TEST, "test"),
            )
        ]