drug_a
stringclasses
172 values
drug_b
stringlengths
5
99
severity
stringclasses
3 values
interaction_effect
stringlengths
52
1.83k
indication_drug_a
stringclasses
170 values
indication_drug_b
stringlengths
23
7.01k
pharmacodynamics_drug_a
stringclasses
158 values
pharmacodynamics_drug_b
stringlengths
6
9.17k
Abaloparatide
Methyldopa
Minor
Co-administration of agents that are both associated with a risk for developing hypotension, including cases of severe hypotension, may create an additive hypotensive effect to prolong and intensify hypotensive effects.
Abaloparatide is indicated for the treatment of postmenopausal women with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy. In postmenopausal women with osteoporosis, abaloparatide reduces the risk of vertebral and nonvertebral fractures. Abaloparatide is also indicated to increase bone density in men with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy.
Methyldopa is indicated for the management of hypertension as monotherapy or in combination with hydrochlorothiazide. Methyldopa injection is used to manage hypertensive crises.
Abaloparatide stimulates bone formation on periosteal, trabecular, and cortical bone surfaces. It increases bone mineral density and bone formation markers in a dose-dependent manner. Abaloparatide causes transient and limited increases in osteoclast bone resorption and increases bone density. In rats and monkeys, abaloparatide exerted anabolic effects, increasing bone mineral density and mineral content correlating with increases in bone strength at vertebral and nonvertebral sites.
Antihypertensive effects of methyldopa are mostly mediated by its pharmacologically active metabolite, alpha-methylnorepinephrine, which works as an agonist at central inhibitory alpha-adrenergic receptors. Stimulation of alpha-adrenergic receptors leads to decreased peripheral sympathetic tone and reduced arterial pressure. Methyldopa causes a net reduction in the tissue concentration of serotonin, dopamine, norepinephrine, and epinephrine. Overall, methyldopa lowers both standing blood pressure and especially supine blood pressure, with infrequent symptomatic postural hypotension. Methyldopa also reduces plasma renin activity but has negligible effects on glomerular filtration rate, renal blood flow, or filtration fraction. It also has no direct effect on cardiac function but in some patients, a slowed heart rate may occur. Following oral administration, blood-pressure-lowering effects are observed within 12 to 24 hours in most patients, and a maximum reduction in blood pressure occurs in 4 to 6 hours. Blood pressure returns to pre-treatment levels within 24 to 48 hours following drug discontinuation. Following intravenous administration, the blood-pressure-lowering effects of methyldopa last for about 10 to 16 hours.
Abaloparatide
Methylene blue
Moderate
Incidences of orthostatic hypotension have occurred with monoamine oxidase inhibitors (MAOIs) therapy 1. Co-administration of hypotensive drugs in presence of a MAOI may result in increased risk for developing orthostatic hypotension due to an additive effect.
Abaloparatide is indicated for the treatment of postmenopausal women with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy. In postmenopausal women with osteoporosis, abaloparatide reduces the risk of vertebral and nonvertebral fractures. Abaloparatide is also indicated to increase bone density in men with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy.
Indicated for the treatment of pediatric and adult patients with acquired methemoglobinemia. Other clinical applications of methylene blue include improvement of hypotension associated with various clinical states, an antiseptic in urinary tract infections, treatment of hypoxia and hyperdynamic circulation in cirrhosis of liver and severe hepatopulmonary syndrome, and treatment of ifofosamide induced neurotoxicity.
Abaloparatide stimulates bone formation on periosteal, trabecular, and cortical bone surfaces. It increases bone mineral density and bone formation markers in a dose-dependent manner. Abaloparatide causes transient and limited increases in osteoclast bone resorption and increases bone density. In rats and monkeys, abaloparatide exerted anabolic effects, increasing bone mineral density and mineral content correlating with increases in bone strength at vertebral and nonvertebral sites.
No pharmacodynamics available
Abaloparatide
Metolazone
Minor
Co-administration of agents that are both associated with a risk for developing hypotension, including cases of severe hypotension, may create an additive hypotensive effect to prolong and intensify hypotensive effects.
Abaloparatide is indicated for the treatment of postmenopausal women with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy. In postmenopausal women with osteoporosis, abaloparatide reduces the risk of vertebral and nonvertebral fractures. Abaloparatide is also indicated to increase bone density in men with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy.
For the treatment of hypertension, alone or in combination with other antihypertensive drugs of a different class.
Abaloparatide stimulates bone formation on periosteal, trabecular, and cortical bone surfaces. It increases bone mineral density and bone formation markers in a dose-dependent manner. Abaloparatide causes transient and limited increases in osteoclast bone resorption and increases bone density. In rats and monkeys, abaloparatide exerted anabolic effects, increasing bone mineral density and mineral content correlating with increases in bone strength at vertebral and nonvertebral sites.
Metolazone is a quinazoline diuretic, with properties generally similar to the thiazide diuretics. A proximal action of metolazone has been shown in humans by increased excretion of phosphate and magnesium ions and by a markedly increased fractional excretion of sodium in patients with severely compromised glomerular filtration. This action has been demonstrated in animals by micropuncture studies.
Abaloparatide
Metoprolol
Minor
Co-administration of agents that are both associated with a risk for developing hypotension, including cases of severe hypotension, may create an additive hypotensive effect to prolong and intensify hypotensive effects.
Abaloparatide is indicated for the treatment of postmenopausal women with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy. In postmenopausal women with osteoporosis, abaloparatide reduces the risk of vertebral and nonvertebral fractures. Abaloparatide is also indicated to increase bone density in men with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy.
Metoprolol is indicated for the treatment of angina, heart failure, myocardial infarction, atrial fibrillation, atrial flutter and hypertension. Some off-label uses of metoprolol include supraventricular tachycardia and thyroid storm. All the indications of metoprolol are part of cardiovascular diseases. These conditions correspond to a number of diseases that involve the function of the heart and blood vessels. The underlying causes of these conditions are variable and can be due to genetic disposition, lifestyle decisions such as smoking, obesity, diet, and lack of exercise, and comorbidity with other conditions such as diabetes. The cardiovascular diseases are the leading cause of death on a global scale.
Abaloparatide stimulates bone formation on periosteal, trabecular, and cortical bone surfaces. It increases bone mineral density and bone formation markers in a dose-dependent manner. Abaloparatide causes transient and limited increases in osteoclast bone resorption and increases bone density. In rats and monkeys, abaloparatide exerted anabolic effects, increasing bone mineral density and mineral content correlating with increases in bone strength at vertebral and nonvertebral sites.
Administration of metoprolol in normal subjects is widely reported to produce a dose-dependent reduction on heart rate and cardiac output. This effect is generated due to a decreased cardiac excitability, cardiac output, and myocardial oxygen demand. In the case of arrhythmias, metoprolol produces its effect by reducing the slope of the pacemaker potential as well as suppressing the rate of atrioventricular conduction. The Metoprolol Atherosclerosis Prevention in Hypertensives (MAPHY) trial showed a significant improvement in sudden cardiac death and myocardial infarction when patients were given with metoprolol as compared with diuretics. As well, in clinical trials performed in 1990, metoprolol reduces mortality and re-infarction in 17% of the individuals when administered chronically after an episode of myocardial infarction.
Abaloparatide
Metyrosine
Minor
The use of two drugs that both lower blood pressure may result in a more pronounced hypotensive effect.
Abaloparatide is indicated for the treatment of postmenopausal women with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy. In postmenopausal women with osteoporosis, abaloparatide reduces the risk of vertebral and nonvertebral fractures. Abaloparatide is also indicated to increase bone density in men with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy.
For use in the treatment of patients with pheochromocytoma, for preoperative preparation of patients for surgery, management of patients when surgery is contraindicated, and chronic treatment of patients with malignant pheochromocytoma.
Abaloparatide stimulates bone formation on periosteal, trabecular, and cortical bone surfaces. It increases bone mineral density and bone formation markers in a dose-dependent manner. Abaloparatide causes transient and limited increases in osteoclast bone resorption and increases bone density. In rats and monkeys, abaloparatide exerted anabolic effects, increasing bone mineral density and mineral content correlating with increases in bone strength at vertebral and nonvertebral sites.
In patients with pheochromocytoma, who produce excessive amounts of norepinephrine and epinephrine, administration of one to four grams of metyrosine per day has reduced catecholamine biosynthesis from about 35 to 80 percent as measured by the total excretion of catecholamines and their metabolites (metanephrine and vanillylmandelic acid). The maximum biochemical effect usually occurs within two to three days, and the urinary concentration of catecholamines and their metabolites usually returns to pretreatment levels within three to four days after metyrosine is discontinued. Most patients with pheochromocytoma treated with metyrosine experience decreased frequency and severity of hypertensive attacks with their associated headache, nausea, sweating, and tachycardia. In patients who respond, blood pressure decreases progressively during the first two days of therapy with metyrosine; after withdrawal, blood pressure usually increases gradually to pretreatment values within two to three days.
Abaloparatide
Minoxidil
Minor
Co-administration of agents that are both associated with a risk for developing hypotension, including cases of severe hypotension, may create an additive hypotensive effect to prolong and intensify hypotensive effects.
Abaloparatide is indicated for the treatment of postmenopausal women with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy. In postmenopausal women with osteoporosis, abaloparatide reduces the risk of vertebral and nonvertebral fractures. Abaloparatide is also indicated to increase bone density in men with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy.
For the treatment of severe hypertension and in the topical treatment (regrowth) of androgenic alopecia in males and females and stabilisation of hair loss in patients with androgenic alopecia.
Abaloparatide stimulates bone formation on periosteal, trabecular, and cortical bone surfaces. It increases bone mineral density and bone formation markers in a dose-dependent manner. Abaloparatide causes transient and limited increases in osteoclast bone resorption and increases bone density. In rats and monkeys, abaloparatide exerted anabolic effects, increasing bone mineral density and mineral content correlating with increases in bone strength at vertebral and nonvertebral sites.
Minoxidil is an orally effective direct acting peripheral vasodilator that reduces elevated systolic and diastolic blood pressure by decreasing peripheral vascular resistance. Minoxidil is also used topically to treat androgenetic alopecia. Microcirculatory blood flow in animals is enhanced or maintained in all systemic vascular beds. In man, forearm and renal vascular resistance decline; forearm blood flow increases while renal blood flow and glomerular filtration rate are preserved. The predominant site of minoxidil action is arterial. Venodilation does not occur with minoxidil; thus, postural hypotension is unusual with its administration. The antihypertensive activity of minoxidil is due to its sulphate metabolite, minoxidil sulfate.
Abaloparatide
Moclobemide
Moderate
Incidences of orthostatic hypotension have occurred with monoamine oxidase inhibitors (MAOIs) therapy 1. Co-administration of hypotensive drugs in presence of a MAOI may result in increased risk for developing orthostatic hypotension due to an additive effect.
Abaloparatide is indicated for the treatment of postmenopausal women with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy. In postmenopausal women with osteoporosis, abaloparatide reduces the risk of vertebral and nonvertebral fractures. Abaloparatide is also indicated to increase bone density in men with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy.
For the treatment of major depressive disorder and bipolar disorder.
Abaloparatide stimulates bone formation on periosteal, trabecular, and cortical bone surfaces. It increases bone mineral density and bone formation markers in a dose-dependent manner. Abaloparatide causes transient and limited increases in osteoclast bone resorption and increases bone density. In rats and monkeys, abaloparatide exerted anabolic effects, increasing bone mineral density and mineral content correlating with increases in bone strength at vertebral and nonvertebral sites.
A selective, reversible inhibitor of monoamine oxidase (MAO) which increases the. Besides its presence in sympathetic nerves, there is an abundant evidence that MAO-A is localized in noradrenergic neurons in the locus coeruleus and MAO-B is closely associated with serotonergic neurons of the raphe nucleus.
Abaloparatide
Moexipril
Minor
Co-administration of agents that are both associated with a risk for developing hypotension, including cases of severe hypotension, may create an additive hypotensive effect to prolong and intensify hypotensive effects.
Abaloparatide is indicated for the treatment of postmenopausal women with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy. In postmenopausal women with osteoporosis, abaloparatide reduces the risk of vertebral and nonvertebral fractures. Abaloparatide is also indicated to increase bone density in men with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy.
For the treatment of hypertension.
Abaloparatide stimulates bone formation on periosteal, trabecular, and cortical bone surfaces. It increases bone mineral density and bone formation markers in a dose-dependent manner. Abaloparatide causes transient and limited increases in osteoclast bone resorption and increases bone density. In rats and monkeys, abaloparatide exerted anabolic effects, increasing bone mineral density and mineral content correlating with increases in bone strength at vertebral and nonvertebral sites.
Moexipril is a non-sulfhydryl containing precursor of the active angiotensin-converting enzyme (ACE) inhibitor moexiprilat. It is used to treat high blood pressure (hypertension). It works by relaxing blood vessels, causing them to widen. Lowering high blood pressure helps prevent strokes, heart attacks and kidney problems.
Abaloparatide
Morphine
Minor
Co-administration of agents that are both associated with a risk for developing hypotension, including cases of severe hypotension, may create an additive hypotensive effect to prolong and intensify hypotensive effects.
Abaloparatide is indicated for the treatment of postmenopausal women with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy. In postmenopausal women with osteoporosis, abaloparatide reduces the risk of vertebral and nonvertebral fractures. Abaloparatide is also indicated to increase bone density in men with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy.
Morphine is used for the management of chronic, moderate to severe pain. Opiods, including morphine, are effective for the short term management of pain. Patients taking opioids long term may need to be monitored for the development of physical dependence, addiction disorder, and drug abuse.
Abaloparatide stimulates bone formation on periosteal, trabecular, and cortical bone surfaces. It increases bone mineral density and bone formation markers in a dose-dependent manner. Abaloparatide causes transient and limited increases in osteoclast bone resorption and increases bone density. In rats and monkeys, abaloparatide exerted anabolic effects, increasing bone mineral density and mineral content correlating with increases in bone strength at vertebral and nonvertebral sites.
Morphine binding to opioid receptors blocks transmission of nociceptive signals, signals pain-modulating neurons in the spinal cord, and inhibits primary afferent nociceptors to the dorsal horn sensory projection cells. Morphine has a time to onset of 6-30 minutes. Excess consumption of morphine and other opioids can lead to changes in synaptic neuroplasticity, including changes in neuron density, changes at postsynaptic sites, and changes at dendritic terminals. Intravenous morphine's analgesic effect is sex dependent. The EC 50 in men is 76ng/mL and in women is 22ng/mL. Morphine-6-glucuronide is 22 times less potent than morphine in eliciting pupil constriction.
Abaloparatide
Moxonidine
Minor
Co-administration of agents that are both associated with a risk for developing hypotension, including cases of severe hypotension, may create an additive hypotensive effect to prolong and intensify hypotensive effects.
Abaloparatide is indicated for the treatment of postmenopausal women with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy. In postmenopausal women with osteoporosis, abaloparatide reduces the risk of vertebral and nonvertebral fractures. Abaloparatide is also indicated to increase bone density in men with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy.
For the treatment of mild to moderate essential or primary hypertension. Effective as most first-line antihypertensives when used as monotherapy.
Abaloparatide stimulates bone formation on periosteal, trabecular, and cortical bone surfaces. It increases bone mineral density and bone formation markers in a dose-dependent manner. Abaloparatide causes transient and limited increases in osteoclast bone resorption and increases bone density. In rats and monkeys, abaloparatide exerted anabolic effects, increasing bone mineral density and mineral content correlating with increases in bone strength at vertebral and nonvertebral sites.
Antihypertensive agent whose site of action is the Central Nervous System (CNS), specifically involving interactions with I1- imidazoline and alpha-2-adrenergic rececptors within the rostral ventrolateral medulla (RSV).
Abaloparatide
Nabilone
Minor
Co-administration of agents that are both associated with a risk for developing hypotension, including cases of severe hypotension, may create an additive hypotensive effect to prolong and intensify hypotensive effects.
Abaloparatide is indicated for the treatment of postmenopausal women with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy. In postmenopausal women with osteoporosis, abaloparatide reduces the risk of vertebral and nonvertebral fractures. Abaloparatide is also indicated to increase bone density in men with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy.
Nabilone is indicated for the treatment of the nausea and vomiting associated with cancer chemotherapy in patients who have failed to respond adequately to conventional antiemetic treatments. This restriction is required because a substantial proportion of any group of patients treated with Nabilone can be expected to experience disturbing psychotomimetic reactions not observed with other antiemetic agents.
Abaloparatide stimulates bone formation on periosteal, trabecular, and cortical bone surfaces. It increases bone mineral density and bone formation markers in a dose-dependent manner. Abaloparatide causes transient and limited increases in osteoclast bone resorption and increases bone density. In rats and monkeys, abaloparatide exerted anabolic effects, increasing bone mineral density and mineral content correlating with increases in bone strength at vertebral and nonvertebral sites.
Nabilone is a cannabinoid with therapeutic uses. It is an analog of dronabinol (also known as tetrahydrocannabinol or THC), the psychoactive ingredient in cannabis. Although structurally distinct from THC, nabilone mimics THC's structure and pharmacological activity through weak partial agonist activity at Cannabinoid-1 (CB1R) and Cannabinoid-2 (CB2R) receptors, however it is considered to be twice as active as Δ⁹-THC.
Abaloparatide
Nadolol
Minor
Co-administration of agents that are both associated with a risk for developing hypotension, including cases of severe hypotension, may create an additive hypotensive effect to prolong and intensify hypotensive effects.
Abaloparatide is indicated for the treatment of postmenopausal women with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy. In postmenopausal women with osteoporosis, abaloparatide reduces the risk of vertebral and nonvertebral fractures. Abaloparatide is also indicated to increase bone density in men with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy.
Nadolol is indicated to treat angina pectoris and hypertension. Another product formulated with bendroflumethiazide is indicated to treat hypertension.
Abaloparatide stimulates bone formation on periosteal, trabecular, and cortical bone surfaces. It increases bone mineral density and bone formation markers in a dose-dependent manner. Abaloparatide causes transient and limited increases in osteoclast bone resorption and increases bone density. In rats and monkeys, abaloparatide exerted anabolic effects, increasing bone mineral density and mineral content correlating with increases in bone strength at vertebral and nonvertebral sites.
Nadolol is a nonselective beta adrenal receptor blocker that is used to lower blood pressure. It has a long duration of action as it is usually taken once daily and a wide therapeutic index as patients start at doses of 40mg daily but may be increased to doses as high as 240mg daily. Patients taking nadolol should not aburptly stop taking it as this may lead to exacerbation of ischemic heart disease.
Abaloparatide
Nebivolol
Minor
Co-administration of agents that are both associated with a risk for developing hypotension, including cases of severe hypotension, may create an additive hypotensive effect to prolong and intensify hypotensive effects.
Abaloparatide is indicated for the treatment of postmenopausal women with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy. In postmenopausal women with osteoporosis, abaloparatide reduces the risk of vertebral and nonvertebral fractures. Abaloparatide is also indicated to increase bone density in men with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy.
Nebivolol is indicated to treat hypertension.
Abaloparatide stimulates bone formation on periosteal, trabecular, and cortical bone surfaces. It increases bone mineral density and bone formation markers in a dose-dependent manner. Abaloparatide causes transient and limited increases in osteoclast bone resorption and increases bone density. In rats and monkeys, abaloparatide exerted anabolic effects, increasing bone mineral density and mineral content correlating with increases in bone strength at vertebral and nonvertebral sites.
Nebivolol is a selective beta-1 adrenergic receptor antagonist that decreases vascular resistance, increases stroke volume and cardiac output, and does not negatively affect left ventricular function. It has a long duration of action as effects can be seen 48 hours after stopping the medication and a wide therapeutic window as patients generally take 5-40mg daily. Patients should not abruptly stop taking this medication as this may lead to exacerbation of coronary artery disease. Diabetic patients should monitor their blood glucose levels as beta blockers may mask signs of hypoglycemia.
Abaloparatide
Nicardipine
Minor
Co-administration of agents that are both associated with a risk for developing hypotension, including cases of severe hypotension, may create an additive hypotensive effect to prolong and intensify hypotensive effects.
Abaloparatide is indicated for the treatment of postmenopausal women with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy. In postmenopausal women with osteoporosis, abaloparatide reduces the risk of vertebral and nonvertebral fractures. Abaloparatide is also indicated to increase bone density in men with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy.
Used for the management of patients with chronic stable angina and for the treatment of hypertension.
Abaloparatide stimulates bone formation on periosteal, trabecular, and cortical bone surfaces. It increases bone mineral density and bone formation markers in a dose-dependent manner. Abaloparatide causes transient and limited increases in osteoclast bone resorption and increases bone density. In rats and monkeys, abaloparatide exerted anabolic effects, increasing bone mineral density and mineral content correlating with increases in bone strength at vertebral and nonvertebral sites.
Nicardipine, a dihydropyridine calcium-channel blocker, is used alone or with an angiotensin-converting enzyme inhibitor, to treat hypertension, chronic stable angina pectoris, and Prinzmetal's variant angina. Nicardipine is similar to other peripheral vasodilators. Nicardipine inhibits the influx of extra cellular calcium across the myocardial and vascular smooth muscle cell membranes possibly by deforming the channel, inhibiting ion-control gating mechanisms, and/or interfering with the release of calcium from the sarcoplasmic reticulum. The decrease in intracellular calcium inhibits the contractile processes of the myocardial smooth muscle cells, causing dilation of the coronary and systemic arteries, increased oxygen delivery to the myocardial tissue, decreased total peripheral resistance, decreased systemic blood pressure, and decreased afterload.
Abaloparatide
Nicorandil
Minor
Nicorandil is an agent that induces the relaxation of vascular smooth muscle, and is associated with a risk for developing severe hypotension as an adverse event. There is also the possibility that nicorandil may potentiate the hypotensive effects of other vasodilators.
Abaloparatide is indicated for the treatment of postmenopausal women with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy. In postmenopausal women with osteoporosis, abaloparatide reduces the risk of vertebral and nonvertebral fractures. Abaloparatide is also indicated to increase bone density in men with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy.
Indicated for the prevention and treatment of chronic stable angina pectoris and reduction in the risk of acute coronary syndromes.
Abaloparatide stimulates bone formation on periosteal, trabecular, and cortical bone surfaces. It increases bone mineral density and bone formation markers in a dose-dependent manner. Abaloparatide causes transient and limited increases in osteoclast bone resorption and increases bone density. In rats and monkeys, abaloparatide exerted anabolic effects, increasing bone mineral density and mineral content correlating with increases in bone strength at vertebral and nonvertebral sites.
Nicorandil is a potassium channel opener with nitrovasodilator (NO donor) actions, making it both an arterial and a venous dilator. It causes sustained dilation of both the arterial resistance and conductive vessels that increases coronary blood flow, however the effect of the drug on coronary arteries does not involve the coronary steal phenomenon. Activation of potassium channels lead to hyperpolarization of the smooth muscle cells, followed by arterial dilation and afterload reduction. Nicorandil is shown to increase pooling in the capacitance vessels with a decrease in preload through relaxing the venous vascular system. Overall, improved blood flow and reduced infarct size are achieved through reduction of end-diastolix pressure and decreased extravascular component of vascular resistance. Open studies showed the effectiveness of nicorandil treatment on various types of angina pectoris.
Abaloparatide
Nifedipine
Minor
Co-administration of agents that are both associated with a risk for developing hypotension, including cases of severe hypotension, may create an additive hypotensive effect to prolong and intensify hypotensive effects.
Abaloparatide is indicated for the treatment of postmenopausal women with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy. In postmenopausal women with osteoporosis, abaloparatide reduces the risk of vertebral and nonvertebral fractures. Abaloparatide is also indicated to increase bone density in men with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy.
Nifedipine capsules are indicated to treat vasospastic angina and chronic stable angina. Extended release tablets are indicated to treat vasospastic angina, chronic stable angina, and hypertension.
Abaloparatide stimulates bone formation on periosteal, trabecular, and cortical bone surfaces. It increases bone mineral density and bone formation markers in a dose-dependent manner. Abaloparatide causes transient and limited increases in osteoclast bone resorption and increases bone density. In rats and monkeys, abaloparatide exerted anabolic effects, increasing bone mineral density and mineral content correlating with increases in bone strength at vertebral and nonvertebral sites.
Nifedipine is an inhibitor of L-type voltage gated calcium channels that reduces blood pressure and increases oxygen supply to the heart. Immediate release nifedipine's duration of action requires dosing 3 times daily. Nifedipine dosing is generally 10-120mg daily. Patients should be counselled regarding the risk of excessive hypotension, angina, and myocardial infarction.
Abaloparatide
Nilvadipine
Minor
Co-administration of agents that are both associated with a risk for developing hypotension, including cases of severe hypotension, may create an additive hypotensive effect to prolong and intensify hypotensive effects.
Abaloparatide is indicated for the treatment of postmenopausal women with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy. In postmenopausal women with osteoporosis, abaloparatide reduces the risk of vertebral and nonvertebral fractures. Abaloparatide is also indicated to increase bone density in men with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy.
For the management of vasospastic angina, chronic stable angina and hypertension.
Abaloparatide stimulates bone formation on periosteal, trabecular, and cortical bone surfaces. It increases bone mineral density and bone formation markers in a dose-dependent manner. Abaloparatide causes transient and limited increases in osteoclast bone resorption and increases bone density. In rats and monkeys, abaloparatide exerted anabolic effects, increasing bone mineral density and mineral content correlating with increases in bone strength at vertebral and nonvertebral sites.
Nilvadipine is similar to other dihydropyridines including amlodipine, felodipine, isradipine, and nicardipine. Nilvadipine is used to treat Prinzmetal's angina, hypertension, and other vascular disorders such as Raynaud's phenomenon. By blocking the calcium channels, Nifedipine inhibits the spasm of the coronary artery and dilates the systemic arteries, results in a increase of myocardial oxygen supply and a decrease in systemic blood pressure.
Abaloparatide
Nimodipine
Minor
Co-administration of agents that are both associated with a risk for developing hypotension, including cases of severe hypotension, may create an additive hypotensive effect to prolong and intensify hypotensive effects.
Abaloparatide is indicated for the treatment of postmenopausal women with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy. In postmenopausal women with osteoporosis, abaloparatide reduces the risk of vertebral and nonvertebral fractures. Abaloparatide is also indicated to increase bone density in men with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy.
For use as an adjunct to improve neurologic outcome following subarachnoid hemorrhage (SAH) from ruptured intracranial berry aneurysms by reducing the incidence and severity of ischemic deficits.
Abaloparatide stimulates bone formation on periosteal, trabecular, and cortical bone surfaces. It increases bone mineral density and bone formation markers in a dose-dependent manner. Abaloparatide causes transient and limited increases in osteoclast bone resorption and increases bone density. In rats and monkeys, abaloparatide exerted anabolic effects, increasing bone mineral density and mineral content correlating with increases in bone strength at vertebral and nonvertebral sites.
Nimodipine belongs to the class of pharmacological agents known as calcium channel blockers. Nimodipine is indicated for the improvement of neurological outcome by reducing the incidence and severity of ischemic deficits in patients with subarachnoid hemorrhage from ruptured congenital aneurysms who are in good neurological condition post-ictus (e.g., Hunt and Hess Grades I-III). The contractile processes of smooth muscle cells are dependent upon calcium ions, which enter these cells during depolarization as slow ionic transmembrane currents. Nimodipine inhibits calcium ion transfer into these cells and thus inhibits contractions of vascular smooth muscle. In animal experiments, nimodipine had a greater effect on cerebral arteries than on arteries elsewhere in the body perhaps because it is highly lipophilic, allowing it to cross the blood brain barrier.
Abaloparatide
Nisoldipine
Minor
Co-administration of agents that are both associated with a risk for developing hypotension, including cases of severe hypotension, may create an additive hypotensive effect to prolong and intensify hypotensive effects.
Abaloparatide is indicated for the treatment of postmenopausal women with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy. In postmenopausal women with osteoporosis, abaloparatide reduces the risk of vertebral and nonvertebral fractures. Abaloparatide is also indicated to increase bone density in men with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy.
For the treatment of hypertension. It may be used alone or in combination with other antihypertensive agents.
Abaloparatide stimulates bone formation on periosteal, trabecular, and cortical bone surfaces. It increases bone mineral density and bone formation markers in a dose-dependent manner. Abaloparatide causes transient and limited increases in osteoclast bone resorption and increases bone density. In rats and monkeys, abaloparatide exerted anabolic effects, increasing bone mineral density and mineral content correlating with increases in bone strength at vertebral and nonvertebral sites.
Nisoldipine, a dihydropyridine calcium-channel blocker, is used alone or with an angiotensin-converting enzyme inhibitor, to treat hypertension, chronic stable angina pectoris, and Prinzmetal's variant angina. Nisoldipine is similar to other peripheral vasodilators. Nisoldipine inhibits the influx of extra cellular calcium across the myocardial and vascular smooth muscle cell membranes possibly by deforming the channel, inhibiting ion-control gating mechanisms, and/or interfering with the release of calcium from the sarcoplasmic reticulum. The decrease in intracellular calcium inhibits the contractile processes of the myocardial smooth muscle cells, causing dilation of the coronary and systemic arteries, increased oxygen delivery to the myocardial tissue, decreased total peripheral resistance, decreased systemic blood pressure, and decreased afterload.
Abaloparatide
Nitrendipine
Minor
Co-administration of agents that are both associated with a risk for developing hypotension, including cases of severe hypotension, may create an additive hypotensive effect to prolong and intensify hypotensive effects.
Abaloparatide is indicated for the treatment of postmenopausal women with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy. In postmenopausal women with osteoporosis, abaloparatide reduces the risk of vertebral and nonvertebral fractures. Abaloparatide is also indicated to increase bone density in men with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy.
For the treatment of mild to moderate hypertension
Abaloparatide stimulates bone formation on periosteal, trabecular, and cortical bone surfaces. It increases bone mineral density and bone formation markers in a dose-dependent manner. Abaloparatide causes transient and limited increases in osteoclast bone resorption and increases bone density. In rats and monkeys, abaloparatide exerted anabolic effects, increasing bone mineral density and mineral content correlating with increases in bone strength at vertebral and nonvertebral sites.
Nitrendipine, a dihydropyridine calcium-channel blocker, is used alone or with an angiotensin-converting enzyme inhibitor, to treat hypertension, chronic stable angina pectoris, and Prinzmetal's variant angina. Nitrendipine is similar to other peripheral vasodilators. Nitrendipine inhibits the influx of extra cellular calcium across the myocardial and vascular smooth muscle cell membranes possibly by deforming the channel, inhibiting ion-control gating mechanisms, and/or interfering with the release of calcium from the sarcoplasmic reticulum. The decrease in intracellular calcium inhibits the contractile processes of the myocardial smooth muscle cells, causing dilation of the coronary and systemic arteries, increased oxygen delivery to the myocardial tissue, decreased total peripheral resistance, decreased systemic blood pressure, and decreased afterload.
Abaloparatide
Nitric Oxide
Minor
Co-administration of agents that are both associated with a risk for developing hypotension, including cases of severe hypotension, may create an additive hypotensive effect to prolong and intensify hypotensive effects.
Abaloparatide is indicated for the treatment of postmenopausal women with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy. In postmenopausal women with osteoporosis, abaloparatide reduces the risk of vertebral and nonvertebral fractures. Abaloparatide is also indicated to increase bone density in men with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy.
For the treatment of term and near-term (>34 weeks) neonates with hypoxic respiratory failure
Abaloparatide stimulates bone formation on periosteal, trabecular, and cortical bone surfaces. It increases bone mineral density and bone formation markers in a dose-dependent manner. Abaloparatide causes transient and limited increases in osteoclast bone resorption and increases bone density. In rats and monkeys, abaloparatide exerted anabolic effects, increasing bone mineral density and mineral content correlating with increases in bone strength at vertebral and nonvertebral sites.
Persistent pulmonary hypertension of the newborn (PPHN) occurs as a primary developmental defect or as a condition secondary to other diseases such as meconium aspiration syndrome (MAS), pneumonia, sepsis, hyaline membrane disease, congenital diaphragmatic hernia (CDH), and pulmonary hypoplasia. In these states, pulmonary vascular resistance (PVR) is high, which results in hypoxemia secondary to right-to-left shunting of blood through the patent ductus arteriosus and foramen ovale. In neonates with PPHN, Nitric oxide improves oxygenation (as indicated by significant increases in PaO2). Nitric oxide appears to increase the partial pressure of arterial oxygen (PaO2) by dilating pulmonary vessels in better entilated areas of the lung, redistributing pulmonary blood flow away from lung regions with low ventilation/perfusion (V/Q) ratios toward regions with normal ratios.
Abaloparatide
Nitroglycerin
Minor
Co-administration of agents that are both associated with a risk for developing hypotension, including cases of severe hypotension, may create an additive hypotensive effect to prolong and intensify hypotensive effects.
Abaloparatide is indicated for the treatment of postmenopausal women with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy. In postmenopausal women with osteoporosis, abaloparatide reduces the risk of vertebral and nonvertebral fractures. Abaloparatide is also indicated to increase bone density in men with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy.
Sublingual nitroglycerin is indicated for the acute relief of an attack or acute prophylaxis of angina pectoris due to coronary artery disease. Transdermal nitroglycerin is indicated for the prevention of angina pectoris due to coronary artery disease. Intravenous nitroglycerin is indicated for the treatment of peri-operative hypertension; for control of congestive heart failure in the setting of acute myocardial infarction; for treatment of angina pectoris in patients who have not responded to sublingual nitroglycerin and beta (β)-blockers; and for induction of intraoperative hypotension. Topical nitroglycerin ointment is used to treat moderate to severe pain associated with chronic anal fissure.
Abaloparatide stimulates bone formation on periosteal, trabecular, and cortical bone surfaces. It increases bone mineral density and bone formation markers in a dose-dependent manner. Abaloparatide causes transient and limited increases in osteoclast bone resorption and increases bone density. In rats and monkeys, abaloparatide exerted anabolic effects, increasing bone mineral density and mineral content correlating with increases in bone strength at vertebral and nonvertebral sites.
Nitroglycerin causes the relaxation of vascular smooth muscles, causing arteriolar and venous dilatation. It increases blood flow to the myocardium and reduces cardiac preload and afterload, decreasing myocardial wall stress and ameliorating anginal symptoms. Nitroglycerin also reduces coronary artery spasm, decreasing systemic vascular resistance as well as systolic and diastolic blood pressure. Like other organic nitrates, repeated and prolonged administration of nitroglycerin can lead to the development of tolerance or desensitization of vascular smooth muscle to further nitroglycerin-induced vasorelaxation. This loss of efficacy may be associated with the inhibition of mitochondrial aldehyde dehydrogenase, which is an important enzyme involved in the bioactivation of nitroglycerin. Nitroglycerin tolerance may be accompanied by pro-oxidant effects, endothelial dysfunction, and increased sensitivity to vasoconstrictors.
Abaloparatide
Nitroprusside
Minor
Co-administration of agents that are both associated with a risk for developing hypotension, including cases of severe hypotension, may create an additive hypotensive effect to prolong and intensify hypotensive effects.
Abaloparatide is indicated for the treatment of postmenopausal women with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy. In postmenopausal women with osteoporosis, abaloparatide reduces the risk of vertebral and nonvertebral fractures. Abaloparatide is also indicated to increase bone density in men with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy.
For immediate reduction of blood pressure of patients in hypertensive crises, reduce bleeding during surgery, and for the treatment of acute congestive heart failure
Abaloparatide stimulates bone formation on periosteal, trabecular, and cortical bone surfaces. It increases bone mineral density and bone formation markers in a dose-dependent manner. Abaloparatide causes transient and limited increases in osteoclast bone resorption and increases bone density. In rats and monkeys, abaloparatide exerted anabolic effects, increasing bone mineral density and mineral content correlating with increases in bone strength at vertebral and nonvertebral sites.
Nitroprusside a powerful vasodilator relaxes the vascular smooth muscle and produce consequent dilatation of peripheral arteries and veins. Other smooth muscle (e.g., uterus, duodenum) is not affected. Sodium nitroprusside is more active on veins than on arteries.
Abaloparatide
Nitrous acid
Minor
Co-administration of agents that are both associated with a risk for developing hypotension, including cases of severe hypotension, may create an additive hypotensive effect to prolong and intensify hypotensive effects.
Abaloparatide is indicated for the treatment of postmenopausal women with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy. In postmenopausal women with osteoporosis, abaloparatide reduces the risk of vertebral and nonvertebral fractures. Abaloparatide is also indicated to increase bone density in men with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy.
For sequential use with sodium thiosulfate for the treatment of acute cyanide poisoning that is judged to be life-threatening.
Abaloparatide stimulates bone formation on periosteal, trabecular, and cortical bone surfaces. It increases bone mineral density and bone formation markers in a dose-dependent manner. Abaloparatide causes transient and limited increases in osteoclast bone resorption and increases bone density. In rats and monkeys, abaloparatide exerted anabolic effects, increasing bone mineral density and mineral content correlating with increases in bone strength at vertebral and nonvertebral sites.
Sodium nitrite reverses cyanide toxicity and produces blood vessel dilation.
Abaloparatide
Obinutuzumab
Minor
Co-administration of agents that are both associated with a risk for developing hypotension, including cases of severe hypotension, may create an additive hypotensive effect to prolong and intensify hypotensive effects.
Abaloparatide is indicated for the treatment of postmenopausal women with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy. In postmenopausal women with osteoporosis, abaloparatide reduces the risk of vertebral and nonvertebral fractures. Abaloparatide is also indicated to increase bone density in men with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy.
Obinutuzumab is used as a combination treatment with chlorambucil to treat patients with untreated chronic lymphocytic leukemia.
Abaloparatide stimulates bone formation on periosteal, trabecular, and cortical bone surfaces. It increases bone mineral density and bone formation markers in a dose-dependent manner. Abaloparatide causes transient and limited increases in osteoclast bone resorption and increases bone density. In rats and monkeys, abaloparatide exerted anabolic effects, increasing bone mineral density and mineral content correlating with increases in bone strength at vertebral and nonvertebral sites.
Obinutuzumab is more potent than rituximab in depleting B-cells, antitumor activity, and tumor regression.
Abaloparatide
Olanzapine
Minor
Co-administration of agents that are both associated with a risk for developing hypotension, including cases of severe hypotension, may create an additive hypotensive effect to prolong and intensify hypotensive effects.
Abaloparatide is indicated for the treatment of postmenopausal women with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy. In postmenopausal women with osteoporosis, abaloparatide reduces the risk of vertebral and nonvertebral fractures. Abaloparatide is also indicated to increase bone density in men with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy.
Olanzapine was initially used orally and intramuscularly for the chronic treatment of schizophrenia in patients over 13 years old and other psychiatric disorders such as bipolar I disorder including mixed or manic episodes. Olanzapine is also indicated, in combination with lithium or valproate for the short-term treatment of acute manic or mixed episodes associated with bipolar I disorder in adults. As well, olanzapine is indicated, in combination with fluoxetine for the treatment of episodes of depression associated with bipolar disorder type 1 and treatment-resistant depression in patients over 10 years old. Olanzapine is also approved for the management of psychomotor agitation associated with schizophrenia and bipolar I mania. Schizophrenia is a complex biochemical brain disorder that affects the person's ability to differentiate reality. It is usually observed as the presence of delusions, hallucinations, social withdrawal and disturbed thinking. Bipolar disorder is a mental health condition defined by periods of extreme mood disturbances. It is categorized in different types from which type 1 is known to involve episodes of severe mania and often depression while type 2 presents less severe forms of mania. Olanzapine is also indicated in combination with samidorphan for the treatment of bipolar I disorder, either as an adjunct to lithium or valproate or as monotherapy for the acute treatment of manic or mixed episodes or as maintenance therapy, and for the treatment of schizophrenia in adults.
Abaloparatide stimulates bone formation on periosteal, trabecular, and cortical bone surfaces. It increases bone mineral density and bone formation markers in a dose-dependent manner. Abaloparatide causes transient and limited increases in osteoclast bone resorption and increases bone density. In rats and monkeys, abaloparatide exerted anabolic effects, increasing bone mineral density and mineral content correlating with increases in bone strength at vertebral and nonvertebral sites.
The effect of olanzapine in the D2 receptor is reported to produce the positive effects of this drug such as a decrease in hallucinations, delusions, disorganized speech, disorganized thought, and disorganized behavior. On the other hand, its effect on the serotonin 5HT2A receptor prevents the onset of anhedonia, flat affect, alogia, avolition and poor attention. Based on the specific mechanism of action, olanzapine presents a higher affinity for the dopamine D2 receptor when compared to the rest of the dopamine receptor isotypes. This characteristic significantly reduces the presence of side effects. Clinical trials for the original use of olanzapine demonstrated significant effectiveness in the treatment of schizophrenia and bipolar disorder in adults and acute manic or mixed episodes associated with bipolar disorder in adolescents. The effect of olanzapine on dopamine and serotonin receptors has been suggested to reduce chemotherapy-induced nausea and vomiting as those receptors are suggested to be involved in this process. For this effect, several clinical trials have been conducted and it has been shown that olanzapine can produce a significant increase in total control of nausea and vomiting. In a high-level study of the effect of olanzapine for this condition, a complete response on the delay phase was observed in 84% of the individual and control of emesis of over 80% despite the phase.
Abaloparatide
Olmesartan
Minor
Co-administration of agents that are both associated with a risk for developing hypotension, including cases of severe hypotension, may create an additive hypotensive effect to prolong and intensify hypotensive effects.
Abaloparatide is indicated for the treatment of postmenopausal women with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy. In postmenopausal women with osteoporosis, abaloparatide reduces the risk of vertebral and nonvertebral fractures. Abaloparatide is also indicated to increase bone density in men with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy.
Olmesartan is indicated for the treatment of hypertension either alone or in combination with other antihypertensive agents. Olmesartan is also used off-label for the management Type 2 Diabetes-associated nephropathy, heart failure, and post-myocardial infarction, particularly in patients who are unable to tolerate ACE inhibitors. ARBs such as olmesartan have been shown in a number of large-scale clinical outcomes trials to improve cardiovascular outcomes including reducing risk of myocardial infarction, stroke, the progression of heart failure, and hospitalization. Like other ARBs, olmesartan blockade of RAAS slows the progression of diabetic nephropathy due to its renoprotective effects.
Abaloparatide stimulates bone formation on periosteal, trabecular, and cortical bone surfaces. It increases bone mineral density and bone formation markers in a dose-dependent manner. Abaloparatide causes transient and limited increases in osteoclast bone resorption and increases bone density. In rats and monkeys, abaloparatide exerted anabolic effects, increasing bone mineral density and mineral content correlating with increases in bone strength at vertebral and nonvertebral sites.
Overall, olmesartan's physiologic effects lead to reduced blood pressure, lower aldosterone levels, reduced cardiac activity, and increased excretion of sodium. Hypotension in Volume- or Salt-Depleted Patients In patients with an activated renin-angiotensin aldosterone system, such as volume-and/or salt-depleted patients (e.g., those being treated with high doses of diuretics), symptomatic hypotension may be anticipated after initiation of treatment with olmesartan. Initiate treatment under close medical supervision. If hypotension does occur, place the patient in the supine position and, if necessary, give an intravenous infusion of normal saline. A transient hypotensive response is not a contraindication to further treatment, which usually can be continued without difficulty once the blood pressure has stabilized. Valvular Stenosis: there is concern on theoretical grounds that patients with aortic stenosis might be at a particular risk of decreased coronary perfusion, because they do not develop as much afterload reduction. Impaired Renal Function As a consequence of inhibiting the renin-angiotensin-aldosterone system, changes in renal function may be anticipated in susceptible individuals treated with olmesartan. In patients whose renal function may depend upon the activity of the renin-angiotensin- aldosterone system (e.g., patients with severe congestive heart failure), treatment with angiotensin converting enzyme (ACE) inhibitors and angiotensin receptor antagonists has been associated with oliguria and/or progressive azotemia and rarely with acute renal failure and/or death. Similar results may be anticipated in patients treated with olmesartan. In studies of ACE inhibitors in patients with unilateral or bilateral renal artery stenosis, increases in serum creatinine or blood urea nitrogen (BUN) have been reported. There has been no long-term use of olmesartan medoxomil in patients with unilateral or bilateral renal artery stenosis, but similar results may be expected. Sprue-like Enteropathy Severe, chronic diarrhea with substantial weight loss has been reported in patients taking olmesartan months to years after drug initiation. Intestinal biopsies of patients often demonstrated villous atrophy. If a patient develops these symptoms during treatment with olmesartan, exclude other etiologies. Consider discontinuation of olmesartan medoxomil in cases where no other etiology is identified. Electrolyte Imbalances Olmesartan medoxomil contains olmesartan, a drug that inhibits the renin-angiotensin system (RAS). Drugs that inhibit the RAS can cause hyperkalemia. Monitor serum electrolytes periodically.
Abaloparatide
Opicapone
Minor
Co-administration of agents that are both associated with a risk for developing hypotension, including cases of severe hypotension, may create an additive hypotensive effect to prolong and intensify hypotensive effects.
Abaloparatide is indicated for the treatment of postmenopausal women with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy. In postmenopausal women with osteoporosis, abaloparatide reduces the risk of vertebral and nonvertebral fractures. Abaloparatide is also indicated to increase bone density in men with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy.
Opicapone is indicated as adjunctive therapy in adults with Parkinson’s disease and end-of-dose motor fluctuations or “off” episodes whose symptoms cannot be stabilized on the combination therapy of levodopa and DOPA decarboxylase inhibitor (e.g., carbidopa).
Abaloparatide stimulates bone formation on periosteal, trabecular, and cortical bone surfaces. It increases bone mineral density and bone formation markers in a dose-dependent manner. Abaloparatide causes transient and limited increases in osteoclast bone resorption and increases bone density. In rats and monkeys, abaloparatide exerted anabolic effects, increasing bone mineral density and mineral content correlating with increases in bone strength at vertebral and nonvertebral sites.
Opicapone is a COMT inhibitor that serves to improve the availability and duration of action of levodopa (L-Dopa), a standard pharmacological treatment for Parkinson's Disease. Opicapone works by blocking the peripheral degradation of L-Dopa mediated by COMT. Opicapone has a long duration of action: following administration of a 50 mg dose, COMT inhibition lasted for more than 24 hours. In clinical trials, opicapone as adjunct therapy to L-Dopa plus a dopa decarboxylase inhibitor significantly improved motor fluctuations than placebo, and the effects were comparable to entacapone.
Abaloparatide
Paclitaxel
Minor
Co-administration of agents that are both associated with a risk for developing hypotension, including cases of severe hypotension, may create an additive hypotensive effect to prolong and intensify hypotensive effects.
Abaloparatide is indicated for the treatment of postmenopausal women with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy. In postmenopausal women with osteoporosis, abaloparatide reduces the risk of vertebral and nonvertebral fractures. Abaloparatide is also indicated to increase bone density in men with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy.
Used in the treatment of Kaposi's sarcoma and cancer of the lung, ovarian, and breast. Abraxane® is specfically indicated for the treatment of metastatic breast cancer and locally advanced or metastatic non-small cell lung cancer.
Abaloparatide stimulates bone formation on periosteal, trabecular, and cortical bone surfaces. It increases bone mineral density and bone formation markers in a dose-dependent manner. Abaloparatide causes transient and limited increases in osteoclast bone resorption and increases bone density. In rats and monkeys, abaloparatide exerted anabolic effects, increasing bone mineral density and mineral content correlating with increases in bone strength at vertebral and nonvertebral sites.
Paclitaxel is a taxoid antineoplastic agent indicated as first-line and subsequent therapy for the treatment of advanced carcinoma of the ovary, and other various cancers including breast cancer. Paclitaxel is a novel antimicrotubule agent that promotes the assembly of microtubules from tubulin dimers and stabilizes microtubules by preventing depolymerization. This stability results in the inhibition of the normal dynamic reorganization of the microtubule network that is essential for vital interphase and mitotic cellular functions. In addition, paclitaxel induces abnormal arrays or "bundles" of microtubules throughout the cell cycle and multiple asters of microtubules during mitosis.
Abaloparatide
Papaverine
Minor
Co-administration of agents that are both associated with a risk for developing hypotension, including cases of severe hypotension, may create an additive hypotensive effect to prolong and intensify hypotensive effects.
Abaloparatide is indicated for the treatment of postmenopausal women with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy. In postmenopausal women with osteoporosis, abaloparatide reduces the risk of vertebral and nonvertebral fractures. Abaloparatide is also indicated to increase bone density in men with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy.
For the treatment of impotence and vasospasms.
Abaloparatide stimulates bone formation on periosteal, trabecular, and cortical bone surfaces. It increases bone mineral density and bone formation markers in a dose-dependent manner. Abaloparatide causes transient and limited increases in osteoclast bone resorption and increases bone density. In rats and monkeys, abaloparatide exerted anabolic effects, increasing bone mineral density and mineral content correlating with increases in bone strength at vertebral and nonvertebral sites.
Papaverine is a nonxanthine phosphodiesterase inhibitor for the relief of cerebral and peripheral ischemia associated with arterial spasm and myocardial ischemia complicated by arrhythmias. The main actions of Papaverine are exerted on cardiac and smooth muscle. Like qathidine, Papaverine acts directly on the heart muscle to depress conduction and prolong the refractory period. Papaverine relaxes various smooth muscles. This relaxation may be prominent if spasm exists. The muscle cell is not paralyzed by Papaverine and still responds to drugs and other stimuli causing contraction. The antispasmodic effect is a direct one, and unrelated to muscle innervation. Papaverine is practically devoid of effects on the central nervous system. Papaverine relaxes the smooth musculature of the larger blood vessels, especially coronary, systemic peripheral, and pulmonary arteries.
Abaloparatide
Penbutolol
Minor
Co-administration of agents that are both associated with a risk for developing hypotension, including cases of severe hypotension, may create an additive hypotensive effect to prolong and intensify hypotensive effects.
Abaloparatide is indicated for the treatment of postmenopausal women with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy. In postmenopausal women with osteoporosis, abaloparatide reduces the risk of vertebral and nonvertebral fractures. Abaloparatide is also indicated to increase bone density in men with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy.
Penbutolol is indicated in the treatment of mild to moderate arterial hypertension. It may be used alone or in combination with other antihypertensive agents, especially thiazide-type diuretics.Penbutolol is contraindicated in patients with cardiogenic shock, sinus bradycardia, second and third degree atrioventricular conduction block, bronchial asthma, and those with known hypersensitivity.
Abaloparatide stimulates bone formation on periosteal, trabecular, and cortical bone surfaces. It increases bone mineral density and bone formation markers in a dose-dependent manner. Abaloparatide causes transient and limited increases in osteoclast bone resorption and increases bone density. In rats and monkeys, abaloparatide exerted anabolic effects, increasing bone mineral density and mineral content correlating with increases in bone strength at vertebral and nonvertebral sites.
Penbutolol is a ß-1, ß-2 (nonselective) adrenergic receptor antagonist. Experimental studies showed a dose-dependent increase in heart rate in reserpinized (norepinephrine-depleted) rats given penbutolol intravenously at doses of 0.25 to 1.0 mg/kg, suggesting that penbutolol has some intrinsic sympathomimetic activity. In human studies, however, heart rate decreases have been similar to those seen with propranolol.
Abaloparatide
Pentobarbital
Moderate
The use of barbiturates may increase hypotension.1,2 Therefore, the concomitant administration of barbiturates and hypotensive agents may lead to dangerous hypotension due to additive effects.
Abaloparatide is indicated for the treatment of postmenopausal women with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy. In postmenopausal women with osteoporosis, abaloparatide reduces the risk of vertebral and nonvertebral fractures. Abaloparatide is also indicated to increase bone density in men with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy.
For the short-term treatment of insomnia.
Abaloparatide stimulates bone formation on periosteal, trabecular, and cortical bone surfaces. It increases bone mineral density and bone formation markers in a dose-dependent manner. Abaloparatide causes transient and limited increases in osteoclast bone resorption and increases bone density. In rats and monkeys, abaloparatide exerted anabolic effects, increasing bone mineral density and mineral content correlating with increases in bone strength at vertebral and nonvertebral sites.
Pentobarbital, a barbiturate, is used for the treatment of short term insomnia. It belongs to a group of medicines called central nervous system (CNS) depressants that induce drowsiness and relieve tension or nervousness. Little analgesia is conferred by barbiturates; their use in the presence of pain may result in excitation.
Abaloparatide
Perindopril
Minor
Co-administration of agents that are both associated with a risk for developing hypotension, including cases of severe hypotension, may create an additive hypotensive effect to prolong and intensify hypotensive effects.
Abaloparatide is indicated for the treatment of postmenopausal women with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy. In postmenopausal women with osteoporosis, abaloparatide reduces the risk of vertebral and nonvertebral fractures. Abaloparatide is also indicated to increase bone density in men with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy.
For the treatment of mild to moderate essential hypertension, mild to moderate congestive heart failure, and to reduce the cardiovascular risk of individuals with hypertension or post-myocardial infarction and stable coronary disease.
Abaloparatide stimulates bone formation on periosteal, trabecular, and cortical bone surfaces. It increases bone mineral density and bone formation markers in a dose-dependent manner. Abaloparatide causes transient and limited increases in osteoclast bone resorption and increases bone density. In rats and monkeys, abaloparatide exerted anabolic effects, increasing bone mineral density and mineral content correlating with increases in bone strength at vertebral and nonvertebral sites.
Perindopril is a nonsulfhydryl prodrug that is metabolized via first pass effect (62%) and systemic hydrolysis (38%) to perindoprilat, its active metabolite, following oral administration. Perindoprilat lowers blood pressure by antagonizing the effect of the RAAS. The RAAS is a homeostatic mechanism for regulating hemodynamics, water and electrolyte balance. During sympathetic stimulation or when renal blood pressure or blood flow is reduced, renin is released from the granular cells of the juxtaglomerular apparatus in the kidneys. In the blood stream, renin cleaves circulating angiotensinogen to ATI, which is subsequently cleaved to ATII by ACE. ATII increases blood pressure using a number of mechanisms. First, it stimulates the secretion of aldosterone from the adrenal cortex. Aldosterone travels to the distal convoluted tubule (DCT) and collecting tubule of nephrons where it increases sodium and water reabsorption by increasing the number of sodium channels and sodium-potassium ATPases on cell membranes. Second, ATII stimulates the secretion of vasopressin (also known as antidiuretic hormone or ADH) from the posterior pituitary gland. ADH stimulates further water reabsorption from the kidneys via insertion of aquaporin-2 channels on the apical surface of cells of the DCT and collecting tubules. Third, ATII increases blood pressure through direct arterial vasoconstriction. Stimulation of the Type 1 ATII receptor on vascular smooth muscle cells leads to a cascade of events resulting in myocyte contraction and vasoconstriction. In addition to these major effects, ATII induces the thirst response via stimulation of hypothalamic neurons. ACE inhibitors inhibit the rapid conversion of ATI to ATII and antagonize RAAS-induced increases in blood pressure. ACE (also known as kininase II) is also involved in the enzymatic deactivation of bradykinin, a vasodilator. Inhibiting the deactivation of bradykinin increases bradykinin levels and may sustain the effects of perindoprilat by causing increased vasodilation and decreased blood pressure.
Abaloparatide
Phenelzine
Moderate
Incidences of orthostatic hypotension have occurred with monoamine oxidase inhibitors (MAOIs) therapy 1. Co-administration of hypotensive drugs in presence of a MAOI may result in increased risk for developing orthostatic hypotension due to an additive effect.
Abaloparatide is indicated for the treatment of postmenopausal women with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy. In postmenopausal women with osteoporosis, abaloparatide reduces the risk of vertebral and nonvertebral fractures. Abaloparatide is also indicated to increase bone density in men with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy.
Phenelzine is indicated for the treatment of nonendogenous, neurotic or atypical depression for patients that do not tolerate other forms of therapy. Atypical depression has a high prevalence rate, starts in early life, tends to last longer, is more likely to occur in people with bipolar disorder, has a high comorbidity with anxiety disorder and carries more risk of suicidal behavior. It is important to specify the atypical feature to predict the clinical course of depression and hence generate the best treatment and service. The featuring symptoms of the atypical feature include mood reactivity, two or more of this symptoms: 1) increased appetite, 2) increased sleep, 3) leaden paralysis and 4) interpersonal rejection sensitivity and should not have melancholic or catatonic features of depression. Neurotic depression is a depression of an emotionally unstable person. It is a secondary condition to major personality disorder, neuroses and drug use disorders. Likewise, a primary depression with a family history of depression spectrum disease would fit in this category. A nonendogenous depression is characterized by a disturbance in mood and general outlook. The physical symptoms tend to be less severe and it often occurs in response to stressful life events that keep occurring over a large period of time generating a continuous stress in the daily living.
Abaloparatide stimulates bone formation on periosteal, trabecular, and cortical bone surfaces. It increases bone mineral density and bone formation markers in a dose-dependent manner. Abaloparatide causes transient and limited increases in osteoclast bone resorption and increases bone density. In rats and monkeys, abaloparatide exerted anabolic effects, increasing bone mineral density and mineral content correlating with increases in bone strength at vertebral and nonvertebral sites.
The elimination of monoamine oxidase by phenelzine results in the elevation of brain amines such as 2-phenylethylamine which is a metabolite of phenelzine. These amines have then marked effects on the uptake and release of catecholamines and serotonin in nerve endings. Phenelzine is shown to elevate brain levels of the gamma-aminobutyric acid (GABA) and alanine (ALA) as well as to inhibit the activity of the transaminases that normally metabolize these amino acids. In preclinical studies, it has been shown to be neuroprotective in cerebral ischemia.
Abaloparatide
Phenobarbital
Moderate
The use of barbiturates may increase hypotension.1,2 Therefore, the concomitant administration of barbiturates and hypotensive agents may lead to dangerous hypotension due to additive effects.
Abaloparatide is indicated for the treatment of postmenopausal women with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy. In postmenopausal women with osteoporosis, abaloparatide reduces the risk of vertebral and nonvertebral fractures. Abaloparatide is also indicated to increase bone density in men with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy.
For the treatment of all types of seizures except absence seizures.
Abaloparatide stimulates bone formation on periosteal, trabecular, and cortical bone surfaces. It increases bone mineral density and bone formation markers in a dose-dependent manner. Abaloparatide causes transient and limited increases in osteoclast bone resorption and increases bone density. In rats and monkeys, abaloparatide exerted anabolic effects, increasing bone mineral density and mineral content correlating with increases in bone strength at vertebral and nonvertebral sites.
Phenobarbital, the longest-acting barbiturate, is used for its anticonvulsant and sedative-hypnotic properties in the management of all seizure disorders except absence (petit mal).
Abaloparatide
Phenoxybenzamine
Minor
Co-administration of agents that are both associated with a risk for developing hypotension, including cases of severe hypotension, may create an additive hypotensive effect to prolong and intensify hypotensive effects.
Abaloparatide is indicated for the treatment of postmenopausal women with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy. In postmenopausal women with osteoporosis, abaloparatide reduces the risk of vertebral and nonvertebral fractures. Abaloparatide is also indicated to increase bone density in men with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy.
For the treatment of phaeochromocytoma (malignant), benign prostatic hypertrophy and malignant essential hypertension.
Abaloparatide stimulates bone formation on periosteal, trabecular, and cortical bone surfaces. It increases bone mineral density and bone formation markers in a dose-dependent manner. Abaloparatide causes transient and limited increases in osteoclast bone resorption and increases bone density. In rats and monkeys, abaloparatide exerted anabolic effects, increasing bone mineral density and mineral content correlating with increases in bone strength at vertebral and nonvertebral sites.
Phenoxybenzamine is indicated for the control of episodes of hypertension and sweating that occur with a disease called pheochromocytoma. If tachycardia is excessive, it may be necessary to use a beta-blocking agent concomitantly. Phenoxybenzamine is a long-acting, adrenergic, alpha-receptor blocking agent which can produce and maintain "chemical sympathectomy" by oral administration. It increases blood flow to the skin, mucosa and abdominal viscera, and lowers both supine and erect blood pressures. It has no effect on the parasympathetic system. Phenoxybenzamine works by blocking alpha receptors in certain parts of the body. Alpha receptors are present in the muscle that lines the walls of blood vessels. When the receptors are blocked by Phenoxybenzamine, the muscle relaxes and the blood vessels widen. This widening of the blood vessels results in a lowering of blood pressure.
Abaloparatide
Phentolamine
Minor
Co-administration of agents that are both associated with a risk for developing hypotension, including cases of severe hypotension, may create an additive hypotensive effect to prolong and intensify hypotensive effects.
Abaloparatide is indicated for the treatment of postmenopausal women with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy. In postmenopausal women with osteoporosis, abaloparatide reduces the risk of vertebral and nonvertebral fractures. Abaloparatide is also indicated to increase bone density in men with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy.
When used intravenously or intramuscularly, phentolamine is used to prevent or control hypertensive episodes that may occur in a patient with pheochromocytoma due to stress or manipulation during preoperative preparation and surgical excision. It is also used to prevent or treat dermal necrosis and sloughing following intravenous administration or extravasation of norepinephrine. It may be used to diagnose pheochromocytoma by the phentolamine-blocking test. Submucosal injection of phentolamine is indicated for the reversal of soft-tissue anesthesia (e.g. anesthesia of the lip and tongue) and the associated functional deficits resulting from an intraoral submucosal injection of a local anesthetic containing a vasoconstrictor in patients three years old and older. Phentolamine ophthalmic solution is used to treat pharmacologically-induced mydriasis produced by adrenergic agonists (e.g., phenylephrine) or parasympatholytic (e.g., tropicamide) agents.
Abaloparatide stimulates bone formation on periosteal, trabecular, and cortical bone surfaces. It increases bone mineral density and bone formation markers in a dose-dependent manner. Abaloparatide causes transient and limited increases in osteoclast bone resorption and increases bone density. In rats and monkeys, abaloparatide exerted anabolic effects, increasing bone mineral density and mineral content correlating with increases in bone strength at vertebral and nonvertebral sites.
Phentolamine produces an alpha-adrenergic block of a relatively short duration. Phentolamine induces vasodilatation of vascular smooth muscle and pupils. When used in an ophthalmic solution, the onset of pupil dilation generally occurred in 30 minutes, with the maximal effect seen in 60 to 90 minutes. Pupil dilation lasted for at least 24 hours. Phentolamine also has direct but less marked positive inotropic and chronotropic effects on cardiac muscle and vasodilator effects on vascular smooth muscle; however, phentolamine is not believed to affect contractile or adenyl cyclase function. Large doses can lead to a mild sympatholytic action. Some evidence suggests that phentolamine also stimulates beta-adrenergic receptors, thereby causing peripheral vasodilation. Phentolamine was shown to stimulate insulin secretion, possibly related to its blocking actions on ATP-sensitive K channels.
Abaloparatide
Pindolol
Minor
Co-administration of agents that are both associated with a risk for developing hypotension, including cases of severe hypotension, may create an additive hypotensive effect to prolong and intensify hypotensive effects.
Abaloparatide is indicated for the treatment of postmenopausal women with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy. In postmenopausal women with osteoporosis, abaloparatide reduces the risk of vertebral and nonvertebral fractures. Abaloparatide is also indicated to increase bone density in men with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy.
Pindolol is indicated in the management of hypertension. In Canada, it is also indicated in the prophylaxis of angina.
Abaloparatide stimulates bone formation on periosteal, trabecular, and cortical bone surfaces. It increases bone mineral density and bone formation markers in a dose-dependent manner. Abaloparatide causes transient and limited increases in osteoclast bone resorption and increases bone density. In rats and monkeys, abaloparatide exerted anabolic effects, increasing bone mineral density and mineral content correlating with increases in bone strength at vertebral and nonvertebral sites.
Pindolol is a nonselective beta blocker indicated in the management of hypertension and prophylaxis of angina. It has a short duration of action as it is given twice daily, and a wide therapeutic window as doses can range from 10-60 mg/day. Patients should be counselled regarding the risk of cardiac failure, exacerbating ischemic heart disease with sudden withdrawal, nonallergic bronchospasm, masking hypoglycemia in diabetics, and masking hyperthyroidism.
Abaloparatide
Polythiazide
Minor
The use of two drugs that both lower blood pressure may result in a more pronounced hypotensive effect.
Abaloparatide is indicated for the treatment of postmenopausal women with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy. In postmenopausal women with osteoporosis, abaloparatide reduces the risk of vertebral and nonvertebral fractures. Abaloparatide is also indicated to increase bone density in men with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy.
Polythiazide is a thiazide diuretic used to decrease edema and decrease blood pressure.
Abaloparatide stimulates bone formation on periosteal, trabecular, and cortical bone surfaces. It increases bone mineral density and bone formation markers in a dose-dependent manner. Abaloparatide causes transient and limited increases in osteoclast bone resorption and increases bone density. In rats and monkeys, abaloparatide exerted anabolic effects, increasing bone mineral density and mineral content correlating with increases in bone strength at vertebral and nonvertebral sites.
As a thiazide diuretic, Polythiazide inhibits the sodium-chloride symporter which decreases solute reabsorption leading to a retention of water in the urine, as water normally follows solutes. More frequent urination is due to the increased loss of water that has not been retained from the body as a result of a concomitant relationship with sodium loss from the convoluted tubule. The short-term anti-hypertensive action is based on the fact that thiazides decrease preload, decreasing blood pressure
Abaloparatide
Pramipexole
Minor
Co-administration of agents that are both associated with a risk for developing hypotension, including cases of severe hypotension, may create an additive hypotensive effect to prolong and intensify hypotensive effects.
Abaloparatide is indicated for the treatment of postmenopausal women with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy. In postmenopausal women with osteoporosis, abaloparatide reduces the risk of vertebral and nonvertebral fractures. Abaloparatide is also indicated to increase bone density in men with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy.
This drug is indicated for the symptomatic treatment of Parkinson’s disease. This drug can be administered as monotherapy or in conjunction with levodopa. It is also indicated for symptomatic treatment of moderate to severe primary Restless Legs Syndrome (RLS).
Abaloparatide stimulates bone formation on periosteal, trabecular, and cortical bone surfaces. It increases bone mineral density and bone formation markers in a dose-dependent manner. Abaloparatide causes transient and limited increases in osteoclast bone resorption and increases bone density. In rats and monkeys, abaloparatide exerted anabolic effects, increasing bone mineral density and mineral content correlating with increases in bone strength at vertebral and nonvertebral sites.
Parkinson's Disease Through the stimulation of dopamine receptors, pramipexole is thought to relieve the symptoms of Parkinson's Disease. The motor symptoms of Parkinson's disease occur partly due to a reduction of dopamine in the substantia nigra of the brain. Dopamine is an essential neurotransmitter that has major effects on motor movements in humans. Restless Legs Syndrome Pramipexole likely restores balance to the dopaminergic system, controlling the symptoms of this condition. Restless legs syndrome is thought to occur, in part, through dysfunction of the dopaminergic system, resulting in unpleasant lower extremity symptoms,. Other effects In addition to the abovementioned effects, animal studies demonstrate that pramipexole blocks dopamine synthesis, release, and turnover. Additionally, this drug is neuroprotective to dopamine neuron degeneration after ischemia or methamphetamine neurotoxicity.
Abaloparatide
Prazosin
Minor
Co-administration of agents that are both associated with a risk for developing hypotension, including cases of severe hypotension, may create an additive hypotensive effect to prolong and intensify hypotensive effects.
Abaloparatide is indicated for the treatment of postmenopausal women with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy. In postmenopausal women with osteoporosis, abaloparatide reduces the risk of vertebral and nonvertebral fractures. Abaloparatide is also indicated to increase bone density in men with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy.
This drug is indicated for the treatment of hypertension (high blood pressure). Prazosin can be given alone or given with other blood pressure-lowering drugs, including diuretics or beta-adrenergic blocking agents. Prazosin does not negatively impact lung function, and therefore may be used to manage hypertension in patients who are asthmatic or patients with chronic obstructive lung disease (COPD).
Abaloparatide stimulates bone formation on periosteal, trabecular, and cortical bone surfaces. It increases bone mineral density and bone formation markers in a dose-dependent manner. Abaloparatide causes transient and limited increases in osteoclast bone resorption and increases bone density. In rats and monkeys, abaloparatide exerted anabolic effects, increasing bone mineral density and mineral content correlating with increases in bone strength at vertebral and nonvertebral sites.
Effects on blood pressure The pharmacodynamic and therapeutic effect of this drug includes is a decrease in blood pressure as well as clinically significant decreases in cardiac output, heart rate, blood flow to the kidney, and glomerular filtration rate. The decrease in blood pressure may occur in both standing and supine positions. Many of the above effects are due to vasodilation of blood vessels caused by prazosin, resulting in decreased peripheral resistance,. Peripheral resistance refers to the level resistance of the blood vessels to blood that flows through them. As the blood vessels constrict (narrow), the resistance increases and as they dilate (widen), and peripheral resistance decreases, lowering blood pressure. Effects on sleep disturbance related to post-traumatic stress disorder (PTSD) Some studies have suggested that this drug improves sleep in patients suffering from insomnia related to nightmares and post-traumatic stress disorder, caused by hyperarousal. This effect likely occurs through the inhibition of adrenergic stimulation found in states of hyperarousal.
Abaloparatide
Primidone
Moderate
The use of barbiturates may increase hypotension.1,2 Therefore, the concomitant administration of barbiturates and hypotensive agents may lead to dangerous hypotension due to additive effects.
Abaloparatide is indicated for the treatment of postmenopausal women with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy. In postmenopausal women with osteoporosis, abaloparatide reduces the risk of vertebral and nonvertebral fractures. Abaloparatide is also indicated to increase bone density in men with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy.
Primidone is commonly indicated for the management of grand mal, psychomotor, and focal epileptic seizures. In addition, it has also been studied and utilized as an effective management of essential tremor.
Abaloparatide stimulates bone formation on periosteal, trabecular, and cortical bone surfaces. It increases bone mineral density and bone formation markers in a dose-dependent manner. Abaloparatide causes transient and limited increases in osteoclast bone resorption and increases bone density. In rats and monkeys, abaloparatide exerted anabolic effects, increasing bone mineral density and mineral content correlating with increases in bone strength at vertebral and nonvertebral sites.
Primidone alters sodium and calcium channel transport, reducing the frequency of nerve firing, which may be responsible for its effect on convulsions and essential tremor. Primidone has a wide therapeutic window as doses of 50-1000mg/day were effective. Patients should be counselled regarding the risk of status epilepticus with abrupt cessation of primidone.
Abaloparatide
Procaine
Moderate
Incidences of orthostatic hypotension have occurred with monoamine oxidase inhibitors (MAOIs) therapy 1. Co-administration of hypotensive drugs in presence of a MAOI may result in increased risk for developing orthostatic hypotension due to an additive effect.
Abaloparatide is indicated for the treatment of postmenopausal women with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy. In postmenopausal women with osteoporosis, abaloparatide reduces the risk of vertebral and nonvertebral fractures. Abaloparatide is also indicated to increase bone density in men with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy.
Used as a local anesthetic primarily in oral surgery
Abaloparatide stimulates bone formation on periosteal, trabecular, and cortical bone surfaces. It increases bone mineral density and bone formation markers in a dose-dependent manner. Abaloparatide causes transient and limited increases in osteoclast bone resorption and increases bone density. In rats and monkeys, abaloparatide exerted anabolic effects, increasing bone mineral density and mineral content correlating with increases in bone strength at vertebral and nonvertebral sites.
Procaine is an anesthetic agent indicated for production of local or regional anesthesia, particularly for oral surgery. Procaine (like cocaine) has the advantage of constricting blood vessels which reduces bleeding, unlike other local anesthetics like lidocaine. Procaine is an ester anesthetic. It is metabolized in the plasma by the enzyme pseudocholinesterase through hydrolysis into para-aminobenzoic acid (PABA), which is then excreted by the kidneys into the urine.
Abaloparatide
Procarbazine
Moderate
Incidences of orthostatic hypotension have occurred with monoamine oxidase inhibitors (MAOIs) therapy 1. Co-administration of hypotensive drugs in presence of a MAOI may result in increased risk for developing orthostatic hypotension due to an additive effect.
Abaloparatide is indicated for the treatment of postmenopausal women with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy. In postmenopausal women with osteoporosis, abaloparatide reduces the risk of vertebral and nonvertebral fractures. Abaloparatide is also indicated to increase bone density in men with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy.
For use with other anticancer drugs for the treatment of stage III and stage IV Hodgkin's disease.
Abaloparatide stimulates bone formation on periosteal, trabecular, and cortical bone surfaces. It increases bone mineral density and bone formation markers in a dose-dependent manner. Abaloparatide causes transient and limited increases in osteoclast bone resorption and increases bone density. In rats and monkeys, abaloparatide exerted anabolic effects, increasing bone mineral density and mineral content correlating with increases in bone strength at vertebral and nonvertebral sites.
Procarbazine is an antineoplastic in the class of alkylating agents and is used to treat various forms of cancer. Alkylating agents are so named because of their ability to add alkyl groups to many electronegative groups under conditions present in cells. They stop tumor growth by cross-linking guanine bases in DNA double-helix strands - directly attacking DNA. This makes the strands unable to uncoil and separate. As this is necessary in DNA replication, the cells can no longer divide. In addition, these drugs add methyl or other alkyl groups onto molecules where they do not belong which in turn inhibits their correct utilization by base pairing and causes a miscoding of DNA. Procarbazine is cell-phase specific for the S phase of cell division.
Abaloparatide
Propofol
Minor
Co-administration of agents that are both associated with a risk for developing hypotension, including cases of severe hypotension, may create an additive hypotensive effect to prolong and intensify hypotensive effects.
Abaloparatide is indicated for the treatment of postmenopausal women with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy. In postmenopausal women with osteoporosis, abaloparatide reduces the risk of vertebral and nonvertebral fractures. Abaloparatide is also indicated to increase bone density in men with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy.
Used for induction and/or maintenance of anaesthesia and for management of refractory status epilepticus.
Abaloparatide stimulates bone formation on periosteal, trabecular, and cortical bone surfaces. It increases bone mineral density and bone formation markers in a dose-dependent manner. Abaloparatide causes transient and limited increases in osteoclast bone resorption and increases bone density. In rats and monkeys, abaloparatide exerted anabolic effects, increasing bone mineral density and mineral content correlating with increases in bone strength at vertebral and nonvertebral sites.
Propofol is a sedative-hypnotic agent for use in the induction and maintenance of anesthesia or sedation. Intravenous injection of a therapeutic dose of propofol produces hypnosis rapidly with minimal excitation, usually within 40 seconds from the start of an injection (the time for one arm-brain circulation).
Abaloparatide
Propranolol
Minor
Co-administration of agents that are both associated with a risk for developing hypotension, including cases of severe hypotension, may create an additive hypotensive effect to prolong and intensify hypotensive effects.
Abaloparatide is indicated for the treatment of postmenopausal women with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy. In postmenopausal women with osteoporosis, abaloparatide reduces the risk of vertebral and nonvertebral fractures. Abaloparatide is also indicated to increase bone density in men with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy.
Propranolol is indicated to treat hypertension. Propranolol is also indicated to treat angina pectoris due to coronary atherosclerosis, atrial fibrillation, myocardial infarction, migraine, essential tremor, hypertrophic subaortic stenosis, pheochromocytoma, and proliferating infantile hemangioma.
Abaloparatide stimulates bone formation on periosteal, trabecular, and cortical bone surfaces. It increases bone mineral density and bone formation markers in a dose-dependent manner. Abaloparatide causes transient and limited increases in osteoclast bone resorption and increases bone density. In rats and monkeys, abaloparatide exerted anabolic effects, increasing bone mineral density and mineral content correlating with increases in bone strength at vertebral and nonvertebral sites.
Propranolol is a beta-adrenergic receptor antagonist used to treat hypertension. Propranolol has a long duration of action as it is given once or twice daily depending on the indication. When patients abruptly stop taking propranolol, they may experience exacerbations of angina and myocardial infarctions.
Abaloparatide
Quetiapine
Minor
Co-administration of agents that are both associated with a risk for developing hypotension, including cases of severe hypotension, may create an additive hypotensive effect to prolong and intensify hypotensive effects.
Abaloparatide is indicated for the treatment of postmenopausal women with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy. In postmenopausal women with osteoporosis, abaloparatide reduces the risk of vertebral and nonvertebral fractures. Abaloparatide is also indicated to increase bone density in men with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy.
Quetiapine is used in the symptomatic treatment of schizophrenia. In addition, it may be used for the management of acute manic or mixed episodes in patients with bipolar I disorder, as a monotherapy or combined with other drugs. It may be used to manage depressive episodes in bipolar disorder. In addition to the above indications, quetiapine is used in combination with antidepressant drugs for the treatment of major depression. Some off-label uses for this drug include the management of post-traumatic stress disorder (PTSD), generalized anxiety disorder, and psychosis associated with Parkinson's disease.
Abaloparatide stimulates bone formation on periosteal, trabecular, and cortical bone surfaces. It increases bone mineral density and bone formation markers in a dose-dependent manner. Abaloparatide causes transient and limited increases in osteoclast bone resorption and increases bone density. In rats and monkeys, abaloparatide exerted anabolic effects, increasing bone mineral density and mineral content correlating with increases in bone strength at vertebral and nonvertebral sites.
Quetiapine improves the positive and negative symptoms of schizophrenia and major depression by acting on various neurotransmitter receptors, such as the serotonin and dopamine receptors. In bipolar disorder, it improves both depressive and manic symptoms. A note on suicidality in young patients and administration in the elderly Quetiapine can cause suicidal thinking or behavior in children and adolescents and should not be given to children under 10 years of age. It is important to monitor for suicidality if this drug is given to younger patients. In addition, this drug is not indicated for the treatment of psychosis related to dementia due to an increased death rate in elderly patients taking this drug.
Abaloparatide
Quinapril
Minor
Co-administration of agents that are both associated with a risk for developing hypotension, including cases of severe hypotension, may create an additive hypotensive effect to prolong and intensify hypotensive effects.
Abaloparatide is indicated for the treatment of postmenopausal women with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy. In postmenopausal women with osteoporosis, abaloparatide reduces the risk of vertebral and nonvertebral fractures. Abaloparatide is also indicated to increase bone density in men with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy.
Quinapril is indicated for the treatment of hypertension and as an adjunct therapy in the treatment of heart failure. Quinapril in combination with hydrochlorothiazide is indicated for the treatment of hypertension.
Abaloparatide stimulates bone formation on periosteal, trabecular, and cortical bone surfaces. It increases bone mineral density and bone formation markers in a dose-dependent manner. Abaloparatide causes transient and limited increases in osteoclast bone resorption and increases bone density. In rats and monkeys, abaloparatide exerted anabolic effects, increasing bone mineral density and mineral content correlating with increases in bone strength at vertebral and nonvertebral sites.
Quinapril is a prodrug of an angiotensin converting enzyme (ACE) inhibitor used in the treatment of hypertension or adjunct in the treatment of heart failure. Quinapril has a wide therapeutic window and a long duration of action as it is given in doses of 10-80mg once daily.
Abaloparatide
Ramipril
Minor
Co-administration of agents that are both associated with a risk for developing hypotension, including cases of severe hypotension, may create an additive hypotensive effect to prolong and intensify hypotensive effects.
Abaloparatide is indicated for the treatment of postmenopausal women with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy. In postmenopausal women with osteoporosis, abaloparatide reduces the risk of vertebral and nonvertebral fractures. Abaloparatide is also indicated to increase bone density in men with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy.
For the management of mild to severe hypertension. May be used to reduce cardiovascular mortality following myocardial infarction in hemodynamically stable individuals who develop clinical signs of congestive heart failure within a few days following myocardial infarction. To reduce the rate of death, myocardial infarction and stroke in individuals at high risk of cardiovascular events. May be used to slow the progression of renal disease in individuals with hypertension, diabetes mellitus and microalubinuria or overt nephropathy.
Abaloparatide stimulates bone formation on periosteal, trabecular, and cortical bone surfaces. It increases bone mineral density and bone formation markers in a dose-dependent manner. Abaloparatide causes transient and limited increases in osteoclast bone resorption and increases bone density. In rats and monkeys, abaloparatide exerted anabolic effects, increasing bone mineral density and mineral content correlating with increases in bone strength at vertebral and nonvertebral sites.
Ramipril is an ACE inhibitor similar to benazepril, fosinopril and quinapril. It is an inactive prodrug that is converted to ramiprilat in the liver, the main site of activation, and kidneys. Ramiprilat confers blood pressure lowing effects by antagonizing the effect of the RAAS. The RAAS is a homeostatic mechanism for regulating hemodynamics, water and electrolyte balance. During sympathetic stimulation or when renal blood pressure or blood flow is reduced, renin is released from the granular cells of the juxtaglomerular apparatus in the kidneys. In the blood stream, renin cleaves circulating angiotensinogen to ATI, which is subsequently cleaved to ATII by ACE. ATII increases blood pressure using a number of mechanisms. First, it stimulates the secretion of aldosterone from the adrenal cortex. Aldosterone travels to the distal convoluted tubule (DCT) and collecting tubule of nephrons where it increases sodium and water reabsorption by increasing the number of sodium channels and sodium-potassium ATPases on cell membranes. Second, ATII stimulates the secretion of vasopressin (also known as antidiuretic hormone or ADH) from the posterior pituitary gland. ADH stimulates further water reabsorption from the kidneys via insertion of aquaporin-2 channels on the apical surface of cells of the DCT and collecting tubules. Third, ATII increases blood pressure through direct arterial vasoconstriction. Stimulation of the Type 1 ATII receptor on vascular smooth muscle cells leads to a cascade of events resulting in myocyte contraction and vasoconstriction. In addition to these major effects, ATII induces the thirst response via stimulation of hypothalamic neurons. ACE inhibitors inhibit the rapid conversion of ATI to ATII and antagonize RAAS-induced increases in blood pressure. ACE (also known as kininase II) is also involved in the enzymatic deactivation of bradykinin, a vasodilator. Inhibiting the deactivation of bradykinin increases bradykinin levels and may sustain the effects of ramiprilat by causing increased vasodilation and decreased blood pressure.
Abaloparatide
Rasagiline
Moderate
Incidences of orthostatic hypotension have occurred with monoamine oxidase inhibitors (MAOIs) therapy 1. Co-administration of hypotensive drugs in presence of a MAOI may result in increased risk for developing orthostatic hypotension due to an additive effect.
Abaloparatide is indicated for the treatment of postmenopausal women with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy. In postmenopausal women with osteoporosis, abaloparatide reduces the risk of vertebral and nonvertebral fractures. Abaloparatide is also indicated to increase bone density in men with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy.
For the treatment of the signs and symptoms of idiopathic Parkinsons disease as initial monotherapy and as adjunct therapy to levodopa.
Abaloparatide stimulates bone formation on periosteal, trabecular, and cortical bone surfaces. It increases bone mineral density and bone formation markers in a dose-dependent manner. Abaloparatide causes transient and limited increases in osteoclast bone resorption and increases bone density. In rats and monkeys, abaloparatide exerted anabolic effects, increasing bone mineral density and mineral content correlating with increases in bone strength at vertebral and nonvertebral sites.
Rasagiline is a propargylamine and an irreversible inhibitor of monoamine oxidase (MAO). MAO, a flavin-containing enzyme, regulates the metabolic degradation of catecholamines and serotonin in the CNS and peripheral tissues. It is classified into two major molecular species, A and B, and is localized in mitochondrial membranes throughout the body in nerve terminals, brain, liver and intestinal mucosa. MAO-A is found predominantly in the GI tract and liver, and regulates the metabolic degradation of circulating catecholamines and dietary amines. MAO-B is the major form in the human brain and is responsible for the regulation of the metabolic degradation of dopamine and phenylethylamine. In ex vivo animal studies in brain, liver and intestinal tissues rasagiline was shown to be a potent,selective, and irreversible monoamine oxidase type B (MAO-B) inhibitor. At the recommended therapeutic doses, Rasagiline was also shown to be a potent and irreversible inhibitor of MAO-B in platelets. The selectivity of rasagiline for inhibiting only MAO-B (and not MAO-A) in humans and the sensitivity to tyramine during rasagiline treatment at any dose has not been sufficiently characterized to avoid restriction of dietary tyramine and amines contained in medications.
Abaloparatide
Remifentanil
Minor
Co-administration of agents that are both associated with a risk for developing hypotension, including cases of severe hypotension, may create an additive hypotensive effect to prolong and intensify hypotensive effects.
Abaloparatide is indicated for the treatment of postmenopausal women with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy. In postmenopausal women with osteoporosis, abaloparatide reduces the risk of vertebral and nonvertebral fractures. Abaloparatide is also indicated to increase bone density in men with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy.
For use during the induction and maintenance of general anesthesia.
Abaloparatide stimulates bone formation on periosteal, trabecular, and cortical bone surfaces. It increases bone mineral density and bone formation markers in a dose-dependent manner. Abaloparatide causes transient and limited increases in osteoclast bone resorption and increases bone density. In rats and monkeys, abaloparatide exerted anabolic effects, increasing bone mineral density and mineral content correlating with increases in bone strength at vertebral and nonvertebral sites.
Remifentanil is an opioid agonist with rapid onset and peak effect and ultra-short duration of action. The opioid activity of remifentanil is antagonized by opioid antagonists such as naloxone. The analgesic effects of remifentanil are rapid in onset and offset. Its effects and side effects are dose dependent and similar to other opioids. Remifentanil in humans has a rapid blood-brain equilibration half-time of 1 ± 1 minutes (mean ± SD) and a rapid onset of action.
Abaloparatide
Rilmenidine
Minor
The use of two drugs that both lower blood pressure may result in a more pronounced hypotensive effect.
Abaloparatide is indicated for the treatment of postmenopausal women with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy. In postmenopausal women with osteoporosis, abaloparatide reduces the risk of vertebral and nonvertebral fractures. Abaloparatide is also indicated to increase bone density in men with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy.
No indication available
Abaloparatide stimulates bone formation on periosteal, trabecular, and cortical bone surfaces. It increases bone mineral density and bone formation markers in a dose-dependent manner. Abaloparatide causes transient and limited increases in osteoclast bone resorption and increases bone density. In rats and monkeys, abaloparatide exerted anabolic effects, increasing bone mineral density and mineral content correlating with increases in bone strength at vertebral and nonvertebral sites.
No pharmacodynamics available
Abaloparatide
Riociguat
Minor
Co-administration of agents that are both associated with a risk for developing hypotension, including cases of severe hypotension, may create an additive hypotensive effect to prolong and intensify hypotensive effects.
Abaloparatide is indicated for the treatment of postmenopausal women with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy. In postmenopausal women with osteoporosis, abaloparatide reduces the risk of vertebral and nonvertebral fractures. Abaloparatide is also indicated to increase bone density in men with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy.
Riociguat is indicated for the treatment of adults with persistent/recurrent chronic thromboembolic pulmonary hypertension (CTEPH), (WHO Group 4) after surgical treatment, or inoperable CTEPH, to improve exercise capacity and WHO functional class.
Abaloparatide stimulates bone formation on periosteal, trabecular, and cortical bone surfaces. It increases bone mineral density and bone formation markers in a dose-dependent manner. Abaloparatide causes transient and limited increases in osteoclast bone resorption and increases bone density. In rats and monkeys, abaloparatide exerted anabolic effects, increasing bone mineral density and mineral content correlating with increases in bone strength at vertebral and nonvertebral sites.
No pharmacodynamics available
Abaloparatide
Risperidone
Minor
Risperidone may induce orthostatic hypotension associated with dizziness, tachycardia, and in some patients, syncope, especially during the initial dose-titration period, probably reflecting its alpha-adrenergic antagonistic properties. As clinically significant hypotension has been observed with concomitant use of risperidone and antihypertensive medication, co-administration with agents known to cause hypotension may result in an additive risk for developing a decrease in blood pressure.
Abaloparatide is indicated for the treatment of postmenopausal women with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy. In postmenopausal women with osteoporosis, abaloparatide reduces the risk of vertebral and nonvertebral fractures. Abaloparatide is also indicated to increase bone density in men with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy.
Risperidone is indicated for the treatment of schizophrenia and irritability associated with autistic disorder. It is also indicated as monotherapy, or adjunctly with lithium or valproic acid, for the treatment of acute mania or mixed episodes associated with bipolar I disorder. Risperidone is additionally indicated in Canada for the short-term symptomatic management of aggression or psychotic symptoms in patients with severe dementia of the Alzheimer type unresponsive to nonpharmacological approaches. Risperidone is also used off-label for a number of conditions including as an adjunct to antidepressants in treatment-resistant depression.
Abaloparatide stimulates bone formation on periosteal, trabecular, and cortical bone surfaces. It increases bone mineral density and bone formation markers in a dose-dependent manner. Abaloparatide causes transient and limited increases in osteoclast bone resorption and increases bone density. In rats and monkeys, abaloparatide exerted anabolic effects, increasing bone mineral density and mineral content correlating with increases in bone strength at vertebral and nonvertebral sites.
The primary action of risperidone is to decrease dopaminergic and serotonergic pathway activity in the brain, therefore decreasing symptoms of schizophrenia and mood disorders. Risperidone has a high binding affinity for serotonergic 5-HT2A receptors when compared to dopaminergic D2 receptors in the brain. Risperidone binds to D2 receptors with a lower affinity than first-generation antipsychotic drugs, which bind with very high affinity. A reduction in extrapyramidal symptoms with risperidone, when compared to its predecessors, is likely a result of its moderate affinity for dopaminergic D2 receptors.
Abaloparatide
Ropinirole
Minor
Co-administration of agents that are both associated with a risk for developing hypotension, including cases of severe hypotension, may create an additive hypotensive effect to prolong and intensify hypotensive effects.
Abaloparatide is indicated for the treatment of postmenopausal women with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy. In postmenopausal women with osteoporosis, abaloparatide reduces the risk of vertebral and nonvertebral fractures. Abaloparatide is also indicated to increase bone density in men with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy.
For the treatment of the signs and symptoms of Parkinson's disease and for the treatment of primary moderate-severe restless legs syndrome.
Abaloparatide stimulates bone formation on periosteal, trabecular, and cortical bone surfaces. It increases bone mineral density and bone formation markers in a dose-dependent manner. Abaloparatide causes transient and limited increases in osteoclast bone resorption and increases bone density. In rats and monkeys, abaloparatide exerted anabolic effects, increasing bone mineral density and mineral content correlating with increases in bone strength at vertebral and nonvertebral sites.
Effects on Parkinson's and restless leg syndrome This drug promotes the relief or improvement of symptoms of Parkinson's or restless leg syndrome by stimulatory actions on dopamine receptors, which regulate movement. Effects on blood pressure Clinical experience with dopamine agonists, including ropinirole, suggests an association with impaired abilities in regulating blood pressure with resulting orthostatic hypotension, especially with patients undergoing dose escalation. In some patients in clinical studies, blood pressure changes were associated with orthostatic symptoms, bradycardia, and, in one case in a healthy volunteer, transient sinus arrest accompanied by syncope. The mechanism of orthostatic hypotension caused by ropinirole is assumed to be due to a D2-mediated blunting of noradrenergic response to a standing position, followed by a decrease in peripheral vascular resistance. Nausea is also a frequent symptom which accompanies orthostatic signs and symptoms. Effects on prolactin At oral doses as low as 0.2 mg, ropinirole suppressed serum prolactin concentrations in healthy male volunteers.
Abaloparatide
Ropivacaine
Minor
Co-administration of agents that are both associated with a risk for developing hypotension, including cases of severe hypotension, may create an additive hypotensive effect to prolong and intensify hypotensive effects.
Abaloparatide is indicated for the treatment of postmenopausal women with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy. In postmenopausal women with osteoporosis, abaloparatide reduces the risk of vertebral and nonvertebral fractures. Abaloparatide is also indicated to increase bone density in men with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy.
Ropivacaine is indicated in adult patients for the induction of regional or local anesthesia for surgery or acute pain management.
Abaloparatide stimulates bone formation on periosteal, trabecular, and cortical bone surfaces. It increases bone mineral density and bone formation markers in a dose-dependent manner. Abaloparatide causes transient and limited increases in osteoclast bone resorption and increases bone density. In rats and monkeys, abaloparatide exerted anabolic effects, increasing bone mineral density and mineral content correlating with increases in bone strength at vertebral and nonvertebral sites.
In contrast to most other local anesthetics, the presence of epinephrine does not affect the time of onset, duration of action, or the systemic absorption of ropivacaine.
Abaloparatide
Rotigotine
Minor
Co-administration of agents that are both associated with a risk for developing hypotension, including cases of severe hypotension, may create an additive hypotensive effect to prolong and intensify hypotensive effects.
Abaloparatide is indicated for the treatment of postmenopausal women with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy. In postmenopausal women with osteoporosis, abaloparatide reduces the risk of vertebral and nonvertebral fractures. Abaloparatide is also indicated to increase bone density in men with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy.
For use/treatment in neurologic disorders and parkinson's disease as well as moderate-to-severe primary Restless Legs Syndrome.
Abaloparatide stimulates bone formation on periosteal, trabecular, and cortical bone surfaces. It increases bone mineral density and bone formation markers in a dose-dependent manner. Abaloparatide causes transient and limited increases in osteoclast bone resorption and increases bone density. In rats and monkeys, abaloparatide exerted anabolic effects, increasing bone mineral density and mineral content correlating with increases in bone strength at vertebral and nonvertebral sites.
Rotigotine is an agonist at all 5 dopamine receptor subtypes (D1-D5) but binds to the D3 receptor with the highest affinity. It is also an antagonist at α-2-adrenergic receptors and an agonist at the 5HT1A receptors. Rotigotine also inhibits dopamine uptake and prolactin secretion. There is no indication of a QT/QTc prolonging effect of Neupro in doses up to 24 mg/24 hours. The effects of Neupro at doses up to 24 mg/24 hours (supratherapeutic doses) on the QT/QTc interval was evaluated in a double-blind, randomized, placebo- and positive-controlled (moxifloxacin 400 mg IV, single dose) parallel-group trial with an overall treatment period of 52 days in male and female patients with advanced-stage Parkinson's disease. Assay sensitivity was confirmed by significant QTc prolongation by moxifloxacin.
Abaloparatide
Safinamide
Moderate
Incidences of orthostatic hypotension have occurred with monoamine oxidase inhibitors (MAOIs) therapy 1. Co-administration of hypotensive drugs in presence of a MAOI may result in increased risk for developing orthostatic hypotension due to an additive effect.
Abaloparatide is indicated for the treatment of postmenopausal women with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy. In postmenopausal women with osteoporosis, abaloparatide reduces the risk of vertebral and nonvertebral fractures. Abaloparatide is also indicated to increase bone density in men with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy.
Safinamide is indicated as an add-on treatment to levodopa with or without other medicines for Parkinson’s disease
Abaloparatide stimulates bone formation on periosteal, trabecular, and cortical bone surfaces. It increases bone mineral density and bone formation markers in a dose-dependent manner. Abaloparatide causes transient and limited increases in osteoclast bone resorption and increases bone density. In rats and monkeys, abaloparatide exerted anabolic effects, increasing bone mineral density and mineral content correlating with increases in bone strength at vertebral and nonvertebral sites.
No pharmacodynamics available
Abaloparatide
Secobarbital
Moderate
The use of barbiturates may increase hypotension.1,2 Therefore, the concomitant administration of barbiturates and hypotensive agents may lead to dangerous hypotension due to additive effects.
Abaloparatide is indicated for the treatment of postmenopausal women with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy. In postmenopausal women with osteoporosis, abaloparatide reduces the risk of vertebral and nonvertebral fractures. Abaloparatide is also indicated to increase bone density in men with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy.
For the Short-term treatment of intractable insomnia for patients habituated to barbiturates
Abaloparatide stimulates bone formation on periosteal, trabecular, and cortical bone surfaces. It increases bone mineral density and bone formation markers in a dose-dependent manner. Abaloparatide causes transient and limited increases in osteoclast bone resorption and increases bone density. In rats and monkeys, abaloparatide exerted anabolic effects, increasing bone mineral density and mineral content correlating with increases in bone strength at vertebral and nonvertebral sites.
Secobarbital, a barbiturate, is used for the induction of anesthesia prior to the use of other general anesthetic agents and for induction of anesthesia for short surgical, diagnostic, or therapeutic procedures associated with minimal painful stimuli. Little analgesia is conferred by barbiturates; their use in the presence of pain may result in excitation.
Abaloparatide
Selegiline
Moderate
Incidences of orthostatic hypotension have occurred with monoamine oxidase inhibitors (MAOIs) therapy 1. Co-administration of hypotensive drugs in presence of a MAOI may result in increased risk for developing orthostatic hypotension due to an additive effect.
Abaloparatide is indicated for the treatment of postmenopausal women with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy. In postmenopausal women with osteoporosis, abaloparatide reduces the risk of vertebral and nonvertebral fractures. Abaloparatide is also indicated to increase bone density in men with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy.
Monotherapy for initial treatment of Parkinson's disease, as well as an adjunct therapy in patients with a decreased response to levodopa/carbadopa. Also used for the palliative treatment of mild to moderate Alzheimer's disease and at higher doses, for the treatment of depression.
Abaloparatide stimulates bone formation on periosteal, trabecular, and cortical bone surfaces. It increases bone mineral density and bone formation markers in a dose-dependent manner. Abaloparatide causes transient and limited increases in osteoclast bone resorption and increases bone density. In rats and monkeys, abaloparatide exerted anabolic effects, increasing bone mineral density and mineral content correlating with increases in bone strength at vertebral and nonvertebral sites.
Dopamine is an essential chemical that occurs in many parts of the body. It is the premature degradation of dopamine that results in the symptoms of Parkinson's disease. Monoamine oxidase (MAO) is an enzyme which accelerates the breakdown of dopamine. Selegiline can prolong the effects of dopamine in the brain by preventing its breakdown through seletively blocking MAO-B. It also may prevent the removal of dopamine between nerve endings and enhance release of dopamine from nerve cells.
Abaloparatide
Selexipag
Minor
The use of two drugs that both lower blood pressure may result in a more pronounced hypotensive effect.
Abaloparatide is indicated for the treatment of postmenopausal women with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy. In postmenopausal women with osteoporosis, abaloparatide reduces the risk of vertebral and nonvertebral fractures. Abaloparatide is also indicated to increase bone density in men with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy.
Selexipag is indicated for the treatment of pulmonary arterial hypertension (PAH) to delay disease progression and reduce risk of hospitalization.
Abaloparatide stimulates bone formation on periosteal, trabecular, and cortical bone surfaces. It increases bone mineral density and bone formation markers in a dose-dependent manner. Abaloparatide causes transient and limited increases in osteoclast bone resorption and increases bone density. In rats and monkeys, abaloparatide exerted anabolic effects, increasing bone mineral density and mineral content correlating with increases in bone strength at vertebral and nonvertebral sites.
At the maximum tolerated dose of 1600 mcg twice per day, selexipag was not found to prolong the QT interval to a clinically relevant extent. Both selexipag and its metabolite caused concentration-dependent inhibition of platelet aggregation in vitro with IC50 of 5.5 µM and 0.21 µM, respectively. However, at clinically relevant concentrations, there was no effect on platelet aggregation test parameters following multiple dose administration of selexipag in healthy patients.
Abaloparatide
Sevoflurane
Minor
Co-administration of agents that are both associated with a risk for developing hypotension, including cases of severe hypotension, may create an additive hypotensive effect to prolong and intensify hypotensive effects.
Abaloparatide is indicated for the treatment of postmenopausal women with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy. In postmenopausal women with osteoporosis, abaloparatide reduces the risk of vertebral and nonvertebral fractures. Abaloparatide is also indicated to increase bone density in men with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy.
Sevoflurane is used for the induction and maintenance of general anesthesia in adult and pediatric patients for inpatient and outpatient surgery.
Abaloparatide stimulates bone formation on periosteal, trabecular, and cortical bone surfaces. It increases bone mineral density and bone formation markers in a dose-dependent manner. Abaloparatide causes transient and limited increases in osteoclast bone resorption and increases bone density. In rats and monkeys, abaloparatide exerted anabolic effects, increasing bone mineral density and mineral content correlating with increases in bone strength at vertebral and nonvertebral sites.
Sevoflurane induces muscle relaxation and reduces sensitivity by altering tissue excitability with a fast onset of action. It does so by decreasing the extent of gap junction-mediated cell-cell coupling and altering the activity of the channels that underlie the action potential. Compared to halothane and isoflurane, sevoflurane has a shorter emergence time, as well as a shorter time to first analgesia. To reach an equilibrium between alveolar and arterial partial pressure, only a minimal amount of sevoflurane needs to be dissolved in blood. The use of sevoflurane can increase the risk of renal injury, respiratory depression, and QT prolongation. Also, it can lead to malignant hyperthermia, perioperative hyperkalemia, and pediatric neurotoxicity. Episodes of severe bradycardia and cardiac arrest have been reported in pediatric patients with Down Syndrome given sevoflurane. Sevoflurane anesthesia may impair the performance of activities requiring mental alertness, such as driving or operating machinery.
Abaloparatide
Sildenafil
Minor
The subject drug is a phosphodiesterase 5 inhibitor which can lower blood pressure.1 The affected drug can cause hypotension, particularly orthostatic hypotension. Concomitant administration of these medications may lead to an increased risk of hypotension and orthostatic hypotension.
Abaloparatide is indicated for the treatment of postmenopausal women with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy. In postmenopausal women with osteoporosis, abaloparatide reduces the risk of vertebral and nonvertebral fractures. Abaloparatide is also indicated to increase bone density in men with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy.
Sildenafil is a phosphodiesterase-5 (PDE5) inhibitor that is predominantly employed for two primary indications: (1) the treatment of erectile dysfunction; and (2) treatment of pulmonary hypertension, where:
Abaloparatide stimulates bone formation on periosteal, trabecular, and cortical bone surfaces. It increases bone mineral density and bone formation markers in a dose-dependent manner. Abaloparatide causes transient and limited increases in osteoclast bone resorption and increases bone density. In rats and monkeys, abaloparatide exerted anabolic effects, increasing bone mineral density and mineral content correlating with increases in bone strength at vertebral and nonvertebral sites.
In vitro studies have shown that sildenafil is selective for phosphodiesterase-5 (PDE5). Its effect is more potent on PDE5 than on other known phosphodiesterases. In particular, there is a 10-times selectivity over PDE6 which is involved in the phototransduction pathway in the retina. There is an 80-times selectivity over PDE1, and over 700-times over PDE 2, 3, 4, 7, 8, 9, 10 and 11. And finally, sildenafil has greater than 4,000-times selectivity for PDE5 over PDE3, the cAMP-specific phosphodiesterase isoform involved in the control of cardiac contractility. In eight double-blind, placebo-controlled crossover studies of patients with either organic or psychogenic erectile dysfunction, sexual stimulation resulted in improved erections, as assessed by an objective measurement of hardness and duration of erections (via the use of RigiScan®), after sildenafil administration compared with placebo. Most studies assessed the efficacy of sildenafil approximately 60 minutes post-dose. The erectile response, as assessed by RigiScan®, generally increased with increasing sildenafil dose and plasma concentration. The time course of effect was examined in one study, showing an effect for up to 4 hours but the response was diminished compared to 2 hours. Sildenafil causes mild and transient decreases in systemic blood pressure which, in the majority of cases, do not translate into clinical effects. After chronic dosing of 80 mg, three times a day to patients with systemic hypertension the mean change from baseline in systolic and diastolic blood pressure was a decrease of 9.4 mmHg and 9.1 mmHg respectively. After chronic dosing of 80 mg, three times a day to patients with pulmonary arterial hypertension lesser effects in blood pressure reduction were observed (a reduction in both systolic and diastolic pressure of 2 mmHg). At the recommended dose of 20 mg three times a day no reductions in systolic or diastolic pressure were seen. Single oral doses of sildenafil up to 100 mg in healthy volunteers produced no clinically relevant effects on ECG. After chronic dosing of 80 mg three times a day to patients with pulmonary arterial hypertension no clinically relevant effects on the ECG were reported either. In a study of the hemodynamic effects of a single oral 100 mg dose of sildenafil in 14 patients with severe coronary artery disease (CAD) (> 70 % stenosis of at least one coronary artery), the mean resting systolic and diastolic blood pressures decreased by 7 % and 6 % respectively compared to baseline. Mean pulmonary systolic blood pressure decreased by 9%. Sildenafil showed no effect on cardiac output and did not impair blood flow through the stenosed coronary arteries. Mild and transient differences in color discrimination (blue/green) were detected in some subjects using the Farnsworth-Munsell 100 hue test at 1 hour following a 100 mg dose, with no effects evident after 2 hours post-dose. The postulated mechanism for this change in color discrimination is related to inhibition of PDE6, which is involved in the phototransduction cascade of the retina. Sildenafil has no effect on visual acuity or contrast sensitivity. In a small size placebo-controlled study of patients with documented early age-related macular degeneration (n = 9), sildenafil (single dose, 100 mg) demonstrated no significant changes in visual tests conducted (which included visual acuity, Amsler grid, color discrimination simulated traffic light, and the Humphrey perimeter and photostress test).
Abaloparatide
Sodium ferric gluconate complex
Moderate
Ferrlecit may cause clinically significant hypotension.1 Hypotension associated with lightheadedness, malaise, fatigue, weakness or severe pain in the chest, back, flanks, or groin has been reported. These hypotensive reactions may or may not be associated with signs and symptoms of hypersensitivity reactions and usually resolve within one to two hours. Therefore, concomitant use of sodium ferric gluconate complex with hypotensive agents can exacerbate its hypotensive effects.
Abaloparatide is indicated for the treatment of postmenopausal women with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy. In postmenopausal women with osteoporosis, abaloparatide reduces the risk of vertebral and nonvertebral fractures. Abaloparatide is also indicated to increase bone density in men with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy.
Sodium ferric gluconate complex in sucrose injection is used to deplete the total body content of iron during iron deficiency anemia in patients aged 6 years and older with chronic kidney disease receiving hemodialysis and receiving supplemental epoetin therapy.
Abaloparatide stimulates bone formation on periosteal, trabecular, and cortical bone surfaces. It increases bone mineral density and bone formation markers in a dose-dependent manner. Abaloparatide causes transient and limited increases in osteoclast bone resorption and increases bone density. In rats and monkeys, abaloparatide exerted anabolic effects, increasing bone mineral density and mineral content correlating with increases in bone strength at vertebral and nonvertebral sites.
Sodium ferric gluconate complex is an exogenous epoetin that acts to restore the body's content of iron, which is essential for normal hemoglobin synthesis, oxygen transport, and enzymatic processes. The complex increases red blood cell production and increased iron utilization.
Abaloparatide
Sotalol
Minor
Co-administration of agents that are both associated with a risk for developing hypotension, including cases of severe hypotension, may create an additive hypotensive effect to prolong and intensify hypotensive effects.
Abaloparatide is indicated for the treatment of postmenopausal women with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy. In postmenopausal women with osteoporosis, abaloparatide reduces the risk of vertebral and nonvertebral fractures. Abaloparatide is also indicated to increase bone density in men with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy.
Sotalol is indicated to treat life threatening ventricular arrhytmias and maintain normal sinus rhythm in patients with atrial fibrillation or flutter. There are also oral solutions and intravenous injections indicated for patients requiring sotalol, but for whom a tablet would not be appropriate.
Abaloparatide stimulates bone formation on periosteal, trabecular, and cortical bone surfaces. It increases bone mineral density and bone formation markers in a dose-dependent manner. Abaloparatide causes transient and limited increases in osteoclast bone resorption and increases bone density. In rats and monkeys, abaloparatide exerted anabolic effects, increasing bone mineral density and mineral content correlating with increases in bone strength at vertebral and nonvertebral sites.
Sotalol is a competitive inhibitor of the rapid potassium channel. This inhibition lengthens the duration of action potentials and the refractory period in the atria and ventricles. The inhibition of rapid potassium channels is increases as heart rate decreases, which is why adverse effects like torsades de points is more likely to be seen at lower heart rates. L-sotalol also has beta adrenergic receptor blocking activity seen above plasma concentrations of 800ng/L. The beta blocking ability of sotalol further prolongs action potentials. D-sotalol does not have beta blocking activity but also reduces a patient's heart rate while standing or exercising. These actions combine to produce a negative inotropic effect that reduces the strength of contractility of muscle cells in the heart. Extension of the QT interval is also adversely associated with the induction of arrhythmia in patients. Hyperglycemia is a greater risk for non insulin dependant diabetics than insulin dependant diabetics. Beta blockers inhibit insulin secretion which may cause hyperglycemia in type II diabetes mellitus. The risk of hypoglycemia is higher in insulin dependant diabetes than non insulin dependant diabetics. Beta blockers decrease secretion of insulin, which may mask hypoglycemia in an insulin dependant patient. Beta blockers also increase glucose uptake into cells which may prolong or potentiate hypoglycemia. Further information regarding adverse reactions can be found here.
Abaloparatide
Spironolactone
Minor
Co-administration of agents that are both associated with a risk for developing hypotension, including cases of severe hypotension, may create an additive hypotensive effect to prolong and intensify hypotensive effects.
Abaloparatide is indicated for the treatment of postmenopausal women with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy. In postmenopausal women with osteoporosis, abaloparatide reduces the risk of vertebral and nonvertebral fractures. Abaloparatide is also indicated to increase bone density in men with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy.
Spironolactone is indicated for the treatment of the following conditions: NYHA Class III-IV heart failure and reduced ejection fraction to increase survival, manage edema, and reduce the need for hospitalization for heart failure. Spironolactone is usually administered in conjunction with other heart failure therapies. Hypertension, as add-on therapy, in patients not adequately controlled by other agents. Edema associated with hepatic cirrhosis when edema is not responsive to fluid and sodium restriction. Edema associated with nephrotic syndrome when treatment of the underlying disease, restriction of fluid and sodium intake, and the use of other diuretics produce an inadequate response. Refractory edema associated with congestive cardiac failure, malignant ascites, hepatic cirrhosis with ascites, and essential hypertension. Short-term preoperative treatment of patients with primary hyperaldosteronism. Diagnosis of primary aldosteronism. Long-term maintenance therapy for patients with discrete aldosterone-producing adrenal adenomas who are not candidates for surgery. Long-term maintenance therapy for patients with bilateral micro or macronodular adrenal hyperplasia (idiopathic hyperaldosteronism). As spironolactone has antiandrogenic activity, its off-label uses include the treatment of hirsutism, female pattern hair loss, and adult acne vulgaris.
Abaloparatide stimulates bone formation on periosteal, trabecular, and cortical bone surfaces. It increases bone mineral density and bone formation markers in a dose-dependent manner. Abaloparatide causes transient and limited increases in osteoclast bone resorption and increases bone density. In rats and monkeys, abaloparatide exerted anabolic effects, increasing bone mineral density and mineral content correlating with increases in bone strength at vertebral and nonvertebral sites.
Spironolactone has a potassium-sparing diuretic effect. It promotes sodium and water excretion and potassium retention. It increases renin and aldosterone levels. Spironolactone is a mineralocorticoid receptor antagonist and has a low affinity for the glucocorticoid receptor. It also exhibits progestogenic and anti-androgenic actions as it binds to the androgen receptor and, to a lesser extent, estrogen and progesterone receptors. Spironolactone exhibits anti-inflammatory effects.
Abaloparatide
Streptokinase
Minor
Co-administration of agents that are both associated with a risk for developing hypotension, including cases of severe hypotension, may create an additive hypotensive effect to prolong and intensify hypotensive effects.
Abaloparatide is indicated for the treatment of postmenopausal women with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy. In postmenopausal women with osteoporosis, abaloparatide reduces the risk of vertebral and nonvertebral fractures. Abaloparatide is also indicated to increase bone density in men with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy.
For the treatment of acute evolving transmural myocardial infarction, pulmonary embolism, deep vein thrombosis, arterial thrombosis or emolism and occlusion of arteriovenous cannulae
Abaloparatide stimulates bone formation on periosteal, trabecular, and cortical bone surfaces. It increases bone mineral density and bone formation markers in a dose-dependent manner. Abaloparatide causes transient and limited increases in osteoclast bone resorption and increases bone density. In rats and monkeys, abaloparatide exerted anabolic effects, increasing bone mineral density and mineral content correlating with increases in bone strength at vertebral and nonvertebral sites.
Streptokinase creates an active complex which promotes the cleavage of the Arg/Val bond in plasminogen to form the proteolytic enzyme plasmin. Plasmin in turn degrades the fibrin matrix of the thrombus, thereby exerting its thrombolytic action. This helps eliminate blood clots or arterial blockages that cause myocardial infarction.
Abaloparatide
Sufentanil
Minor
Co-administration of agents that are both associated with a risk for developing hypotension, including cases of severe hypotension, may create an additive hypotensive effect to prolong and intensify hypotensive effects.
Abaloparatide is indicated for the treatment of postmenopausal women with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy. In postmenopausal women with osteoporosis, abaloparatide reduces the risk of vertebral and nonvertebral fractures. Abaloparatide is also indicated to increase bone density in men with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy.
The indications for this drug are as follows: As an analgesic adjunct in the maintenance of balanced general anesthesia in patients who are intubated and ventilated. As a primary anesthetic agent for the induction and maintenance of anesthesia with 100% oxygen in patients undergoing major surgical procedures, in patients who are intubated and ventilated, such as cardiovascular surgery or neurosurgical procedures in the sitting position, to provide favorable myocardial and cerebral oxygen balance or when extended postoperative ventilation is anticipated. For epidural administration as an analgesic combined with low dose (usually 12.5 mg per administration) bupivacaine usually during labor and vaginal delivery The sublingual form is indicated for the management of acute pain in adults that is severe to warrant the use of an opioid analgesic in certified medically supervised healthcare settings, including hospitals, surgical centers, and emergency departments.
Abaloparatide stimulates bone formation on periosteal, trabecular, and cortical bone surfaces. It increases bone mineral density and bone formation markers in a dose-dependent manner. Abaloparatide causes transient and limited increases in osteoclast bone resorption and increases bone density. In rats and monkeys, abaloparatide exerted anabolic effects, increasing bone mineral density and mineral content correlating with increases in bone strength at vertebral and nonvertebral sites.
Effect on the Central Nervous System (CNS) In clinical settings, sufentanil exerts its principal pharmacologic effects on the central nervous system. Its primary therapeutic actions are analgesia and sedation. Sufentanil may increase pain tolerance and decrease the perception of pain. This drug depresses the respiratory centers, depresses the cough reflex, and constricts the pupils,. When used in balanced general anesthesia, sufentanil has been reported to be as much as 10 times as potent as fentanyl. When administered intravenously as a primary anesthetic agent with 100% oxygen, sufentanil is approximately 5 to 7 times as potent as fentanyl. High doses of intravenous sufentanil have been shown to cause muscle rigidity, likely as a result of an effect on the substantia nigra and the striate nucleus in the brain. Sleep-inducing (hypnotic) activity can be demonstrated by EEG alterations. Effects on the Respiratory System Sufentanil may cause respiratory depression. Effects on the Cardiovascular System Sufentanil causes peripheral vasodilation which may result in orthostatic hypotension or syncope. Bradycardia may also occur. Clinical signs or symptoms of histamine release and/or peripheral vasodilation may include pruritus, flushing, red eyes and sweating and/or orthostatic hypotension. Effects on the Gastrointestinal Tract Sufentanil causes a reduction in motility associated with an increase in smooth muscle tone in both the antrum of the stomach and duodenum. Digestion of food in the small intestine may be delayed and propulsive contractions are decreased. Propulsive peristaltic waves in the colon are decreased, while tone may be increased and lead to spasm, resulting in constipation. Other opioid-induced effects may include a reduction in biliary and pancreatic secretions, spasm of the sphincter of Oddi, as well as temporary elevations in serum amylase.
Abaloparatide
Tadalafil
Minor
The use of two drugs that both lower blood pressure may result in a more pronounced hypotensive effect.
Abaloparatide is indicated for the treatment of postmenopausal women with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy. In postmenopausal women with osteoporosis, abaloparatide reduces the risk of vertebral and nonvertebral fractures. Abaloparatide is also indicated to increase bone density in men with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy.
Tadalafil is indicated for the treatment of erectile dysfunction (ED) and either alone or in combination with finasteride for the treatment of benign prostatic hypertrophy (BPH). It is also indicated for the treatment of pulmonary arterial hypertension (PAH) both alone and in combination with macitentan or other endothelin-1 antagonists.
Abaloparatide stimulates bone formation on periosteal, trabecular, and cortical bone surfaces. It increases bone mineral density and bone formation markers in a dose-dependent manner. Abaloparatide causes transient and limited increases in osteoclast bone resorption and increases bone density. In rats and monkeys, abaloparatide exerted anabolic effects, increasing bone mineral density and mineral content correlating with increases in bone strength at vertebral and nonvertebral sites.
Tadalafil exerts a therapeutic effect in ED by increasing sexual stimulation-dependant smooth muscle relaxation in the penis, allowing the corpus cavernosum to fill with blood to produce an erection. Smooth muscle relaxation in the pulmonary vasculature helps to produce vasodilation in PAH which reduces blood pressure in the pulmonary arteries. In BPH, tadalafil may contribute to decreased smooth muscle cell proliferation which may reduce the size of the prostate and relieve the anatomical obstruction which produces urinary symptoms of BPH. The decreased affinity of tadalafil for PDE6 compared to other PDE5 inhibitors may explain the reduced incidence of visual side effects.
Abaloparatide
Tamsulosin
Minor
Co-administration of agents that are both associated with a risk for developing hypotension, including cases of severe hypotension, may create an additive hypotensive effect to prolong and intensify hypotensive effects.
Abaloparatide is indicated for the treatment of postmenopausal women with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy. In postmenopausal women with osteoporosis, abaloparatide reduces the risk of vertebral and nonvertebral fractures. Abaloparatide is also indicated to increase bone density in men with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy.
Tamsulosin is indicated for the treatment of signs and symptoms of benign prostatic hyperplasia. Tamsulosin is also used off label for the treatment of ureteral stones, prostatitis, and female voiding dysfunction.
Abaloparatide stimulates bone formation on periosteal, trabecular, and cortical bone surfaces. It increases bone mineral density and bone formation markers in a dose-dependent manner. Abaloparatide causes transient and limited increases in osteoclast bone resorption and increases bone density. In rats and monkeys, abaloparatide exerted anabolic effects, increasing bone mineral density and mineral content correlating with increases in bone strength at vertebral and nonvertebral sites.
Tamsulosin is an alpha adrenoceptor blocker with specificity for the alpha-1A and alpha-1D subtypes, which are more common in the prostate and submaxillary tissue. The final subtype, alpha-1B, are most common in the aorta and spleen. Tamsulosin binds to alpha-1A receptors 3.9-38 times more selectively than alpha-1B and 3-20 times more selectively than alpha-1D. This selectivity allows for a significant effect on urinary flow with a reduced incidence of adverse reactions like orthostatic hypotension.
Abaloparatide
Telmisartan
Minor
Co-administration of agents that are both associated with a risk for developing hypotension, including cases of severe hypotension, may create an additive hypotensive effect to prolong and intensify hypotensive effects.
Abaloparatide is indicated for the treatment of postmenopausal women with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy. In postmenopausal women with osteoporosis, abaloparatide reduces the risk of vertebral and nonvertebral fractures. Abaloparatide is also indicated to increase bone density in men with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy.
Used alone or in combination with other classes of antihypertensives for the treatment of hypertension. Also used in the treatment of diabetic nephropathy in hypertensive patients with type 2 diabetes mellitus, as well as the treatment of congestive heart failure (only in patients who cannot tolerate ACE inhibitors).
Abaloparatide stimulates bone formation on periosteal, trabecular, and cortical bone surfaces. It increases bone mineral density and bone formation markers in a dose-dependent manner. Abaloparatide causes transient and limited increases in osteoclast bone resorption and increases bone density. In rats and monkeys, abaloparatide exerted anabolic effects, increasing bone mineral density and mineral content correlating with increases in bone strength at vertebral and nonvertebral sites.
Telmisartan is an orally active nonpeptide angiotensin II antagonist that acts on the AT 1 receptor subtype. It has the highest affinity for the AT 1 receptor among commercially available ARBs and has minimal affinity for the AT 2 receptor. New studies suggest that telmisartan may also have PPARγ agonistic properties that could potentially confer beneficial metabolic effects, as PPARγ is a nuclear receptor that regulates specific gene transcription, and whose target genes are involved in the regulation of glucose and lipid metabolism, as well as anti-inflammatory responses. This observation is currently being explored in clinical trials. Angiotensin II is formed from angiotensin I in a reaction catalyzed by angiotensin-converting enzyme (ACE, kininase II). Angiotensin II is the principal pressor agent of the renin-angiotensin system, with effects that include vasoconstriction, stimulation of synthesis and release of aldosterone, cardiac stimulation, and renal reabsorption of sodium. Telmisartan works by blocking the vasoconstrictor and aldosterone secretory effects of angiotensin II.
Abaloparatide
Terazosin
Minor
Co-administration of agents that are both associated with a risk for developing hypotension, including cases of severe hypotension, may create an additive hypotensive effect to prolong and intensify hypotensive effects.
Abaloparatide is indicated for the treatment of postmenopausal women with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy. In postmenopausal women with osteoporosis, abaloparatide reduces the risk of vertebral and nonvertebral fractures. Abaloparatide is also indicated to increase bone density in men with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy.
Terazosin is indicated for use in treating symptomatic benign prostatic hyperplasia and hypertension.
Abaloparatide stimulates bone formation on periosteal, trabecular, and cortical bone surfaces. It increases bone mineral density and bone formation markers in a dose-dependent manner. Abaloparatide causes transient and limited increases in osteoclast bone resorption and increases bone density. In rats and monkeys, abaloparatide exerted anabolic effects, increasing bone mineral density and mineral content correlating with increases in bone strength at vertebral and nonvertebral sites.
Terazosin is a quinazoline derivative alpha-1-selective adrenergic blocker.
Abaloparatide
Thalidomide
Minor
Co-administration of agents that are both associated with a risk for developing hypotension, including cases of severe hypotension, may create an additive hypotensive effect to prolong and intensify hypotensive effects.
Abaloparatide is indicated for the treatment of postmenopausal women with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy. In postmenopausal women with osteoporosis, abaloparatide reduces the risk of vertebral and nonvertebral fractures. Abaloparatide is also indicated to increase bone density in men with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy.
Thalidomide is primarily used for the acute treatment and maintenance therapy to prevent and suppress the cutaneous manifestations of moderate to severe erythema nodosum leprosum (ENL).
Abaloparatide stimulates bone formation on periosteal, trabecular, and cortical bone surfaces. It increases bone mineral density and bone formation markers in a dose-dependent manner. Abaloparatide causes transient and limited increases in osteoclast bone resorption and increases bone density. In rats and monkeys, abaloparatide exerted anabolic effects, increasing bone mineral density and mineral content correlating with increases in bone strength at vertebral and nonvertebral sites.
Thalidomide, originally developed as a sedative, is an immunomodulatory and anti-inflammatory agent with a spectrum of activity that is not fully characterized. However, thalidomide is believed to exert its effect through inhibiting and modulating the level of various inflammatory mediators, particularly tumor necrosis factor-alpha (TNF-a) and IL-6. Additionally, thalidomide is also shown to inhibit basic fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF), suggesting a potential anti-angiogenic application of thalidomide in cancer patients. Thalidomide is racemic — it contains both left and right handed isomers in equal amounts: the (+)R enantiomer is effective against morning sickness, and the (−)S enantiomer is teratogenic. The enantiomers are interconverted to each other in vivo; hence, administering only one enantiomer will not prevent the teratogenic effect in humans.
Abaloparatide
Thiopental
Moderate
The use of barbiturates may increase hypotension.1,2 Therefore, the concomitant administration of barbiturates and hypotensive agents may lead to dangerous hypotension due to additive effects.
Abaloparatide is indicated for the treatment of postmenopausal women with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy. In postmenopausal women with osteoporosis, abaloparatide reduces the risk of vertebral and nonvertebral fractures. Abaloparatide is also indicated to increase bone density in men with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy.
For use as the sole anesthetic agent for brief (15 minute) procedures, for induction of anesthesia prior to administration of other anesthetic agents, to supplement regional anesthesia, to provide hypnosis during balanced anesthesia with other agents for analgesia or muscle relaxation, for the control of convulsive states during or following inhalation anesthesia or local anesthesia, in neurosurgical patients with increased intracranial pressure, and for narcoanalysis and narcosynthesis in psychiatric disorders.
Abaloparatide stimulates bone formation on periosteal, trabecular, and cortical bone surfaces. It increases bone mineral density and bone formation markers in a dose-dependent manner. Abaloparatide causes transient and limited increases in osteoclast bone resorption and increases bone density. In rats and monkeys, abaloparatide exerted anabolic effects, increasing bone mineral density and mineral content correlating with increases in bone strength at vertebral and nonvertebral sites.
Thiopental, a barbiturate, is used for the induction of anesthesia prior to the use of other general anesthetic agents and for induction of anesthesia for short surgical, diagnostic, or therapeutic procedures associated with minimal painful stimuli. Thiopental is an ultrashort-acting depressant of the central nervous system which induces hypnosis and anesthesia, but not analgesia. It produces hypnosis within 30 to 40 seconds of intravenous injection. Recovery after a small dose is rapid, with some somnolence and retrograde amnesia. Repeated intravenous doses lead to prolonged anesthesia because fatty tissues act as a reservoir; they accumulate Pentothal in concentrations 6 to 12 times greater than the plasma concentration, and then release the drug slowly to cause prolonged anesthesia
Abaloparatide
Thioridazine
Minor
Co-administration of agents that are both associated with a risk for developing hypotension, including cases of severe hypotension, may create an additive hypotensive effect to prolong and intensify hypotensive effects.
Abaloparatide is indicated for the treatment of postmenopausal women with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy. In postmenopausal women with osteoporosis, abaloparatide reduces the risk of vertebral and nonvertebral fractures. Abaloparatide is also indicated to increase bone density in men with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy.
For the treatment of schizophrenia and generalized anxiety disorder.
Abaloparatide stimulates bone formation on periosteal, trabecular, and cortical bone surfaces. It increases bone mineral density and bone formation markers in a dose-dependent manner. Abaloparatide causes transient and limited increases in osteoclast bone resorption and increases bone density. In rats and monkeys, abaloparatide exerted anabolic effects, increasing bone mineral density and mineral content correlating with increases in bone strength at vertebral and nonvertebral sites.
Thioridazine is a trifluoro-methyl phenothiazine derivative intended for the management of schizophrenia and other psychotic disorders. Thioridazine has not been shown effective in the management of behaviorial complications in patients with mental retardation.
Abaloparatide
Timolol
Minor
Co-administration of agents that are both associated with a risk for developing hypotension, including cases of severe hypotension, may create an additive hypotensive effect to prolong and intensify hypotensive effects.
Abaloparatide is indicated for the treatment of postmenopausal women with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy. In postmenopausal women with osteoporosis, abaloparatide reduces the risk of vertebral and nonvertebral fractures. Abaloparatide is also indicated to increase bone density in men with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy.
Ophthalmic timolol is indicated for the treatment of increased intraocular pressure in patients with ocular hypertension or open-angle glaucoma. The oral form of this drug is used to treat high blood pressure. In certain cases, timolol is used in the prevention of migraine headaches.
Abaloparatide stimulates bone formation on periosteal, trabecular, and cortical bone surfaces. It increases bone mineral density and bone formation markers in a dose-dependent manner. Abaloparatide causes transient and limited increases in osteoclast bone resorption and increases bone density. In rats and monkeys, abaloparatide exerted anabolic effects, increasing bone mineral density and mineral content correlating with increases in bone strength at vertebral and nonvertebral sites.
Timolol, when administered by the ophthalmic route, rapidly reduces intraocular pressure. When administered in the tablet form, it reduces blood pressure, heart rate, and cardiac output, and decreases sympathetic activity.. This drug has a fast onset of action, usually occurring within 20 minutes of the administration of an ophthalmic dose. Timolol maleate can exert pharmacological actions for as long as 24 hours if given in the 0.5% or 0.25% doses.
Abaloparatide
Tizanidine
Minor
Co-administration of agents that are both associated with a risk for developing hypotension, including cases of severe hypotension, may create an additive hypotensive effect to prolong and intensify hypotensive effects.
Abaloparatide is indicated for the treatment of postmenopausal women with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy. In postmenopausal women with osteoporosis, abaloparatide reduces the risk of vertebral and nonvertebral fractures. Abaloparatide is also indicated to increase bone density in men with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy.
Tizanidine is indicated for the relief of muscle spasticity, which can interfere with daily activities. The general recommendation is to reserve tizanidine use for periods of time when there is a particular need for relief, as it has a short duration of action.
Abaloparatide stimulates bone formation on periosteal, trabecular, and cortical bone surfaces. It increases bone mineral density and bone formation markers in a dose-dependent manner. Abaloparatide causes transient and limited increases in osteoclast bone resorption and increases bone density. In rats and monkeys, abaloparatide exerted anabolic effects, increasing bone mineral density and mineral content correlating with increases in bone strength at vertebral and nonvertebral sites.
A note on spasticity Spasticity is an increase in muscle accompanied by uncontrolled, repetitive contractions of skeletal muscles which are involuntary.
Abaloparatide
Tolcapone
Minor
Co-administration of agents that are both associated with a risk for developing hypotension, including cases of severe hypotension, may create an additive hypotensive effect to prolong and intensify hypotensive effects.
Abaloparatide is indicated for the treatment of postmenopausal women with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy. In postmenopausal women with osteoporosis, abaloparatide reduces the risk of vertebral and nonvertebral fractures. Abaloparatide is also indicated to increase bone density in men with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy.
Used as an adjunct to levodopa/carbidopa therapy for the symptomatic treatment of Parkinson's Disease. This drug is generally reserved for patients with parkinsonian syndrome receiving levodopa/carbidopa who are experiencing symptom fluctuations and are not responding adequately to or are not candidates for other adjunctive therapies.
Abaloparatide stimulates bone formation on periosteal, trabecular, and cortical bone surfaces. It increases bone mineral density and bone formation markers in a dose-dependent manner. Abaloparatide causes transient and limited increases in osteoclast bone resorption and increases bone density. In rats and monkeys, abaloparatide exerted anabolic effects, increasing bone mineral density and mineral content correlating with increases in bone strength at vertebral and nonvertebral sites.
Tolcapone is a potent, selective, and reversible inhibitor of catechol-O-methyltransferase (COMT). In humans, COMT is distributed throughout various organs. COMT catalyzes the transfer of the methyl group of S-adenosyl-L-methionine to the phenolic group of substrates that contain a catechol structure. Physiological substrates of COMT include dopa, catecholamines (dopamine, norepinephrine, epinephrine) and their hydroxylated metabolites. The function of COMT is the elimination of biologically active catechols and some other hydroxylated metabolites. COMT is responsible for the elimination of biologically active catechols and some other hydroxylated metabolites. In the presence of a decarboxylase inhibitor, COMT becomes the major metabolizing enzyme for levodopa catalyzing it to 3-methoxy-4-hydroxy-L-phenylalanine (3-OMD) in the brain and periphery. When tolcapone is given in conjunction with levodopa and an aromatic amino acid decarboxylase inhibitor, such as carbidopa, plasma levels of levodopa are more sustained than after administration of levodopa and an aromatic amino acid decarboxylase inhibitor alone. It is believed that these sustained plasma levels of levodopa result in more constant dopaminergic stimulation in the brain, leading to greater effects on the signs and symptoms of Parkinson's disease in patients as well as increased levodopa adverse effects, sometimes requiring a decrease in the dose of levodopa.
Abaloparatide
Torasemide
Minor
Co-administration of agents that are both associated with a risk for developing hypotension, including cases of severe hypotension, may create an additive hypotensive effect to prolong and intensify hypotensive effects.
Abaloparatide is indicated for the treatment of postmenopausal women with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy. In postmenopausal women with osteoporosis, abaloparatide reduces the risk of vertebral and nonvertebral fractures. Abaloparatide is also indicated to increase bone density in men with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy.
Torasemide is indicated for the treatment of edema associated with congestive heart failure, renal or hepatic diseases. From this condition, it has been observed that torasemide is very effective in cases of kidney failure. As well, torasemide is approved to be used as an antihypertensive agent either alone or in combination with other antihypertensives.
Abaloparatide stimulates bone formation on periosteal, trabecular, and cortical bone surfaces. It increases bone mineral density and bone formation markers in a dose-dependent manner. Abaloparatide causes transient and limited increases in osteoclast bone resorption and increases bone density. In rats and monkeys, abaloparatide exerted anabolic effects, increasing bone mineral density and mineral content correlating with increases in bone strength at vertebral and nonvertebral sites.
It is widely known that administration of torasemide can attenuate renal injury and reduce the severity of acute renal failure. This effect is obtained by increasing urine output and hence, facilitating fluid, acid-base and potassium control. This effect is obtained by the increase in the excretion of urinary sodium and chloride. Several reports have indicated that torasemide presents a long-lasting diuresis and less potassium excretion which can be explained by the effect that torasemide has on the renin-angiotensin-aldosterone system. This effect is very similar to the effect observed with the administration of combination therapy with furosemide and spironolactone and it is characterized by a decrease in plasma brain natriuretic peptide and improved measurements of left ventricular function. Above the aforementioned effect, torasemide presents a dual effect.in which the inhibition of aldosterone which donates torasemide with a potassium-sparing action. Torasemide has been shown to reduce extracellular fluid volume and blood pressure in hypertensive patients suffering from chronic kidney disease. As well, some reports have indicated that torasemide can reduce myocardial fibrosis by reducing the collagen accumulation. This effect is suggested to be related to the decrease in aldosterone which in order has been shown to reduce the production of the enzyme procollagen type I carboxy-terminal proteinase which is known to be overexpressed in heart failure patients.
Abaloparatide
Trandolapril
Minor
Co-administration of agents that are both associated with a risk for developing hypotension, including cases of severe hypotension, may create an additive hypotensive effect to prolong and intensify hypotensive effects.
Abaloparatide is indicated for the treatment of postmenopausal women with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy. In postmenopausal women with osteoporosis, abaloparatide reduces the risk of vertebral and nonvertebral fractures. Abaloparatide is also indicated to increase bone density in men with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy.
For the treatment of mild to moderate hypertension, as an adjunct in the treatment of congestive heart failure (CHF), to improve survival following myocardial infarction (MI) in individuals who are hemodynamically stable and demonstrate symptoms of left ventricular systolic dysfunction or signs of CHF within a few days following acute MI, and to slow progression of renal disease in hypertensive patients with diabetes mellitus and microalbuminuria or overt nephropathy.
Abaloparatide stimulates bone formation on periosteal, trabecular, and cortical bone surfaces. It increases bone mineral density and bone formation markers in a dose-dependent manner. Abaloparatide causes transient and limited increases in osteoclast bone resorption and increases bone density. In rats and monkeys, abaloparatide exerted anabolic effects, increasing bone mineral density and mineral content correlating with increases in bone strength at vertebral and nonvertebral sites.
Trandolapril is the ethyl ester prodrug of a nonsulfhydryl ACE inhibitor, trandolaprilat. Trandolapril is deesterified in the liver to the diacid metabolite, trandolaprilat, which is approximately eight times more active as an inhibitor of ACE than its parent compound. ACE is a peptidyl dipeptidase that is part of the RAAS. The RAAS is a homeostatic mechanism for regulating hemodynamics, water and electrolyte balance. During sympathetic stimulation or when renal blood pressure or blood flow is reduced, renin is released from the granular cells of the juxtaglomerular apparatus in the kidneys. In the blood stream, renin cleaves circulating angiotensinogen to ATI, which is subsequently cleaved to ATII by ACE. ATII increases blood pressure via a number of mechanisms. First, it stimulates the secretion of aldosterone from the adrenal cortex. Aldosterone travels to the distal convoluted tubule (DCT) and collecting tubule of nephrons where it increases sodium and water reabsorption by increasing the number of sodium channels and sodium-potassium ATPases on cell membranes. Second, ATII stimulates the secretion of vasopressin (also known as antidiuretic hormone or ADH) from the posterior pituitary gland. ADH stimulates further water reabsorption from the kidneys via insertion of aquaporin-2 channels on the apical surface of cells of the DCT and collecting tubules. Third, ATII increases blood pressure through direct arterial vasoconstriction. Stimulation of the Type 1 ATII receptor on vascular smooth muscle cells leads to a cascade of events resulting in myocyte contraction and vasoconstriction. In addition to these major effects, ATII induces the thirst response via stimulation of hypothalamic neurons. ACE inhibitors inhibit the rapid conversion of ATI to ATII and antagonize RAAS-induced increases in blood pressure. ACE (also known as kininase II) is also involved in the enzymatic deactivation of bradykinin, a vasodilator. Inhibiting the deactivation of bradykinin increases bradykinin levels and may further sustain the effects of trandolaprilat by causing increased vasodilation and decreased blood pressure. The blood pressure lowering effect of trandolaprilat is due to a decrease in peripheral vascular resistance, which is not accompanied by significant changes in urinary excretion of chloride or potassium or water or sodium retention.
Abaloparatide
Tranylcypromine
Moderate
Incidences of orthostatic hypotension have occurred with monoamine oxidase inhibitors (MAOIs) therapy 1. Co-administration of hypotensive drugs in presence of a MAOI may result in increased risk for developing orthostatic hypotension due to an additive effect.
Abaloparatide is indicated for the treatment of postmenopausal women with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy. In postmenopausal women with osteoporosis, abaloparatide reduces the risk of vertebral and nonvertebral fractures. Abaloparatide is also indicated to increase bone density in men with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy.
For the treatment of major depressive episode without melancholia.
Abaloparatide stimulates bone formation on periosteal, trabecular, and cortical bone surfaces. It increases bone mineral density and bone formation markers in a dose-dependent manner. Abaloparatide causes transient and limited increases in osteoclast bone resorption and increases bone density. In rats and monkeys, abaloparatide exerted anabolic effects, increasing bone mineral density and mineral content correlating with increases in bone strength at vertebral and nonvertebral sites.
Tranylcypromine belongs to a class of antidepressants called monoamine oxidase inhibitors (MAOIs). Tranylcypromine is a non-hydrazine monoamine oxidase inhibitor with a rapid onset of activity. MAO is an enzyme that catalyzes the oxidative deamination of a number of amines, including serotonin, norepinephrine, epinephrine, and dopamine. Two isoforms of MAO, A and B, are found in the body. MAO-A is mainly found within cells located in the periphery and catalyzes the breakdown of serotonin, norepinephrine, epinephrine, dopamine and tyramine. MAO-B acts on phenylethylamine, norepinephrine, epinephrine, dopamine and tyramine, is localized extracellularly and is found predominantly in the brain. While the mechanism of MAOIs is still unclear, it is thought that they act by increasing free serotonin and norepinephrine concentrations and/or by altering the concentrations of other amines in the CNS. It has been postulated that depression is caused by low levels of serotonin and/or norepinephrine and that increasing serotonergic and norepinephrinergic neurotransmission results in relief of depressive symptoms. MAO A inhibition is thought to be more relevant to antidepressant activity than MAO B inhibition. Selective MAO B inhibitors, such as selegiline, have no antidepressant effects.
Abaloparatide
Treprostinil
Minor
The use of two drugs that both lower blood pressure may result in a more pronounced hypotensive effect.
Abaloparatide is indicated for the treatment of postmenopausal women with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy. In postmenopausal women with osteoporosis, abaloparatide reduces the risk of vertebral and nonvertebral fractures. Abaloparatide is also indicated to increase bone density in men with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy.
The FDA has indicated treprostinil for the treatment of pulmonary arterial hypertension and pulmonary hypertension associated with interstitial lung disease to improve exercise ability. It is also used to treat pulmonary arterial hypertension in patients requiring transition from epoprostenol. The Health Canada label specifies that treprostinil is indicated for the long-term treatment of pulmonary arterial hypertension in NYHA Class III and IV patients who did not respond adequately to conventional therapy. L24244
Abaloparatide stimulates bone formation on periosteal, trabecular, and cortical bone surfaces. It increases bone mineral density and bone formation markers in a dose-dependent manner. Abaloparatide causes transient and limited increases in osteoclast bone resorption and increases bone density. In rats and monkeys, abaloparatide exerted anabolic effects, increasing bone mineral density and mineral content correlating with increases in bone strength at vertebral and nonvertebral sites.
As an analogue of prostacyclin, treprostinil promotes the vasodilation of pulmonary and systemic arterial vascular beds and the inhibition of platelet aggregation. In animals, the vasodilatory effects of treprostinil lead to a reduction of right and left ventricular afterload and an increase in cardiac output and stroke volume. Treprostinil also causes a dose-related negative inotropic and lusitropic effect, and no major effects on cardiac conduction have been detected. Short-lasting effects on QTc were detected in healthy volunteers (n=240) given inhaled single doses of 54 and 84 μg of treprostinil. These effects dissipated rapidly as treprostinil concentrations lowered. When given subcutaneously or intravenously, treprostinil has the potential to reach higher concentrations. The effect of oral treprostinil on QTc has not been evaluated. Due to its ability to inhibit platelet aggregation, treprostinil can increase the risk of bleeding, and patients with low systemic arterial pressure taking treprostinil may experience symptomatic hypotension. The abrupt withdrawal of treprostinil or drastic changes in dose may worsen the symptoms of pulmonary arterial hypertension (PAH). The inhalation of treprostinil can also cause bronchospasms in patients with asthma, chronic obstructive pulmonary disease (COPD), or bronchial hyperreactivity. When given intravenously, treprostinil can lead to infusion complications and increase the risk of bloodstream infections.
Abaloparatide
Triamterene
Minor
Co-administration of agents that are both associated with a risk for developing hypotension, including cases of severe hypotension, may create an additive hypotensive effect to prolong and intensify hypotensive effects.
Abaloparatide is indicated for the treatment of postmenopausal women with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy. In postmenopausal women with osteoporosis, abaloparatide reduces the risk of vertebral and nonvertebral fractures. Abaloparatide is also indicated to increase bone density in men with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy.
Triamterene is indicated for the treatment of edema associated with congestive heart failure, cirrhosis of the liver, and the nephrotic syndrome; also in steroid-induced edema, idiopathic edema, and edema due to secondary hyperaldosteronism. Triamterene in combination with hydrochlorothiazide is indicated for the managment of hypertension or treatment of edema in patients who develop hypokalemia following hydrochlorothiazide monotherapy, and in patients who require thiazide diuretic and in whom the development of hypokalemia cannot be risked. Triamterene allows the maintenance of potassium balance when given in combination with loop diuretics and thiazides.
Abaloparatide stimulates bone formation on periosteal, trabecular, and cortical bone surfaces. It increases bone mineral density and bone formation markers in a dose-dependent manner. Abaloparatide causes transient and limited increases in osteoclast bone resorption and increases bone density. In rats and monkeys, abaloparatide exerted anabolic effects, increasing bone mineral density and mineral content correlating with increases in bone strength at vertebral and nonvertebral sites.
Triamterene, a relatively weak, potassium-sparing diuretic and antihypertensive, is used in the management of hypertension and edema. It primarily works on the distal nephron in the kidneys; it acts from the late distal tubule to the collecting duct to inhibit Na+ reabsorption and decreasing K+ excretion. As triamterene tends to conserve potassium more strongly than promoting Na+ excretion, it can cause an increase in serum potassium, which may result in hyperkalemia potentially associated with cardiac irregularities. In healthy volunteers administered with oral triamterene, there was an increase in the renal clearnace of sodium and magnesium, and a decrease in the clearance of uric acid and creatinine due to its effect of reducing glomerular filtration renal plasma flow. Triamterene does not affect calcium excretion. In clinical trials, the use of triamterene in combination with hydrochlorothiazide resulted an enhanced blood pressure-lowering effects of hydrochlorothiazide.
Abaloparatide
Udenafil
Minor
The subject drug is a phosphodiesterase 5 inhibitor which can lower blood pressure.1 The affected drug can cause hypotension, particularly orthostatic hypotension. Concomitant administration of these medications may lead to an increased risk of hypotension and orthostatic hypotension.
Abaloparatide is indicated for the treatment of postmenopausal women with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy. In postmenopausal women with osteoporosis, abaloparatide reduces the risk of vertebral and nonvertebral fractures. Abaloparatide is also indicated to increase bone density in men with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy.
Investigated for use/treatment in erectile dysfunction and hypertension.
Abaloparatide stimulates bone formation on periosteal, trabecular, and cortical bone surfaces. It increases bone mineral density and bone formation markers in a dose-dependent manner. Abaloparatide causes transient and limited increases in osteoclast bone resorption and increases bone density. In rats and monkeys, abaloparatide exerted anabolic effects, increasing bone mineral density and mineral content correlating with increases in bone strength at vertebral and nonvertebral sites.
Udenafil is a potent selective phosphodiesterase type 5 (PDE5) inhibitor.
Abaloparatide
Valsartan
Minor
Co-administration of agents that are both associated with a risk for developing hypotension, including cases of severe hypotension, may create an additive hypotensive effect to prolong and intensify hypotensive effects.
Abaloparatide is indicated for the treatment of postmenopausal women with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy. In postmenopausal women with osteoporosis, abaloparatide reduces the risk of vertebral and nonvertebral fractures. Abaloparatide is also indicated to increase bone density in men with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy.
Valsartan is indicated for the treatment of hypertension to reduce the risk of fatal and nonfatal cardiovascular events, primarily strokes and myocardial infarctions. It is also indicated for the treatment of heart failure (NYHA class II-IV) and for left ventricular dysfunction or failure after myocardial infarction when the use of an angiotensin-converting enzyme inhibitor (ACEI) is not appropriate. It is also used in combination with sacubitril.
Abaloparatide stimulates bone formation on periosteal, trabecular, and cortical bone surfaces. It increases bone mineral density and bone formation markers in a dose-dependent manner. Abaloparatide causes transient and limited increases in osteoclast bone resorption and increases bone density. In rats and monkeys, abaloparatide exerted anabolic effects, increasing bone mineral density and mineral content correlating with increases in bone strength at vertebral and nonvertebral sites.
Valsartan inhibits the pressor effects of angiotensin II with oral doses of 80 mg inhibiting the pressor effect by about 80% at peak with approximately 30% inhibition persisting for 24 hours. Removal of the negative feedback of angiotensin II causes a 2- to 3-fold rise in plasma renin and consequent rise in angiotensin II plasma concentration in hypertensive patients. Minimal decreases in plasma aldosterone were observed after administration of valsartan. In multiple-dose studies in hypertensive patients, valsartan had no notable effects on total cholesterol, fasting triglycerides, fasting serum glucose, or uric acid. Hypotension Excessive hypotension was rarely seen (0.1%) in patients with uncomplicated hypertension treated with valsartan alone. In patients with an activated renin-angiotensin system, such as volume- and/or salt-depleted patients receiving high doses of diuretics, symptomatic hypotension may occur. This condition should be corrected prior to administration of valsartan, or the treatment should start under close medical supervision. Caution should be observed when initiating therapy in patients with heart failure. Patients with heart failure given valsartan commonly have some reduction in blood pressure, but discontinuation of therapy because of continuing symptomatic hypotension usually is not necessary when dosing instructions are followed. In controlled trials in heart failure patients, the incidence of hypotension in valsartan-treated patients was 5.5% compared to 1.8% in placebo-treated patients. If excessive hypotension occurs, the patient should be placed in the supine position and, if necessary, given an intravenous infusion of normal saline. A transient hypotensive response is not a contraindication to further treatment, which usually can be continued without difficulty once the blood pressure has stabilized. Impaired Renal Function Changes in renal function including acute renal failure can be caused by drugs that inhibit the renin-angiotensin system and by diuretics. Patients whose renal function may depend in part on the activity of the renin-angiotensin system (e.g., patients with renal artery stenosis, chronic kidney disease, severe congestive heart failure, or volume depletion) may be at particular risk of developing acute renal failure on valsartan. Monitor renal function periodically in these patients. Consider withholding or discontinuing therapy in patients who develop a clinically significant decrease in renal function on valsartan. Hyperkalemia Some patients with heart failure have developed increases in potassium. These effects are usually minor and transient, and they are more likely to occur in patients with pre-existing renal impairment. Dosage reduction and/or discontinuation of valsartan may be required.
Abaloparatide
Vardenafil
Minor
The subject drug is a phosphodiesterase 5 inhibitor which can lower blood pressure.1 The affected drug can cause hypotension, particularly orthostatic hypotension. Concomitant administration of these medications may lead to an increased risk of hypotension and orthostatic hypotension.
Abaloparatide is indicated for the treatment of postmenopausal women with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy. In postmenopausal women with osteoporosis, abaloparatide reduces the risk of vertebral and nonvertebral fractures. Abaloparatide is also indicated to increase bone density in men with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy.
Vardenafil is indicated for the treatment of erectile dysfunction.
Abaloparatide stimulates bone formation on periosteal, trabecular, and cortical bone surfaces. It increases bone mineral density and bone formation markers in a dose-dependent manner. Abaloparatide causes transient and limited increases in osteoclast bone resorption and increases bone density. In rats and monkeys, abaloparatide exerted anabolic effects, increasing bone mineral density and mineral content correlating with increases in bone strength at vertebral and nonvertebral sites.
Vardenafil is a potent and selective inhibitor of cyclic guanosine monophosphate (cGMP)-specific phosphodiesterase type 5 (PDE5), an enzyme responsible for the degradation of cGMP in the corpus cavernosum. The presence of cGMP in the corpus cavernosum leads to smooth muscle relaxation, an increased inflow of blood and an erection. Therefore, in patients with erectile dysfunction given vardenafil, normal sexual stimulation will increase cGMP levels in the corpus cavernosum. Without sexual stimulation and no cGMP production, vardenafil should not cause an erection. Vardenafil should not be used in men for whom sexual activity is not recommended due to their underlying cardiovascular status. There is also a risk of developing prolonged erections that last longer than 4 hours, as well as priapism. In the event of a sudden loss of vision in one or both eyes, patients should stop using vardenafil. Patients taking PDE5 inhibitors, such as vardenafil, may also develop sudden hearing loss and experience a prolonged QT interval.
Abaloparatide
Verapamil
Minor
Co-administration of agents that are both associated with a risk for developing hypotension, including cases of severe hypotension, may create an additive hypotensive effect to prolong and intensify hypotensive effects.
Abaloparatide is indicated for the treatment of postmenopausal women with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy. In postmenopausal women with osteoporosis, abaloparatide reduces the risk of vertebral and nonvertebral fractures. Abaloparatide is also indicated to increase bone density in men with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy.
Verapamil is indicated in the treatment of vasopastic (i.e. Prinzmetal's) angina, unstable angina, and chronic stable angina. It is also indicated to treat hypertension, for the prophylaxis of repetitive paroxysmal supraventricular tachycardia, and in combination with digoxin to control ventricular rate in patients with atrial fibrillation or atrial flutter. Given intravenously, it is indicated for the treatment of various supraventricular tachyarrhythmias, including rapid conversion to sinus rhythm in patients with supraventricular tachycardia and for temporary control of ventricular rate in patients with atrial fibrillation or atrial flutter. Verapamil is commonly used off-label for prophylaxis of cluster headaches.
Abaloparatide stimulates bone formation on periosteal, trabecular, and cortical bone surfaces. It increases bone mineral density and bone formation markers in a dose-dependent manner. Abaloparatide causes transient and limited increases in osteoclast bone resorption and increases bone density. In rats and monkeys, abaloparatide exerted anabolic effects, increasing bone mineral density and mineral content correlating with increases in bone strength at vertebral and nonvertebral sites.
Verapamil is an L-type calcium channel blocker with antiarrhythmic, antianginal, and antihypertensive activity. Immediate-release verapamil has a relatively short duration of action, requiring dosing 3 to 4 times daily, but extended-release formulations are available that allow for once-daily dosing. As verapamil is a negative inotropic medication (i.e. it decreases the strength of myocardial contraction), it should not be used in patients with severe left ventricular dysfunction or hypertrophic cardiomyopathy as the decrease in contractility caused by verapamil may increase the risk of exacerbating these pre-existing conditions.
Abaloparatide
Vericiguat
Minor
Co-administration of agents that are both associated with a risk for developing hypotension, including cases of severe hypotension, may create an additive hypotensive effect to prolong and intensify hypotensive effects.
Abaloparatide is indicated for the treatment of postmenopausal women with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy. In postmenopausal women with osteoporosis, abaloparatide reduces the risk of vertebral and nonvertebral fractures. Abaloparatide is also indicated to increase bone density in men with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy.
Vericiguat is indicated in adults with symptomatic, chronic heart failure and an ejection fraction of <45% to reduce the risk of cardiovascular death and heart failure-related hospitalization following a hospitalization for heart failure or need for outpatient intravenous diuretics.
Abaloparatide stimulates bone formation on periosteal, trabecular, and cortical bone surfaces. It increases bone mineral density and bone formation markers in a dose-dependent manner. Abaloparatide causes transient and limited increases in osteoclast bone resorption and increases bone density. In rats and monkeys, abaloparatide exerted anabolic effects, increasing bone mineral density and mineral content correlating with increases in bone strength at vertebral and nonvertebral sites.
By directly stimulating the increased production of intracellular cyclic guanosine monophosphate (cGMP), vericiguat causes the relaxation of vascular smooth muscle and vasodilation. Vericiguat has a relatively long half-life (~30h) that allows for once-daily dosing. Animal reproduction studies have demonstrated the potential for embryo-fetal toxicity when vericiguat is administered to pregnant females - defects in major vessel and heart formation, as well as spontaneous abortions/resorptions, were observed when vericiguat was administered to pregnant rabbits during organogenesis. The possibility of pregnancy should be excluded prior to beginning therapy with vericiguat, and adequate contraception should be used throughout therapy and for one month following cessation of treatment.
Abaloparatide
Zofenopril
Minor
The use of two drugs that both lower blood pressure may result in a more pronounced hypotensive effect.
Abaloparatide is indicated for the treatment of postmenopausal women with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy. In postmenopausal women with osteoporosis, abaloparatide reduces the risk of vertebral and nonvertebral fractures. Abaloparatide is also indicated to increase bone density in men with osteoporosis at high risk for fracture (defined as a history of osteoporotic fracture or multiple risk factors for fracture) or patients who have failed or are intolerant to other available osteoporosis therapy.
No indication available
Abaloparatide stimulates bone formation on periosteal, trabecular, and cortical bone surfaces. It increases bone mineral density and bone formation markers in a dose-dependent manner. Abaloparatide causes transient and limited increases in osteoclast bone resorption and increases bone density. In rats and monkeys, abaloparatide exerted anabolic effects, increasing bone mineral density and mineral content correlating with increases in bone strength at vertebral and nonvertebral sites.
No pharmacodynamics available
Abatacept
Abemaciclib
Major
The formation of CYP450 enzymes is inhibited by the presence of increased levels of cytokines during chronic inflammation. Agents that reduce cytokine levels can normalize CYP450 formation and increase the metabolism of drugs. This interaction may significantly alter the therapeutic efficacy of CYP3A4 substrates with a narrow therapeutic index.
Abatacept is indicated in adult patients for the treatment of moderately-to-severely active rheumatoid arthritis and in patients ≥2 years of age for the treatment of active psoriatic arthritis. In patients two years of age and older, abatacept is also indicated for the treatment of moderately-to-severely active juvenile idiopathic arthritis. Abatacept is also indicated for the prophylaxis of acute graft-versus-host disease, in combination with methotrexate and a calcineurin inhibitor such as tacrolimus, in patients two years of age and older who are undergoing hematopoietic stem cell transplantation from a matched or 1 allele-mismatched unrelated donor.
Indicated in combination with fulvestrant for the treatment of women with hormone receptor (HR)-positive, human epidermal growth factor receptor 2 (HER2)-negative advanced or metastatic breast cancer with disease progression following endocrine therapy. Inidicated as monotherapy for the treatment of adult patients with HR-positive, HER2-negative advanced or metastatic breast cancer with disease progression following endocrine therapy and prior chemotherapy in the metastatic setting.
Abatacept is the first in a new class of drugs known as Selective Co-stimulation Modulators. Known as a recombinant fusion protein, the drug consists of the extracellular domain of human cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) linked to a modified Fc portion of human immunoglobulin G 1 (IgG 1. The Fc portion of the drug consists of the hinge region, the C H 2 domain, and the C H 3 domain of IgG 1. Although there are multiple pathways and cell types involved in the pathogenesis of rheumatoid arthritis, evidence suggests that T-cell activation may play an important role in the immunopathology of the disease. Ordinarily, full T-cell activation requires binding of the T-cell receptor to an antigen-MHC complex on the antigen-presenting cell as well as a co-stimulatory signal provided by the binding of the CD28 protein on the surface of the T-cell with the CD80/86 proteins on the surface of the antigen-presenting cell. CTLA4 is a naturally occurring protein which is expressed on the surface of T-cells some hours or days after full T-cell activation and is capable of binding to CD80/86 on antigen-presenting cells with much greater affinity than CD28. Binding of CTLA4-Ig to CD80/86 provides a negative feedback mechanism which results in T-cell deactivation. Abatacept was developed by Bristol-Myers-Squibb and is licensed in the US for the treatment of Rheumatoid Arthritis in the case of inadequate response to anti-TNF-alpha therapy.
In combination with fulvestrant, the progression-free survival for patients with HR-positive, HER2-negative breast cancer was 16.4 months compared to 9.3 months for patients taking a placebo with fulvestrant. As a monotherapy, 19.7% of patients taking abemaciclib achieved complete or partial shrinkage of their tumors for a median 8.6 months after treatment. Abemaciclib induces cell cycle arrest and exerts an antitumor activity in human tumor xenograft models. In patient investigations and a healthy volunteer study, abemaciclib is not shown to induce any clinically significant changes in the QTc interval.
Abatacept
Abrocitinib
Moderate
The formation of CYP450 enzymes is inhibited by the presence of increased levels of cytokines during chronic inflammation. Agents that reduce cytokine levels can normalize CYP450 formation and increase the metabolism of drugs. This interaction may significantly alter the therapeutic efficacy of CYP2C19 substrates.
Abatacept is indicated in adult patients for the treatment of moderately-to-severely active rheumatoid arthritis and in patients ≥2 years of age for the treatment of active psoriatic arthritis. In patients two years of age and older, abatacept is also indicated for the treatment of moderately-to-severely active juvenile idiopathic arthritis. Abatacept is also indicated for the prophylaxis of acute graft-versus-host disease, in combination with methotrexate and a calcineurin inhibitor such as tacrolimus, in patients two years of age and older who are undergoing hematopoietic stem cell transplantation from a matched or 1 allele-mismatched unrelated donor.
Abrocitinib is indicated for the treatment of moderate-to-severe atopic dermatitis in adults who are candidates for systemic therapy. In the US, it is indicated to treat refractory, moderate-to-severe atopic dermatitis whose disease is not adequately controlled with other systemic drug products, including biologics, or when the use of those therapies is inadvisable. Abrocitinib is not recommended for use in combination with other JAK inhibitors, biologic immunomodulators, or other immunosuppressants.
Abatacept is the first in a new class of drugs known as Selective Co-stimulation Modulators. Known as a recombinant fusion protein, the drug consists of the extracellular domain of human cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) linked to a modified Fc portion of human immunoglobulin G 1 (IgG 1. The Fc portion of the drug consists of the hinge region, the C H 2 domain, and the C H 3 domain of IgG 1. Although there are multiple pathways and cell types involved in the pathogenesis of rheumatoid arthritis, evidence suggests that T-cell activation may play an important role in the immunopathology of the disease. Ordinarily, full T-cell activation requires binding of the T-cell receptor to an antigen-MHC complex on the antigen-presenting cell as well as a co-stimulatory signal provided by the binding of the CD28 protein on the surface of the T-cell with the CD80/86 proteins on the surface of the antigen-presenting cell. CTLA4 is a naturally occurring protein which is expressed on the surface of T-cells some hours or days after full T-cell activation and is capable of binding to CD80/86 on antigen-presenting cells with much greater affinity than CD28. Binding of CTLA4-Ig to CD80/86 provides a negative feedback mechanism which results in T-cell deactivation. Abatacept was developed by Bristol-Myers-Squibb and is licensed in the US for the treatment of Rheumatoid Arthritis in the case of inadequate response to anti-TNF-alpha therapy.
Abrocitinib mediates anti-inflammatory effects by blocking the signalling of pro-inflammatory cytokines implicated in atopic dermatitis. It dose-dependently reduces the serum markers of inflammation in atopic dermatitis, including high sensitivity C-reactive protein (hsCRP), interleukin-31 (IL-31), and thymus and activation regulated chemokine (TARC). These changes returned to near baseline within four weeks following drug discontinuation. At two weeks of treatment, the mean absolute lymphocyte count increased, which returned to baseline by nine months of treatment. Treatment with abrocitinib was associated with a dose-related increase in B cell counts and a dose-related decrease in NK cell counts: the clinical significance of these changes is unknown. Treatment with 200 mg abrocitinib once-daily was associated with a transient, dose-dependent decrease in platelet count with the nadir occurring at a median of 24 days. Recovery of platelet count (~40% recovery by 12 weeks) occurred without discontinuation of the treatment.
Abatacept
Acalabrutinib
Major
The formation of CYP450 enzymes is inhibited by the presence of increased levels of cytokines during chronic inflammation. Agents that reduce cytokine levels can normalize CYP450 formation and increase the metabolism of drugs. This interaction may significantly alter the therapeutic efficacy of CYP3A4 substrates with a narrow therapeutic index.
Abatacept is indicated in adult patients for the treatment of moderately-to-severely active rheumatoid arthritis and in patients ≥2 years of age for the treatment of active psoriatic arthritis. In patients two years of age and older, abatacept is also indicated for the treatment of moderately-to-severely active juvenile idiopathic arthritis. Abatacept is also indicated for the prophylaxis of acute graft-versus-host disease, in combination with methotrexate and a calcineurin inhibitor such as tacrolimus, in patients two years of age and older who are undergoing hematopoietic stem cell transplantation from a matched or 1 allele-mismatched unrelated donor.
Acalabrutinib is currently indicated for the treatment of adult patients with Mantle Cell Lymphoma (MCL) who have received at least one prior therapy. It has also been recently approved for chronic lymphocytic leukemia and small lymphocytic lymphoma.
Abatacept is the first in a new class of drugs known as Selective Co-stimulation Modulators. Known as a recombinant fusion protein, the drug consists of the extracellular domain of human cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) linked to a modified Fc portion of human immunoglobulin G 1 (IgG 1. The Fc portion of the drug consists of the hinge region, the C H 2 domain, and the C H 3 domain of IgG 1. Although there are multiple pathways and cell types involved in the pathogenesis of rheumatoid arthritis, evidence suggests that T-cell activation may play an important role in the immunopathology of the disease. Ordinarily, full T-cell activation requires binding of the T-cell receptor to an antigen-MHC complex on the antigen-presenting cell as well as a co-stimulatory signal provided by the binding of the CD28 protein on the surface of the T-cell with the CD80/86 proteins on the surface of the antigen-presenting cell. CTLA4 is a naturally occurring protein which is expressed on the surface of T-cells some hours or days after full T-cell activation and is capable of binding to CD80/86 on antigen-presenting cells with much greater affinity than CD28. Binding of CTLA4-Ig to CD80/86 provides a negative feedback mechanism which results in T-cell deactivation. Abatacept was developed by Bristol-Myers-Squibb and is licensed in the US for the treatment of Rheumatoid Arthritis in the case of inadequate response to anti-TNF-alpha therapy.
Acalabrutinib is a Bruton Tyrosine Kinase inhibitor that prevents the proliferation, trafficking, chemotaxis, and adhesion of B cells. It is taken every 12 hours and can cause other effects such as atrial fibrillation, other malignancies, cytopenia, hemorrhage, and infection.
Abatacept
Acebutolol
Moderate
The formation of CYP450 enzymes is inhibited by the presence of increased levels of cytokines during chronic inflammation. Agents that reduce cytokine levels can normalize CYP450 formation and increase the metabolism of drugs. This interaction may significantly alter the therapeutic efficacy of CYP2D6 substrates.
Abatacept is indicated in adult patients for the treatment of moderately-to-severely active rheumatoid arthritis and in patients ≥2 years of age for the treatment of active psoriatic arthritis. In patients two years of age and older, abatacept is also indicated for the treatment of moderately-to-severely active juvenile idiopathic arthritis. Abatacept is also indicated for the prophylaxis of acute graft-versus-host disease, in combination with methotrexate and a calcineurin inhibitor such as tacrolimus, in patients two years of age and older who are undergoing hematopoietic stem cell transplantation from a matched or 1 allele-mismatched unrelated donor.
For the management of hypertension and ventricular premature beats in adults.
Abatacept is the first in a new class of drugs known as Selective Co-stimulation Modulators. Known as a recombinant fusion protein, the drug consists of the extracellular domain of human cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) linked to a modified Fc portion of human immunoglobulin G 1 (IgG 1. The Fc portion of the drug consists of the hinge region, the C H 2 domain, and the C H 3 domain of IgG 1. Although there are multiple pathways and cell types involved in the pathogenesis of rheumatoid arthritis, evidence suggests that T-cell activation may play an important role in the immunopathology of the disease. Ordinarily, full T-cell activation requires binding of the T-cell receptor to an antigen-MHC complex on the antigen-presenting cell as well as a co-stimulatory signal provided by the binding of the CD28 protein on the surface of the T-cell with the CD80/86 proteins on the surface of the antigen-presenting cell. CTLA4 is a naturally occurring protein which is expressed on the surface of T-cells some hours or days after full T-cell activation and is capable of binding to CD80/86 on antigen-presenting cells with much greater affinity than CD28. Binding of CTLA4-Ig to CD80/86 provides a negative feedback mechanism which results in T-cell deactivation. Abatacept was developed by Bristol-Myers-Squibb and is licensed in the US for the treatment of Rheumatoid Arthritis in the case of inadequate response to anti-TNF-alpha therapy.
Acebutolol is a cardioselective, beta-adrenoreceptor blocking agent, which possesses mild intrinsic sympathomimetic activity (ISA) in its therapeutically effective dose range. In general, beta-blockers reduce the work the heart has to do and allow it to beat more regularly. Acebutolol has less antagonistic effects on peripheral vascular ß2-receptors at rest and after epinephrine stimulation than nonselective beta-antagonists. Low doses of acebutolol produce less evidence of bronchoconstriction than nonselective agents like propranolol but more than atenolol.
Abatacept
Acenocoumarol
Major
The formation of CYP450 enzymes is inhibited by the presence of increased levels of cytokines during chronic inflammation. Agents that reduce cytokine levels can normalize CYP450 formation and increase the metabolism of drugs. This interaction may significantly alter the therapeutic efficacy of CYP1A2 substrates with a narrow therapeutic index.
Abatacept is indicated in adult patients for the treatment of moderately-to-severely active rheumatoid arthritis and in patients ≥2 years of age for the treatment of active psoriatic arthritis. In patients two years of age and older, abatacept is also indicated for the treatment of moderately-to-severely active juvenile idiopathic arthritis. Abatacept is also indicated for the prophylaxis of acute graft-versus-host disease, in combination with methotrexate and a calcineurin inhibitor such as tacrolimus, in patients two years of age and older who are undergoing hematopoietic stem cell transplantation from a matched or 1 allele-mismatched unrelated donor.
For the treatment and prevention of thromboembolic diseases. More specifically, it is indicated for the prevention of cerebral embolism, deep vein thrombosis, pulmonary embolism, thromboembolism in infarction and transient ischemic attacks. It is used for the treatment of deep vein thrombosis and myocardial infarction.
Abatacept is the first in a new class of drugs known as Selective Co-stimulation Modulators. Known as a recombinant fusion protein, the drug consists of the extracellular domain of human cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) linked to a modified Fc portion of human immunoglobulin G 1 (IgG 1. The Fc portion of the drug consists of the hinge region, the C H 2 domain, and the C H 3 domain of IgG 1. Although there are multiple pathways and cell types involved in the pathogenesis of rheumatoid arthritis, evidence suggests that T-cell activation may play an important role in the immunopathology of the disease. Ordinarily, full T-cell activation requires binding of the T-cell receptor to an antigen-MHC complex on the antigen-presenting cell as well as a co-stimulatory signal provided by the binding of the CD28 protein on the surface of the T-cell with the CD80/86 proteins on the surface of the antigen-presenting cell. CTLA4 is a naturally occurring protein which is expressed on the surface of T-cells some hours or days after full T-cell activation and is capable of binding to CD80/86 on antigen-presenting cells with much greater affinity than CD28. Binding of CTLA4-Ig to CD80/86 provides a negative feedback mechanism which results in T-cell deactivation. Abatacept was developed by Bristol-Myers-Squibb and is licensed in the US for the treatment of Rheumatoid Arthritis in the case of inadequate response to anti-TNF-alpha therapy.
Acenocoumarol inhibits the reduction of vitamin K by vitamin K reductase. This prevents carboxylation of certain glutamic acid residues near the N-terminals of clotting factors II, VII, IX and X, the vitamin K-dependent clotting factors. Glutamic acid carboxylation is important for the interaction between these clotting factors and calcium. Without this interaction, clotting cannot occur. Both the extrinsic (via factors VII, X and II) and intrinsic (via factors IX, X and II) are affected by acenocoumarol.
Abatacept
Acetaminophen
Moderate
The formation of CYP450 enzymes is inhibited by the presence of increased levels of cytokines during chronic inflammation. Agents that reduce cytokine levels can normalize CYP450 formation and increase the metabolism of drugs. This interaction may significantly alter the therapeutic efficacy of CYP1A2 substrates.
Abatacept is indicated in adult patients for the treatment of moderately-to-severely active rheumatoid arthritis and in patients ≥2 years of age for the treatment of active psoriatic arthritis. In patients two years of age and older, abatacept is also indicated for the treatment of moderately-to-severely active juvenile idiopathic arthritis. Abatacept is also indicated for the prophylaxis of acute graft-versus-host disease, in combination with methotrexate and a calcineurin inhibitor such as tacrolimus, in patients two years of age and older who are undergoing hematopoietic stem cell transplantation from a matched or 1 allele-mismatched unrelated donor.
In general, acetaminophen is used for the treatment of mild to moderate pain and reduction of fever. It is available over the counter in various forms, the most common being oral forms. Acetaminophen injection is indicated for the management of mild to moderate pain, the management of moderate to severe pain with adjunctive opioid analgesics, and the reduction of fever. Because of its low risk of causing allergic reactions, this drug can be administered in patients who are intolerant to salicylates and those with allergic tendencies, including bronchial asthmatics. Specific dosing guidelines should be followed when administering acetaminophen to children.
Abatacept is the first in a new class of drugs known as Selective Co-stimulation Modulators. Known as a recombinant fusion protein, the drug consists of the extracellular domain of human cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) linked to a modified Fc portion of human immunoglobulin G 1 (IgG 1. The Fc portion of the drug consists of the hinge region, the C H 2 domain, and the C H 3 domain of IgG 1. Although there are multiple pathways and cell types involved in the pathogenesis of rheumatoid arthritis, evidence suggests that T-cell activation may play an important role in the immunopathology of the disease. Ordinarily, full T-cell activation requires binding of the T-cell receptor to an antigen-MHC complex on the antigen-presenting cell as well as a co-stimulatory signal provided by the binding of the CD28 protein on the surface of the T-cell with the CD80/86 proteins on the surface of the antigen-presenting cell. CTLA4 is a naturally occurring protein which is expressed on the surface of T-cells some hours or days after full T-cell activation and is capable of binding to CD80/86 on antigen-presenting cells with much greater affinity than CD28. Binding of CTLA4-Ig to CD80/86 provides a negative feedback mechanism which results in T-cell deactivation. Abatacept was developed by Bristol-Myers-Squibb and is licensed in the US for the treatment of Rheumatoid Arthritis in the case of inadequate response to anti-TNF-alpha therapy.
Animal and clinical studies have determined that acetaminophen has both antipyretic and analgesic effects. This drug has been shown to lack anti-inflammatory effects. As opposed to the salicylate drug class, acetaminophen does not disrupt tubular secretion of uric acid and does not affect acid-base balance if taken at the recommended doses. Acetaminophen does not disrupt hemostasis and does not have inhibitory activities against platelet aggregation. Allergic reactions are rare occurrences following acetaminophen use.
Abatacept
Acetylsalicylic acid
Moderate
The formation of CYP450 enzymes is inhibited by the presence of increased levels of cytokines during chronic inflammation. Agents that reduce cytokine levels can normalize CYP450 formation and increase the metabolism of drugs. This interaction may significantly alter the therapeutic efficacy of CYP2C9 substrates.
Abatacept is indicated in adult patients for the treatment of moderately-to-severely active rheumatoid arthritis and in patients ≥2 years of age for the treatment of active psoriatic arthritis. In patients two years of age and older, abatacept is also indicated for the treatment of moderately-to-severely active juvenile idiopathic arthritis. Abatacept is also indicated for the prophylaxis of acute graft-versus-host disease, in combination with methotrexate and a calcineurin inhibitor such as tacrolimus, in patients two years of age and older who are undergoing hematopoietic stem cell transplantation from a matched or 1 allele-mismatched unrelated donor.
null
Abatacept is the first in a new class of drugs known as Selective Co-stimulation Modulators. Known as a recombinant fusion protein, the drug consists of the extracellular domain of human cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) linked to a modified Fc portion of human immunoglobulin G 1 (IgG 1. The Fc portion of the drug consists of the hinge region, the C H 2 domain, and the C H 3 domain of IgG 1. Although there are multiple pathways and cell types involved in the pathogenesis of rheumatoid arthritis, evidence suggests that T-cell activation may play an important role in the immunopathology of the disease. Ordinarily, full T-cell activation requires binding of the T-cell receptor to an antigen-MHC complex on the antigen-presenting cell as well as a co-stimulatory signal provided by the binding of the CD28 protein on the surface of the T-cell with the CD80/86 proteins on the surface of the antigen-presenting cell. CTLA4 is a naturally occurring protein which is expressed on the surface of T-cells some hours or days after full T-cell activation and is capable of binding to CD80/86 on antigen-presenting cells with much greater affinity than CD28. Binding of CTLA4-Ig to CD80/86 provides a negative feedback mechanism which results in T-cell deactivation. Abatacept was developed by Bristol-Myers-Squibb and is licensed in the US for the treatment of Rheumatoid Arthritis in the case of inadequate response to anti-TNF-alpha therapy.
null
Abatacept
Acyclovir
Moderate
The formation of CYP450 enzymes is inhibited by the presence of increased levels of cytokines during chronic inflammation. Agents that reduce cytokine levels can normalize CYP450 formation and increase the metabolism of drugs. This interaction may significantly alter the therapeutic efficacy of CYP1A2 substrates.
Abatacept is indicated in adult patients for the treatment of moderately-to-severely active rheumatoid arthritis and in patients ≥2 years of age for the treatment of active psoriatic arthritis. In patients two years of age and older, abatacept is also indicated for the treatment of moderately-to-severely active juvenile idiopathic arthritis. Abatacept is also indicated for the prophylaxis of acute graft-versus-host disease, in combination with methotrexate and a calcineurin inhibitor such as tacrolimus, in patients two years of age and older who are undergoing hematopoietic stem cell transplantation from a matched or 1 allele-mismatched unrelated donor.
An acyclovir topical cream is indicated to treat recurrent herpes labialis in immunocompetent patients 12 years and older. Acyclovir oral tablets, capsules, and suspensions are indicated to treat herpes zoster, genital herpes, and chickenpox. An acyclovir topical ointment is indicated to treat initial genital herpes and limited non-life-threatening mucocutaneous herpes simplex in immunocompromised patients. An acyclovir cream with hydrocortisone is indicated to treat recurrent herpes labialis, and shortening lesion healing time in patients 6 years and older. An acyclovir buccal tablet is indicated for the treatment of recurrent herpes labialis. An acyclovir ophthalmic ointment is indicated to treat acute herpetic keratitis.
Abatacept is the first in a new class of drugs known as Selective Co-stimulation Modulators. Known as a recombinant fusion protein, the drug consists of the extracellular domain of human cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) linked to a modified Fc portion of human immunoglobulin G 1 (IgG 1. The Fc portion of the drug consists of the hinge region, the C H 2 domain, and the C H 3 domain of IgG 1. Although there are multiple pathways and cell types involved in the pathogenesis of rheumatoid arthritis, evidence suggests that T-cell activation may play an important role in the immunopathology of the disease. Ordinarily, full T-cell activation requires binding of the T-cell receptor to an antigen-MHC complex on the antigen-presenting cell as well as a co-stimulatory signal provided by the binding of the CD28 protein on the surface of the T-cell with the CD80/86 proteins on the surface of the antigen-presenting cell. CTLA4 is a naturally occurring protein which is expressed on the surface of T-cells some hours or days after full T-cell activation and is capable of binding to CD80/86 on antigen-presenting cells with much greater affinity than CD28. Binding of CTLA4-Ig to CD80/86 provides a negative feedback mechanism which results in T-cell deactivation. Abatacept was developed by Bristol-Myers-Squibb and is licensed in the US for the treatment of Rheumatoid Arthritis in the case of inadequate response to anti-TNF-alpha therapy.
Acyclovir is a nucleoside analog that inhibits the action of viral DNA polymerase and DNA replication of different herpesvirus. Acyclovir has a wide therapeutic window as overdose is rare in otherwise healthy patients.
Abatacept
Adalimumab
Moderate
Since adalimumab and abatacept are both immunosuppressants, co-administration of adalimumab and abatacept can increase the risk of infection.
Abatacept is indicated in adult patients for the treatment of moderately-to-severely active rheumatoid arthritis and in patients ≥2 years of age for the treatment of active psoriatic arthritis. In patients two years of age and older, abatacept is also indicated for the treatment of moderately-to-severely active juvenile idiopathic arthritis. Abatacept is also indicated for the prophylaxis of acute graft-versus-host disease, in combination with methotrexate and a calcineurin inhibitor such as tacrolimus, in patients two years of age and older who are undergoing hematopoietic stem cell transplantation from a matched or 1 allele-mismatched unrelated donor.
Adalimumab is indicated for the following conditions: Moderately to severely active Rheumatoid Arthritis (RA) in adults, as monotherapy or in combination with methotrexate or other non-biologic disease-modifying anti-rheumatic drugs (DMARDs). Moderately to severely active polyarticular Juvenile Idiopathic Arthritis (JIA) in patients two years of age and older, as monotherapy or in combination with methotrexate. Psoriatic Arthritis (PsA) in adults. Ankylosing Spondylitis (AS) in adults. Moderately to severely active Crohn’s Disease (CD) in adults and pediatric patients six years of age and older. Moderately to severely active Ulcerative Colitis (UC) in adults. Effectiveness has not been established in patients who have lost response to or were intolerant to TNF blockers. Moderate to severe chronic plaque psoriasis in adult candidates for systemic therapy or phototherapy and when other systemic therapies are medically less appropriate. Moderate to severe Hidradenitis Suppurativa (HS) in adults. Non-infectious intermediate, posterior, and panuveitis in adults and pediatric patients two years of age and older. Adalimumab has also been used off-label to treat Pyoderma gangrenosum.
Abatacept is the first in a new class of drugs known as Selective Co-stimulation Modulators. Known as a recombinant fusion protein, the drug consists of the extracellular domain of human cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) linked to a modified Fc portion of human immunoglobulin G 1 (IgG 1. The Fc portion of the drug consists of the hinge region, the C H 2 domain, and the C H 3 domain of IgG 1. Although there are multiple pathways and cell types involved in the pathogenesis of rheumatoid arthritis, evidence suggests that T-cell activation may play an important role in the immunopathology of the disease. Ordinarily, full T-cell activation requires binding of the T-cell receptor to an antigen-MHC complex on the antigen-presenting cell as well as a co-stimulatory signal provided by the binding of the CD28 protein on the surface of the T-cell with the CD80/86 proteins on the surface of the antigen-presenting cell. CTLA4 is a naturally occurring protein which is expressed on the surface of T-cells some hours or days after full T-cell activation and is capable of binding to CD80/86 on antigen-presenting cells with much greater affinity than CD28. Binding of CTLA4-Ig to CD80/86 provides a negative feedback mechanism which results in T-cell deactivation. Abatacept was developed by Bristol-Myers-Squibb and is licensed in the US for the treatment of Rheumatoid Arthritis in the case of inadequate response to anti-TNF-alpha therapy.
After treatment with adalimumab, a decrease in levels of acute phase reactant proteins of inflammation (C­ reactive protein [CRP] and erythrocyte sedimentation rate [ESR]) and serum cytokines (IL-6) was measured compared to baseline in patients diagnosed with rheumatoid arthritis. A decrease in CRP levels was also observed in patients diagnosed with Crohn’s disease. Serum levels of matrix metalloproteinases (MMP-1 and MMP-3) that lead to the tissue remodeling responsible for cartilage destruction were also found to be decreased after administration of adalimumab. A reduction in signs and symptoms of disease, the induction of clinical response, inhibition of structural damage, and improvements in physical function in adult and pediatric patients with various inflammatory conditions have been demonstrated.
Abatacept
Agomelatine
Moderate
The formation of CYP450 enzymes is inhibited by the presence of increased levels of cytokines during chronic inflammation. Agents that reduce cytokine levels can normalize CYP450 formation and increase the metabolism of drugs. This interaction may significantly alter the therapeutic efficacy of CYP1A2 substrates.
Abatacept is indicated in adult patients for the treatment of moderately-to-severely active rheumatoid arthritis and in patients ≥2 years of age for the treatment of active psoriatic arthritis. In patients two years of age and older, abatacept is also indicated for the treatment of moderately-to-severely active juvenile idiopathic arthritis. Abatacept is also indicated for the prophylaxis of acute graft-versus-host disease, in combination with methotrexate and a calcineurin inhibitor such as tacrolimus, in patients two years of age and older who are undergoing hematopoietic stem cell transplantation from a matched or 1 allele-mismatched unrelated donor.
Agomelatine is indicated to treat major depressive episodes in adults.
Abatacept is the first in a new class of drugs known as Selective Co-stimulation Modulators. Known as a recombinant fusion protein, the drug consists of the extracellular domain of human cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) linked to a modified Fc portion of human immunoglobulin G 1 (IgG 1. The Fc portion of the drug consists of the hinge region, the C H 2 domain, and the C H 3 domain of IgG 1. Although there are multiple pathways and cell types involved in the pathogenesis of rheumatoid arthritis, evidence suggests that T-cell activation may play an important role in the immunopathology of the disease. Ordinarily, full T-cell activation requires binding of the T-cell receptor to an antigen-MHC complex on the antigen-presenting cell as well as a co-stimulatory signal provided by the binding of the CD28 protein on the surface of the T-cell with the CD80/86 proteins on the surface of the antigen-presenting cell. CTLA4 is a naturally occurring protein which is expressed on the surface of T-cells some hours or days after full T-cell activation and is capable of binding to CD80/86 on antigen-presenting cells with much greater affinity than CD28. Binding of CTLA4-Ig to CD80/86 provides a negative feedback mechanism which results in T-cell deactivation. Abatacept was developed by Bristol-Myers-Squibb and is licensed in the US for the treatment of Rheumatoid Arthritis in the case of inadequate response to anti-TNF-alpha therapy.
Agomelatine resynchronises circadian rhythms in animal models of delayed sleep phase syndrome and other circadian rhythm disruptions. It increases noradrenaline and dopamine release specifically in the frontal cortex and has no influence on the extracellular levels of serotonin. Agomelatine has shown an antidepressant-like effect in animal depression models, (learned helplessness test, despair test, and chronic mild stress) circadian rhythm desynchronisation, and in stress and anxiety models. In humans, agomelatine has positive phase shifting properties; it induces a phase advance of sleep, body temperature decline and melatonin onset. Controlled studies in humans have shown that agomelatine is as effective as the SSRI antidepressants paroxetine and sertraline in the treatment of major depression
Abatacept
Albendazole
Moderate
The formation of CYP450 enzymes is inhibited by the presence of increased levels of cytokines during chronic inflammation. Agents that reduce cytokine levels can normalize CYP450 formation and increase the metabolism of drugs. This interaction may significantly alter the therapeutic efficacy of CYP1A2 substrates.
Abatacept is indicated in adult patients for the treatment of moderately-to-severely active rheumatoid arthritis and in patients ≥2 years of age for the treatment of active psoriatic arthritis. In patients two years of age and older, abatacept is also indicated for the treatment of moderately-to-severely active juvenile idiopathic arthritis. Abatacept is also indicated for the prophylaxis of acute graft-versus-host disease, in combination with methotrexate and a calcineurin inhibitor such as tacrolimus, in patients two years of age and older who are undergoing hematopoietic stem cell transplantation from a matched or 1 allele-mismatched unrelated donor.
For the treatment of parenchymal neurocysticercosis due to active lesions caused by larval forms of the pork tapeworm, Taenia solium and for the treatment of cystic hydatid disease of the liver, lung, and peritoneum, caused by the larval form of the dog tapeworm, Echinococcus granulosus.
Abatacept is the first in a new class of drugs known as Selective Co-stimulation Modulators. Known as a recombinant fusion protein, the drug consists of the extracellular domain of human cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) linked to a modified Fc portion of human immunoglobulin G 1 (IgG 1. The Fc portion of the drug consists of the hinge region, the C H 2 domain, and the C H 3 domain of IgG 1. Although there are multiple pathways and cell types involved in the pathogenesis of rheumatoid arthritis, evidence suggests that T-cell activation may play an important role in the immunopathology of the disease. Ordinarily, full T-cell activation requires binding of the T-cell receptor to an antigen-MHC complex on the antigen-presenting cell as well as a co-stimulatory signal provided by the binding of the CD28 protein on the surface of the T-cell with the CD80/86 proteins on the surface of the antigen-presenting cell. CTLA4 is a naturally occurring protein which is expressed on the surface of T-cells some hours or days after full T-cell activation and is capable of binding to CD80/86 on antigen-presenting cells with much greater affinity than CD28. Binding of CTLA4-Ig to CD80/86 provides a negative feedback mechanism which results in T-cell deactivation. Abatacept was developed by Bristol-Myers-Squibb and is licensed in the US for the treatment of Rheumatoid Arthritis in the case of inadequate response to anti-TNF-alpha therapy.
Albendazole is a broad-spectrum anthelmintic. The principal mode of action for albendazole is by its inhibitory effect on tubulin polymerization which results in the loss of cytoplasmic microtubules.