Datasets:
Sebastian Gehrmann
commited on
Commit
·
5648408
1
Parent(s):
7954e88
fields and detokenization
Browse files- cs_abs/test-film_nv_9.jsonl.lock +0 -0
- dataset_infos.json +1 -1
- wiki_cat_sum.py +45 -4
cs_abs/test-film_nv_9.jsonl.lock
ADDED
File without changes
|
dataset_infos.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"animal": {"description": "Summarise the most important facts of a given entity in the Film, Company, and Animal domains from a cluster of related documents.\n", "citation": "@inproceedings{perez2019generating,\n title={Generating Summaries with Topic Templates and Structured Convolutional Decoders},\n author={Perez-Beltrachini, Laura and Liu, Yang and Lapata, Mirella},\n booktitle={Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics},\n pages={5107--5116},\n year={2019}\n}\n", "homepage": "https://datashare.ed.ac.uk/handle/10283/3368", "license": "CC BY-SA 3.0", "features": {"gem_id": {"dtype": "string", "id": null, "_type": "Value"}, "gem_parent_id": {"dtype": "string", "id": null, "_type": "Value"}, "id": {"dtype": "string", "id": null, "_type": "Value"}, "title": {"dtype": "string", "id": null, "_type": "Value"}, "paragraphs": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "summary": {"feature": {"text": {"dtype": "string", "id": null, "_type": "Value"}, "topic": {"dtype": "int16", "id": null, "_type": "Value"}}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "wiki_cat_sum", "config_name": "animal", "version": {"version_str": "0.1.0", "description": null, "major": 0, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 1293707826, "num_examples": 48234, "dataset_name": "wiki_cat_sum"}, "test": {"name": "test", "num_bytes": 74568778, "num_examples": 2757, "dataset_name": "wiki_cat_sum"}, "validation": {"name": "validation", "num_bytes": 71132309, "num_examples": 2652, "dataset_name": "wiki_cat_sum"}, "challenge_test_abstractivity_0": {"name": "challenge_test_abstractivity_0", "num_bytes": 1218861, "num_examples": 45, "dataset_name": "wiki_cat_sum"}, "challenge_test_abstractivity_1": {"name": "challenge_test_abstractivity_1", "num_bytes": 2053363, "num_examples": 64, "dataset_name": "wiki_cat_sum"}, "challenge_test_abstractivity_2": {"name": "challenge_test_abstractivity_2", "num_bytes": 6851947, "num_examples": 178, "dataset_name": "wiki_cat_sum"}, "challenge_test_abstractivity_3": {"name": "challenge_test_abstractivity_3", "num_bytes": 14136926, "num_examples": 365, "dataset_name": "wiki_cat_sum"}, "challenge_test_abstractivity_4": {"name": "challenge_test_abstractivity_4", "num_bytes": 18609645, "num_examples": 531, "dataset_name": "wiki_cat_sum"}, "challenge_test_abstractivity_5": {"name": "challenge_test_abstractivity_5", "num_bytes": 7531140, "num_examples": 406, "dataset_name": "wiki_cat_sum"}, "challenge_test_abstractivity_6": {"name": "challenge_test_abstractivity_6", "num_bytes": 3895700, "num_examples": 317, "dataset_name": "wiki_cat_sum"}, "challenge_test_abstractivity_7": {"name": "challenge_test_abstractivity_7", "num_bytes": 2221198, "num_examples": 225, "dataset_name": "wiki_cat_sum"}, "challenge_test_abstractivity_8": {"name": "challenge_test_abstractivity_8", "num_bytes": 366553, "num_examples": 28, "dataset_name": "wiki_cat_sum"}, "challenge_test_topic_diversity_0": {"name": "challenge_test_topic_diversity_0", "num_bytes": 1219041, "num_examples": 45, "dataset_name": "wiki_cat_sum"}, "challenge_test_topic_diversity_1": {"name": "challenge_test_topic_diversity_1", "num_bytes": 2053619, "num_examples": 64, "dataset_name": "wiki_cat_sum"}, "challenge_test_topic_diversity_2": {"name": "challenge_test_topic_diversity_2", "num_bytes": 6852659, "num_examples": 178, "dataset_name": "wiki_cat_sum"}, "challenge_test_topic_diversity_3": {"name": "challenge_test_topic_diversity_3", "num_bytes": 14138386, "num_examples": 365, "dataset_name": "wiki_cat_sum"}, "challenge_test_topic_diversity_4": {"name": "challenge_test_topic_diversity_4", "num_bytes": 18611769, "num_examples": 531, "dataset_name": "wiki_cat_sum"}, "challenge_test_topic_diversity_5": {"name": "challenge_test_topic_diversity_5", "num_bytes": 7532764, "num_examples": 406, "dataset_name": "wiki_cat_sum"}, "challenge_test_topic_diversity_6": {"name": "challenge_test_topic_diversity_6", "num_bytes": 3896968, "num_examples": 317, "dataset_name": "wiki_cat_sum"}, "challenge_test_topic_diversity_7": {"name": "challenge_test_topic_diversity_7", "num_bytes": 2222098, "num_examples": 225, "dataset_name": "wiki_cat_sum"}, "challenge_test_topic_diversity_8": {"name": "challenge_test_topic_diversity_8", "num_bytes": 366665, "num_examples": 28, "dataset_name": "wiki_cat_sum"}}, "download_checksums": {"main_splits/train-animal.jsonl": {"num_bytes": 1344705154, "checksum": "c4b3bfada5b5955d7254bc011c9e14f12782d3bebab9c21647e2eae9114f9524"}, "main_splits/valid-animal.jsonl": {"num_bytes": 77868655, "checksum": "8bba418f910dc63b2b7752299514886d9acd3e141a28e89ddb89071e11e14604"}, "main_splits/test-animal.jsonl": {"num_bytes": 73390040, "checksum": "a4f2974ef1274454a4ac73a2a1e5c6eb9086a216a26e7e14e3be856e5f5f1b2f"}, "cs_abs/test-animal_nv_0.jsonl": {"num_bytes": 1235774, "checksum": "582547af2aedd21bba34f3e80b38f78687be414ade0bc6741d4e6b23bc601e0c"}, "cs_abs/test-animal_nv_1.jsonl": {"num_bytes": 2097865, "checksum": "006782800d9ea966c2d67cf8750e2602af402beb414cced8e1ecac2d3bfa1123"}, "cs_abs/test-animal_nv_2.jsonl": {"num_bytes": 7095792, "checksum": "909859c2ad78547ea40065b925ecbbf2effa40a2a775a99a43410a1917173f82"}, "cs_abs/test-animal_nv_3.jsonl": {"num_bytes": 14554902, "checksum": "7ff73f4de9b6b5323c506d64aa7a2e5e9a4fef00eae09dc6bf4ff091ee35028c"}, "cs_abs/test-animal_nv_4.jsonl": {"num_bytes": 19087249, "checksum": "55caeb63629e98c84cf04cdfece45550183410d09276594ac92ce23b8f7d4c9f"}, "cs_abs/test-animal_nv_6.jsonl": {"num_bytes": 8018924, "checksum": "d84e71648ffc3153a6d809d67deffd02439bd0395ee86a84a6b6733fb94747b6"}, "cs_abs/test-animal_nv_7.jsonl": {"num_bytes": 4000037, "checksum": "018bd501b8773ebc7c13c724c4eaeed932762dc1080a35d03e3c622a14b78bcd"}, "cs_abs/test-animal_nv_8.jsonl": {"num_bytes": 2276170, "checksum": "94eebce086fc0bff885c154e5f48198eadd22839df5a56fb1f3f916f50686b46"}, "cs_abs/test-animal_nv_9.jsonl": {"num_bytes": 372467, "checksum": "0ee68efc6261424aa8411f68901cf902ad6d63132fea0adb7fd37ca098d7b697"}, "cs_tdiv/test-animal_tdiv_0.jsonl": {"num_bytes": 7882255, "checksum": "807289673633ed561f31e6645e5af0e445286f800b32b8c29322ba5d8100accf"}, "cs_tdiv/test-animal_tdiv_1.jsonl": {"num_bytes": 17736037, "checksum": "a6ad70404c271b75c9c1dfd7538bcc0f6dcd40ecf475f9f73d8a0fe0d48e8b9e"}, "cs_tdiv/test-animal_tdiv_2.jsonl": {"num_bytes": 36857387, "checksum": "11ac25dd33e4219d509897bf60250c57ee023deeaa058607f430c2517075fb6b"}, "cs_tdiv/test-animal_tdiv_3.jsonl": {"num_bytes": 10914361, "checksum": "59826ed115c869af75bc48190798474209f21f263b978e1a491e679575565cbf"}}, "download_size": 1628093069, "post_processing_size": null, "dataset_size": 1553188215, "size_in_bytes": 3181281284}, "company": {"description": "Summarise the most important facts of a given entity in the Film, Company, and Animal domains from a cluster of related documents.\n", "citation": "@inproceedings{perez2019generating,\n title={Generating Summaries with Topic Templates and Structured Convolutional Decoders},\n author={Perez-Beltrachini, Laura and Liu, Yang and Lapata, Mirella},\n booktitle={Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics},\n pages={5107--5116},\n year={2019}\n}\n", "homepage": "https://datashare.ed.ac.uk/handle/10283/3368", "license": "CC BY-SA 3.0", "features": {"gem_id": {"dtype": "string", "id": null, "_type": "Value"}, "gem_parent_id": {"dtype": "string", "id": null, "_type": "Value"}, "id": {"dtype": "string", "id": null, "_type": "Value"}, "title": {"dtype": "string", "id": null, "_type": "Value"}, "paragraphs": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "summary": {"feature": {"text": {"dtype": "string", "id": null, "_type": "Value"}, "topic": {"dtype": "int16", "id": null, "_type": "Value"}}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "wiki_cat_sum", "config_name": "company", "version": {"version_str": "0.1.0", "description": null, "major": 0, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 2309536281, "num_examples": 54978, "dataset_name": "wiki_cat_sum"}, "test": {"name": "test", "num_bytes": 124587504, "num_examples": 2955, "dataset_name": "wiki_cat_sum"}, "validation": {"name": "validation", "num_bytes": 126533739, "num_examples": 2981, "dataset_name": "wiki_cat_sum"}, "challenge_test_abstractivity_0": {"name": "challenge_test_abstractivity_0", "num_bytes": 2258210, "num_examples": 49, "dataset_name": "wiki_cat_sum"}, "challenge_test_abstractivity_1": {"name": "challenge_test_abstractivity_1", "num_bytes": 4326715, "num_examples": 96, "dataset_name": "wiki_cat_sum"}, "challenge_test_abstractivity_2": {"name": "challenge_test_abstractivity_2", "num_bytes": 15948700, "num_examples": 348, "dataset_name": "wiki_cat_sum"}, "challenge_test_abstractivity_3": {"name": "challenge_test_abstractivity_3", "num_bytes": 31299467, "num_examples": 680, "dataset_name": "wiki_cat_sum"}, "challenge_test_abstractivity_4": {"name": "challenge_test_abstractivity_4", "num_bytes": 37254221, "num_examples": 830, "dataset_name": "wiki_cat_sum"}, "challenge_test_abstractivity_5": {"name": "challenge_test_abstractivity_5", "num_bytes": 10079032, "num_examples": 287, "dataset_name": "wiki_cat_sum"}, "challenge_test_abstractivity_6": {"name": "challenge_test_abstractivity_6", "num_bytes": 1595185, "num_examples": 90, "dataset_name": "wiki_cat_sum"}, "challenge_test_abstractivity_7": {"name": "challenge_test_abstractivity_7", "num_bytes": 151586, "num_examples": 13, "dataset_name": "wiki_cat_sum"}, "challenge_test_abstractivity_8": {"name": "challenge_test_abstractivity_8", "num_bytes": 3965, "num_examples": 1, "dataset_name": "wiki_cat_sum"}, "challenge_test_topic_diversity_0": {"name": "challenge_test_topic_diversity_0", "num_bytes": 2258406, "num_examples": 49, "dataset_name": "wiki_cat_sum"}, "challenge_test_topic_diversity_1": {"name": "challenge_test_topic_diversity_1", "num_bytes": 4327099, "num_examples": 96, "dataset_name": "wiki_cat_sum"}, "challenge_test_topic_diversity_2": {"name": "challenge_test_topic_diversity_2", "num_bytes": 15950092, "num_examples": 348, "dataset_name": "wiki_cat_sum"}, "challenge_test_topic_diversity_3": {"name": "challenge_test_topic_diversity_3", "num_bytes": 31302187, "num_examples": 680, "dataset_name": "wiki_cat_sum"}, "challenge_test_topic_diversity_4": {"name": "challenge_test_topic_diversity_4", "num_bytes": 37257541, "num_examples": 830, "dataset_name": "wiki_cat_sum"}, "challenge_test_topic_diversity_5": {"name": "challenge_test_topic_diversity_5", "num_bytes": 10080180, "num_examples": 287, "dataset_name": "wiki_cat_sum"}, "challenge_test_topic_diversity_6": {"name": "challenge_test_topic_diversity_6", "num_bytes": 1595545, "num_examples": 90, "dataset_name": "wiki_cat_sum"}, "challenge_test_topic_diversity_7": {"name": "challenge_test_topic_diversity_7", "num_bytes": 151638, "num_examples": 13, "dataset_name": "wiki_cat_sum"}, "challenge_test_topic_diversity_8": {"name": "challenge_test_topic_diversity_8", "num_bytes": 3969, "num_examples": 1, "dataset_name": "wiki_cat_sum"}}, "download_checksums": {"main_splits/train-company.jsonl": {"num_bytes": 2345723937, "checksum": "ab3e6aca833d5999146f6051e7aecb58718dec7b34c2b83da0ca472cfaae3966"}, "main_splits/valid-company.jsonl": {"num_bytes": 126669548, "checksum": "a2050309aa33bbfccb8b3d8fa260adacd32bfb1e21c4d22b68bdcb0ad33a2a56"}, "main_splits/test-company.jsonl": {"num_bytes": 128530697, "checksum": "47920608406dac03fe630bfe58d90b5c4e602e4a330ee8c0b609e345fcd4ae49"}, "cs_abs/test-company_nv_0.jsonl": {"num_bytes": 2287288, "checksum": "b2e802e913032f075bbebd38969e272f671e1414e12ca2f496248308cb72b137"}, "cs_abs/test-company_nv_1.jsonl": {"num_bytes": 4381154, "checksum": "f96fe96b2454f202e48940e778cba71539e63f6965d70b1f4686c4cc148cb11e"}, "cs_abs/test-company_nv_2.jsonl": {"num_bytes": 16147821, "checksum": "58baa15575cc6a1ddeebfe9f97b7b258d87d0a24194e2a9e48201666605c089f"}, "cs_abs/test-company_nv_3.jsonl": {"num_bytes": 31735382, "checksum": "2af447824fc0ec81dcc29d81b3bc92c92e03c07ea0c89f656e9fabc5d75d136d"}, "cs_abs/test-company_nv_4.jsonl": {"num_bytes": 37824725, "checksum": "2fcc406792e25c5ed1590a83159320f0b5879b4ead033e5ca783347c17aa7f7a"}, "cs_abs/test-company_nv_6.jsonl": {"num_bytes": 10237272, "checksum": "f8a0d7bd8b8cef262d65daf218a9b4c905c5d4c5ab936a4e17efcaab680c041b"}, "cs_abs/test-company_nv_7.jsonl": {"num_bytes": 1624554, "checksum": "0d504bf42239cccb3e36399681444056bea8a95cc73d14b25615f335e9f5320b"}, "cs_abs/test-company_nv_8.jsonl": {"num_bytes": 155515, "checksum": "a1533cf9c79647593567eeac61aa931d37e7fd8e44427ef819cfe4e4daa412e0"}, "cs_abs/test-company_nv_9.jsonl": {"num_bytes": 4160, "checksum": "8b1c383866bfe751e1b869271c81dcb524fa5c9415b8bd5e26f3d395ce0cb9c2"}, "cs_tdiv/test-company_tdiv_0.jsonl": {"num_bytes": 13480876, "checksum": "ceef81074d59fc01e0d1a2537fc7874cf0db38dac1ef75adfa45ae7fcdfc3c76"}, "cs_tdiv/test-company_tdiv_1.jsonl": {"num_bytes": 32851851, "checksum": "fd0a285aba889036cc80aba1dbba3f622543b37c35c17c8fbe2e346eb49f3195"}, "cs_tdiv/test-company_tdiv_2.jsonl": {"num_bytes": 60610830, "checksum": "6aaac991032c607d0b9c1564873d4a484f73b2a23f4b247aad53531094469f09"}, "cs_tdiv/test-company_tdiv_3.jsonl": {"num_bytes": 21587140, "checksum": "7871246509e9c8936527d2d7f0a74137138a53363ff261c5faa150648aca8f18"}}, "download_size": 2833852750, "post_processing_size": null, "dataset_size": 2766501262, "size_in_bytes": 5600354012}, "film": {"description": "Summarise the most important facts of a given entity in the Film, Company, and Animal domains from a cluster of related documents.\n", "citation": "@inproceedings{perez2019generating,\n title={Generating Summaries with Topic Templates and Structured Convolutional Decoders},\n author={Perez-Beltrachini, Laura and Liu, Yang and Lapata, Mirella},\n booktitle={Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics},\n pages={5107--5116},\n year={2019}\n}\n", "homepage": "https://datashare.ed.ac.uk/handle/10283/3368", "license": "CC BY-SA 3.0", "features": {"gem_id": {"dtype": "string", "id": null, "_type": "Value"}, "gem_parent_id": {"dtype": "string", "id": null, "_type": "Value"}, "id": {"dtype": "string", "id": null, "_type": "Value"}, "title": {"dtype": "string", "id": null, "_type": "Value"}, "paragraphs": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "summary": {"feature": {"text": {"dtype": "string", "id": null, "_type": "Value"}, "topic": {"dtype": "int16", "id": null, "_type": "Value"}}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "wiki_cat_sum", "config_name": "film", "version": {"version_str": "0.1.0", "description": null, "major": 0, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 2096032901, "num_examples": 52334, "dataset_name": "wiki_cat_sum"}, "test": {"name": "test", "num_bytes": 120072731, "num_examples": 3011, "dataset_name": "wiki_cat_sum"}, "validation": {"name": "validation", "num_bytes": 114335898, "num_examples": 2861, "dataset_name": "wiki_cat_sum"}, "challenge_test_abstractivity_0": {"name": "challenge_test_abstractivity_0", "num_bytes": 2517826, "num_examples": 62, "dataset_name": "wiki_cat_sum"}, "challenge_test_abstractivity_1": {"name": "challenge_test_abstractivity_1", "num_bytes": 5211882, "num_examples": 123, "dataset_name": "wiki_cat_sum"}, "challenge_test_abstractivity_2": {"name": "challenge_test_abstractivity_2", "num_bytes": 14733549, "num_examples": 354, "dataset_name": "wiki_cat_sum"}, "challenge_test_abstractivity_3": {"name": "challenge_test_abstractivity_3", "num_bytes": 28008549, "num_examples": 660, "dataset_name": "wiki_cat_sum"}, "challenge_test_abstractivity_4": {"name": "challenge_test_abstractivity_4", "num_bytes": 28916514, "num_examples": 703, "dataset_name": "wiki_cat_sum"}, "challenge_test_abstractivity_5": {"name": "challenge_test_abstractivity_5", "num_bytes": 10812381, "num_examples": 296, "dataset_name": "wiki_cat_sum"}, "challenge_test_abstractivity_6": {"name": "challenge_test_abstractivity_6", "num_bytes": 3156836, "num_examples": 110, "dataset_name": "wiki_cat_sum"}, "challenge_test_abstractivity_7": {"name": "challenge_test_abstractivity_7", "num_bytes": 204914, "num_examples": 16, "dataset_name": "wiki_cat_sum"}, "challenge_test_abstractivity_8": {"name": "challenge_test_abstractivity_8", "num_bytes": 0, "num_examples": 0, "dataset_name": "wiki_cat_sum"}, "challenge_test_topic_diversity_0": {"name": "challenge_test_topic_diversity_0", "num_bytes": 2518074, "num_examples": 62, "dataset_name": "wiki_cat_sum"}, "challenge_test_topic_diversity_1": {"name": "challenge_test_topic_diversity_1", "num_bytes": 5212374, "num_examples": 123, "dataset_name": "wiki_cat_sum"}, "challenge_test_topic_diversity_2": {"name": "challenge_test_topic_diversity_2", "num_bytes": 14734965, "num_examples": 354, "dataset_name": "wiki_cat_sum"}, "challenge_test_topic_diversity_3": {"name": "challenge_test_topic_diversity_3", "num_bytes": 28011189, "num_examples": 660, "dataset_name": "wiki_cat_sum"}, "challenge_test_topic_diversity_4": {"name": "challenge_test_topic_diversity_4", "num_bytes": 28919326, "num_examples": 703, "dataset_name": "wiki_cat_sum"}, "challenge_test_topic_diversity_5": {"name": "challenge_test_topic_diversity_5", "num_bytes": 10813565, "num_examples": 296, "dataset_name": "wiki_cat_sum"}, "challenge_test_topic_diversity_6": {"name": "challenge_test_topic_diversity_6", "num_bytes": 3157276, "num_examples": 110, "dataset_name": "wiki_cat_sum"}, "challenge_test_topic_diversity_7": {"name": "challenge_test_topic_diversity_7", "num_bytes": 204978, "num_examples": 16, "dataset_name": "wiki_cat_sum"}, "challenge_test_topic_diversity_8": {"name": "challenge_test_topic_diversity_8", "num_bytes": 0, "num_examples": 0, "dataset_name": "wiki_cat_sum"}}, "download_checksums": {"main_splits/train-film.jsonl": {"num_bytes": 2135138582, "checksum": "1fdb6febf8810aaf3b0ba990fd523481f659384f553108620313c7c89c655eb3"}, "main_splits/valid-film.jsonl": {"num_bytes": 122253297, "checksum": "e6460a6ae575a148d6f5a69600c7d917a4c02f24904f9686d1b232350e8c9788"}, "main_splits/test-film.jsonl": {"num_bytes": 116314114, "checksum": "3a0f13a970d1aa9ffa73e4b4227db482c24575e8196b20175dce9fcf57e47822"}, "cs_abs/test-film_nv_0.jsonl": {"num_bytes": 2557415, "checksum": "800bcd4293e964d4979ac98588f1a9daee4a535f1f74d4d662a2812b4f00b45b"}, "cs_abs/test-film_nv_1.jsonl": {"num_bytes": 5297686, "checksum": "c08af66c50cd1a6ec76767ea8ce368f9b4ed4d9fb0a8549944e065d9ff46029a"}, "cs_abs/test-film_nv_2.jsonl": {"num_bytes": 14972530, "checksum": "dfd8e40a567d6312c71ae052acf7d4ff6aca3b22b3fcb42aa0ba5380b45f68ac"}, "cs_abs/test-film_nv_3.jsonl": {"num_bytes": 28456230, "checksum": "f096888992666117fbf7aab4aad9ef8db3031765b9c67d67e1fe2d899c9412af"}, "cs_abs/test-film_nv_4.jsonl": {"num_bytes": 29404823, "checksum": "b4fb9edefdc9bf16ef1e26462ede839d127ff20574848b25569b3d914522d820"}, "cs_abs/test-film_nv_6.jsonl": {"num_bytes": 10992155, "checksum": "567680a5a51d4355b81fd28250006d5313cb4194235e3cb5e58e97891812328e"}, "cs_abs/test-film_nv_7.jsonl": {"num_bytes": 3210636, "checksum": "6ed81fb7b5ee9f881f79c73a14ab05518ea059c2995aa3c71c9df82848a01ae8"}, "cs_abs/test-film_nv_8.jsonl": {"num_bytes": 207694, "checksum": "146945a6fa47feac1e8f9677bdde4f9e8e861811f64b5d5e5e21633be6486e71"}, "cs_abs/test-film_nv_9.jsonl": {"num_bytes": 0, "checksum": "e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855"}, "cs_tdiv/test-film_tdiv_0.jsonl": {"num_bytes": 6903682, "checksum": "dbfcbac4408de83ee74f6cbcd31d6e208295b573d608920b5def39d12bfdc459"}, "cs_tdiv/test-film_tdiv_1.jsonl": {"num_bytes": 28891633, "checksum": "c2ebef934ac40156eb572d9bd1236984614f6061757aa68e590662986cc5bdd6"}, "cs_tdiv/test-film_tdiv_2.jsonl": {"num_bytes": 64520766, "checksum": "b1d330c5042b88dfa5864e76c213266693366d5ee0b6d940b34bf6d749a5e494"}, "cs_tdiv/test-film_tdiv_3.jsonl": {"num_bytes": 15998033, "checksum": "0912524479945ae72ffa096b3432a2f7611a046b6edf728131faba992aec3fd0"}}, "download_size": 2585119276, "post_processing_size": null, "dataset_size": 2517575728, "size_in_bytes": 5102695004}}
|
|
|
1 |
+
{"animal": {"description": "Summarise the most important facts of a given entity in the Film, Company, and Animal domains from a cluster of related documents.\n", "citation": "@inproceedings{perez2019generating,\n title={Generating Summaries with Topic Templates and Structured Convolutional Decoders},\n author={Perez-Beltrachini, Laura and Liu, Yang and Lapata, Mirella},\n booktitle={Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics},\n pages={5107--5116},\n year={2019}\n}\n", "homepage": "https://datashare.ed.ac.uk/handle/10283/3368", "license": "CC BY-SA 3.0", "features": {"gem_id": {"dtype": "string", "id": null, "_type": "Value"}, "gem_parent_id": {"dtype": "string", "id": null, "_type": "Value"}, "id": {"dtype": "string", "id": null, "_type": "Value"}, "title": {"dtype": "string", "id": null, "_type": "Value"}, "paragraphs": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "summary": {"feature": {"text": {"dtype": "string", "id": null, "_type": "Value"}, "topic": {"dtype": "int16", "id": null, "_type": "Value"}}, "length": -1, "id": null, "_type": "Sequence"}, "target": {"dtype": "string", "id": null, "_type": "Value"}, "references": [{"dtype": "string", "id": null, "_type": "Value"}]}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "wiki_cat_sum", "config_name": "animal", "version": {"version_str": "0.1.0", "description": null, "major": 0, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 1309821016, "num_examples": 48234, "dataset_name": "wiki_cat_sum"}, "test": {"name": "test", "num_bytes": 75455588, "num_examples": 2757, "dataset_name": "wiki_cat_sum"}, "validation": {"name": "validation", "num_bytes": 72082026, "num_examples": 2652, "dataset_name": "wiki_cat_sum"}, "challenge_test_abstractivity_0": {"name": "challenge_test_abstractivity_0", "num_bytes": 1219459, "num_examples": 45, "dataset_name": "wiki_cat_sum"}, "challenge_test_abstractivity_1": {"name": "challenge_test_abstractivity_1", "num_bytes": 2058194, "num_examples": 64, "dataset_name": "wiki_cat_sum"}, "challenge_test_abstractivity_2": {"name": "challenge_test_abstractivity_2", "num_bytes": 6824353, "num_examples": 178, "dataset_name": "wiki_cat_sum"}, "challenge_test_abstractivity_3": {"name": "challenge_test_abstractivity_3", "num_bytes": 14134494, "num_examples": 365, "dataset_name": "wiki_cat_sum"}, "challenge_test_abstractivity_4": {"name": "challenge_test_abstractivity_4", "num_bytes": 18754726, "num_examples": 531, "dataset_name": "wiki_cat_sum"}, "challenge_test_abstractivity_5": {"name": "challenge_test_abstractivity_5", "num_bytes": 7733867, "num_examples": 406, "dataset_name": "wiki_cat_sum"}, "challenge_test_abstractivity_6": {"name": "challenge_test_abstractivity_6", "num_bytes": 4077169, "num_examples": 317, "dataset_name": "wiki_cat_sum"}, "challenge_test_abstractivity_7": {"name": "challenge_test_abstractivity_7", "num_bytes": 2427463, "num_examples": 225, "dataset_name": "wiki_cat_sum"}, "challenge_test_abstractivity_8": {"name": "challenge_test_abstractivity_8", "num_bytes": 429553, "num_examples": 28, "dataset_name": "wiki_cat_sum"}, "challenge_test_topic_diversity_0": {"name": "challenge_test_topic_diversity_0", "num_bytes": 1219639, "num_examples": 45, "dataset_name": "wiki_cat_sum"}, "challenge_test_topic_diversity_1": {"name": "challenge_test_topic_diversity_1", "num_bytes": 2058450, "num_examples": 64, "dataset_name": "wiki_cat_sum"}, "challenge_test_topic_diversity_2": {"name": "challenge_test_topic_diversity_2", "num_bytes": 6825065, "num_examples": 178, "dataset_name": "wiki_cat_sum"}, "challenge_test_topic_diversity_3": {"name": "challenge_test_topic_diversity_3", "num_bytes": 14135954, "num_examples": 365, "dataset_name": "wiki_cat_sum"}, "challenge_test_topic_diversity_4": {"name": "challenge_test_topic_diversity_4", "num_bytes": 18756850, "num_examples": 531, "dataset_name": "wiki_cat_sum"}, "challenge_test_topic_diversity_5": {"name": "challenge_test_topic_diversity_5", "num_bytes": 7735491, "num_examples": 406, "dataset_name": "wiki_cat_sum"}, "challenge_test_topic_diversity_6": {"name": "challenge_test_topic_diversity_6", "num_bytes": 4078437, "num_examples": 317, "dataset_name": "wiki_cat_sum"}, "challenge_test_topic_diversity_7": {"name": "challenge_test_topic_diversity_7", "num_bytes": 2428363, "num_examples": 225, "dataset_name": "wiki_cat_sum"}, "challenge_test_topic_diversity_8": {"name": "challenge_test_topic_diversity_8", "num_bytes": 429665, "num_examples": 28, "dataset_name": "wiki_cat_sum"}}, "download_checksums": {"main_splits/train-animal.jsonl": {"num_bytes": 1344705154, "checksum": "c4b3bfada5b5955d7254bc011c9e14f12782d3bebab9c21647e2eae9114f9524"}, "main_splits/valid-animal.jsonl": {"num_bytes": 77868655, "checksum": "8bba418f910dc63b2b7752299514886d9acd3e141a28e89ddb89071e11e14604"}, "main_splits/test-animal.jsonl": {"num_bytes": 73390040, "checksum": "a4f2974ef1274454a4ac73a2a1e5c6eb9086a216a26e7e14e3be856e5f5f1b2f"}, "cs_abs/test-animal_nv_0.jsonl": {"num_bytes": 1235774, "checksum": "582547af2aedd21bba34f3e80b38f78687be414ade0bc6741d4e6b23bc601e0c"}, "cs_abs/test-animal_nv_1.jsonl": {"num_bytes": 2097865, "checksum": "006782800d9ea966c2d67cf8750e2602af402beb414cced8e1ecac2d3bfa1123"}, "cs_abs/test-animal_nv_2.jsonl": {"num_bytes": 7095792, "checksum": "909859c2ad78547ea40065b925ecbbf2effa40a2a775a99a43410a1917173f82"}, "cs_abs/test-animal_nv_3.jsonl": {"num_bytes": 14554902, "checksum": "7ff73f4de9b6b5323c506d64aa7a2e5e9a4fef00eae09dc6bf4ff091ee35028c"}, "cs_abs/test-animal_nv_4.jsonl": {"num_bytes": 19087249, "checksum": "55caeb63629e98c84cf04cdfece45550183410d09276594ac92ce23b8f7d4c9f"}, "cs_abs/test-animal_nv_6.jsonl": {"num_bytes": 8018924, "checksum": "d84e71648ffc3153a6d809d67deffd02439bd0395ee86a84a6b6733fb94747b6"}, "cs_abs/test-animal_nv_7.jsonl": {"num_bytes": 4000037, "checksum": "018bd501b8773ebc7c13c724c4eaeed932762dc1080a35d03e3c622a14b78bcd"}, "cs_abs/test-animal_nv_8.jsonl": {"num_bytes": 2276170, "checksum": "94eebce086fc0bff885c154e5f48198eadd22839df5a56fb1f3f916f50686b46"}, "cs_abs/test-animal_nv_9.jsonl": {"num_bytes": 372467, "checksum": "0ee68efc6261424aa8411f68901cf902ad6d63132fea0adb7fd37ca098d7b697"}, "cs_tdiv/test-animal_tdiv_0.jsonl": {"num_bytes": 7882255, "checksum": "807289673633ed561f31e6645e5af0e445286f800b32b8c29322ba5d8100accf"}, "cs_tdiv/test-animal_tdiv_1.jsonl": {"num_bytes": 17736037, "checksum": "a6ad70404c271b75c9c1dfd7538bcc0f6dcd40ecf475f9f73d8a0fe0d48e8b9e"}, "cs_tdiv/test-animal_tdiv_2.jsonl": {"num_bytes": 36857387, "checksum": "11ac25dd33e4219d509897bf60250c57ee023deeaa058607f430c2517075fb6b"}, "cs_tdiv/test-animal_tdiv_3.jsonl": {"num_bytes": 10914361, "checksum": "59826ed115c869af75bc48190798474209f21f263b978e1a491e679575565cbf"}}, "download_size": 1628093069, "post_processing_size": null, "dataset_size": 1572685822, "size_in_bytes": 3200778891}, "company": {"description": "Summarise the most important facts of a given entity in the Film, Company, and Animal domains from a cluster of related documents.\n", "citation": "@inproceedings{perez2019generating,\n title={Generating Summaries with Topic Templates and Structured Convolutional Decoders},\n author={Perez-Beltrachini, Laura and Liu, Yang and Lapata, Mirella},\n booktitle={Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics},\n pages={5107--5116},\n year={2019}\n}\n", "homepage": "https://datashare.ed.ac.uk/handle/10283/3368", "license": "CC BY-SA 3.0", "features": {"gem_id": {"dtype": "string", "id": null, "_type": "Value"}, "gem_parent_id": {"dtype": "string", "id": null, "_type": "Value"}, "id": {"dtype": "string", "id": null, "_type": "Value"}, "title": {"dtype": "string", "id": null, "_type": "Value"}, "paragraphs": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "summary": {"feature": {"text": {"dtype": "string", "id": null, "_type": "Value"}, "topic": {"dtype": "int16", "id": null, "_type": "Value"}}, "length": -1, "id": null, "_type": "Sequence"}, "target": {"dtype": "string", "id": null, "_type": "Value"}, "references": [{"dtype": "string", "id": null, "_type": "Value"}]}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "wiki_cat_sum", "config_name": "company", "version": {"version_str": "0.1.0", "description": null, "major": 0, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 2359796977, "num_examples": 54978, "dataset_name": "wiki_cat_sum"}, "test": {"name": "test", "num_bytes": 127163348, "num_examples": 2955, "dataset_name": "wiki_cat_sum"}, "validation": {"name": "validation", "num_bytes": 129201360, "num_examples": 2981, "dataset_name": "wiki_cat_sum"}, "challenge_test_abstractivity_0": {"name": "challenge_test_abstractivity_0", "num_bytes": 2282295, "num_examples": 49, "dataset_name": "wiki_cat_sum"}, "challenge_test_abstractivity_1": {"name": "challenge_test_abstractivity_1", "num_bytes": 4385161, "num_examples": 96, "dataset_name": "wiki_cat_sum"}, "challenge_test_abstractivity_2": {"name": "challenge_test_abstractivity_2", "num_bytes": 16089358, "num_examples": 348, "dataset_name": "wiki_cat_sum"}, "challenge_test_abstractivity_3": {"name": "challenge_test_abstractivity_3", "num_bytes": 31634163, "num_examples": 680, "dataset_name": "wiki_cat_sum"}, "challenge_test_abstractivity_4": {"name": "challenge_test_abstractivity_4", "num_bytes": 37924563, "num_examples": 830, "dataset_name": "wiki_cat_sum"}, "challenge_test_abstractivity_5": {"name": "challenge_test_abstractivity_5", "num_bytes": 10595491, "num_examples": 287, "dataset_name": "wiki_cat_sum"}, "challenge_test_abstractivity_6": {"name": "challenge_test_abstractivity_6", "num_bytes": 1794043, "num_examples": 90, "dataset_name": "wiki_cat_sum"}, "challenge_test_abstractivity_7": {"name": "challenge_test_abstractivity_7", "num_bytes": 185471, "num_examples": 13, "dataset_name": "wiki_cat_sum"}, "challenge_test_abstractivity_8": {"name": "challenge_test_abstractivity_8", "num_bytes": 8001, "num_examples": 1, "dataset_name": "wiki_cat_sum"}, "challenge_test_topic_diversity_0": {"name": "challenge_test_topic_diversity_0", "num_bytes": 2282491, "num_examples": 49, "dataset_name": "wiki_cat_sum"}, "challenge_test_topic_diversity_1": {"name": "challenge_test_topic_diversity_1", "num_bytes": 4385545, "num_examples": 96, "dataset_name": "wiki_cat_sum"}, "challenge_test_topic_diversity_2": {"name": "challenge_test_topic_diversity_2", "num_bytes": 16090750, "num_examples": 348, "dataset_name": "wiki_cat_sum"}, "challenge_test_topic_diversity_3": {"name": "challenge_test_topic_diversity_3", "num_bytes": 31636883, "num_examples": 680, "dataset_name": "wiki_cat_sum"}, "challenge_test_topic_diversity_4": {"name": "challenge_test_topic_diversity_4", "num_bytes": 37927883, "num_examples": 830, "dataset_name": "wiki_cat_sum"}, "challenge_test_topic_diversity_5": {"name": "challenge_test_topic_diversity_5", "num_bytes": 10596639, "num_examples": 287, "dataset_name": "wiki_cat_sum"}, "challenge_test_topic_diversity_6": {"name": "challenge_test_topic_diversity_6", "num_bytes": 1794403, "num_examples": 90, "dataset_name": "wiki_cat_sum"}, "challenge_test_topic_diversity_7": {"name": "challenge_test_topic_diversity_7", "num_bytes": 185523, "num_examples": 13, "dataset_name": "wiki_cat_sum"}, "challenge_test_topic_diversity_8": {"name": "challenge_test_topic_diversity_8", "num_bytes": 8005, "num_examples": 1, "dataset_name": "wiki_cat_sum"}}, "download_checksums": {"main_splits/train-company.jsonl": {"num_bytes": 2345723937, "checksum": "ab3e6aca833d5999146f6051e7aecb58718dec7b34c2b83da0ca472cfaae3966"}, "main_splits/valid-company.jsonl": {"num_bytes": 126669548, "checksum": "a2050309aa33bbfccb8b3d8fa260adacd32bfb1e21c4d22b68bdcb0ad33a2a56"}, "main_splits/test-company.jsonl": {"num_bytes": 128530697, "checksum": "47920608406dac03fe630bfe58d90b5c4e602e4a330ee8c0b609e345fcd4ae49"}, "cs_abs/test-company_nv_0.jsonl": {"num_bytes": 2287288, "checksum": "b2e802e913032f075bbebd38969e272f671e1414e12ca2f496248308cb72b137"}, "cs_abs/test-company_nv_1.jsonl": {"num_bytes": 4381154, "checksum": "f96fe96b2454f202e48940e778cba71539e63f6965d70b1f4686c4cc148cb11e"}, "cs_abs/test-company_nv_2.jsonl": {"num_bytes": 16147821, "checksum": "58baa15575cc6a1ddeebfe9f97b7b258d87d0a24194e2a9e48201666605c089f"}, "cs_abs/test-company_nv_3.jsonl": {"num_bytes": 31735382, "checksum": "2af447824fc0ec81dcc29d81b3bc92c92e03c07ea0c89f656e9fabc5d75d136d"}, "cs_abs/test-company_nv_4.jsonl": {"num_bytes": 37824725, "checksum": "2fcc406792e25c5ed1590a83159320f0b5879b4ead033e5ca783347c17aa7f7a"}, "cs_abs/test-company_nv_6.jsonl": {"num_bytes": 10237272, "checksum": "f8a0d7bd8b8cef262d65daf218a9b4c905c5d4c5ab936a4e17efcaab680c041b"}, "cs_abs/test-company_nv_7.jsonl": {"num_bytes": 1624554, "checksum": "0d504bf42239cccb3e36399681444056bea8a95cc73d14b25615f335e9f5320b"}, "cs_abs/test-company_nv_8.jsonl": {"num_bytes": 155515, "checksum": "a1533cf9c79647593567eeac61aa931d37e7fd8e44427ef819cfe4e4daa412e0"}, "cs_abs/test-company_nv_9.jsonl": {"num_bytes": 4160, "checksum": "8b1c383866bfe751e1b869271c81dcb524fa5c9415b8bd5e26f3d395ce0cb9c2"}, "cs_tdiv/test-company_tdiv_0.jsonl": {"num_bytes": 13480876, "checksum": "ceef81074d59fc01e0d1a2537fc7874cf0db38dac1ef75adfa45ae7fcdfc3c76"}, "cs_tdiv/test-company_tdiv_1.jsonl": {"num_bytes": 32851851, "checksum": "fd0a285aba889036cc80aba1dbba3f622543b37c35c17c8fbe2e346eb49f3195"}, "cs_tdiv/test-company_tdiv_2.jsonl": {"num_bytes": 60610830, "checksum": "6aaac991032c607d0b9c1564873d4a484f73b2a23f4b247aad53531094469f09"}, "cs_tdiv/test-company_tdiv_3.jsonl": {"num_bytes": 21587140, "checksum": "7871246509e9c8936527d2d7f0a74137138a53363ff261c5faa150648aca8f18"}}, "download_size": 2833852750, "post_processing_size": null, "dataset_size": 2825968353, "size_in_bytes": 5659821103}, "film": {"description": "Summarise the most important facts of a given entity in the Film, Company, and Animal domains from a cluster of related documents.\n", "citation": "@inproceedings{perez2019generating,\n title={Generating Summaries with Topic Templates and Structured Convolutional Decoders},\n author={Perez-Beltrachini, Laura and Liu, Yang and Lapata, Mirella},\n booktitle={Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics},\n pages={5107--5116},\n year={2019}\n}\n", "homepage": "https://datashare.ed.ac.uk/handle/10283/3368", "license": "CC BY-SA 3.0", "features": {"gem_id": {"dtype": "string", "id": null, "_type": "Value"}, "gem_parent_id": {"dtype": "string", "id": null, "_type": "Value"}, "id": {"dtype": "string", "id": null, "_type": "Value"}, "title": {"dtype": "string", "id": null, "_type": "Value"}, "paragraphs": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "summary": {"feature": {"text": {"dtype": "string", "id": null, "_type": "Value"}, "topic": {"dtype": "int16", "id": null, "_type": "Value"}}, "length": -1, "id": null, "_type": "Sequence"}, "target": {"dtype": "string", "id": null, "_type": "Value"}, "references": [{"dtype": "string", "id": null, "_type": "Value"}]}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "wiki_cat_sum", "config_name": "film", "version": {"version_str": "0.1.0", "description": null, "major": 0, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 2122500903, "num_examples": 52334, "dataset_name": "wiki_cat_sum"}, "test": {"name": "test", "num_bytes": 121606957, "num_examples": 3011, "dataset_name": "wiki_cat_sum"}, "validation": {"name": "validation", "num_bytes": 115796561, "num_examples": 2861, "dataset_name": "wiki_cat_sum"}, "challenge_test_abstractivity_0": {"name": "challenge_test_abstractivity_0", "num_bytes": 2559836, "num_examples": 62, "dataset_name": "wiki_cat_sum"}, "challenge_test_abstractivity_1": {"name": "challenge_test_abstractivity_1", "num_bytes": 5265571, "num_examples": 123, "dataset_name": "wiki_cat_sum"}, "challenge_test_abstractivity_2": {"name": "challenge_test_abstractivity_2", "num_bytes": 14853751, "num_examples": 354, "dataset_name": "wiki_cat_sum"}, "challenge_test_abstractivity_3": {"name": "challenge_test_abstractivity_3", "num_bytes": 28271851, "num_examples": 660, "dataset_name": "wiki_cat_sum"}, "challenge_test_abstractivity_4": {"name": "challenge_test_abstractivity_4", "num_bytes": 29317525, "num_examples": 703, "dataset_name": "wiki_cat_sum"}, "challenge_test_abstractivity_5": {"name": "challenge_test_abstractivity_5", "num_bytes": 10960377, "num_examples": 296, "dataset_name": "wiki_cat_sum"}, "challenge_test_abstractivity_6": {"name": "challenge_test_abstractivity_6", "num_bytes": 3243198, "num_examples": 110, "dataset_name": "wiki_cat_sum"}, "challenge_test_abstractivity_7": {"name": "challenge_test_abstractivity_7", "num_bytes": 228353, "num_examples": 16, "dataset_name": "wiki_cat_sum"}, "challenge_test_abstractivity_8": {"name": "challenge_test_abstractivity_8", "num_bytes": 0, "num_examples": 0, "dataset_name": "wiki_cat_sum"}, "challenge_test_topic_diversity_0": {"name": "challenge_test_topic_diversity_0", "num_bytes": 2560084, "num_examples": 62, "dataset_name": "wiki_cat_sum"}, "challenge_test_topic_diversity_1": {"name": "challenge_test_topic_diversity_1", "num_bytes": 5266063, "num_examples": 123, "dataset_name": "wiki_cat_sum"}, "challenge_test_topic_diversity_2": {"name": "challenge_test_topic_diversity_2", "num_bytes": 14855167, "num_examples": 354, "dataset_name": "wiki_cat_sum"}, "challenge_test_topic_diversity_3": {"name": "challenge_test_topic_diversity_3", "num_bytes": 28274491, "num_examples": 660, "dataset_name": "wiki_cat_sum"}, "challenge_test_topic_diversity_4": {"name": "challenge_test_topic_diversity_4", "num_bytes": 29320337, "num_examples": 703, "dataset_name": "wiki_cat_sum"}, "challenge_test_topic_diversity_5": {"name": "challenge_test_topic_diversity_5", "num_bytes": 10961561, "num_examples": 296, "dataset_name": "wiki_cat_sum"}, "challenge_test_topic_diversity_6": {"name": "challenge_test_topic_diversity_6", "num_bytes": 3243638, "num_examples": 110, "dataset_name": "wiki_cat_sum"}, "challenge_test_topic_diversity_7": {"name": "challenge_test_topic_diversity_7", "num_bytes": 228417, "num_examples": 16, "dataset_name": "wiki_cat_sum"}, "challenge_test_topic_diversity_8": {"name": "challenge_test_topic_diversity_8", "num_bytes": 0, "num_examples": 0, "dataset_name": "wiki_cat_sum"}}, "download_checksums": {"main_splits/train-film.jsonl": {"num_bytes": 2135138582, "checksum": "1fdb6febf8810aaf3b0ba990fd523481f659384f553108620313c7c89c655eb3"}, "main_splits/valid-film.jsonl": {"num_bytes": 122253297, "checksum": "e6460a6ae575a148d6f5a69600c7d917a4c02f24904f9686d1b232350e8c9788"}, "main_splits/test-film.jsonl": {"num_bytes": 116314114, "checksum": "3a0f13a970d1aa9ffa73e4b4227db482c24575e8196b20175dce9fcf57e47822"}, "cs_abs/test-film_nv_0.jsonl": {"num_bytes": 2557415, "checksum": "800bcd4293e964d4979ac98588f1a9daee4a535f1f74d4d662a2812b4f00b45b"}, "cs_abs/test-film_nv_1.jsonl": {"num_bytes": 5297686, "checksum": "c08af66c50cd1a6ec76767ea8ce368f9b4ed4d9fb0a8549944e065d9ff46029a"}, "cs_abs/test-film_nv_2.jsonl": {"num_bytes": 14972530, "checksum": "dfd8e40a567d6312c71ae052acf7d4ff6aca3b22b3fcb42aa0ba5380b45f68ac"}, "cs_abs/test-film_nv_3.jsonl": {"num_bytes": 28456230, "checksum": "f096888992666117fbf7aab4aad9ef8db3031765b9c67d67e1fe2d899c9412af"}, "cs_abs/test-film_nv_4.jsonl": {"num_bytes": 29404823, "checksum": "b4fb9edefdc9bf16ef1e26462ede839d127ff20574848b25569b3d914522d820"}, "cs_abs/test-film_nv_6.jsonl": {"num_bytes": 10992155, "checksum": "567680a5a51d4355b81fd28250006d5313cb4194235e3cb5e58e97891812328e"}, "cs_abs/test-film_nv_7.jsonl": {"num_bytes": 3210636, "checksum": "6ed81fb7b5ee9f881f79c73a14ab05518ea059c2995aa3c71c9df82848a01ae8"}, "cs_abs/test-film_nv_8.jsonl": {"num_bytes": 207694, "checksum": "146945a6fa47feac1e8f9677bdde4f9e8e861811f64b5d5e5e21633be6486e71"}, "cs_abs/test-film_nv_9.jsonl": {"num_bytes": 0, "checksum": "e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855"}, "cs_tdiv/test-film_tdiv_0.jsonl": {"num_bytes": 6903682, "checksum": "dbfcbac4408de83ee74f6cbcd31d6e208295b573d608920b5def39d12bfdc459"}, "cs_tdiv/test-film_tdiv_1.jsonl": {"num_bytes": 28891633, "checksum": "c2ebef934ac40156eb572d9bd1236984614f6061757aa68e590662986cc5bdd6"}, "cs_tdiv/test-film_tdiv_2.jsonl": {"num_bytes": 64520766, "checksum": "b1d330c5042b88dfa5864e76c213266693366d5ee0b6d940b34bf6d749a5e494"}, "cs_tdiv/test-film_tdiv_3.jsonl": {"num_bytes": 15998033, "checksum": "0912524479945ae72ffa096b3432a2f7611a046b6edf728131faba992aec3fd0"}}, "download_size": 2585119276, "post_processing_size": null, "dataset_size": 2549314641, "size_in_bytes": 5134433917}}
|
wiki_cat_sum.py
CHANGED
@@ -17,7 +17,7 @@
|
|
17 |
|
18 |
import csv
|
19 |
import json
|
20 |
-
import
|
21 |
|
22 |
import datasets
|
23 |
|
@@ -119,6 +119,27 @@ _URLs = {
|
|
119 |
}
|
120 |
|
121 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
122 |
class WikiCatSum(datasets.GeneratorBasedBuilder):
|
123 |
"""TODO: Short description of my dataset."""
|
124 |
|
@@ -157,7 +178,11 @@ class WikiCatSum(datasets.GeneratorBasedBuilder):
|
|
157 |
"text": datasets.Value("string"),
|
158 |
"topic": datasets.Value("int16"),
|
159 |
}
|
160 |
-
)
|
|
|
|
|
|
|
|
|
161 |
}
|
162 |
)
|
163 |
return datasets.DatasetInfo(
|
@@ -240,8 +265,24 @@ class WikiCatSum(datasets.GeneratorBasedBuilder):
|
|
240 |
with open(filepath, encoding="utf-8") as f:
|
241 |
for id_, row in enumerate(f):
|
242 |
data = json.loads(row)
|
243 |
-
|
244 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
245 |
data["gem_parent_id"] = f"{self.config.name}-{split}-{id_+1}"
|
246 |
data["gem_id"] = f"{self.config.name}-{split}-{id_+1}"
|
247 |
yield id_, data
|
|
|
17 |
|
18 |
import csv
|
19 |
import json
|
20 |
+
import re
|
21 |
|
22 |
import datasets
|
23 |
|
|
|
119 |
}
|
120 |
|
121 |
|
122 |
+
def detokenize(text):
|
123 |
+
"""
|
124 |
+
Untokenizing a text undoes the tokenizing operation, restoring
|
125 |
+
punctuation and spaces to the places that people expect them to be.
|
126 |
+
Ideally, `untokenize(tokenize(text))` should be identical to `text`,
|
127 |
+
except for line breaks.
|
128 |
+
"""
|
129 |
+
step1 = text.replace("`` ", '"').replace(" ''", '"').replace(". . .", "...")
|
130 |
+
step2 = step1.replace(" ( ", " (").replace(" ) ", ") ")
|
131 |
+
step3 = re.sub(r' ([.,:;?!%]+)([ \'"`])', r"\1\2", step2)
|
132 |
+
step4 = re.sub(r" ([.,:;?!%]+)$", r"\1", step3)
|
133 |
+
step5 = (
|
134 |
+
step4.replace(" '", "'")
|
135 |
+
.replace(" n't", "n't")
|
136 |
+
.replace("can not", "cannot")
|
137 |
+
.replace(" 've", "'ve")
|
138 |
+
)
|
139 |
+
step6 = step5.replace(" ` ", " '")
|
140 |
+
return step6.strip()
|
141 |
+
|
142 |
+
|
143 |
class WikiCatSum(datasets.GeneratorBasedBuilder):
|
144 |
"""TODO: Short description of my dataset."""
|
145 |
|
|
|
178 |
"text": datasets.Value("string"),
|
179 |
"topic": datasets.Value("int16"),
|
180 |
}
|
181 |
+
),
|
182 |
+
"target": datasets.Value("string"),
|
183 |
+
"references": [
|
184 |
+
datasets.Value("string"),
|
185 |
+
],
|
186 |
}
|
187 |
)
|
188 |
return datasets.DatasetInfo(
|
|
|
265 |
with open(filepath, encoding="utf-8") as f:
|
266 |
for id_, row in enumerate(f):
|
267 |
data = json.loads(row)
|
268 |
+
data["paragraphs"] = [detokenize(p) for p in data["paragraphs"]]
|
269 |
+
|
270 |
+
# If summary is a list itself, we have multi-ref.
|
271 |
+
if isinstance(data["summary"], list):
|
272 |
+
detok_targets = [
|
273 |
+
detokenize(" ".join(s["text"])) for s in data["summary"]
|
274 |
+
]
|
275 |
+
data["target"] = detok_targets[0]
|
276 |
+
data["references"] = detok_targets
|
277 |
+
elif isinstance(data["summary"]["text"], list):
|
278 |
+
detok_target = detokenize(" ".join(data["summary"]["text"]))
|
279 |
+
data["target"] = detok_target
|
280 |
+
data["references"] = [detok_target]
|
281 |
+
# elif isinstance(data["summary"]["text"], str):
|
282 |
+
# detok_target = detokenize(data["summary"]["text"])
|
283 |
+
else:
|
284 |
+
print(data["summary"])
|
285 |
+
exit()
|
286 |
data["gem_parent_id"] = f"{self.config.name}-{split}-{id_+1}"
|
287 |
data["gem_id"] = f"{self.config.name}-{split}-{id_+1}"
|
288 |
yield id_, data
|