Datasets:
IGNF
/

ArXiv:
License:
AGarioud commited on
Commit
5d303b4
·
1 Parent(s): 43f98e7

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +48 -47
README.md CHANGED
@@ -26,7 +26,7 @@ Participate in obtaining more accurate maps for a more comprehensive description
26
 
27
  - **Datapaper : https://arxiv.org/pdf/2305.14467.pdf**
28
 
29
- - **Dataset links :** https://ignf.github.io/FLAIR/#FLAIR2 [🛑 soon @ https://ignf.github.io/FLAIR/ !]
30
 
31
  - **Challenge page : https://codalab.lisn.upsaclay.fr/competitions/13447**
32
 
@@ -42,31 +42,58 @@ Participate in obtaining more accurate maps for a more comprehensive description
42
  The FLAIR #2 dataset is sampled countrywide and is composed of over 20 billion annotated pixels of very high resolution aerial imagery at 0.2 m spatial resolution, acquired over three years and different months (spatio-temporal domains). Aerial imagery patches consist of 5 channels (RVB-Near Infrared-Elevation) and have corresponding annotation (with 19 semantic classes or 13 for the baselines). Furthermore, to integrate broader spatial context and temporal information, high resolution Sentinel-2 1-year time series with 10 spectral band are also provided. More than 50,000 Sentinel-2 acquisitions with 10 m spatial resolution are available.
43
  <br>
44
 
45
- <p align="center">
46
- <img width="40%" src="images/flair-2-spatial.png">
47
- <br>
48
- <em>Spatial definitions of the FLAIR #2 dataset.</em>
49
- </p>
50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51
 
52
- <p align="center">
53
- <img width="85%" src="images/flair-2-patches.png">
54
- <br>
55
- <em>Example of input data (first three columns are from aerial imagery, fourth from Sentinel-2) and corresponding supervision masks (last column).</em>
56
- </p>
57
 
58
  <br><br>
59
- ## Baseline model
60
-
61
- A two-branch architecture integrating a U-Net <a href="https://github.com/qubvel/segmentation_models.pytorch"><img src="https://img.shields.io/badge/Link%20to-SMP-f4dbaa.svg"/></a> with a pre-trained ResNet34 encoder and a U-TAE <a href="https://github.com/VSainteuf/utae-paps"><img src="https://img.shields.io/badge/Link%20to-U--TAE-f4dbaa.svg"/></a> encompassing a temporal self-attention encoder is presented. The U-TAE branch aims at learning spatio-temporal embeddings from the high resolution satellite time series that are further integrated into the U-Net branch exploiting the aerial imagery. The proposed _U-T&T_ model features a fusion module to extend and reshape the U-TAE embeddings in order to add them towards the U-Net branch.
62
 
63
- <p align="center">
64
- <img width="100%" src="images/flair-2-network.png">
65
- <br>
66
- <em>Overview of the proposed two-branch architecture.</em>
67
- </p>
68
-
69
- <br><br>
70
 
71
  ## Usage
72
 
@@ -84,32 +111,6 @@ A toy dataset (reduced size) is available to check that your installation and th
84
 
85
  <br><br>
86
 
87
- ## Leaderboard
88
-
89
- Please note that for participants to the FLAIR #2 challenge on CodaLab, a certain number of constraints must be satisfied (in particular, inference time). All infos are available on the _Overview_ page of the competion.
90
-
91
- | Model|Input|mIoU
92
- ------------ | ------------- | -------------
93
- | baseline U-Net (ResNet34) | aerial imagery | 0.5470
94
- | baseline U-Net (ResNet34) + _metadata + augmentation_ | aerial imagery | 0.5593
95
- |||
96
- | baseline U-T&T | aerial and satellite imagery | 0.5594
97
- | baseline U-T&T + _filter clouds + monthly averages + data augmentation_ | aerial and satellite imagery | 0.5758
98
-
99
- If you want to submit a new entry, you can open a new issue.
100
- <b> Results of the challenge will be reported after the end of the challenge early October! </b>
101
-
102
- The baseline U-T&T + _filter clouds + monthly averages + data_augmentation_ obtains the following confusion matrix:
103
-
104
- <br><br>
105
- <p align="center">
106
- <img width="50%" src="images/flair-2-confmat.png">
107
- <br>
108
- <em>Baseline confusion matrix of the test dataset normalized by rows.</em>
109
- </p>
110
-
111
-
112
- <br><br><br>
113
 
114
  ## Reference
115
  Please include a citation to the following article if you use the FLAIR #2 dataset:
 
26
 
27
  - **Datapaper : https://arxiv.org/pdf/2305.14467.pdf**
28
 
29
+ - **Dataset links :** https://ignf.github.io/FLAIR/#FLAIR2
30
 
31
  - **Challenge page : https://codalab.lisn.upsaclay.fr/competitions/13447**
32
 
 
42
  The FLAIR #2 dataset is sampled countrywide and is composed of over 20 billion annotated pixels of very high resolution aerial imagery at 0.2 m spatial resolution, acquired over three years and different months (spatio-temporal domains). Aerial imagery patches consist of 5 channels (RVB-Near Infrared-Elevation) and have corresponding annotation (with 19 semantic classes or 13 for the baselines). Furthermore, to integrate broader spatial context and temporal information, high resolution Sentinel-2 1-year time series with 10 spectral band are also provided. More than 50,000 Sentinel-2 acquisitions with 10 m spatial resolution are available.
43
  <br>
44
 
45
+ The dataset covers 50 spatial domains, encompassing 916 areas spanning 817 km². With 13 semantic classes (plus 6 not used in this challenge), this dataset provides a robust foundation for advancing land cover mapping techniques.<br><br>
 
 
 
 
46
 
47
+ <center>
48
+ <table style="width:80%;max-width:700px;">
49
+ <thead>
50
+ <tr><th width=7%></th><th>Class</th><th style='text-align: center' width=15%>Value</th><th style='text-align: center'>Freq.-train (%)</th><th style='text-align: center'>Freq.-test (%)</th></tr>
51
+ </thead>
52
+ <tbody>
53
+ <tr><td bgcolor='#db0e9a'></td><td>building</td><td style='text-align: center'>1</td><td style='text-align: center'>8.14</td><td style='text-align: center'>3.26</td></tr>
54
+
55
+ <tr><td bgcolor='#938e7b'></td><td>pervious surface</td><td style='text-align: center'>2</td><td style='text-align: center'>8.25</td><td style='text-align: center'>3.82</td></tr>
56
+
57
+ <tr><td bgcolor='#f80c00'></td><td>impervious surface</td><td style='text-align: center'>3</td><td style='text-align: center'>13.72</td><td style='text-align: center'>5.87</td></tr>
58
+
59
+ <tr><td bgcolor='#a97101'></td><td>bare soil</td><td style='text-align: center'>4</td><td style='text-align: center'>3.47</td><td style='text-align: center'>1.6</td></tr>
60
+
61
+ <tr><td bgcolor='#1553ae'></td><td>water</td><td style='text-align: center'>5</td><td style='text-align: center'>4.88</td><td style='text-align: center'>3.17</td></tr>
62
+
63
+ <tr><td bgcolor='#194a26'></td><td>coniferous</td><td style='text-align: center'>6</td><td style='text-align: center'>2.74</td><td style='text-align: center'>10.24</td></tr>
64
+
65
+ <tr><td bgcolor='#46e483'></td><td>deciduous</td><td style='text-align: center'>7</td><td style='text-align: center'>15.38</td><td style='text-align: center'>24.79</td></tr>
66
+
67
+ <tr><td bgcolor='#f3a60d'></td><td>brushwood</td><td style='text-align: center'>8</td><td style='text-align: center'>6.95</td><td style='text-align: center'>3.81</td></tr>
68
+
69
+ <tr><td bgcolor='#660082'></td><td>vineyard</td><td style='text-align: center'>9</td><td style='text-align: center'>3.13</td><td style='text-align: center'>2.55</td></tr>
70
+
71
+ <tr><td bgcolor='#55ff00'></td><td>herbaceous vegetation</td><td style='text-align: center'>10</td><td style='text-align: center'>17.84</td><td style='text-align: center'>19.76</td></tr>
72
+
73
+ <tr><td bgcolor='#fff30d'></td><td>agricultural land</td><td style='text-align: center'>11</td><td style='text-align: center'>10.98</td><td style='text-align: center'>18.19</td></tr>
74
+
75
+ <tr><td bgcolor='#e4df7c'></td><td>plowed land</td><td style='text-align: center'>12</td><td style='text-align: center'>3.88</td><td style='text-align: center'>1.81</td></tr>
76
+
77
+ <tr><td bgcolor='#3de6eb'></td><td>swimming pool</td><td style='text-align: center'>13</td><td style='text-align: center'>0.01</td><td style='text-align: center'>0.02</td></tr>
78
+
79
+ <tr><td bgcolor='#ffffff'></td><td>snow</td><td style='text-align: center'>14</td><td style='text-align: center'>0.15</td><td style='text-align: center'>-</td></tr>
80
+
81
+ <tr><td bgcolor='#8ab3a0'></td><td>clear cut</td><td style='text-align: center'>15</td><td style='text-align: center'>0.15</td><td style='text-align: center'>0.82</td></tr>
82
+
83
+ <tr><td bgcolor='#6b714f'></td><td>mixed</td><td style='text-align: center'>16</td><td style='text-align: center'>0.05</td><td style='text-align: center'>0.12</td></tr>
84
+
85
+ <tr><td bgcolor='#c5dc42'></td><td>ligneous</td><td style='text-align: center'>17</td><td style='text-align: center'>0.01</td><td style='text-align: center'>-</td></tr>
86
+
87
+ <tr><td bgcolor='#9999ff'></td><td>greenhouse</td><td style='text-align: center'>18</td><td style='text-align: center'>0.12</td><td style='text-align: center'>0.15</td></tr>
88
+
89
+ <tr><td bgcolor='#000000'></td><td>other</td><td style='text-align: center'>19</td><td style='text-align: center'>0.14</td><td style='text-align: center'>0.04</td></tr>
90
+ </tbody>
91
+ </table>
92
+ </center>
93
 
 
 
 
 
 
94
 
95
  <br><br>
 
 
 
96
 
 
 
 
 
 
 
 
97
 
98
  ## Usage
99
 
 
111
 
112
  <br><br>
113
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
114
 
115
  ## Reference
116
  Please include a citation to the following article if you use the FLAIR #2 dataset: