Datasets:
GEM
/

Modalities:
Text
Languages:
English
ArXiv:
Libraries:
Datasets
License:
Sebastian Gehrmann commited on
Commit
13e61da
·
1 Parent(s): 67f4483

data card.

Browse files
Files changed (1) hide show
  1. README.md +552 -0
README.md ADDED
@@ -0,0 +1,552 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ annotations_creators:
3
+ - automatically-created
4
+ language_creators:
5
+ - unknown
6
+ languages:
7
+ - unknown
8
+ licenses:
9
+ - cc-by-sa-3.0
10
+ multilinguality:
11
+ - unknown
12
+ pretty_name: wiki_cat_sum
13
+ size_categories:
14
+ - unknown
15
+ source_datasets:
16
+ - original
17
+ task_categories:
18
+ - summarization
19
+ task_ids:
20
+ - unknown
21
+ ---
22
+
23
+ # Dataset Card for GEM/wiki_cat_sum
24
+
25
+ ## Dataset Description
26
+
27
+ - **Homepage:** https://github.com/lauhaide/WikiCatSum
28
+ - **Repository:** https://datashare.ed.ac.uk/handle/10283/3368
29
+ - **Paper:** https://arxiv.org/abs/1906.04687
30
+ - **Leaderboard:** N/A
31
+ - **Point of Contact:** Laura Perez-Beltrachini
32
+
33
+ ### Link to Main Data Card
34
+
35
+ You can find the main data card on the [GEM Website](https://gem-benchmark.com/data_cards/wiki_cat_sum).
36
+
37
+ ### Dataset Summary
38
+
39
+ Placeholder
40
+
41
+ You can load the dataset via:
42
+ ```
43
+ import datasets
44
+ data = datasets.load_dataset('GEM/wiki_cat_sum')
45
+ ```
46
+ The data loader can be found [here](https://huggingface.co/datasets/GEM/wiki_cat_sum).
47
+
48
+ #### website
49
+ https://github.com/lauhaide/WikiCatSum
50
+
51
+ #### paper
52
+ https://arxiv.org/abs/1906.04687
53
+
54
+ #### authors
55
+ Laura Perez-Beltrachini, Yang Liu, Mirella Lapata (University of Edinburgh) Peter J. Liu, Mohammad Saleh, Etienne Pot, Ben Goodrich, Ryan Sepassi, Lukasz Kaiser, Noam Shazeer (GoogleBrain)
56
+
57
+ ## Dataset Overview
58
+
59
+ ### Where to find the Data and its Documentation
60
+
61
+ #### Webpage
62
+
63
+ <!-- info: What is the webpage for the dataset (if it exists)? -->
64
+ <!-- scope: telescope -->
65
+ https://github.com/lauhaide/WikiCatSum
66
+
67
+ #### Download
68
+
69
+ <!-- info: What is the link to where the original dataset is hosted? -->
70
+ <!-- scope: telescope -->
71
+ https://datashare.ed.ac.uk/handle/10283/3368
72
+
73
+ #### Paper
74
+
75
+ <!-- info: What is the link to the paper describing the dataset (open access preferred)? -->
76
+ <!-- scope: telescope -->
77
+ https://arxiv.org/abs/1906.04687
78
+
79
+ #### BibTex
80
+
81
+ <!-- info: Provide the BibTex-formatted reference for the dataset. Please use the correct published version (ACL anthology, etc.) instead of google scholar created Bibtex. -->
82
+ <!-- scope: microscope -->
83
+ @inproceedings{perez-beltrachini-etal-2019-generating,
84
+ title = "Generating Summaries with Topic Templates and Structured Convolutional Decoders",
85
+ author = "Perez-Beltrachini, Laura and
86
+ Liu, Yang and
87
+ Lapata, Mirella",
88
+ booktitle = "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
89
+ month = jul,
90
+ year = "2019",
91
+ address = "Florence, Italy",
92
+ publisher = "Association for Computational Linguistics",
93
+ url = "https://aclanthology.org/P19-1504",
94
+ doi = "10.18653/v1/P19-1504",
95
+ }
96
+
97
+ #### Contact Name
98
+
99
+ <!-- quick -->
100
+ <!-- info: If known, provide the name of at least one person the reader can contact for questions about the dataset. -->
101
+ <!-- scope: periscope -->
102
+ Laura Perez-Beltrachini
103
+
104
+ #### Contact Email
105
+
106
+ <!-- info: If known, provide the email of at least one person the reader can contact for questions about the dataset. -->
107
+ <!-- scope: periscope -->
108
109
+
110
+ #### Has a Leaderboard?
111
+
112
+ <!-- info: Does the dataset have an active leaderboard? -->
113
+ <!-- scope: telescope -->
114
+ no
115
+
116
+
117
+ ### Languages and Intended Use
118
+
119
+ #### Multilingual?
120
+
121
+ <!-- quick -->
122
+ <!-- info: Is the dataset multilingual? -->
123
+ <!-- scope: telescope -->
124
+ no
125
+
126
+ #### Covered Languages
127
+
128
+ <!-- quick -->
129
+ <!-- info: What languages/dialects are covered in the dataset? -->
130
+ <!-- scope: telescope -->
131
+ `English`
132
+
133
+ #### License
134
+
135
+ <!-- quick -->
136
+ <!-- info: What is the license of the dataset? -->
137
+ <!-- scope: telescope -->
138
+ cc-by-sa-3.0: Creative Commons Attribution Share Alike 3.0 Unported
139
+
140
+ #### Intended Use
141
+
142
+ <!-- info: What is the intended use of the dataset? -->
143
+ <!-- scope: microscope -->
144
+ Research on multi-document abstractive summarisation.
145
+
146
+ #### Primary Task
147
+
148
+ <!-- info: What primary task does the dataset support? -->
149
+ <!-- scope: telescope -->
150
+ Summarization
151
+
152
+ #### Communicative Goal
153
+
154
+ <!-- quick -->
155
+ <!-- info: Provide a short description of the communicative goal of a model trained for this task on this dataset. -->
156
+ <!-- scope: periscope -->
157
+ Summarise the most important facts of a given entity in the Film, Company, and Animal domains from a cluster of related documents.
158
+
159
+
160
+ ### Credit
161
+
162
+ #### Curation Organization Type(s)
163
+
164
+ <!-- info: In what kind of organization did the dataset curation happen? -->
165
+ <!-- scope: telescope -->
166
+ `industry`, `academic`
167
+
168
+ #### Curation Organization(s)
169
+
170
+ <!-- info: Name the organization(s). -->
171
+ <!-- scope: periscope -->
172
+ Google Cloud Platform, University of Edinburgh
173
+
174
+ #### Dataset Creators
175
+
176
+ <!-- info: Who created the original dataset? List the people involved in collecting the dataset and their affiliation(s). -->
177
+ <!-- scope: microscope -->
178
+ Laura Perez-Beltrachini, Yang Liu, Mirella Lapata (University of Edinburgh) Peter J. Liu, Mohammad Saleh, Etienne Pot, Ben Goodrich, Ryan Sepassi, Lukasz Kaiser, Noam Shazeer (GoogleBrain)
179
+
180
+ #### Funding
181
+
182
+ <!-- info: Who funded the data creation? -->
183
+ <!-- scope: microscope -->
184
+ Google Cloud Platform, European Research Council
185
+
186
+ #### Who added the Dataset to GEM?
187
+
188
+ <!-- info: Who contributed to the data card and adding the dataset to GEM? List the people+affiliations involved in creating this data card and who helped integrate this dataset into GEM. -->
189
+ <!-- scope: microscope -->
190
+ Ronald Cardenas (University of Edinburgh) Laura Perez-Beltrachini (University of Edinburgh)
191
+
192
+
193
+ ### Dataset Structure
194
+
195
+ #### Data Fields
196
+
197
+ <!-- info: List and describe the fields present in the dataset. -->
198
+ <!-- scope: telescope -->
199
+ id: ID of the data example
200
+ title: Is the Wikipedia article's title
201
+ paragraphs: Is the ranked list of paragraphs from the set of crawled texts
202
+ summary: Is constituted by a list of sentences together with their corresponding topic label
203
+
204
+ #### Data Splits
205
+
206
+ <!-- info: Describe and name the splits in the dataset if there are more than one. -->
207
+ <!-- scope: periscope -->
208
+ Nb of instances in train/valid/test are 50,938/2,855/2,831
209
+
210
+ #### Splitting Criteria
211
+
212
+ <!-- info: Describe any criteria for splitting the data, if used. If there are differences between the splits (e.g., if the training annotations are machine-generated and the dev and test ones are created by humans, or if different numbers of annotators contributed to each example), describe them here. -->
213
+ <!-- scope: microscope -->
214
+ iid
215
+
216
+
217
+
218
+ ## Dataset in GEM
219
+
220
+ ### Rationale for Inclusion in GEM
221
+
222
+ #### Why is the Dataset in GEM?
223
+
224
+ <!-- info: What does this dataset contribute toward better generation evaluation and why is it part of GEM? -->
225
+ <!-- scope: microscope -->
226
+ Evaluation of models' performance on noisy (document, summary) pairs and long inputs.
227
+ Evaluate models' capabilities to generalise and mitigate biases.
228
+
229
+ #### Similar Datasets
230
+
231
+ <!-- info: Do other datasets for the high level task exist? -->
232
+ <!-- scope: telescope -->
233
+ no
234
+
235
+ #### Unique Language Coverage
236
+
237
+ <!-- info: Does this dataset cover other languages than other datasets for the same task? -->
238
+ <!-- scope: periscope -->
239
+ no
240
+
241
+ #### Ability that the Dataset measures
242
+
243
+ <!-- info: What aspect of model ability can be measured with this dataset? -->
244
+ <!-- scope: periscope -->
245
+ Capabilities to generalise, mitigate biases, factual correctness.
246
+
247
+
248
+ ### GEM-Specific Curation
249
+
250
+ #### Modificatied for GEM?
251
+
252
+ <!-- info: Has the GEM version of the dataset been modified in any way (data, processing, splits) from the original curated data? -->
253
+ <!-- scope: telescope -->
254
+ yes
255
+
256
+ #### GEM Modifications
257
+
258
+ <!-- info: What changes have been made to he original dataset? -->
259
+ <!-- scope: periscope -->
260
+ `annotations added`
261
+
262
+ #### Modification Details
263
+
264
+ <!-- info: For each of these changes, described them in more details and provided the intended purpose of the modification -->
265
+ <!-- scope: microscope -->
266
+ We provide topic labels for summary sentences.
267
+
268
+ #### Additional Splits?
269
+
270
+ <!-- info: Does GEM provide additional splits to the dataset? -->
271
+ <!-- scope: telescope -->
272
+ no
273
+
274
+
275
+ ### Getting Started with the Task
276
+
277
+ #### Pointers to Resources
278
+
279
+ <!-- info: Getting started with in-depth research on the task. Add relevant pointers to resources that researchers can consult when they want to get started digging deeper into the task. -->
280
+ <!-- scope: microscope -->
281
+ Generating Wikipedia by Summarizing Long Sequences
282
+ https://arxiv.org/abs/1801.10198
283
+
284
+ Generating Summaries with Topic Templates and Structured Convolutional Decoders
285
+ https://arxiv.org/abs/1906.04687
286
+
287
+ Noisy Self-Knowledge Distillation for Text Summarization
288
+ https://arxiv.org/abs/2009.07032
289
+
290
+ And all references in these papers.
291
+
292
+
293
+
294
+
295
+
296
+ ## Previous Results
297
+
298
+ ### Previous Results
299
+
300
+ #### Measured Model Abilities
301
+
302
+ <!-- info: What aspect of model ability can be measured with this dataset? -->
303
+ <!-- scope: telescope -->
304
+ Capabilities to generalise, mitigate biases, factual correctness.
305
+
306
+ #### Metrics
307
+
308
+ <!-- info: What metrics are typically used for this task? -->
309
+ <!-- scope: periscope -->
310
+ `ROUGE`, `BERT-Score`, `MoverScore`, `Other: Other Metrics`
311
+
312
+ #### Other Metrics
313
+
314
+ <!-- info: Definitions of other metrics -->
315
+ <!-- scope: periscope -->
316
+ - Abstract/Copy
317
+ - Factual accuracy based on the score of (Goodrich et al., 2019) and the relation extraction system of (Sorokin and Gurevych, 2017).
318
+
319
+ #### Proposed Evaluation
320
+
321
+ <!-- info: List and describe the purpose of the metrics and evaluation methodology (including human evaluation) that the dataset creators used when introducing this task. -->
322
+ <!-- scope: microscope -->
323
+ Human based are Question Answering and Ranking (Content, Fluency and Repetition)
324
+
325
+ #### Previous results available?
326
+
327
+ <!-- info: Are previous results available? -->
328
+ <!-- scope: telescope -->
329
+ yes
330
+
331
+ #### Other Evaluation Approaches
332
+
333
+ <!-- info: What evaluation approaches have others used? -->
334
+ <!-- scope: periscope -->
335
+ Those listed above.
336
+
337
+ #### Relevant Previous Results
338
+
339
+ <!-- info: What are the most relevant previous results for this task/dataset? -->
340
+ <!-- scope: microscope -->
341
+ Generating Summaries with Topic Templates and Structured Convolutional Decoders
342
+ https://arxiv.org/abs/1906.04687
343
+
344
+ Noisy Self-Knowledge Distillation for Text Summarization
345
+ https://arxiv.org/abs/2009.07032
346
+
347
+
348
+
349
+
350
+ ## Dataset Curation
351
+
352
+ ### Original Curation
353
+
354
+ #### Original Curation Rationale
355
+
356
+ <!-- info: Original curation rationale -->
357
+ <!-- scope: telescope -->
358
+ The dataset is a subset of the WikiSum (Liu et al., 2018) dataset focusing on summaries of entities in three domains (Film, Company, and Animal). It is multi-document summarisation where input-output pairs for each example entity are created as follows. The input is a set of paragraphs collected from i) documents in the Reference section of the entity's Wikipedia page plus ii) documents collected from the top ten search results after querying Google search engine with the entity name. The output summary is the Wikipedia abstract for the entity.
359
+
360
+ #### Communicative Goal
361
+
362
+ <!-- info: What was the communicative goal? -->
363
+ <!-- scope: periscope -->
364
+ Generate descriptive summaries with specific domains, where certain topics are discussed and generally in specific orders.
365
+
366
+ #### Sourced from Different Sources
367
+
368
+ <!-- info: Is the dataset aggregated from different data sources? -->
369
+ <!-- scope: telescope -->
370
+ yes
371
+
372
+ #### Source Details
373
+
374
+ <!-- info: List the sources (one per line) -->
375
+ <!-- scope: periscope -->
376
+ WikiSum (Liu et al., 2018)
377
+
378
+
379
+ ### Language Data
380
+
381
+ #### How was Language Data Obtained?
382
+
383
+ <!-- info: How was the language data obtained? -->
384
+ <!-- scope: telescope -->
385
+ `Other`
386
+
387
+ #### Topics Covered
388
+
389
+ <!-- info: Does the language in the dataset focus on specific topics? How would you describe them? -->
390
+ <!-- scope: periscope -->
391
+ The dataset and task focuses on summaries for entities in three domains: Company, Film, and Animal.
392
+
393
+ #### Data Validation
394
+
395
+ <!-- info: Was the text validated by a different worker or a data curator? -->
396
+ <!-- scope: telescope -->
397
+ not validated
398
+
399
+ #### Data Preprocessing
400
+
401
+ <!-- info: How was the text data pre-processed? (Enter N/A if the text was not pre-processed) -->
402
+ <!-- scope: microscope -->
403
+ Summary sentences are associated with a topic label. There is a topic model for each domain.
404
+
405
+ #### Was Data Filtered?
406
+
407
+ <!-- info: Were text instances selected or filtered? -->
408
+ <!-- scope: telescope -->
409
+ not filtered
410
+
411
+
412
+ ### Structured Annotations
413
+
414
+ #### Additional Annotations?
415
+
416
+ <!-- quick -->
417
+ <!-- info: Does the dataset have additional annotations for each instance? -->
418
+ <!-- scope: telescope -->
419
+ automatically created
420
+
421
+ #### Annotation Service?
422
+
423
+ <!-- info: Was an annotation service used? -->
424
+ <!-- scope: telescope -->
425
+ no
426
+
427
+ #### Annotation Values
428
+
429
+ <!-- info: Purpose and values for each annotation -->
430
+ <!-- scope: microscope -->
431
+ Each summary sentences was annotated with a topic label. There is a topic model for each of the three domains. This was used to guide a hierarchical decoder.
432
+
433
+ #### Any Quality Control?
434
+
435
+ <!-- info: Quality control measures? -->
436
+ <!-- scope: telescope -->
437
+ validated by data curators
438
+
439
+ #### Quality Control Details
440
+
441
+ <!-- info: Describe the quality control measures that were taken. -->
442
+ <!-- scope: microscope -->
443
+ Manual inspection of a sample of topics assigned to sentences. The number of topics was selected based on the performance of the summarisation model.
444
+
445
+
446
+ ### Consent
447
+
448
+ #### Any Consent Policy?
449
+
450
+ <!-- info: Was there a consent policy involved when gathering the data? -->
451
+ <!-- scope: telescope -->
452
+ no
453
+
454
+ #### Justification for Using the Data
455
+
456
+ <!-- info: If not, what is the justification for reusing the data? -->
457
+ <!-- scope: microscope -->
458
+ The dataset is base on Wikipedia and referenced and retrieved documents crawled from the Web.
459
+
460
+
461
+ ### Private Identifying Information (PII)
462
+
463
+ #### Contains PII?
464
+
465
+ <!-- quick -->
466
+ <!-- info: Does the source language data likely contain Personal Identifying Information about the data creators or subjects? -->
467
+ <!-- scope: telescope -->
468
+ unlikely
469
+
470
+ #### Any PII Identification?
471
+
472
+ <!-- info: Did the curators use any automatic/manual method to identify PII in the dataset? -->
473
+ <!-- scope: periscope -->
474
+ no identification
475
+
476
+
477
+ ### Maintenance
478
+
479
+ #### Any Maintenance Plan?
480
+
481
+ <!-- info: Does the original dataset have a maintenance plan? -->
482
+ <!-- scope: telescope -->
483
+ no
484
+
485
+
486
+
487
+ ## Broader Social Context
488
+
489
+ ### Previous Work on the Social Impact of the Dataset
490
+
491
+ #### Usage of Models based on the Data
492
+
493
+ <!-- info: Are you aware of cases where models trained on the task featured in this dataset ore related tasks have been used in automated systems? -->
494
+ <!-- scope: telescope -->
495
+ no
496
+
497
+
498
+ ### Impact on Under-Served Communities
499
+
500
+ #### Addresses needs of underserved Communities?
501
+
502
+ <!-- info: Does this dataset address the needs of communities that are traditionally underserved in language technology, and particularly language generation technology? Communities may be underserved for exemple because their language, language variety, or social or geographical context is underepresented in NLP and NLG resources (datasets and models). -->
503
+ <!-- scope: telescope -->
504
+ no
505
+
506
+
507
+ ### Discussion of Biases
508
+
509
+ #### Any Documented Social Biases?
510
+
511
+ <!-- info: Are there documented social biases in the dataset? Biases in this context are variations in the ways members of different social categories are represented that can have harmful downstream consequences for members of the more disadvantaged group. -->
512
+ <!-- scope: telescope -->
513
+ yes
514
+
515
+ #### Links and Summaries of Analysis Work
516
+
517
+ <!-- info: Provide links to and summaries of works analyzing these biases. -->
518
+ <!-- scope: microscope -->
519
+ This dataset is based on Wikipedia and thus biases analysis on other Wikipedia-based datasets are potentially true for WikiCatSum. For instance, see analysis for the ToTTo dataset here [1].
520
+
521
+ [1] Automatic Construction of Evaluation Suites for Natural Language Generation Datasets
522
+ https://openreview.net/forum?id=CSi1eu_2q96
523
+
524
+
525
+
526
+
527
+
528
+ ## Considerations for Using the Data
529
+
530
+ ### PII Risks and Liability
531
+
532
+
533
+
534
+ ### Licenses
535
+
536
+ #### Copyright Restrictions on the Dataset
537
+
538
+ <!-- info: Based on your answers in the Intended Use part of the Data Overview Section, which of the following best describe the copyright and licensing status of the dataset? -->
539
+ <!-- scope: periscope -->
540
+ `public domain`
541
+
542
+ #### Copyright Restrictions on the Language Data
543
+
544
+ <!-- info: Based on your answers in the Language part of the Data Curation Section, which of the following best describe the copyright and licensing status of the underlying language data? -->
545
+ <!-- scope: periscope -->
546
+ `public domain`
547
+
548
+
549
+ ### Known Technical Limitations
550
+
551
+
552
+