# import json | |
# input_file = "/mnt/hwfile/ai4chem/hao/data_processing/SceMQA-main/chem/chem_multiple_choice.json" | |
# output_file = "/mnt/hwfile/ai4chem/hao/data_processing/SceMQA-main/test_chem_multiple_choice.jsonl" | |
# base_image_path = "/mnt/hwfile/ai4chem/hao/data_processing/SceMQA-main/Multiple_Choice/Chemistry/" | |
# # Read the input JSON file | |
# with open(input_file, 'r') as infile: | |
# data = json.load(infile) | |
# # Process each entry and write to the new JSONL file | |
# with open(output_file, 'w') as outfile: | |
# for idx, entry in enumerate(data, start=1): | |
# new_entry = { | |
# "id": str(idx), | |
# "images": [base_image_path + entry["ImagePath"] + ".png"], | |
# "conversations": [ | |
# {"from": "human", "value": "<image>\n" + entry["Question"]}, | |
# {"from": "gpt", "value": entry["Answer (final answer highlighted)"]} | |
# ] | |
# } | |
# outfile.write(json.dumps(new_entry, ensure_ascii=False) + "\n") | |
# print(f"Processing complete. The new JSONL file is saved at {output_file}") | |
# import json | |
# import os | |
# input_file = "/mnt/hwfile/ai4chem/hao/data_processing/SceMQA-main/chem/chem_multiple_choice.json" | |
# output_file = "/mnt/hwfile/ai4chem/hao/data_processing/SceMQA-main/test_chem_multiple_choice.jsonl" | |
# base_image_path = "/mnt/hwfile/ai4chem/hao/data_processing/SceMQA-main/Multiple_Choice/" | |
# # Read the input JSON file | |
# with open(input_file, 'r') as infile: | |
# data = json.load(infile) | |
# # Process each entry and write to the new JSONL file | |
# with open(output_file, 'w') as outfile: | |
# for idx, entry in enumerate(data, start=1): | |
# image_path_png = base_image_path + entry["ImagePath"] + ".png" | |
# image_path_jpg = base_image_path + entry["ImagePath"] + ".jpg" | |
# # Check if the .png file exists, otherwise use the .jpg file | |
# if not os.path.exists(image_path_png): | |
# image_path = image_path_jpg | |
# else: | |
# image_path = image_path_png | |
# new_entry = { | |
# "id": str(idx), | |
# "images": [image_path], | |
# "conversations": [ | |
# {"from": "human", "value": "<image>\n" + entry["Question"]}, | |
# {"from": "gpt", "value": entry["Answer (final answer highlighted)"][0]} | |
# ] | |
# } | |
# outfile.write(json.dumps(new_entry, ensure_ascii=False) + "\n") | |
# print(f"Processing complete. The new JSONL file is saved at {output_file}") | |
import json | |
import os | |
import re | |
input_file = "/mnt/hwfile/ai4chem/hao/data_processing/SceMQA-main/chem/chem_free_response.json" | |
output_file = "/mnt/hwfile/ai4chem/hao/data_processing/SceMQA-main/test_chem_free_response.jsonl" | |
base_image_path = "/mnt/hwfile/ai4chem/hao/data_processing/SceMQA-main/Free_Response/" | |
# Read the input JSON file | |
with open(input_file, 'r') as infile: | |
data = json.load(infile) | |
# Process each entry and write to the new JSONL file | |
with open(output_file, 'w') as outfile: | |
for idx, entry in enumerate(data, start=1): | |
image_path_png = base_image_path + entry["ImagePath"] + ".png" | |
image_path_jpg = base_image_path + entry["ImagePath"] + ".jpg" | |
# Check if the .png file exists, otherwise use the .jpg file | |
if not os.path.exists(image_path_png): | |
image_path = image_path_jpg | |
else: | |
image_path = image_path_png | |
# Extract the content inside answer{???} from the Answer attribute | |
match = re.search(r'answer\{(.*?)\}', entry["Answer (final answer highlighted)"], re.IGNORECASE) | |
answer_content = match.group(1) if match else "" | |
new_entry = { | |
"id": str(idx), | |
"images": [image_path], | |
"conversations": [ | |
{"from": "human", "value": "<image>\n" + entry["Question"]}, | |
{"from": "gpt", "value": answer_content} | |
] | |
} | |
outfile.write(json.dumps(new_entry, ensure_ascii=False) + "\n") | |
print(f"Processing complete. The new JSONL file is saved at {output_file}") |