repo_id
stringclasses 205
values | file_path
stringlengths 33
141
| content
stringlengths 1
307k
| __index_level_0__
int64 0
0
|
---|---|---|---|
/home/johnshepherd/drake/systems/sensors | /home/johnshepherd/drake/systems/sensors/test/rotary_encoders_test.cc | #include "drake/systems/sensors/rotary_encoders.h"
#include <cmath>
#include <vector>
#include <gtest/gtest.h>
#include "drake/common/test_utilities/eigen_matrix_compare.h"
#include "drake/common/test_utilities/symbolic_test_util.h"
#include "drake/systems/framework/test_utilities/scalar_conversion.h"
namespace drake {
namespace {
constexpr double k2Pi = 2.0 * M_PI;
// Test with the simple quantization-only constructor.
GTEST_TEST(TestEncoders, QuantizeOnly) {
// Construct a system where all inputs are encoders, with quantization
const std::vector<int> tick_counts = {100, 50};
systems::sensors::RotaryEncoders<double> encoders(tick_counts);
Eigen::Vector2d ticks_per_radian;
ticks_per_radian << tick_counts[0] / k2Pi, tick_counts[1] / k2Pi;
auto context = encoders.CreateDefaultContext();
auto output = encoders.AllocateOutput();
auto measurement = output->get_vector_data(0);
double tol = 1e-10;
Eigen::Vector2d angle, desired_measurement;
// TODO(russt): Use c++11 random generators instead (w/ some wrappers).
srand(42);
for (int i = 0; i < 10; i++) {
angle = Eigen::Vector2d::Random();
using std::floor;
for (int j = 0; j < 2; j++) {
desired_measurement(j) =
floor(angle(j) * ticks_per_radian(j)) / ticks_per_radian(j);
}
encoders.get_input_port().FixValue(context.get(), angle);
encoders.CalcOutput(*context, output.get());
EXPECT_TRUE(CompareMatrices(desired_measurement,
measurement->CopyToVector(), tol,
MatrixCompareType::absolute));
}
}
// Test with the simple selector-only constructor.
GTEST_TEST(TestEncoders, SelectorOnly) {
// Construct a system with no quantization, and only inputs 1 and 2 are
// passed.
const std::vector<int> indices = {1, 2};
systems::sensors::RotaryEncoders<double> encoders(4, indices);
auto context = encoders.CreateDefaultContext();
auto output = encoders.AllocateOutput();
auto measurement = output->get_vector_data(0);
double tol = 1e-10;
Eigen::Vector4d angle;
Eigen::Vector2d desired_measurement;
// TODO(russt): Use c++11 random generators instead (w/ some wrappers).
srand(42);
for (int i = 0; i < 10; i++) {
angle = Eigen::Vector4d::Random();
desired_measurement = angle.segment(1, 2);
encoders.get_input_port().FixValue(context.get(), angle);
encoders.CalcOutput(*context, output.get());
EXPECT_TRUE(CompareMatrices(desired_measurement,
measurement->CopyToVector(), tol,
MatrixCompareType::absolute));
}
}
// Test with the simple quantization and selector constructor.
GTEST_TEST(TestEncoders, QuantizationAndSelector) {
// Construct a system with quantization, and only inputs 1 and 2 are
// passed.
const std::vector<int> indices = {1, 2};
const std::vector<int> tick_counts = {100, 50};
systems::sensors::RotaryEncoders<double> encoders(4, indices, tick_counts);
Eigen::Vector2d ticks_per_radian;
ticks_per_radian << tick_counts[0] / k2Pi, tick_counts[1] / k2Pi;
auto context = encoders.CreateDefaultContext();
auto output = encoders.AllocateOutput();
auto measurement = output->get_vector_data(0);
double tol = 1e-10;
Eigen::Vector4d angle;
Eigen::Vector2d desired_measurement;
// TODO(russt): Use c++11 random generators instead (w/ some wrappers).
srand(42);
for (int i = 0; i < 10; i++) {
angle = Eigen::Vector4d::Random();
encoders.get_input_port().FixValue(context.get(), angle);
using std::ceil;
using std::floor;
for (int j = 0; j < 2; j++) {
desired_measurement(j) =
floor(angle(indices[j]) * ticks_per_radian(j)) / ticks_per_radian(j);
}
encoders.CalcOutput(*context, output.get());
EXPECT_TRUE(CompareMatrices(desired_measurement,
measurement->CopyToVector(), tol,
MatrixCompareType::absolute));
}
}
// Test the calibration offsets (via the parameters).
GTEST_TEST(TestEncoders, CalibrationOffsets) {
// Construct a system where all inputs are encoders, with quantization.
const std::vector<int> tick_counts = {100, 50};
systems::sensors::RotaryEncoders<double> encoders(tick_counts);
Eigen::Vector2d ticks_per_radian;
ticks_per_radian << tick_counts[0] / k2Pi, tick_counts[1] / k2Pi;
auto context = encoders.CreateDefaultContext();
auto output = encoders.AllocateOutput();
auto measurement = output->get_vector_data(0);
// Set some offsets.
Eigen::Vector2d offsets;
offsets << 0.1, M_PI_4;
encoders.set_calibration_offsets(context.get(), offsets);
double tol = 1e-10;
Eigen::Vector2d angle, desired_measurement;
// TODO(russt): Use c++11 random generators instead (w/ some wrappers).
srand(42);
for (int i = 0; i < 10; i++) {
angle = Eigen::Vector2d::Random();
encoders.get_input_port().FixValue(context.get(), angle);
angle -= offsets;
using std::ceil;
using std::floor;
for (int j = 0; j < 2; j++) {
desired_measurement(j) =
floor(angle(j) * ticks_per_radian(j)) / ticks_per_radian(j);
}
encoders.CalcOutput(*context, output.get());
EXPECT_TRUE(CompareMatrices(desired_measurement,
measurement->CopyToVector(), tol,
MatrixCompareType::absolute));
}
}
// Test ToAutoDiff and ToSymbolic.
GTEST_TEST(TestEncoders, ScalarConversion) {
using Expression = symbolic::Expression;
const std::vector<int> indices = {1, 2};
const std::vector<int> tick_counts = {2, 4};
systems::sensors::RotaryEncoders<double> encoders(4, indices, tick_counts);
// Sanity check AutoDiff form. We rely on symbolic form to test correctness.
EXPECT_TRUE(is_autodiffxd_convertible(encoders));
// Check that both the indices and tick_counts made it into symbolic form.
EXPECT_TRUE(is_symbolic_convertible(
encoders, [&](const systems::sensors::RotaryEncoders<Expression>& dut) {
auto context = dut.CreateDefaultContext();
// Set input to be symbolic variables.
const Vector4<Expression> input{
symbolic::Variable("u0"), symbolic::Variable("u1"),
symbolic::Variable("u2"), symbolic::Variable("u3")};
dut.get_input_port().FixValue(context.get(), input);
// Obtain the symbolic outputs.
auto outputs = dut.AllocateOutput();
dut.CalcOutput(*context, outputs.get());
const systems::BasicVector<Expression>& output =
*(outputs->get_vector_data(0));
ASSERT_EQ(output.size(), 2);
// Symbolic form should be as expected.
using symbolic::test::ExprEqual;
EXPECT_PRED2(ExprEqual, output[0], floor((M_1_PI * input[1])) / M_1_PI);
EXPECT_PRED2(ExprEqual, output[1], floor((M_2_PI * input[2])) / M_2_PI);
}));
}
} // namespace
} // namespace drake
| 0 |
/home/johnshepherd/drake/systems/sensors | /home/johnshepherd/drake/systems/sensors/test/image_to_lcm_image_array_t_test.cc | #include "drake/systems/sensors/image_to_lcm_image_array_t.h"
#include <gtest/gtest.h>
#include "drake/lcmt_image_array.hpp"
#include "drake/systems/sensors/image.h"
namespace drake {
namespace systems {
namespace sensors {
namespace {
const char* kColorFrameName = "color_frame_name";
const char* kDepthFrameName = "depth_frame_name";
const char* kLabelFrameName = "label_frame_name";
// Using very tiny image.
const int kImageWidth = 8;
const int kImageHeight = 6;
lcmt_image_array SetUpInputAndOutput(ImageToLcmImageArrayT* dut,
const ImageRgba8U& color_image,
const ImageDepth32F& depth_image,
const ImageLabel16I& label_image) {
const InputPort<double>& color_image_input_port =
dut->color_image_input_port();
const InputPort<double>& depth_image_input_port =
dut->depth_image_input_port();
const InputPort<double>& label_image_input_port =
dut->label_image_input_port();
std::unique_ptr<Context<double>> context = dut->CreateDefaultContext();
color_image_input_port.FixValue(context.get(), color_image);
depth_image_input_port.FixValue(context.get(), depth_image);
label_image_input_port.FixValue(context.get(), label_image);
return dut->image_array_t_msg_output_port().Eval<lcmt_image_array>(*context);
}
GTEST_TEST(ImageToLcmImageArrayT, ValidTest) {
ImageRgba8U color_image(kImageWidth, kImageHeight);
ImageDepth32F depth_image(kImageWidth, kImageHeight);
ImageLabel16I label_image(kImageWidth, kImageHeight);
auto Verify = [color_image, depth_image, label_image](
const ImageToLcmImageArrayT& dut,
const lcmt_image_array& output_image_array,
uint8_t compression_method) {
// Verifyies lcmt_image_array
EXPECT_EQ(output_image_array.header.seq, 0);
EXPECT_EQ(output_image_array.header.utime, 0);
EXPECT_EQ(output_image_array.header.frame_name, "");
EXPECT_EQ(output_image_array.num_images, 3);
EXPECT_EQ(output_image_array.images.size(), 3);
// Verifyies each lcmt_image.
for (auto const& image : output_image_array.images) {
EXPECT_EQ(image.header.seq, 0);
EXPECT_EQ(image.header.utime, 0);
EXPECT_EQ(image.width, kImageWidth);
EXPECT_EQ(image.height, kImageHeight);
EXPECT_EQ(image.data.size(), image.size);
EXPECT_FALSE(image.bigendian);
EXPECT_EQ(image.compression_method, compression_method);
std::string frame_name;
int row_stride;
int8_t pixel_format;
int8_t channel_type;
if (image.pixel_format == lcmt_image::PIXEL_FORMAT_RGBA) {
frame_name = kColorFrameName;
row_stride = color_image.width() * color_image.kNumChannels *
sizeof(*color_image.at(0, 0));
pixel_format = lcmt_image::PIXEL_FORMAT_RGBA;
channel_type = lcmt_image::CHANNEL_TYPE_UINT8;
} else if (image.pixel_format == lcmt_image::PIXEL_FORMAT_DEPTH) {
frame_name = kDepthFrameName;
row_stride = depth_image.width() * depth_image.kNumChannels *
sizeof(*depth_image.at(0, 0));
pixel_format = lcmt_image::PIXEL_FORMAT_DEPTH;
channel_type = lcmt_image::CHANNEL_TYPE_FLOAT32;
} else if (image.pixel_format == lcmt_image::PIXEL_FORMAT_LABEL) {
frame_name = kLabelFrameName;
row_stride = label_image.width() * label_image.kNumChannels *
sizeof(*label_image.at(0, 0));
pixel_format = lcmt_image::PIXEL_FORMAT_LABEL;
channel_type = lcmt_image::CHANNEL_TYPE_INT16;
} else {
EXPECT_FALSE(true);
}
EXPECT_EQ(image.header.frame_name, frame_name);
EXPECT_EQ(image.row_stride, row_stride);
EXPECT_EQ(image.pixel_format, pixel_format);
EXPECT_EQ(image.channel_type, channel_type);
}
};
ImageToLcmImageArrayT dut_compressed(kColorFrameName, kDepthFrameName,
kLabelFrameName, true);
auto image_array_t_compressed = SetUpInputAndOutput(
&dut_compressed, color_image, depth_image, label_image);
Verify(dut_compressed, image_array_t_compressed,
lcmt_image::COMPRESSION_METHOD_ZLIB);
ImageToLcmImageArrayT dut_uncompressed(kColorFrameName, kDepthFrameName,
kLabelFrameName, false);
auto image_array_t_uncompressed = SetUpInputAndOutput(
&dut_uncompressed, color_image, depth_image, label_image);
Verify(dut_uncompressed, image_array_t_uncompressed,
lcmt_image::COMPRESSION_METHOD_NOT_COMPRESSED);
}
} // namespace
} // namespace sensors
} // namespace systems
} // namespace drake
| 0 |
/home/johnshepherd/drake/systems/sensors | /home/johnshepherd/drake/systems/sensors/test/vtk_diagnostic_event_observer_test.cc | #include "drake/systems/sensors/vtk_diagnostic_event_observer.h"
#include <string>
#include <vector>
#include <gmock/gmock.h>
#include <gtest/gtest.h>
// To ease build system upkeep, we annotate VTK includes with their deps.
#include <vtkNew.h> // vtkCommonCore
namespace drake {
namespace systems {
namespace sensors {
namespace internal {
namespace {
using drake::internal::DiagnosticDetail;
using drake::internal::DiagnosticPolicy;
GTEST_TEST(VtkDiagnosticEventObserverTest, General) {
// Prepare a DiagnosticPolicy that simply accumulates its messages.
std::vector<std::string> messages;
DiagnosticPolicy diagnostic_policy;
diagnostic_policy.SetActionForWarnings([&](const DiagnosticDetail& detail) {
messages.push_back(detail.FormatWarning());
});
diagnostic_policy.SetActionForErrors([&](const DiagnosticDetail& detail) {
messages.push_back(detail.FormatError());
});
// Create the device under test.
vtkNew<VtkDiagnosticEventObserver> dut;
dut->set_diagnostic(&diagnostic_policy);
// Create a dummy object that will generate messages observed by the dut.
vtkNew<vtkObject> dummy;
dummy->AddObserver(vtkCommand::ErrorEvent, dut);
dummy->AddObserver(vtkCommand::WarningEvent, dut);
// Generate messages.
const char* const error_message =
"text for error\n"
"next line\n\n";
const char* const warning_message =
"text for warning\n"
"next line\n\n";
dummy->InvokeEvent(
vtkCommand::ErrorEvent,
const_cast<void*>(static_cast<const void*>(error_message)));
dummy->InvokeEvent(
vtkCommand::WarningEvent,
const_cast<void*>(static_cast<const void*>(warning_message)));
// Check for what came out.
EXPECT_THAT(messages,
testing::ElementsAre("error: text for error: next line",
"warning: text for warning: next line"));
}
} // namespace
} // namespace internal
} // namespace sensors
} // namespace systems
} // namespace drake
| 0 |
/home/johnshepherd/drake/systems/sensors | /home/johnshepherd/drake/systems/sensors/test/camera_info_test.cc | #include "drake/systems/sensors/camera_info.h"
#include <limits>
#include <utility>
#include <vector>
#include <Eigen/Dense>
#include <gmock/gmock.h>
#include <gtest/gtest.h>
#include "drake/common/test_utilities/eigen_matrix_compare.h"
#include "drake/common/test_utilities/expect_throws_message.h"
namespace drake {
namespace systems {
namespace sensors {
namespace {
using Eigen::Matrix3d;
// This is because there is a precision difference between Ubuntu and Mac.
const double kTolerance = 1e-12;
const int kWidth = 640;
const int kHeight = 480;
const double kFx = 554.25625842204079; // In pixels.
const double kFy = 579.41125496954282; // In pixels.
const double kCx = kWidth * 0.5 - 0.5;
const double kCy = kHeight * 0.5 - 0.5;
const double kVerticalFov = 0.78539816339744828; // 45.0 degrees.
void Verify(const Matrix3d& expected, const CameraInfo& dut) {
EXPECT_EQ(kWidth, dut.width());
EXPECT_EQ(kHeight, dut.height());
EXPECT_NEAR(expected(0, 0), dut.focal_x(), kTolerance);
EXPECT_NEAR(expected(1, 1), dut.focal_y(), kTolerance);
EXPECT_NEAR(expected(0, 2), dut.center_x(), kTolerance);
EXPECT_NEAR(expected(1, 2), dut.center_y(), kTolerance);
EXPECT_TRUE(CompareMatrices(expected, dut.intrinsic_matrix(), kTolerance));
}
GTEST_TEST(TestCameraInfo, ConstructionTest) {
const Matrix3d expected(
(Matrix3d() << kFx, 0., kCx, 0., kFy, kCy, 0., 0., 1.).finished());
{
SCOPED_TRACE("Spelled out");
CameraInfo dut(kWidth, kHeight, kFx, kFy, kCx, kCy);
Verify(expected, dut);
}
{
SCOPED_TRACE("Matrix");
CameraInfo dut(kWidth, kHeight, expected);
Verify(expected, dut);
}
}
// The focal lengths become identical with this constructor.
GTEST_TEST(TestCameraInfo, ConstructionWithFovTest) {
const Matrix3d expected(
(Matrix3d() << kFy, 0., kCx, 0., kFy, kCy, 0., 0., 1.).finished());
CameraInfo dut(kWidth, kHeight, kVerticalFov);
Verify(expected, dut);
}
// Confirms that values that lie outside of the valid range throw. We're largely
// going to focus on using the parameterized constructor (w, h, fx, fy, cx, cz)
// even though the throwing happens in the matrix-based constructor.
//
// 1. It's simpler to iterate over different kinds of bad values via this
// constructor compactly.
// 2. We know it simply constructs a matrix and forwards it along, so we'll be
// exercising that constructor.
//
// We will evaluate the matrix-based constructor to test for the "malformed
// matrix condition".
GTEST_TEST(TestCameraInfo, BadConstructionThrows) {
constexpr double kInf = std::numeric_limits<double>::infinity();
constexpr double kNaN = std::numeric_limits<double>::quiet_NaN();
constexpr double kW = kWidth;
constexpr double kH = kHeight;
// Bad image size.
DRAKE_EXPECT_THROWS_MESSAGE(CameraInfo(-13, kH, kFx, kFy, kCx, kCy),
"[^]*Width.+-13[^]*");
DRAKE_EXPECT_THROWS_MESSAGE(CameraInfo(kW, -17, kFx, kFy, kCx, kCy),
"[^]*Height.+-17[^]*");
// Bad focal length.
DRAKE_EXPECT_THROWS_MESSAGE(CameraInfo(kW, kH, 0, kFy, kCx, kCy),
"[^]*Focal X.+0[^]*");
DRAKE_EXPECT_THROWS_MESSAGE(CameraInfo(kW, kH, -10, kFy, kCx, kCy),
"[^]*Focal X.+-10[^]*");
DRAKE_EXPECT_THROWS_MESSAGE(CameraInfo(kW, kH, kInf, kFy, kCx, kCy),
"[^]*Focal X.+inf[^]*");
DRAKE_EXPECT_THROWS_MESSAGE(CameraInfo(kW, kH, kNaN, kFy, kCx, kCy),
"[^]*Focal X.+nan[^]*");
DRAKE_EXPECT_THROWS_MESSAGE(CameraInfo(kW, kH, kFx, 0, kCx, kCy),
"[^]*Focal Y.+0[^]*");
DRAKE_EXPECT_THROWS_MESSAGE(CameraInfo(kW, kH, kFx, -10, kCx, kCy),
"[^]*Focal Y.+-10[^]*");
DRAKE_EXPECT_THROWS_MESSAGE(CameraInfo(kW, kH, kFx, kInf, kCx, kCy),
"[^]*Focal Y.+inf[^]*");
DRAKE_EXPECT_THROWS_MESSAGE(CameraInfo(kW, kH, kFx, kNaN, kCx, kCy),
"[^]*Focal Y.+nan[^]*");
// Bad principal point.
DRAKE_EXPECT_THROWS_MESSAGE(CameraInfo(kW, kH, kFx, kFy, 0, kCy),
"[^]*Center X.+0[^]*");
DRAKE_EXPECT_THROWS_MESSAGE(CameraInfo(kW, kH, kFx, kFy, -10, kCy),
"[^]*Center X.+-10[^]*");
DRAKE_EXPECT_THROWS_MESSAGE(CameraInfo(kW, kH, kFx, kFy, kW, kCy),
"[^]*Center X.+\\d+[^]*");
DRAKE_EXPECT_THROWS_MESSAGE(CameraInfo(kW, kH, kFx, kFy, kW + 1, kCy),
"[^]*Center X.+\\d+[^]*");
DRAKE_EXPECT_THROWS_MESSAGE(CameraInfo(kW, kH, kFx, kFy, kCx, 0),
"[^]*Center Y.+0[^]*");
DRAKE_EXPECT_THROWS_MESSAGE(CameraInfo(kW, kH, kFx, kFy, kCx, -10),
"[^]*Center Y.+-10[^]*");
DRAKE_EXPECT_THROWS_MESSAGE(CameraInfo(kW, kH, kFx, kFy, kCx, kH),
"[^]*Center Y.+\\d+[^]*");
DRAKE_EXPECT_THROWS_MESSAGE(CameraInfo(kW, kH, kFx, kFy, kCx, kH + 1),
"[^]*Center Y.+\\d+[^]*");
// All bad values get independently enumerated.
try {
CameraInfo(-1, -1, -1, -1, -1, -1);
GTEST_FAIL() << "Didn't throw an exception!";
} catch (std::exception& e) {
EXPECT_THAT(e.what(), ::testing::HasSubstr("Width")) << e.what();
EXPECT_THAT(e.what(), ::testing::HasSubstr("Height")) << e.what();
EXPECT_THAT(e.what(), ::testing::HasSubstr("Focal X")) << e.what();
EXPECT_THAT(e.what(), ::testing::HasSubstr("Focal Y")) << e.what();
EXPECT_THAT(e.what(), ::testing::HasSubstr("Center X")) << e.what();
EXPECT_THAT(e.what(), ::testing::HasSubstr("Center Y")) << e.what();
}
// Test for a malformed matrix; we'll start with an otherwise valid matrix and
// perturb the off-diagonal and homogeneous row entries to become "malformed".
const Matrix3d K_valid(
(Matrix3d() << kFy, 0., kCx, 0., kFy, kCy, 0., 0., 1.).finished());
EXPECT_NO_THROW(CameraInfo(kW, kH, K_valid));
const std::vector<std::pair<int, int>> indices{
{0, 1}, {1, 0}, {2, 0}, {2, 1}, {2, 2}};
for (auto [i, j] : indices) {
Matrix3d K = K_valid;
K(i, j) = -1;
DRAKE_EXPECT_THROWS_MESSAGE(CameraInfo(kW, kH, K),
"[^]*intrinsic matrix is malformed[^]*");
}
}
// Confirms that the reported field of view (in radians) is the same as is
// given.
GTEST_TEST(TestCameraInfo, FieldOfView) {
// Pick some arbitrary angle that isn't a "nice" angle.
const double fov_y = M_PI / 7;
const double kEps = std::numeric_limits<double>::epsilon();
{
// Square camera: fields of view are equal in x- and y-directions.
CameraInfo camera(100, 100, fov_y);
EXPECT_NEAR(camera.fov_y(), fov_y, kEps);
EXPECT_NEAR(camera.fov_x(), fov_y, kEps);
}
{
// Rectangular camera: has an identical *focal lengths* in the x- and y-
// directions. But the rectangular image leads to different fields of view.
const int w = 100;
const int h = 200;
CameraInfo camera{w, h, fov_y};
const double fov_x = 2 * atan(w * tan(fov_y / 2) / h);
EXPECT_NEAR(camera.fov_y(), fov_y, kEps);
EXPECT_NEAR(camera.fov_x(), fov_x, kEps);
}
}
} // namespace
} // namespace sensors
} // namespace systems
} // namespace drake
| 0 |
/home/johnshepherd/drake/systems/sensors | /home/johnshepherd/drake/systems/sensors/test/vtk_image_reader_writer_test.cc | #include <gmock/gmock.h>
#include <gtest/gtest.h>
// To ease build system upkeep, we annotate VTK includes with their deps.
#include <vtkImageData.h> // vtkCommonDataModel
#include <vtkImageExport.h> // vtkIOImage
#include "drake/common/eigen_types.h"
#include "drake/common/temp_directory.h"
#include "drake/common/test_utilities/expect_throws_message.h"
#include "drake/systems/sensors/test/image_io_test_params.h"
#include "drake/systems/sensors/vtk_image_reader_writer.h"
namespace drake {
namespace systems {
namespace sensors {
namespace internal {
namespace {
namespace fs = std::filesystem;
class VtkImageReaderWriterTest
: public testing::TestWithParam<ImageIoTestParams> {
public:
VtkImageReaderWriterTest() = default;
};
// Checks MakeWriter() and MakeReader() back-to-back. This provides a simple
// sanity check for these low-level helper functions.
TEST_P(VtkImageReaderWriterTest, RoundTrip) {
const ImageIoTestParams& param = GetParam();
const ImageFileFormat format = param.format;
const bool write_to_file = param.write_to_file;
const int vtk_scalar = param.vtk_scalar();
// Create a sample image in memory.
auto image = param.CreateIotaVtkImage();
// Check MakeWriter() construction.
// Set it up to write either to `filename` xor `writer_output`.
fs::path filename;
std::vector<uint8_t> writer_output;
vtkSmartPointer<vtkImageWriter> writer;
if (write_to_file) {
filename =
fs::path(temp_directory()) / fmt::format("RoundTrip_{}.image", format);
writer = MakeWriter(format, filename);
} else {
writer = MakeWriter(format, &writer_output);
}
ASSERT_TRUE(writer != nullptr);
// Ask MakeWriter() to write out the image.
writer->SetInputData(image.Get());
writer->Write();
// Check MakeReader().
vtkSmartPointer<vtkImageReader2> reader;
if (write_to_file) {
reader = MakeReader(format, filename);
} else {
reader = MakeReader(format, writer_output.data(), writer_output.size());
}
ASSERT_TRUE(reader != nullptr);
reader->Update();
// Check the image metadata. We'll use ASSERT not EXPECT because momentarily
// we'll also compare the image data buffers, which we don't want to do when
// the sizes were wrong.
vtkNew<vtkImageExport> loader;
loader->SetInputConnection(reader->GetOutputPort(0));
loader->Update();
const int* const dims = loader->GetDataDimensions();
ASSERT_EQ(dims[0], param.width());
ASSERT_EQ(dims[1], param.height());
ASSERT_EQ(dims[2], param.depth());
ASSERT_EQ(loader->GetDataNumberOfScalarComponents(), param.channels());
ASSERT_EQ(loader->GetDataScalarType(), vtk_scalar);
const void* const original = image->GetScalarPointer();
const void* const readback = loader->GetPointerToData();
param.CompareImageBuffer(original, readback);
}
INSTANTIATE_TEST_SUITE_P(All, VtkImageReaderWriterTest,
GetAllImageIoTestParams());
// Checks that an unsupported operation produces an error.
GTEST_TEST(UnparameterizedVtkImageReaderWriterTest, TiffWriteToMemoryThrow) {
std::vector<uint8_t> output;
DRAKE_EXPECT_THROWS_MESSAGE(MakeWriter(ImageFileFormat::kTiff, &output),
".*TIFF.*memory buffer.*");
}
} // namespace
} // namespace internal
} // namespace sensors
} // namespace systems
} // namespace drake
| 0 |
/home/johnshepherd/drake/systems/sensors | /home/johnshepherd/drake/systems/sensors/test/accelerometer_test.cc | #include "drake/systems/sensors/accelerometer.h"
#include <gtest/gtest.h>
#include "drake/common/eigen_types.h"
#include "drake/common/find_resource.h"
#include "drake/common/test_utilities/eigen_matrix_compare.h"
#include "drake/multibody/parsing/parser.h"
#include "drake/multibody/plant/multibody_plant.h"
#include "drake/systems/framework/diagram_builder.h"
#include "drake/systems/framework/test_utilities/scalar_conversion.h"
namespace drake {
namespace {
using systems::BasicVector;
using systems::sensors::Accelerometer;
class AccelerometerTest : public ::testing::Test {
protected:
void SetUp() override {
// Plant/System initialization.
systems::DiagramBuilder<double> builder;
plant_ = builder.AddSystem<multibody::MultibodyPlant>(0.0);
const std::string urdf_name =
FindResourceOrThrow("drake/examples/pendulum/Pendulum.urdf");
multibody::Parser parser(plant_);
parser.AddModels(urdf_name);
plant_->Finalize();
// Connect a pendulum to the accelerometer.
const multibody::RigidBody<double>& arm_body = plant_->GetBodyByName("arm");
const math::RigidTransform<double> X_BS(Eigen::Vector3d(0, 0, -r_BS_));
gravity_ = plant_->gravity_field().gravity_vector();
accel_default_ = builder.AddSystem<Accelerometer>(arm_body, X_BS, gravity_);
builder.Connect(plant_->get_body_poses_output_port(),
accel_default_->get_body_poses_input_port());
builder.Connect(plant_->get_body_spatial_velocities_output_port(),
accel_default_->get_body_velocities_input_port());
builder.Connect(plant_->get_body_spatial_accelerations_output_port(),
accel_default_->get_body_accelerations_input_port());
const math::RigidTransform<double> X_BS_rotated(
math::RotationMatrix<double>::MakeYRotation(M_PI / 2),
Eigen::Vector3d(0, 0, -r_BS_));
accel_rotated_ = &Accelerometer<double>::AddToDiagram(
arm_body, X_BS_rotated, gravity_, *plant_, &builder);
diagram_ = builder.Build();
}
double r_BS_ = 0.375;
Eigen::Vector3d gravity_;
const Accelerometer<double>* accel_default_;
const Accelerometer<double>* accel_rotated_;
std::unique_ptr<systems::Diagram<double>> diagram_;
multibody::MultibodyPlant<double>* plant_;
};
TEST_F(AccelerometerTest, DefaultRotation) {
double tol = 10 * std::numeric_limits<double>::epsilon();
auto diagram_context = diagram_->CreateDefaultContext();
auto& plant_context =
diagram_->GetMutableSubsystemContext(*plant_, diagram_context.get());
auto& accel_context = diagram_->GetMutableSubsystemContext(
*accel_default_, diagram_context.get());
double angle = .5;
// Test zero-velocity state.
plant_->get_actuation_input_port().FixValue(&plant_context, Vector1d(0));
plant_->SetPositions(&plant_context, Vector1d(angle));
plant_->SetVelocities(&plant_context, Vector1d(0));
const auto& result =
accel_default_->get_measurement_output_port().Eval<BasicVector<double>>(
accel_context);
// Compute expected result:
// g/L sin(theta)
double angular_acceleration = -gravity_.norm() / .5 * sin(angle);
Eigen::Vector3d expected_result(-angular_acceleration * r_BS_, 0, 0);
Eigen::Vector3d g_S(cos(angle) * gravity_(0) - sin(angle) * gravity_(2),
gravity_(1),
cos(angle) * gravity_(2) + sin(angle) * gravity_(0));
expected_result -= g_S;
EXPECT_TRUE(CompareMatrices(result.get_value(), expected_result, tol));
// Test with non-zero velocity.
double angular_velocity = -2;
// g/L sin(theta) - b/(m * L^2) * thetadot
double g = 9.81;
// Constants below from URDF.
double L = .5;
double m = 1;
double b = .1;
angular_acceleration =
-g / L * sin(angle) - b * angular_velocity / (m * L * L);
plant_->SetVelocities(&plant_context, Vector1d(angular_velocity));
const auto& result_with_velocity =
accel_default_->get_output_port(0).Eval<BasicVector<double>>(
accel_context);
Eigen::Vector3d expected_result_with_velocity(
-angular_acceleration * r_BS_, 0,
angular_velocity * angular_velocity * r_BS_);
expected_result_with_velocity -= g_S;
EXPECT_TRUE(CompareMatrices(result_with_velocity.get_value(),
expected_result_with_velocity, tol));
}
TEST_F(AccelerometerTest, Rotated) {
double tol = 10 * std::numeric_limits<double>::epsilon();
auto diagram_context = diagram_->CreateDefaultContext();
auto& plant_context =
diagram_->GetMutableSubsystemContext(*plant_, diagram_context.get());
auto& accel_context = diagram_->GetMutableSubsystemContext(
*accel_rotated_, diagram_context.get());
double angle = .5;
// Test zero-velocity state.
plant_->get_actuation_input_port().FixValue(&plant_context, Vector1d(0));
plant_->SetPositions(&plant_context, Vector1d(angle));
plant_->SetVelocities(&plant_context, Vector1d(0));
const auto& result =
accel_rotated_->get_output_port(0).Eval<BasicVector<double>>(
accel_context);
// Compute expected result:
// g/L sin(theta)
double angular_acceleration = -gravity_.norm() / .5 * sin(angle);
Eigen::Vector3d expected_result(0, 0, -angular_acceleration * r_BS_);
Eigen::Vector3d g_S(-cos(angle) * gravity_(2) - sin(angle) * gravity_(0),
gravity_(1),
cos(angle) * gravity_(0) - sin(angle) * gravity_(2));
expected_result -= g_S;
EXPECT_TRUE(CompareMatrices(result.get_value(), expected_result, tol));
// Test with non-zero velocity.
double angular_velocity = -2;
// g/L sin(theta) - b/(m * L^2) * thetadot
double g = 9.81;
// Constants below from URDF.
double L = .5;
double m = 1;
double b = .1;
angular_acceleration =
-g / L * sin(angle) - b * angular_velocity / (m * L * L);
plant_->SetVelocities(&plant_context, Vector1d(angular_velocity));
const auto& result_with_velocity =
accel_rotated_->get_output_port(0).Eval<BasicVector<double>>(
accel_context);
Eigen::Vector3d expected_result_with_velocity(
-angular_velocity * angular_velocity * r_BS_, 0,
-angular_acceleration * r_BS_);
expected_result_with_velocity -= g_S;
EXPECT_TRUE(CompareMatrices(result_with_velocity.get_value(),
expected_result_with_velocity, tol));
}
TEST_F(AccelerometerTest, ScalarConversionTest) {
EXPECT_TRUE(is_autodiffxd_convertible(*accel_default_));
EXPECT_TRUE(is_symbolic_convertible(*accel_default_));
}
} // namespace
} // namespace drake
| 0 |
/home/johnshepherd/drake/systems/sensors | /home/johnshepherd/drake/systems/sensors/test/gyroscope_test.cc | #include "drake/systems/sensors/gyroscope.h"
#include <gtest/gtest.h>
#include "drake/common/eigen_types.h"
#include "drake/common/find_resource.h"
#include "drake/common/test_utilities/eigen_matrix_compare.h"
#include "drake/multibody/parsing/parser.h"
#include "drake/multibody/plant/multibody_plant.h"
#include "drake/systems/framework/diagram_builder.h"
#include "drake/systems/framework/test_utilities/scalar_conversion.h"
namespace drake {
namespace {
using systems::BasicVector;
using systems::sensors::Gyroscope;
class GyroscopeTest : public ::testing::Test {
protected:
void SetUp() override {
// Plant/System initialization.
systems::DiagramBuilder<double> builder;
plant_ = builder.AddSystem<multibody::MultibodyPlant>(0.0);
const std::string urdf_name =
FindResourceOrThrow("drake/examples/pendulum/Pendulum.urdf");
multibody::Parser parser(plant_);
parser.AddModels(urdf_name);
plant_->Finalize();
const multibody::RigidBody<double>& arm_body = plant_->GetBodyByName("arm");
const math::RotationMatrix<double> R_BS(
drake::math::RollPitchYaw<double>(M_PI / 2, 0, 0));
const math::RigidTransform<double> X_BS(R_BS, Eigen::Vector3d::Zero());
gyroscope_ =
&Gyroscope<double>::AddToDiagram(arm_body, X_BS, *plant_, &builder);
diagram_ = builder.Build();
}
const Gyroscope<double>* gyroscope_;
std::unique_ptr<systems::Diagram<double>> diagram_;
multibody::MultibodyPlant<double>* plant_;
};
TEST_F(GyroscopeTest, Rotated) {
double tol = 10 * std::numeric_limits<double>::epsilon();
auto diagram_context = diagram_->CreateDefaultContext();
auto& plant_context =
diagram_->GetMutableSubsystemContext(*plant_, diagram_context.get());
auto& gyro_context =
diagram_->GetMutableSubsystemContext(*gyroscope_, diagram_context.get());
double theta = M_PI / 2;
double omega = .5;
// Test zero-velocity state.
plant_->get_actuation_input_port().FixValue(&plant_context, Vector1d(0));
plant_->SetPositions(&plant_context, Vector1d(theta));
plant_->SetVelocities(&plant_context, Vector1d(omega));
const auto& result =
gyroscope_->get_measurement_output_port().Eval<BasicVector<double>>(
gyro_context);
// Compute expected result.
// Angular velocity in world coordinates is (0, omega, 0).
// In body coordinates, it is the same, (0, omega, 0).
// The sensor frame is rotated by pi/2 about the x-axis, so
// the expected measurement is (0, 0, -omega).
Eigen::Vector3d expected_result(0, 0, -omega);
EXPECT_TRUE(CompareMatrices(result.get_value(), expected_result, tol));
}
TEST_F(GyroscopeTest, ScalarConversionTest) {
EXPECT_TRUE(is_autodiffxd_convertible(*gyroscope_));
EXPECT_TRUE(is_symbolic_convertible(*gyroscope_));
}
} // namespace
} // namespace drake
| 0 |
/home/johnshepherd/drake/systems/sensors | /home/johnshepherd/drake/systems/sensors/test/image_test.cc | #include "drake/systems/sensors/image.h"
#include <gtest/gtest.h>
namespace drake {
namespace systems {
namespace sensors {
namespace {
const int kWidth = 640;
const int kHeight = 480;
const uint8_t kInitialValue = 100;
GTEST_TEST(TestImage, EmptyTest0) {
ImageRgb8U dut;
EXPECT_EQ(dut.width(), 0);
EXPECT_EQ(dut.height(), 0);
EXPECT_EQ(dut.size(), 0);
EXPECT_EQ(dut.kNumChannels, 3);
EXPECT_EQ(dut.kPixelSize, 3);
EXPECT_EQ(dut.kPixelFormat, PixelFormat::kRgb);
}
GTEST_TEST(TestImage, EmptyTest2) {
ImageRgb8U dut(0, 0);
EXPECT_EQ(dut.width(), 0);
EXPECT_EQ(dut.height(), 0);
EXPECT_EQ(dut.size(), 0);
EXPECT_THROW(ImageRgb8U(0, 1), std::exception);
EXPECT_THROW(ImageRgb8U(1, 0), std::exception);
EXPECT_THROW(ImageRgb8U(-1, 1), std::exception);
EXPECT_THROW(ImageRgb8U(1, -1), std::exception);
}
GTEST_TEST(TestImage, EmptyTest3) {
ImageRgb8U dut(0, 0, 0);
EXPECT_EQ(dut.width(), 0);
EXPECT_EQ(dut.height(), 0);
EXPECT_EQ(dut.size(), 0);
EXPECT_THROW(ImageRgb8U(0, 1, 0), std::exception);
EXPECT_THROW(ImageRgb8U(1, 0, 0), std::exception);
EXPECT_THROW(ImageRgb8U(-1, 1, 0), std::exception);
EXPECT_THROW(ImageRgb8U(1, -1, 0), std::exception);
}
GTEST_TEST(TestImage, InstantiateTest) {
ImageBgr8U dut(kWidth, kHeight);
const int kNumChannels = 3;
EXPECT_EQ(dut.width(), kWidth);
EXPECT_EQ(dut.height(), kHeight);
EXPECT_EQ(dut.kNumChannels, kNumChannels);
EXPECT_EQ(dut.kPixelSize, 3);
EXPECT_EQ(dut.size(), kWidth * kHeight * kNumChannels);
EXPECT_EQ(dut.kPixelFormat, PixelFormat::kBgr);
}
GTEST_TEST(TestImage, InitializeAndAccessToPixelValuesTest) {
// If you don't give initial value, the default value is zero.
ImageRgba8U dut(kWidth, kHeight);
ImageRgba8U dut2(kWidth, kHeight, kInitialValue);
for (int u = 0; u < kWidth; ++u) {
for (int v = 0; v < kHeight; ++v) {
for (int channel = 0; channel < dut.kNumChannels; ++channel) {
EXPECT_EQ(dut.at(u, v)[channel], 0);
EXPECT_EQ(dut2.at(u, v)[channel], kInitialValue);
}
}
}
EXPECT_EQ(dut.kPixelFormat, PixelFormat::kRgba);
EXPECT_EQ(dut.kPixelSize, 4);
EXPECT_EQ(dut2.kPixelFormat, PixelFormat::kRgba);
}
GTEST_TEST(TestImage, CopyConstructorTest) {
ImageBgra8U image(kWidth, kHeight, kInitialValue);
ImageBgra8U dut(image);
ImageBgra8U dut2 = image;
EXPECT_EQ(dut.width(), image.width());
EXPECT_EQ(dut.height(), image.height());
EXPECT_EQ(dut.kNumChannels, image.kNumChannels);
EXPECT_EQ(dut.kPixelSize, 4);
EXPECT_EQ(dut2.width(), image.width());
EXPECT_EQ(dut2.height(), image.height());
EXPECT_EQ(dut2.kNumChannels, image.kNumChannels);
EXPECT_EQ(dut2.kPixelSize, 4);
EXPECT_EQ(image.kPixelFormat, PixelFormat::kBgra);
EXPECT_EQ(dut.kPixelFormat, PixelFormat::kBgra);
EXPECT_EQ(dut2.kPixelFormat, PixelFormat::kBgra);
for (int u = 0; u < kWidth; ++u) {
for (int v = 0; v < kHeight; ++v) {
for (int channel = 0; channel < image.kNumChannels; ++channel) {
EXPECT_EQ(dut.at(u, v)[channel], image.at(u, v)[channel]);
EXPECT_EQ(dut2.at(u, v)[channel], image.at(u, v)[channel]);
}
}
}
}
GTEST_TEST(TestImage, AssignmentOperatorTest) {
ImageDepth32F image(kWidth, kHeight, kInitialValue);
ImageDepth32F dut(1, 1);
dut = image;
EXPECT_EQ(dut.width(), image.width());
EXPECT_EQ(dut.height(), image.height());
EXPECT_EQ(dut.kNumChannels, image.kNumChannels);
EXPECT_EQ(dut.kPixelFormat, PixelFormat::kDepth);
EXPECT_EQ(dut.kPixelSize, 4);
EXPECT_EQ(image.kPixelFormat, PixelFormat::kDepth);
for (int u = 0; u < kWidth; ++u) {
for (int v = 0; v < kHeight; ++v) {
for (int channel = 0; channel < image.kNumChannels; ++channel) {
EXPECT_EQ(dut.at(u, v)[channel], image.at(u, v)[channel]);
}
}
}
}
GTEST_TEST(TestImage, MoveConstructorTest) {
ImageLabel16I image(kWidth, kHeight, kInitialValue);
ImageLabel16I dut(std::move(image));
const int kNumChannels = 1;
EXPECT_EQ(dut.width(), kWidth);
EXPECT_EQ(dut.height(), kHeight);
EXPECT_EQ(dut.kNumChannels, kNumChannels);
EXPECT_EQ(dut.kPixelFormat, PixelFormat::kLabel);
EXPECT_EQ(dut.kPixelSize, 2);
EXPECT_EQ(image.width(), 0);
EXPECT_EQ(image.height(), 0);
EXPECT_EQ(image.kNumChannels, kNumChannels);
EXPECT_EQ(image.kPixelFormat, PixelFormat::kLabel);
for (int u = 0; u < kWidth; ++u) {
for (int v = 0; v < kHeight; ++v) {
for (int channel = 0; channel < image.kNumChannels; ++channel) {
EXPECT_EQ(dut.at(u, v)[channel], kInitialValue);
}
}
}
}
GTEST_TEST(TestImage, MoveAssignmentOperatorTest) {
ImageGrey8U image(kWidth, kHeight, kInitialValue);
ImageGrey8U dut(kWidth / 2, kHeight / 2);
dut = std::move(image);
const int kNumChannels = 1;
EXPECT_EQ(dut.width(), kWidth);
EXPECT_EQ(dut.height(), kHeight);
EXPECT_EQ(dut.kNumChannels, kNumChannels);
EXPECT_EQ(dut.kPixelFormat, PixelFormat::kGrey);
EXPECT_EQ(dut.kPixelSize, 1);
EXPECT_EQ(image.width(), 0);
EXPECT_EQ(image.height(), 0);
EXPECT_EQ(image.kNumChannels, kNumChannels);
EXPECT_EQ(image.kPixelFormat, PixelFormat::kGrey);
for (int u = 0; u < kWidth; ++u) {
for (int v = 0; v < kHeight; ++v) {
for (int channel = 0; channel < image.kNumChannels; ++channel) {
EXPECT_EQ(dut.at(u, v)[channel], kInitialValue);
}
}
}
}
GTEST_TEST(TestImage, ResizeTest) {
ImageDepth16U dut(kWidth, kHeight);
const int kWidthResized = 64;
const int kHeightResized = 48;
const int kNumChannels = 1;
// Resize to non-zero.
dut.resize(kWidthResized, kHeightResized);
EXPECT_EQ(dut.width(), kWidthResized);
EXPECT_EQ(dut.height(), kHeightResized);
EXPECT_EQ(dut.kNumChannels, kNumChannels);
EXPECT_EQ(dut.kPixelFormat, PixelFormat::kDepth);
EXPECT_EQ(dut.kPixelSize, 2);
EXPECT_EQ(dut.size(), kWidthResized * kHeightResized * kNumChannels);
// Invalid resizes.
EXPECT_THROW(dut.resize(0, 1), std::exception);
EXPECT_THROW(dut.resize(1, 0), std::exception);
EXPECT_THROW(dut.resize(-1, 1), std::exception);
EXPECT_THROW(dut.resize(1, -1), std::exception);
// Resize to zero.
dut.resize(0, 0);
EXPECT_EQ(dut.width(), 0);
EXPECT_EQ(dut.height(), 0);
EXPECT_EQ(dut.size(), 0);
}
GTEST_TEST(ImageTest, DepthImage32FTo16U) {
// Create a list of test inputs and outputs (pixels).
using InPixel = ImageDepth32F::Traits;
using OutPixel = ImageDepth16U::Traits;
const std::vector<std::pair<float, uint16_t>> test_cases{
// Too close or too far.
{InPixel::kTooClose, OutPixel::kTooClose},
{InPixel::kTooFar, OutPixel::kTooFar},
// Valid distances for both pixel types.
{3.0f, 3000},
{10.0f, 10000},
// Valid distance for input pixel, but saturates the output pixel.
{100.0f, OutPixel::kTooFar},
// Input pixels approaching the saturation point of the output pixel.
{65.531f, 65531},
{65.534001f, 65534},
{65.535f, 65535},
{65.536f, OutPixel::kTooFar},
{65.537f, OutPixel::kTooFar},
// Crazy input value.
{-1.0f, OutPixel::kTooClose},
// Special values.
{-std::numeric_limits<float>::infinity(), OutPixel::kTooClose},
{std::numeric_limits<float>::infinity(), OutPixel::kTooFar},
{std::numeric_limits<float>::quiet_NaN(), OutPixel::kTooFar},
};
// Check each pair of input and output pixel values.
for (const auto& [pixel_in, pixel_out] : test_cases) {
SCOPED_TRACE(fmt::format("pixel_in = {}", pixel_in));
ImageDepth32F image_in(1, 1);
ImageDepth16U image_out(1, 1);
image_in.at(0, 0)[0] = pixel_in;
ConvertDepth32FTo16U(image_in, &image_out);
ASSERT_EQ(image_out.width(), 1);
ASSERT_EQ(image_out.height(), 1);
EXPECT_EQ(image_out.at(0, 0)[0], pixel_out);
}
// Check that height and width auto-resizing is correct.
ImageDepth32F image_in(3, 4);
ImageDepth16U image_out;
ConvertDepth32FTo16U(image_in, &image_out);
EXPECT_EQ(image_out.width(), image_in.width());
EXPECT_EQ(image_out.height(), image_in.height());
image_in.resize(0, 0);
ConvertDepth32FTo16U(image_in, &image_out);
EXPECT_EQ(image_out.width(), 0);
EXPECT_EQ(image_out.height(), 0);
}
GTEST_TEST(ImageTest, DepthImage16UTo32F) {
// Create a list of test inputs and outputs (pixels).
using InPixel = ImageDepth16U::Traits;
using OutPixel = ImageDepth32F::Traits;
const std::vector<std::pair<uint16_t, float>> test_cases{
// Too close or too far.
{InPixel::kTooClose, OutPixel::kTooClose},
{InPixel::kTooFar, OutPixel::kTooFar},
// Valid distances for both pixel types.
{3000, 3.0f},
{10000, 10.0f},
};
// Check each pair of input and output pixel values.
for (const auto& [pixel_in, pixel_out] : test_cases) {
SCOPED_TRACE(fmt::format("pixel_in = {}", pixel_in));
ImageDepth16U image_in(1, 1);
ImageDepth32F image_out(1, 1);
image_in.at(0, 0)[0] = pixel_in;
ConvertDepth16UTo32F(image_in, &image_out);
ASSERT_EQ(image_out.width(), 1);
ASSERT_EQ(image_out.height(), 1);
EXPECT_EQ(image_out.at(0, 0)[0], pixel_out);
}
// Check that height and width auto-resizing is correct.
ImageDepth16U image_in(3, 4);
ImageDepth32F image_out;
ConvertDepth16UTo32F(image_in, &image_out);
EXPECT_EQ(image_out.width(), image_in.width());
EXPECT_EQ(image_out.height(), image_in.height());
image_in.resize(0, 0);
ConvertDepth16UTo32F(image_in, &image_out);
EXPECT_EQ(image_out.width(), 0);
EXPECT_EQ(image_out.height(), 0);
}
} // namespace
} // namespace sensors
} // namespace systems
} // namespace drake
| 0 |
/home/johnshepherd/drake/systems/sensors | /home/johnshepherd/drake/systems/sensors/test/rgbd_sensor_discrete_test.cc | #include "drake/systems/sensors/rgbd_sensor_discrete.h"
#include <gtest/gtest.h>
#include "drake/geometry/scene_graph.h"
#include "drake/systems/primitives/zero_order_hold.h"
namespace drake {
namespace systems {
namespace sensors {
namespace {
using geometry::SceneGraph;
using geometry::render::DepthRenderCamera;
using math::RigidTransformd;
using std::make_unique;
using std::vector;
// Tests that the discrete sensor is properly constructed.
GTEST_TEST(RgbdSensorDiscrete, Construction) {
const DepthRenderCamera depth_camera(
{"render", {640, 480, M_PI / 4}, {0.1, 10.0}, {}}, {0.1, 10});
const double kPeriod = 0.1;
const bool include_render_port = true;
// N.B. In addition to testing a discrete sensor, this also tests
// the `RgbdSensor` constructor which takes only `DepthRenderCamera`.
RgbdSensorDiscrete sensor(
make_unique<RgbdSensor>(SceneGraph<double>::world_frame_id(),
RigidTransformd::Identity(), depth_camera),
kPeriod, include_render_port);
EXPECT_EQ(sensor.query_object_input_port().get_name(), "geometry_query");
EXPECT_EQ(sensor.color_image_output_port().get_name(), "color_image");
EXPECT_EQ(sensor.depth_image_32F_output_port().get_name(), "depth_image_32f");
EXPECT_EQ(sensor.depth_image_16U_output_port().get_name(), "depth_image_16u");
EXPECT_EQ(sensor.label_image_output_port().get_name(), "label_image");
EXPECT_EQ(sensor.body_pose_in_world_output_port().get_name(),
"body_pose_in_world");
EXPECT_EQ(sensor.image_time_output_port().get_name(), "image_time");
// Confirm that the period was passed into the ZOH correctly. If the ZOH
// reports the expected period, we rely on it to do the right thing.
EXPECT_EQ(sensor.period(), kPeriod);
}
// Test that the diagram's internal architecture is correct and, likewise,
// wired correctly.
GTEST_TEST(RgbdSensorDiscrete, ImageHold) {
const DepthRenderCamera depth_camera(
{"render", {640, 480, M_PI / 4}, {0.1, 10.0}, {}}, {0.1, 10});
// N.B. In addition to testing a discrete sensor, this also tests
// the `RgbdSensor` constructor which takes only `DepthRenderCamera`.
auto sensor =
make_unique<RgbdSensor>(SceneGraph<double>::world_frame_id(),
RigidTransformd::Identity(), depth_camera);
RgbdSensor* sensor_raw = sensor.get();
const int num_outputs = sensor_raw->num_output_ports();
const double kPeriod = 0.1;
const bool include_render_port = true;
RgbdSensorDiscrete discrete_sensor(std::move(sensor), kPeriod,
include_render_port);
EXPECT_EQ(discrete_sensor.num_output_ports(), num_outputs);
// This tests very *explicit* knowledge of what the wiring should be. As such,
// it's a bit brittle, but this is the most efficient way to affect this test.
// We assume these systems are reported in the order they were added.
vector<const System<double>*> sub_systems = discrete_sensor.GetSystems();
// For our diagram's sub-systems, we expect to have the sensor and then one
// zero-order hold per output port.
ASSERT_EQ(sub_systems.size(), 1 + num_outputs);
ASSERT_EQ(sub_systems[0], sensor_raw);
// For each output port, we want to make sure it's connected to the expected
// zero-order hold and that the hold's period is kPeriod. This proves that
// RgbdSensorDiscrete has wired things up properly.
auto confirm_hold = [&sensor_raw, &sub_systems, &kPeriod,
&discrete_sensor](int port_index) {
const auto* zoh = dynamic_cast<const ZeroOrderHold<double>*>(
sub_systems.at(1 + port_index));
ASSERT_NE(zoh, nullptr);
EXPECT_EQ(zoh->period(), kPeriod);
EXPECT_TRUE(discrete_sensor.AreConnected(
sensor_raw->get_output_port(port_index), zoh->get_input_port()));
};
for (int i = 0; i < num_outputs; ++i) {
SCOPED_TRACE(fmt::format("i = {}", i));
confirm_hold(i);
}
// TODO(SeanCurtis-TRI): Consider confirming that the exported ports map to
// the expected sub-system ports.
}
} // namespace
} // namespace sensors
} // namespace systems
} // namespace drake
| 0 |
/home/johnshepherd/drake/systems/sensors | /home/johnshepherd/drake/systems/sensors/test/image_io_test_params.cc | #include "drake/systems/sensors/test/image_io_test_params.h"
#include <numeric>
namespace drake {
namespace systems {
namespace sensors {
vtkNew<vtkImageData> ImageIoTestParams::CreateIotaVtkImage() const {
vtkNew<vtkImageData> image;
image->SetDimensions(width(), height(), depth());
image->AllocateScalars(vtk_scalar(), channels());
if (vtk_scalar() == VTK_TYPE_UINT8) {
auto* dest = reinterpret_cast<uint8_t*>(image->GetScalarPointer());
std::iota(dest, dest + total_storage(), uint8_t{0x01});
} else if (vtk_scalar() == VTK_TYPE_UINT16) {
auto* dest = reinterpret_cast<uint16_t*>(image->GetScalarPointer());
std::iota(dest, dest + total_storage(), uint16_t{0x0001});
} else {
auto* dest = reinterpret_cast<float*>(image->GetScalarPointer());
std::iota(dest, dest + total_storage(), 1.0f);
}
return image;
}
ImageAny ImageIoTestParams::CreateIotaDrakeImage() const {
if (force_gray && pixel_scalar() == PixelScalar::k8U) {
DRAKE_DEMAND(channels() == 1);
ImageGrey8U result(width(), height());
auto* dest = result.at(0, 0);
std::iota(dest, dest + result.size(), uint8_t{0x01});
return result;
}
if (alpha && pixel_scalar() == PixelScalar::k8U) {
DRAKE_DEMAND(channels() == 4);
ImageRgba8U result(width(), height());
auto* dest = result.at(0, 0);
std::iota(dest, dest + result.size(), uint8_t{0x01});
return result;
}
if (pixel_scalar() == PixelScalar::k8U) {
DRAKE_DEMAND(channels() == 3);
ImageRgb8U result(width(), height());
auto* dest = result.at(0, 0);
std::iota(dest, dest + result.size(), uint8_t{0x01});
return result;
}
if (pixel_scalar() == PixelScalar::k16U) {
DRAKE_DEMAND(channels() == 1);
ImageDepth16U result(width(), height());
auto* dest = result.at(0, 0);
std::iota(dest, dest + result.size(), uint16_t{0x0001});
return result;
}
if (pixel_scalar() == PixelScalar::k32F) {
DRAKE_DEMAND(channels() == 1);
ImageDepth32F result(width(), height());
auto* dest = result.at(0, 0);
std::iota(dest, dest + result.size(), 1.0f);
return result;
}
throw std::logic_error("CreateIotaDrakeImage unsupported params");
}
void ImageIoTestParams::CompareImageBuffer(const void* original,
const void* readback) const {
// For JPEG images, we can't exactly compare the pixels because the lossy
// compression algorithm will have adjusted them slightly.
if (format == ImageFileFormat::kJpeg) {
// Instead, we'll check that the data is still monotonically increasing
// (within some tolerance). This is sufficient to notice if any data was
// mistakenly transposed.
DRAKE_DEMAND(pixel_scalar() == PixelScalar::k8U);
auto* loaded = reinterpret_cast<const uint8_t*>(readback);
Eigen::Map<const MatrixX<uint8_t>> head(loaded, 1, total_storage() - 1);
Eigen::Map<const MatrixX<uint8_t>> tail(loaded + 1, 1, total_storage() - 1);
const Eigen::Array<int, 1, Eigen::Dynamic> increments =
tail.cast<int>().array() - head.cast<int>().array();
const int max_increment = 2;
EXPECT_LE(increments.abs().maxCoeff(), max_increment)
<< fmt::to_string(fmt_eigen(increments.matrix()));
return;
}
// Compare the loaded pixels to the original image. We'll compare using
// an Eigen::Map wrapper over the image data, to get a better printout.
if (pixel_scalar() == PixelScalar::k8U) {
auto* orig = reinterpret_cast<const uint8_t*>(original);
auto* loaded = reinterpret_cast<const uint8_t*>(readback);
Eigen::Map<const MatrixX<uint8_t>> orig_map(orig, 1, total_storage());
Eigen::Map<const MatrixX<uint8_t>> loaded_map(loaded, 1, total_storage());
EXPECT_EQ(orig_map.template cast<int>(), loaded_map.template cast<int>());
} else if (pixel_scalar() == PixelScalar::k16U) {
auto* orig = reinterpret_cast<const uint16_t*>(original);
auto* loaded = reinterpret_cast<const uint16_t*>(readback);
Eigen::Map<const MatrixX<uint16_t>> orig_map(orig, 1, total_storage());
Eigen::Map<const MatrixX<uint16_t>> loaded_map(loaded, 1, total_storage());
EXPECT_EQ(orig_map, loaded_map);
} else {
DRAKE_DEMAND(pixel_scalar() == PixelScalar::k32F);
auto* orig = reinterpret_cast<const float*>(original);
auto* loaded = reinterpret_cast<const float*>(readback);
Eigen::Map<const MatrixX<float>> orig_map(orig, 1, total_storage());
Eigen::Map<const MatrixX<float>> loaded_map(loaded, 1, total_storage());
EXPECT_EQ(orig_map, loaded_map);
}
}
} // namespace sensors
} // namespace systems
} // namespace drake
| 0 |
/home/johnshepherd/drake/systems | /home/johnshepherd/drake/systems/benchmarking/framework_benchmarks.cc | #include <benchmark/benchmark.h>
#include "drake/systems/framework/diagram_builder.h"
#include "drake/systems/primitives/adder.h"
#include "drake/systems/primitives/pass_through.h"
#include "drake/tools/performance/fixture_common.h"
/* A collection of scenarios to benchmark, scoped to cover all code within the
drake/systems/framework package. */
namespace drake {
namespace systems {
namespace {
class BasicFixture : public benchmark::Fixture {
public:
BasicFixture() { tools::performance::AddMinMaxStatistics(this); }
void SetUp(benchmark::State&) override {
builder_ = std::make_unique<DiagramBuilder<double>>();
}
void Build() {
diagram_ = builder_->Build();
context_ = diagram_->CreateDefaultContext();
builder_.reset();
}
protected:
std::unique_ptr<DiagramBuilder<double>> builder_;
std::unique_ptr<Diagram<double>> diagram_;
std::unique_ptr<Context<double>> context_;
};
// NOLINTNEXTLINE(runtime/references) cpplint disapproves of gbench choices.
BENCHMARK_F(BasicFixture, PassThrough3)(benchmark::State& state) {
const int n = 7;
auto* alpha = builder_->AddSystem<PassThrough<double>>(n);
auto* bravo = builder_->AddSystem<PassThrough<double>>(n);
auto* charlie = builder_->AddSystem<PassThrough<double>>(n);
builder_->ExportInput(alpha->get_input_port());
builder_->Cascade(*alpha, *bravo);
builder_->Cascade(*bravo, *charlie);
builder_->ExportOutput(charlie->get_output_port());
Build();
Eigen::VectorXd value = Eigen::VectorXd::Constant(n, 22.2);
auto& input = diagram_->get_input_port().FixValue(context_.get(), value);
auto& output = diagram_->get_output_port();
for (auto _ : state) {
// Invalidate the furthest upstream CacheEntry, in order to force
// re-computation of all downstream values. This also mimics a common
// scenario of interest, where the inputs change on every tick.
input.GetMutableData();
output.Eval(*context_);
}
}
// Helper function for the DiagramBuild benchmark. Creates a diagram containing
// num_systems subsystems. When depth==0, each subsystem is an Adder, otherwise
// each subsystem is a recursive self-call with the next smaller depth.
std::unique_ptr<DiagramBuilder<double>> MakeDiagramBuilder(int num_systems,
int depth) {
DRAKE_DEMAND(num_systems > 0);
DRAKE_DEMAND(depth >= 0);
auto builder = std::make_unique<DiagramBuilder<double>>();
std::vector<System<double>*> children;
for (int i = 0; i < num_systems; ++i) {
if (depth == 0) {
children.push_back(builder->AddSystem<Adder>(num_systems, 1));
} else {
children.push_back(builder->AddSystem(
MakeDiagramBuilder(num_systems, depth - 1)->Build()));
}
System<double>* child = children.back();
// The child's input ports are connected either to the other childrens'
// output ports (when possible), or else the diagram's input ports.
for (int j = 0; j < num_systems; ++j) {
const InputPort<double>& input = child->get_input_port(j);
if (j < i) {
builder->Connect(children.at(j)->get_output_port(), input);
} else {
if (i == 0) {
builder->ExportInput(input, fmt::to_string(j));
} else {
builder->ConnectInput(fmt::to_string(j), input);
}
}
}
}
builder->ExportOutput(children.back()->get_output_port());
return builder;
}
void DiagramBuild(benchmark::State& state) { // NOLINT
const int num_systems = state.range(0);
const int depth = state.range(1);
std::unique_ptr<DiagramBuilder<double>> builder;
std::unique_ptr<Diagram<double>> diagram;
for (auto _ : state) {
// Create a DiagramBuilder, sans timekeeping.
state.PauseTiming();
diagram.reset();
builder = MakeDiagramBuilder(num_systems, depth);
state.ResumeTiming();
// Time the Build operation.
diagram = builder->Build();
}
}
BENCHMARK(DiagramBuild)
->Unit(benchmark::kMillisecond)
->Args({3, 0})
->Args({30, 0})
->Args({3, 1})
->Args({3, 2});
} // namespace
} // namespace systems
} // namespace drake
| 0 |
/home/johnshepherd/drake/systems | /home/johnshepherd/drake/systems/benchmarking/BUILD.bazel | load("//tools/lint:lint.bzl", "add_lint_tests")
load(
"//tools/performance:defs.bzl",
"drake_cc_googlebench_binary",
"drake_py_experiment_binary",
)
package(default_visibility = ["//visibility:private"])
drake_cc_googlebench_binary(
name = "framework_benchmarks",
srcs = ["framework_benchmarks.cc"],
add_test_rule = True,
deps = [
"//common:add_text_logging_gflags",
"//systems/framework:diagram_builder",
"//systems/primitives:adder",
"//systems/primitives:pass_through",
"//tools/performance:fixture_common",
"//tools/performance:gflags_main",
],
)
drake_py_experiment_binary(
name = "framework_experiment",
googlebench_binary = ":framework_benchmarks",
)
drake_cc_googlebench_binary(
name = "multilayer_perceptron_benchmark",
srcs = ["multilayer_perceptron_benchmark.cc"],
add_test_rule = True,
deps = [
"//common:add_text_logging_gflags",
"//systems/primitives:multilayer_perceptron",
"//tools/performance:fixture_common",
"//tools/performance:gflags_main",
],
)
drake_py_experiment_binary(
name = "multilayer_perceptron_experiment",
googlebench_binary = ":multilayer_perceptron_benchmark",
)
add_lint_tests()
| 0 |
/home/johnshepherd/drake/systems | /home/johnshepherd/drake/systems/benchmarking/README.md | Runtime Performance Benchmarks for Dynamical Systems
----------------------------------------------------
## Supported experiments
On Ubuntu, the following commands will build code and save result data
to a user supplied directory, under relatively controlled conditions:
$ bazel run //systems/benchmarking:framework_experiment -- --output_dir=trial1
$ bazel run //systems/benchmarking:multilayer_perceptron_experiment -- --output_dir=trial2
## Additional information
Documentation for command line arguments is here:
https://github.com/google/benchmark#command-line
| 0 |
/home/johnshepherd/drake/systems | /home/johnshepherd/drake/systems/benchmarking/multilayer_perceptron_benchmark.cc | /* @file
Measures the performance of the MultilayerPerceptron implementation.
Refer to the README.md for more information. */
#include <gflags/gflags.h>
#include "drake/systems/primitives/multilayer_perceptron.h"
#include "drake/tools/performance/fixture_common.h"
namespace drake {
namespace systems {
namespace {
using Eigen::MatrixXd;
using Eigen::RowVectorXd;
using Eigen::VectorXd;
// TODO(jwnimmer-tri) Add benchmarking cases for input sin/cos features.
class Mlp : public benchmark::Fixture {
public:
Mlp() {
tools::performance::AddMinMaxStatistics(this);
this->Unit(benchmark::kMicrosecond);
}
void SetUp(benchmark::State& state) { // NOLINT(runtime/references)
// Number of inputs.
const int num_inputs = state.range(0);
DRAKE_DEMAND(num_inputs >= 1);
// Number of layers.
const int num_layers = state.range(1);
DRAKE_DEMAND(num_layers >= 2);
// Number of units in each hidden layer.
const int width = state.range(2);
DRAKE_DEMAND(width >= 1);
// Use 1 output so that we can call BatchOutput with gradients.
const int num_outputs = 1;
// Number of batch evaluations.
const int batch_size = state.range(3);
DRAKE_DEMAND(batch_size >= 1);
// Create the MLP.
std::vector<int> layers;
layers.push_back(num_inputs);
for (int i = 0; i < (num_layers - 2); ++i) {
layers.push_back(width);
}
layers.push_back(num_outputs);
mlp_ = std::make_unique<MultilayerPerceptron<double>>(layers);
// Prepare the input/output matrix storage.
X_ = MatrixXd::Ones(num_inputs, batch_size);
Y_.resize(batch_size);
dloss_dparams_.resize(mlp_->num_parameters());
Yd_ = RowVectorXd::Ones(batch_size);
dYdX_.resize(num_inputs, batch_size);
// Prepare a random context.
context_ = mlp_->CreateDefaultContext();
RandomGenerator generator(243);
mlp_->SetRandomContext(context_.get(), &generator);
}
protected:
std::unique_ptr<MultilayerPerceptron<double>> mlp_;
std::unique_ptr<Context<double>> context_;
MatrixXd X_;
RowVectorXd Y_;
RowVectorXd dloss_dparams_;
RowVectorXd Yd_;
MatrixXd dYdX_;
};
BENCHMARK_DEFINE_F(Mlp, Backprop)(benchmark::State& state) { // NOLINT
for (auto _ : state) {
mlp_->BackpropagationMeanSquaredError(*context_, X_, Yd_, &dloss_dparams_);
}
}
// The Args are { num_inputs, num_layers, width, batch_size }. A few notes
// about common parameter values:
// - The default architecture in stablebaselines3 has 4 layers, width=64.
// - It's relatively rare to have MLPs with more than 8 layers.
// - Batch sizes tend to be powers of 2 (16, 32, ..., 256).
// - Width also tends to be powers of 2 (64, 128, ...).
BENCHMARK_REGISTER_F(Mlp, Backprop)
->Args({10, 4, 64, 32})
->Args({10, 4, 64, 64})
->Args({10, 4, 64, 128})
->Args({10, 4, 64, 256})
->Args({10, 4, 128, 128})
->Args({10, 4, 256, 256})
->Args({128, 4, 64, 256})
->Args({128, 8, 64, 256});
BENCHMARK_DEFINE_F(Mlp, Output)(benchmark::State& state) { // NOLINT
for (auto _ : state) {
mlp_->BatchOutput(*context_, X_, &Y_);
}
}
// The Args are { num_inputs, num_layers, width, batch_size }.
BENCHMARK_REGISTER_F(Mlp, Output)
->Args({10, 4, 64, 32})
->Args({10, 4, 64, 64})
->Args({10, 4, 64, 128})
->Args({10, 4, 64, 256})
->Args({10, 4, 128, 128})
->Args({10, 4, 256, 256})
->Args({128, 4, 64, 256})
->Args({128, 8, 64, 256});
BENCHMARK_DEFINE_F(Mlp, OutputGradient)(benchmark::State& state) { // NOLINT
for (auto _ : state) {
mlp_->BatchOutput(*context_, X_, &Y_, &dYdX_);
}
}
// The Args are { num_inputs, num_layers, width, batch_size }.
BENCHMARK_REGISTER_F(Mlp, OutputGradient)
->Args({10, 4, 64, 32})
->Args({10, 4, 64, 64})
->Args({10, 4, 64, 128})
->Args({10, 4, 64, 256})
->Args({10, 4, 128, 128})
->Args({10, 4, 256, 256})
->Args({128, 4, 64, 256})
->Args({128, 8, 64, 256});
} // namespace
} // namespace systems
} // namespace drake
| 0 |
/home/johnshepherd/drake/systems | /home/johnshepherd/drake/systems/controllers/joint_stiffness_controller.cc | #include "drake/systems/controllers/joint_stiffness_controller.h"
#include <utility>
#include <vector>
namespace drake {
namespace systems {
namespace controllers {
using multibody::MultibodyForces;
using multibody::MultibodyPlant;
using Eigen::VectorXd;
template <typename T>
JointStiffnessController<T>::JointStiffnessController(
std::unique_ptr<multibody::MultibodyPlant<T>> owned_plant,
const MultibodyPlant<T>* plant, const Eigen::Ref<const Eigen::VectorXd>& kp,
const Eigen::Ref<const Eigen::VectorXd>& kd)
: LeafSystem<T>(SystemTypeTag<JointStiffnessController>{}),
owned_plant_(std::move(owned_plant)),
plant_(owned_plant_ ? owned_plant_.get() : plant),
kp_(kp),
kd_(kd) {
// Exactly one of owned_plant_ or plant should have been nullptr.
DRAKE_DEMAND(owned_plant_ == nullptr || plant == nullptr);
DRAKE_DEMAND(plant_ != nullptr);
DRAKE_DEMAND(plant_->is_finalized());
const int num_states = plant_->num_multibody_states();
const int num_q = plant_->num_positions();
DRAKE_DEMAND(num_q == plant_->num_velocities());
DRAKE_DEMAND(num_q == plant_->num_actuated_dofs());
DRAKE_DEMAND(plant_->IsVelocityEqualToQDot());
DRAKE_DEMAND(kp.size() == num_q);
DRAKE_DEMAND(kd.size() == num_q);
input_port_index_estimated_state_ =
this->DeclareInputPort("estimated_state", kVectorValued, num_states)
.get_index();
input_port_index_desired_state_ =
this->DeclareInputPort("desired_state", kVectorValued, num_states)
.get_index();
// Forces need to be recalculated when any input has changed but have no
// other dependencies. Specifying this here is also essential so that that
// GetDirectFeedthrough won't attempt to cast to Symbolic for evaluation
// (which would fail if the plant is not owned).
output_port_index_force_ =
this->DeclareVectorOutputPort(
"generalized_force", num_q,
&JointStiffnessController<T>::CalcOutputForce,
{this->all_input_ports_ticket()})
.get_index();
auto plant_context = plant_->CreateDefaultContext();
// Declare cache entry for the multibody plant context.
plant_context_cache_index_ =
this->DeclareCacheEntry(
"plant_context_cache",
*plant_context,
&JointStiffnessController<T>::SetMultibodyContext,
{this->input_port_ticket(
get_input_port_estimated_state().get_index())})
.cache_index();
// Declare external forces cache entry
applied_forces_cache_index_ =
this->DeclareCacheEntry(
"applied_forces_cache", MultibodyForces<T>(*plant_),
&JointStiffnessController<T>::CalcMultibodyForces,
{this->cache_entry_ticket(plant_context_cache_index_)})
.cache_index();
}
template <typename T>
JointStiffnessController<T>::JointStiffnessController(
const MultibodyPlant<T>& plant, const Eigen::Ref<const Eigen::VectorXd>& kp,
const Eigen::Ref<const Eigen::VectorXd>& kd)
: JointStiffnessController(nullptr, &plant, kp, kd) {}
template <typename T>
JointStiffnessController<T>::JointStiffnessController(
std::unique_ptr<multibody::MultibodyPlant<T>> plant,
const Eigen::Ref<const Eigen::VectorXd>& kp,
const Eigen::Ref<const Eigen::VectorXd>& kd)
: JointStiffnessController(std::move(plant), nullptr, kp, kd) {}
template <typename T>
template <typename U>
JointStiffnessController<T>::JointStiffnessController(
const JointStiffnessController<U>& other)
: JointStiffnessController(
systems::System<U>::template ToScalarType<T>(*other.plant_),
other.kp_, other.kd_) {}
template <typename T>
JointStiffnessController<T>::~JointStiffnessController() = default;
template <typename T>
void JointStiffnessController<T>::SetMultibodyContext(
const Context<T>& context,
Context<T>* plant_context) const {
const VectorX<T>& x = get_input_port_estimated_state().Eval(context);
plant_->SetPositionsAndVelocities(plant_context, x);
}
template <typename T>
void JointStiffnessController<T>::CalcMultibodyForces(
const Context<T>& context, MultibodyForces<T>* cache_value) const {
const auto& plant_context =
this->get_cache_entry(plant_context_cache_index_)
.template Eval<Context<T>>(context);
plant_->CalcForceElementsContribution(plant_context, cache_value);
}
template <typename T>
void JointStiffnessController<T>::CalcOutputForce(
const Context<T>& context, BasicVector<T>* output) const {
const int num_q = plant_->num_positions();
const auto& plant_context =
this->get_cache_entry(plant_context_cache_index_)
.template Eval<Context<T>>(context);
// These include gravity.
const auto& applied_forces =
this->get_cache_entry(applied_forces_cache_index_)
.template Eval<MultibodyForces<T>>(context);
// Compute inverse dynamics with zero generalized accelerations.
// ID(q, v, v̇) = M(q)v̇ + C(q, v)v - tau_app
// So with v̇ = 0 we get:
// ID(q, v, 0) = C(q,v)v - tau_app(q).
VectorX<T> tau = plant_->CalcInverseDynamics(
plant_context, VectorX<T>::Zero(num_q), /* vdot = 0 */
applied_forces);
// Subtract off C(q,v)v
// Note: we do not simply set v=0 because we want to be able to cancel the
// contribution from damping forces.
VectorX<T> Cv(num_q);
plant_->CalcBiasTerm(plant_context, &Cv);
tau -= Cv;
// Add in the stiffness terms.
const VectorX<T>& x = get_input_port_estimated_state().Eval(context);
const VectorX<T>& x_d = get_input_port_desired_state().Eval(context);
tau += (kp_.array() * (x_d.head(num_q) - x.head(num_q)).array() +
kd_.array() * (x_d.tail(num_q) - x.tail(num_q)).array())
.matrix();
output->get_mutable_value() = tau;
}
} // namespace controllers
} // namespace systems
} // namespace drake
DRAKE_DEFINE_CLASS_TEMPLATE_INSTANTIATIONS_ON_DEFAULT_SCALARS(
class ::drake::systems::controllers::JointStiffnessController)
| 0 |
/home/johnshepherd/drake/systems | /home/johnshepherd/drake/systems/controllers/linear_quadratic_regulator.h | #pragma once
#include <memory>
#include "drake/systems/primitives/linear_system.h"
namespace drake {
namespace systems {
namespace controllers {
struct LinearQuadraticRegulatorResult {
Eigen::MatrixXd K;
Eigen::MatrixXd S;
};
/// Computes the optimal feedback controller, u=-Kx, and the optimal
/// cost-to-go J = x'Sx for the problem:
///
/// @f[ \min_u \int_0^\infty x'Qx + u'Ru + 2x'Nu dt @f]
/// @f[ \dot{x} = Ax + Bu @f]
/// @f[ Fx = 0 @f]
///
/// @param A The state-space dynamics matrix of size num_states x num_states.
/// @param B The state-space input matrix of size num_states x num_inputs.
/// @param Q A symmetric positive semi-definite cost matrix of size num_states x
/// num_states.
/// @param R A symmetric positive definite cost matrix of size num_inputs x
/// num_inputs.
/// @param N A cost matrix of size num_states x num_inputs. If N.rows() == 0, N
/// will be treated as a num_states x num_inputs zero matrix.
/// @param F A constraint matrix of size num_constraints x num_states. rank(F)
/// must be < num_states. If F.rows() == 0, F will be treated as a 0 x
/// num_states zero matrix.
/// @returns A structure that contains the optimal feedback gain K and the
/// quadratic cost term S. The optimal feedback control is u = -Kx;
///
/// @throws std::exception if R is not positive definite.
/// @note The system (A₁, B) should be stabilizable, where A₁=A−BR⁻¹Nᵀ.
/// @note The system (Q₁, A₁) should be detectable, where Q₁=Q−NR⁻¹Nᵀ.
/// @ingroup control
/// @pydrake_mkdoc_identifier{AB}
///
LinearQuadraticRegulatorResult LinearQuadraticRegulator(
const Eigen::Ref<const Eigen::MatrixXd>& A,
const Eigen::Ref<const Eigen::MatrixXd>& B,
const Eigen::Ref<const Eigen::MatrixXd>& Q,
const Eigen::Ref<const Eigen::MatrixXd>& R,
const Eigen::Ref<const Eigen::MatrixXd>& N =
Eigen::Matrix<double, 0, 0>::Zero(),
const Eigen::Ref<const Eigen::MatrixXd>& F =
Eigen::Matrix<double, 0, 0>::Zero());
// TODO(russt): Consider implementing the optional N argument as in the
// continuous-time formulation.
/// Computes the optimal feedback controller, u=-Kx, and the optimal
/// cost-to-go J = x'Sx for the problem:
///
/// @f[ x[n+1] = Ax[n] + Bu[n] @f]
/// @f[ \min_u \sum_0^\infty x'Qx + u'Ru @f]
///
/// @param A The state-space dynamics matrix of size num_states x num_states.
/// @param B The state-space input matrix of size num_states x num_inputs.
/// @param Q A symmetric positive semi-definite cost matrix of size num_states x
/// num_states.
/// @param R A symmetric positive definite cost matrix of size num_inputs x
/// num_inputs.
/// @returns A structure that contains the optimal feedback gain K and the
/// quadratic cost term S. The optimal feedback control is u = -Kx;
///
/// @throws std::exception if R is not positive definite.
/// @ingroup control
LinearQuadraticRegulatorResult DiscreteTimeLinearQuadraticRegulator(
const Eigen::Ref<const Eigen::MatrixXd>& A,
const Eigen::Ref<const Eigen::MatrixXd>& B,
const Eigen::Ref<const Eigen::MatrixXd>& Q,
const Eigen::Ref<const Eigen::MatrixXd>& R);
/// Creates a system that implements the optimal time-invariant linear quadratic
/// regulator (LQR). If @p system is a continuous-time system, then solves
/// the continuous-time LQR problem:
///
/// @f[ \min_u \int_0^\infty x^T(t)Qx(t) + u^T(t)Ru(t) + + 2x^T(t)Nu(t) dt.
/// @f]
///
/// If @p system is a discrete-time system, then solves the discrete-time LQR
/// problem:
///
/// @f[ \min_u \sum_0^\infty x^T[n]Qx[n] + u^T[n]Ru[n] + 2x^T[n]Nu[n]. @f]
///
/// @param system The System to be controlled.
/// @param Q A symmetric positive semi-definite cost matrix of size num_states x
/// num_states.
/// @param R A symmetric positive definite cost matrix of size num_inputs x
/// num_inputs.
/// @param N A cost matrix of size num_states x num_inputs.
/// @returns A system implementing the optimal controller in the original system
/// coordinates.
///
/// @throws std::exception if R is not positive definite.
/// @ingroup control_systems
/// @pydrake_mkdoc_identifier{system}
///
std::unique_ptr<LinearSystem<double>> LinearQuadraticRegulator(
const LinearSystem<double>& system,
const Eigen::Ref<const Eigen::MatrixXd>& Q,
const Eigen::Ref<const Eigen::MatrixXd>& R,
const Eigen::Ref<const Eigen::MatrixXd>& N =
Eigen::Matrix<double, 0, 0>::Zero());
/// Linearizes the System around the specified Context, computes the optimal
/// time-invariant linear quadratic regulator (LQR), and returns a System which
/// implements that regulator in the original System's coordinates. If
/// @p system is a continuous-time system, then solves
/// the continuous-time LQR problem:
///
/// @f[ \min_u \int_0^\infty (x-x_0)^TQ(x-x_0) + (u-u_0)^TR(u-u_0) + 2
/// (x-x_0)^TN(u-u_0) dt. @f]
///
/// If @p system is a discrete-time system, then solves the discrete-time LQR
/// problem:
///
/// @f[ \min_u \sum_0^\infty (x-x_0)^TQ(x-x_0) + (u-u_0)^TR(u-u_0) +
/// 2(x-x_0)^TN(u-u_0), @f]
///
/// where @f$ x_0 @f$ is the nominal state and @f$ u_0 @f$ is the nominal input.
/// The system is considered discrete if it has a single discrete state
/// vector and a single unique periodic update event declared.
///
/// @param system The System to be controlled.
/// @param context Defines the desired state and control input to regulate the
/// system to. Note that this state/input must be an equilibrium point of the
/// system. See drake::systems::Linearize for more details.
/// @param Q A symmetric positive semi-definite cost matrix of size num_states x
/// num_states.
/// @param R A symmetric positive definite cost matrix of size num_inputs x
/// num_inputs.
/// @param N A cost matrix of size num_states x num_inputs. If the matrix is
/// zero-sized, N will be treated as a num_states x num_inputs zero matrix.
/// @param input_port_index The index of the input port to linearize around.
/// @returns A system implementing the optimal controller in the original system
/// coordinates.
///
/// @throws std::exception if R is not positive definite.
/// @ingroup control_systems
/// @see drake::systems::Linearize()
/// @pydrake_mkdoc_identifier{linearize_at_context}
///
std::unique_ptr<AffineSystem<double>> LinearQuadraticRegulator(
const System<double>& system, const Context<double>& context,
const Eigen::Ref<const Eigen::MatrixXd>& Q,
const Eigen::Ref<const Eigen::MatrixXd>& R,
const Eigen::Ref<const Eigen::MatrixXd>& N =
Eigen::Matrix<double, 0, 0>::Zero(),
int input_port_index = 0);
} // namespace controllers
} // namespace systems
} // namespace drake
| 0 |
/home/johnshepherd/drake/systems | /home/johnshepherd/drake/systems/controllers/BUILD.bazel | load("@bazel_skylib//rules:copy_file.bzl", "copy_file")
load("//tools/lint:lint.bzl", "add_lint_tests")
load(
"//tools/skylark:drake_cc.bzl",
"drake_cc_googletest",
"drake_cc_library",
"drake_cc_package_library",
)
package(default_visibility = ["//visibility:public"])
drake_cc_package_library(
name = "controllers",
visibility = ["//visibility:public"],
deps = [
":dynamic_programming",
":finite_horizon_linear_quadratic_regulator",
":inverse_dynamics",
":inverse_dynamics_controller",
":joint_stiffness_controller",
":linear_model_predictive_controller",
":linear_quadratic_regulator",
":pid_controlled_system",
":pid_controller",
":state_feedback_controller_interface",
":zmp_planner",
],
)
drake_cc_library(
name = "state_feedback_controller_interface",
hdrs = ["state_feedback_controller_interface.h"],
deps = [
"//systems/framework:system",
],
)
drake_cc_library(
name = "dynamic_programming",
srcs = ["dynamic_programming.cc"],
hdrs = ["dynamic_programming.h"],
deps = [
"//common:essential",
"//math:wrap_to",
"//solvers:mathematical_program",
"//solvers:solve",
"//systems/analysis:simulator",
"//systems/framework",
"//systems/primitives:barycentric_system",
],
)
drake_cc_library(
name = "finite_horizon_linear_quadratic_regulator",
srcs = ["finite_horizon_linear_quadratic_regulator.cc"],
hdrs = ["finite_horizon_linear_quadratic_regulator.h"],
deps = [
"//common/trajectories",
"//math:autodiff",
"//math:gradient",
"//math:matrix_util",
"//systems/analysis:simulator",
"//systems/analysis:simulator_config_functions",
"//systems/framework",
],
)
drake_cc_library(
name = "inverse_dynamics",
srcs = ["inverse_dynamics.cc"],
hdrs = ["inverse_dynamics.h"],
deps = [
"//multibody/plant",
"//systems/framework",
],
)
drake_cc_library(
name = "inverse_dynamics_controller",
srcs = ["inverse_dynamics_controller.cc"],
hdrs = ["inverse_dynamics_controller.h"],
deps = [
":inverse_dynamics",
":pid_controller",
":state_feedback_controller_interface",
"//multibody/plant",
"//systems/framework",
"//systems/primitives:adder",
"//systems/primitives:constant_vector_source",
"//systems/primitives:demultiplexer",
"//systems/primitives:pass_through",
],
)
drake_cc_library(
name = "joint_stiffness_controller",
srcs = ["joint_stiffness_controller.cc"],
hdrs = ["joint_stiffness_controller.h"],
deps = [
"//multibody/plant",
"//systems/framework",
],
)
drake_cc_library(
name = "linear_model_predictive_controller",
srcs = ["linear_model_predictive_controller.cc"],
hdrs = ["linear_model_predictive_controller.h"],
deps = [
"//common/trajectories:piecewise_polynomial",
"//planning/trajectory_optimization:direct_transcription",
"//solvers:solve",
"//systems/primitives:linear_system",
],
)
drake_cc_library(
name = "linear_quadratic_regulator",
srcs = ["linear_quadratic_regulator.cc"],
hdrs = ["linear_quadratic_regulator.h"],
deps = [
"//common:is_approx_equal_abstol",
"//math:continuous_algebraic_riccati_equation",
"//math:discrete_algebraic_riccati_equation",
"//systems/framework",
"//systems/primitives:linear_system",
],
)
drake_cc_library(
name = "pid_controller",
srcs = ["pid_controller.cc"],
hdrs = ["pid_controller.h"],
deps = [
":state_feedback_controller_interface",
"//systems/framework:leaf_system",
"//systems/primitives:matrix_gain",
],
)
drake_cc_library(
name = "pid_controlled_system",
srcs = ["pid_controlled_system.cc"],
hdrs = ["pid_controlled_system.h"],
deps = [
":pid_controller",
"//systems/primitives:adder",
"//systems/primitives:constant_vector_source",
"//systems/primitives:saturation",
],
)
# We use a copy_file to de-clutter the deprecation stub.
# TODO(2024-08-01) Remove along with deprecation (also the load statement).
copy_file(
name = "_copy_zmp",
src = "stub/zmp_planner.h",
out = "zmp_planner.h",
allow_symlink = True,
)
# TODO(2024-08-01) Remove along with deprecation.
drake_cc_library(
name = "zmp_planner",
hdrs = ["zmp_planner.h"],
deps = [
"//planning/locomotion:zmp_planner",
],
)
# === test/ ===
drake_cc_googletest(
name = "dynamic_programming_test",
# Test timeout increased to not timeout when run with Valgrind.
timeout = "long",
data = [
"//examples/pendulum:models",
],
deps = [
":dynamic_programming",
":linear_quadratic_regulator",
"//common/proto:call_python",
"//common/test_utilities:eigen_matrix_compare",
"//multibody/parsing",
"//multibody/plant",
"//systems/framework:diagram_builder",
"//systems/primitives:integrator",
"//systems/primitives:linear_system",
],
)
drake_cc_googletest(
name = "finite_horizon_linear_quadratic_regulator_test",
deps = [
":finite_horizon_linear_quadratic_regulator",
":linear_quadratic_regulator",
"//common/test_utilities:eigen_matrix_compare",
"//common/test_utilities:expect_no_throw",
"//systems/framework/test_utilities:scalar_conversion",
"//systems/primitives:linear_system",
"//systems/primitives:symbolic_vector_system",
],
)
drake_cc_googletest(
name = "inverse_dynamics_test",
data = [
"@drake_models//:iiwa_description",
],
deps = [
":inverse_dynamics",
"//common/test_utilities:eigen_matrix_compare",
"//common/test_utilities:expect_throws_message",
"//multibody/parsing",
"//systems/controllers/test_utilities",
],
)
drake_cc_googletest(
name = "inverse_dynamics_controller_test",
data = [
"@drake_models//:iiwa_description",
],
deps = [
":inverse_dynamics_controller",
"//common/test_utilities:eigen_matrix_compare",
"//common/test_utilities:expect_throws_message",
"//multibody/parsing",
"//systems/controllers/test_utilities",
],
)
drake_cc_googletest(
name = "joint_stiffness_controller_test",
data = [
"//multibody/benchmarks/acrobot:models",
"@drake_models//:iiwa_description",
],
deps = [
":joint_stiffness_controller",
"//common/test_utilities:eigen_matrix_compare",
"//common/test_utilities:expect_throws_message",
"//multibody/parsing",
],
)
drake_cc_googletest(
name = "linear_model_predictive_controller_test",
deps = [
":linear_model_predictive_controller",
"//common/test_utilities:eigen_matrix_compare",
"//math:discrete_algebraic_riccati_equation",
"//systems/analysis:simulator",
],
)
drake_cc_googletest(
name = "linear_quadratic_regulator_test",
data = ["//examples/acrobot:models"],
deps = [
":linear_quadratic_regulator",
"//common:find_resource",
"//common/test_utilities:eigen_matrix_compare",
"//common/test_utilities:expect_no_throw",
"//examples/acrobot:acrobot_plant",
"//multibody/parsing",
"//multibody/plant",
],
)
drake_cc_googletest(
name = "pid_controlled_system_test",
deps = [
":pid_controlled_system",
"//common/test_utilities:eigen_matrix_compare",
"//common/test_utilities:expect_no_throw",
],
)
drake_cc_googletest(
name = "pid_controller_test",
deps = [
":pid_controller",
"//common/test_utilities:eigen_matrix_compare",
"//common/test_utilities:expect_no_throw",
],
)
drake_cc_googletest(
name = "deprecated_zmp_planner_test",
copts = ["-Wno-deprecated-declarations"],
deps = [
":zmp_planner",
],
)
add_lint_tests(enable_clang_format_lint = False)
| 0 |
/home/johnshepherd/drake/systems | /home/johnshepherd/drake/systems/controllers/inverse_dynamics.h | #pragma once
#include <memory>
#include <stdexcept>
#include "drake/common/default_scalars.h"
#include "drake/common/drake_copyable.h"
#include "drake/multibody/plant/multibody_plant.h"
#include "drake/systems/framework/leaf_system.h"
namespace drake {
namespace systems {
namespace controllers {
/**
* Solves inverse dynamics with no consideration for joint actuator force
* limits.
*
* Computes the generalized force `τ_id` that needs to be applied so that the
* multibody system undergoes a desired acceleration `vd_d`. That is, `τ_id`
* is the result of an inverse dynamics computation according to:
* <pre>
* τ_id = M(q)vd_d + C(q, v)v - τ_g(q) - τ_app
* </pre>
* where `M(q)` is the mass matrix, `C(q, v)v` is the bias term containing
* Coriolis and gyroscopic effects, `τ_g(q)` is the vector of generalized
* forces due to gravity and `τ_app` contains applied forces from force
* elements added to the multibody model (this can include damping, springs,
* etc. See MultibodyPlant::CalcForceElementsContribution()).
*
* The system also provides a pure gravity compensation mode via an option in
* the constructor. In this case, the output is simply
* <pre>
* τ_id = -τ_g(q).
* </pre>
*
* @note As an alternative to adding a controller to your diagram, gravity
* compensation can be modeled by disabling gravity for a given model instance,
* see MultibodyPlant::set_gravity_enabled().
*
* InverseDynamicsController uses a PID controller to generate desired
* acceleration and uses this class to compute generalized forces. Use this
* class directly if desired acceleration is computed differently.
*
* @system
* name: InverseDynamics
* input_ports:
* - estimated_state
* - <span style="color:gray">desired_acceleration</span>
* output_ports:
* - generalized_force
* @endsystem
*
* The desired acceleration port shown in <span style="color:gray">gray</span>
* is only present when the `mode` at construction is not
* `kGravityCompensation`.
*
* @tparam_default_scalar
* @ingroup control_systems
*/
template <typename T>
class InverseDynamics final : public LeafSystem<T> {
public:
DRAKE_NO_COPY_NO_MOVE_NO_ASSIGN(InverseDynamics);
enum InverseDynamicsMode {
/// Full inverse computation mode.
kInverseDynamics,
/// Purely gravity compensation mode.
kGravityCompensation
};
/**
* Constructs the InverseDynamics system.
*
* @param plant Pointer to the multibody plant model. The life span of
* `plant` must be longer than that of this instance.
* @param mode If set to kGravityCompensation, this instance will only
* consider the gravity term. It also will NOT have the desired acceleration
* input port.
* @param plant_context A specific context of `plant` to use for computing
* inverse dynamics. For example, you can use this to pass in a context with
* modified mass parameters. If `nullptr`, the default context of the given
* `plant` is used. Note that this will be copied at time of construction, so
* there are no lifetime constraints.
* @pre The plant must be finalized (i.e., plant.is_finalized() must return
* `true`). Also, `plant_context`, if provided, must be compatible with
* `plant`.
*/
explicit InverseDynamics(const multibody::MultibodyPlant<T>* plant,
InverseDynamicsMode mode = kInverseDynamics,
const Context<T>* plant_context = nullptr);
/**
* Constructs the InverseDynamics system and takes the ownership of the
* input `plant`.
*
* @exclude_from_pydrake_mkdoc{This overload is not bound.}
*/
explicit InverseDynamics(std::unique_ptr<multibody::MultibodyPlant<T>> plant,
InverseDynamicsMode mode = kInverseDynamics,
const Context<T>* plant_context = nullptr);
// Scalar-converting copy constructor. See @ref system_scalar_conversion.
template <typename U>
explicit InverseDynamics(const InverseDynamics<U>& other);
~InverseDynamics() override;
/**
* Returns the input port for the estimated state.
*/
const InputPort<T>& get_input_port_estimated_state() const {
return this->get_input_port(estimated_state_);
}
/**
* Returns the input port for the desired acceleration.
*/
const InputPort<T>& get_input_port_desired_acceleration() const {
DRAKE_THROW_UNLESS(!this->is_pure_gravity_compensation());
return this->get_input_port(desired_acceleration_);
}
/**
* Returns the output port for the generalized forces that realize the desired
* acceleration. The dimension of that force vector will be identical to the
* dimensionality of the generalized velocities.
*/
const OutputPort<T>& get_output_port_generalized_force() const {
return this->get_output_port(generalized_force_);
}
bool is_pure_gravity_compensation() const {
return mode_ == InverseDynamicsMode::kGravityCompensation;
}
private:
// Other constructors delegate to this private constructor.
InverseDynamics(std::unique_ptr<multibody::MultibodyPlant<T>> owned_plant,
const multibody::MultibodyPlant<T>* plant,
InverseDynamicsMode mode, const Context<T>* plant_context);
// Helper data structure for scalar conversion.
struct ScalarConversionData {
std::unique_ptr<multibody::MultibodyPlant<T>> plant;
InverseDynamicsMode mode{InverseDynamicsMode::kGravityCompensation};
std::unique_ptr<Context<T>> plant_context;
};
// Helper function for the scalar conversion constructor that extracts the
// plant context from `other` and scalar converts it to this scalar type, T.
template <typename U>
static ScalarConversionData ScalarConvertHelper(
const InverseDynamics<U>& other);
// Delegate constructor for scalar conversion.
explicit InverseDynamics(ScalarConversionData&& data);
template <typename>
friend class InverseDynamics;
// This is the calculator method for the output port.
void CalcOutputForce(const Context<T>& context, BasicVector<T>* force) const;
// Methods for updating cache entries.
void SetMultibodyContext(const Context<T>&, Context<T>*) const;
void CalcMultibodyForces(const Context<T>&,
multibody::MultibodyForces<T>*) const;
const std::unique_ptr<multibody::MultibodyPlant<T>> owned_plant_{};
const multibody::MultibodyPlant<T>* const plant_;
// Mode dictates whether to do inverse dynamics or just gravity compensation.
const InverseDynamicsMode mode_;
InputPortIndex estimated_state_;
InputPortIndex desired_acceleration_;
OutputPortIndex generalized_force_;
const int q_dim_;
const int v_dim_;
// Note: unused in gravity compensation mode.
CacheIndex external_forces_cache_index_;
CacheIndex plant_context_cache_index_;
};
} // namespace controllers
} // namespace systems
} // namespace drake
DRAKE_DECLARE_CLASS_TEMPLATE_INSTANTIATIONS_ON_DEFAULT_SCALARS(
class ::drake::systems::controllers::InverseDynamics)
| 0 |
/home/johnshepherd/drake/systems | /home/johnshepherd/drake/systems/controllers/linear_quadratic_regulator.cc | #include "drake/systems/controllers/linear_quadratic_regulator.h"
#include <optional>
#include <Eigen/QR>
#include "drake/common/drake_assert.h"
#include "drake/common/is_approx_equal_abstol.h"
#include "drake/math/continuous_algebraic_riccati_equation.h"
#include "drake/math/discrete_algebraic_riccati_equation.h"
#include "drake/systems/primitives/linear_system.h"
namespace drake {
namespace systems {
namespace controllers {
namespace {
// Compute the kernel of a matrix F, returns P such that the rows of P are the
// basis for the null-space of F, namely PPᵀ = I and PFᵀ = 0
// TODO(hongkai.dai): expose this function to the header, and allow different
// matrix factorization methods.
Eigen::MatrixXd ComputeKernel(const Eigen::Ref<const Eigen::MatrixXd>& F) {
// Compute the null-space based on QR decomposition. If Fᵀ*S = [Q1 Q2][R; 0]
// = Q1*R, then take P=Q2ᵀ, where S is the permutation matrix.
Eigen::ColPivHouseholderQR<Eigen::MatrixXd> qr_F(F.transpose());
if (qr_F.info() != Eigen::Success) {
throw std::runtime_error(
"LinearQuadraticRegulator(): QR decomposition on F.transpose() "
"fails");
}
const Eigen::MatrixXd F_Q = qr_F.matrixQ();
const int n = F.cols();
const Eigen::MatrixXd P = F_Q.rightCols(n - qr_F.rank()).transpose();
return P;
}
} // namespace
LinearQuadraticRegulatorResult LinearQuadraticRegulator(
const Eigen::Ref<const Eigen::MatrixXd>& A,
const Eigen::Ref<const Eigen::MatrixXd>& B,
const Eigen::Ref<const Eigen::MatrixXd>& Q,
const Eigen::Ref<const Eigen::MatrixXd>& R,
const Eigen::Ref<const Eigen::MatrixXd>& N,
const Eigen::Ref<const Eigen::MatrixXd>& F) {
Eigen::Index n = A.rows(), m = B.cols();
DRAKE_DEMAND(n > 0 && m > 0);
DRAKE_DEMAND(B.rows() == n && A.cols() == n);
DRAKE_DEMAND(Q.rows() == n && Q.cols() == n);
DRAKE_DEMAND(R.rows() == m && R.cols() == m);
// N is default to Matrix<double, 0, 0>.
if (N.rows() != 0) {
DRAKE_DEMAND(N.rows() == n && N.cols() == m);
}
// F is default to Matrix<double, 0, 0>.
if (F.rows() != 0) {
DRAKE_DEMAND(F.cols() == n);
}
DRAKE_DEMAND(is_approx_equal_abstol(R, R.transpose(), 1e-10));
LinearQuadraticRegulatorResult ret;
Eigen::LLT<Eigen::MatrixXd> R_cholesky(R);
if (R_cholesky.info() != Eigen::Success)
throw std::runtime_error("R must be positive definite");
// The rows of P are the orthonormal basis for the null-space of F, namely PPᵀ
// = I and PFᵀ = 0
std::optional<Eigen::MatrixXd> P = std::nullopt;
if (F.rows() != 0) {
// P is the kernel of F.
// We introduce projected state y, such that y = Px.
// We form a new dynamical system
// ẏ = PAPᵀy + PBu
// If the original cost is
// ∫ xᵀQx + uᵀRu
// The cost in terms of y and u is
// ∫ yᵀPQPᵀy + uᵀRu
P = ComputeKernel(F);
}
if (N.rows() != 0) {
// This is equivalent to the LQR problem of the following modified system
// min ∫xᵀQ₁x + u̅ᵀRu̅
// ẋ = A₁x + Bu̅
// where u̅ = u + R⁻¹Nᵀx and Q₁=Q−NR⁻¹Nᵀ, A₁=A−BR⁻¹Nᵀ
Eigen::MatrixXd Q1 = Q - N * R_cholesky.solve(N.transpose());
Eigen::MatrixXd A1 = A - B * R_cholesky.solve(N.transpose());
if (F.rows() == 0) {
ret.S = math::ContinuousAlgebraicRiccatiEquation(A1, B, Q1, R_cholesky);
ret.K = R_cholesky.solve(B.transpose() * ret.S + N.transpose());
} else {
const Eigen::MatrixXd Sy = math::ContinuousAlgebraicRiccatiEquation(
(*P) * A1 * P->transpose(), (*P) * B, (*P) * Q1 * P->transpose(),
R_cholesky);
ret.S = P->transpose() * Sy * (*P);
// We know N_y = P*N
// u = -R⁻¹(B_yᵀS_y + N_yᵀ)y
// = -R⁻¹(BᵀPᵀ * PSPᵀ + NᵀPᵀ)*Px
// = -R⁻¹(BᵀS+NᵀPᵀP)
// Note that PᵀP != I since P is not full rank (although PPᵀ=I).
ret.K = R_cholesky.solve(B.transpose() * ret.S +
N.transpose() * P->transpose() * (*P));
}
} else {
if (F.rows() == 0) {
ret.S = math::ContinuousAlgebraicRiccatiEquation(A, B, Q, R_cholesky);
} else {
ret.S = P->transpose() *
math::ContinuousAlgebraicRiccatiEquation(
(*P) * A * P->transpose(), (*P) * B,
(*P) * Q * P->transpose(), R_cholesky) *
(*P);
}
ret.K = R_cholesky.solve(B.transpose() * ret.S);
}
return ret;
}
LinearQuadraticRegulatorResult DiscreteTimeLinearQuadraticRegulator(
const Eigen::Ref<const Eigen::MatrixXd>& A,
const Eigen::Ref<const Eigen::MatrixXd>& B,
const Eigen::Ref<const Eigen::MatrixXd>& Q,
const Eigen::Ref<const Eigen::MatrixXd>& R) {
Eigen::Index n = A.rows(), m = B.cols();
DRAKE_DEMAND(n > 0 && m > 0);
DRAKE_DEMAND(B.rows() == n && A.cols() == n);
DRAKE_DEMAND(Q.rows() == n && Q.cols() == n);
DRAKE_DEMAND(R.rows() == m && R.cols() == m);
DRAKE_DEMAND(is_approx_equal_abstol(R, R.transpose(), 1e-10));
LinearQuadraticRegulatorResult ret;
ret.S = math::DiscreteAlgebraicRiccatiEquation(A, B, Q, R);
Eigen::MatrixXd tmp = B.transpose() * ret.S * B + R;
ret.K = tmp.llt().solve(B.transpose() * ret.S * A);
return ret;
}
std::unique_ptr<systems::LinearSystem<double>> LinearQuadraticRegulator(
const LinearSystem<double>& system,
const Eigen::Ref<const Eigen::MatrixXd>& Q,
const Eigen::Ref<const Eigen::MatrixXd>& R,
const Eigen::Ref<const Eigen::MatrixXd>& N) {
// DiscreteTimeLinearQuadraticRegulator does not support N yet.
DRAKE_DEMAND(system.time_period() == 0.0 || N.rows() == 0);
const int num_states = system.B().rows(), num_inputs = system.B().cols();
LinearQuadraticRegulatorResult lqr_result = (system.time_period() == 0.0) ?
LinearQuadraticRegulator(system.A(), system.B(), Q, R, N) :
DiscreteTimeLinearQuadraticRegulator(system.A(), system.B(), Q, R);
// Return the controller: u = -Kx.
return std::make_unique<systems::LinearSystem<double>>(
Eigen::Matrix<double, 0, 0>::Zero(), // A
Eigen::MatrixXd::Zero(0, num_states), // B
Eigen::MatrixXd::Zero(num_inputs, 0), // C
-lqr_result.K, // D
system.time_period());
}
std::unique_ptr<systems::AffineSystem<double>> LinearQuadraticRegulator(
const System<double>& system, const Context<double>& context,
const Eigen::Ref<const Eigen::MatrixXd>& Q,
const Eigen::Ref<const Eigen::MatrixXd>& R,
const Eigen::Ref<const Eigen::MatrixXd>& N,
int input_port_index) {
// TODO(russt): accept optional additional argument to return the cost-to-go
// but note that it will be a full quadratic form (x'S2x + s1'x + s0).
const int num_inputs = system.get_input_port(input_port_index).size();
const int num_states = context.num_total_states();
DRAKE_DEMAND(num_states > 0);
// The Linearize method call below will verify that the system has either
// continuous-time OR (only simple) discrete-time dynamics.
// TODO(russt): Confirm behavior if Q is not PSD.
// Use specified input and no outputs (the output dynamics are irrelevant for
// LQR design).
auto linear_system = Linearize(
system, context, InputPortIndex{input_port_index},
OutputPortSelection::kNoOutput);
// DiscreteTimeLinearQuadraticRegulator does not support N yet.
DRAKE_DEMAND(linear_system->time_period() == 0.0 || N.rows() == 0);
LinearQuadraticRegulatorResult lqr_result =
(linear_system->time_period() == 0.0)
? LinearQuadraticRegulator(linear_system->A(), linear_system->B(), Q,
R, N)
: DiscreteTimeLinearQuadraticRegulator(linear_system->A(),
linear_system->B(), Q, R);
const Eigen::VectorXd& x0 =
(linear_system->time_period() == 0.0)
? context.get_continuous_state_vector().CopyToVector()
: context.get_discrete_state(0).CopyToVector();
const auto& u0 = system.get_input_port(input_port_index).Eval(context);
// Return the affine controller: u = u0 - K(x-x0).
return std::make_unique<systems::AffineSystem<double>>(
Eigen::Matrix<double, 0, 0>::Zero(), // A
Eigen::MatrixXd::Zero(0, num_states), // B
Eigen::Matrix<double, 0, 1>::Zero(), // xDot0
Eigen::MatrixXd::Zero(num_inputs, 0), // C
-lqr_result.K, // D
u0 + lqr_result.K * x0, // y0
linear_system->time_period());
}
} // namespace controllers
} // namespace systems
} // namespace drake
| 0 |
/home/johnshepherd/drake/systems | /home/johnshepherd/drake/systems/controllers/joint_stiffness_controller.h | #pragma once
#include <memory>
#include <stdexcept>
#include "drake/common/default_scalars.h"
#include "drake/common/drake_copyable.h"
#include "drake/multibody/plant/multibody_plant.h"
#include "drake/systems/framework/leaf_system.h"
namespace drake {
namespace systems {
namespace controllers {
// TODO(russt): Consider adding a feed-forward torque, τ_ff. It's not a
// priority since it's trivial to add it to the output of this system with an
// Adder block.
/**
* Implements a joint-space stiffness controller of the form
* <pre>
* τ_control = −τ_g(q) − τ_app + kp⊙(q_d − q) + kd⊙(v_d − v)
* </pre>
* where `Kp` and `Kd` are the joint stiffness and damping coefficients,
* respectively, `τ_g(q)` is the vector of generalized forces due to gravity,
* and `τ_app` contains applied forces from force elements added to the
* multibody model (this can include damping, springs, etc. See
* MultibodyPlant::CalcForceElementsContribution()). `q_d` and `v_d` are the
* desired (setpoint) values for the multibody positions and velocities,
* respectively. `kd` and `kp` are taken as vectors, and ⊙ represents
* elementwise multiplication.
*
* The goal of this controller is to produce a closed-loop dynamics that
* resembles a spring-damper dynamics at the joints around the setpoint:
* <pre>
* M(q)v̇ + C(q,v)v + kp⊙(q - q_d) + kd⊙(v - v_d) = τ_ext,
* </pre>
* where `M(q)v̇ + C(q,v)v` are the original multibody mass and Coriolis terms,
* and `τ_ext` are any external generalized forces that can arise, e.g. from
* contact forces.
*
* The controller currently requires that plant.num_positions() ==
* plant.num_velocities() == plant.num_actuated_dofs() and that
* plant.IsVelocityEqualToQDot() is true.
*
* @system
* name: JointStiffnessController
* input_ports:
* - estimated_state
* - desired_state
* output_ports:
* - generalized_force
* @endsystem
*
* Note that the joint impedance control as implemented on Kuka's iiwa and
* Franka' Panda is best modeled as a stiffness controller (unless one were to
* model the actual elastic joints and rotor-inertia shaping). See
* https://manipulation.csail.mit.edu/force.html for more details.
*
* @tparam_default_scalar
* @ingroup control_systems
*/
template <typename T>
class JointStiffnessController final : public LeafSystem<T> {
public:
DRAKE_NO_COPY_NO_MOVE_NO_ASSIGN(JointStiffnessController)
/**
* Constructs the JointStiffnessController system.
*
* @param plant Reference to the multibody plant model. The life span of @p
* plant must be at least as long as that of this instance.
* @pre The plant must be finalized (i.e., plant.is_finalized() must return
* `true`).
* @pre plant.num_positions() == plant.num_velocities() ==
* plant.num_actuated_dofs() == kp.size() == kd.size()
* @pre plant.IsVelocityEqualToQDot() is true.
*/
JointStiffnessController(const multibody::MultibodyPlant<T>& plant,
const Eigen::Ref<const Eigen::VectorXd>& kp,
const Eigen::Ref<const Eigen::VectorXd>& kd);
/**
* Constructs the JointStiffnessController system and takes the ownership of
* the input `plant`.
* @pre The plant must be finalized (i.e., plant.is_finalized() must return
* `true`).
* @pre plant.num_positions() == plant.num_velocities() ==
* plant.num_actuated_dofs() == kp.size() == kd.size()
* @pre plant.IsVelocityEqualToQDot() is true.
*
* @exclude_from_pydrake_mkdoc{This overload is not bound.}
*/
explicit JointStiffnessController(
std::unique_ptr<multibody::MultibodyPlant<T>> plant,
const Eigen::Ref<const Eigen::VectorXd>& kp,
const Eigen::Ref<const Eigen::VectorXd>& kd);
// Scalar-converting copy constructor. See @ref system_scalar_conversion.
template <typename U>
explicit JointStiffnessController(const JointStiffnessController<U>& other);
~JointStiffnessController() override;
// TODO(russt): Add support for safety limits. The iiwa driver will fault if
// the desired state and the estimated state are too far apart. We should
// support that (optional) feature here -- it's not very iiwa-specific.
/**
* Returns the input port for the estimated state.
*/
const InputPort<T>& get_input_port_estimated_state() const {
return this->get_input_port(input_port_index_estimated_state_);
}
/**
* Returns the input port for the desired state.
*/
const InputPort<T>& get_input_port_desired_state() const {
return this->get_input_port(input_port_index_desired_state_);
}
/**
* Returns the output port for the generalized forces implementing the
* control. */
const OutputPort<T>& get_output_port_generalized_force() const {
return this->get_output_port(output_port_index_force_);
}
/**
* Returns a constant pointer to the MultibodyPlant used for control.
*/
const multibody::MultibodyPlant<T>& get_multibody_plant() const {
return *plant_;
}
private:
// Other constructors delegate to this private constructor.
JointStiffnessController(
std::unique_ptr<multibody::MultibodyPlant<T>> owned_plant,
const multibody::MultibodyPlant<T>* plant,
const Eigen::Ref<const Eigen::VectorXd>& kp,
const Eigen::Ref<const Eigen::VectorXd>& kd);
template <typename> friend class JointStiffnessController;
// This is the calculator method for the output port.
void CalcOutputForce(const Context<T>& context,
BasicVector<T>* force) const;
// Methods for updating cache entries.
void SetMultibodyContext(const Context<T>&, Context<T>*) const;
void CalcMultibodyForces(const Context<T>&,
multibody::MultibodyForces<T>*) const;
const std::unique_ptr<multibody::MultibodyPlant<T>> owned_plant_{};
const multibody::MultibodyPlant<T>* const plant_;
int input_port_index_estimated_state_{0};
int input_port_index_desired_state_{0};
int output_port_index_force_{0};
Eigen::VectorXd kp_, kd_;
drake::systems::CacheIndex applied_forces_cache_index_;
drake::systems::CacheIndex plant_context_cache_index_;
};
#ifdef DRAKE_DOXYGEN_CXX
/** Drake does not yet offer a joint impedance controller, which would use
* feedback to shape the stiffness, damping, *and inertia* of the closed-loop
* system. We do however offer JointStiffnessController which uses feedback to
* shape the closed-loop stiffness and damping. Most modern control stacks,
* such as the JointImpedanceControl mode on Kuka's iiwa and Franka's Panda, are
* actually better modeled as stiffness control (unless one is also modeling the
* details of the elastic joints and rotor-interia shaping).
*
* See https://manipulation.csail.mit.edu/force.html for more details.
* @see JointStiffnessController.
*
* @ingroup control_systems
*/
class JointImpedanceController {};
#endif
} // namespace controllers
} // namespace systems
} // namespace drake
DRAKE_DECLARE_CLASS_TEMPLATE_INSTANTIATIONS_ON_DEFAULT_SCALARS(
class ::drake::systems::controllers::JointStiffnessController)
| 0 |
/home/johnshepherd/drake/systems | /home/johnshepherd/drake/systems/controllers/linear_model_predictive_controller.h | #pragma once
#include <memory>
#include "drake/common/drake_copyable.h"
#include "drake/common/trajectories/piecewise_polynomial.h"
#include "drake/systems/primitives/linear_system.h"
namespace drake {
namespace systems {
namespace controllers {
/// Implements a basic Model Predictive Controller that linearizes the system
/// about an equilibrium condition and regulates to the same point by solving an
/// optimal control problem over a finite time horizon. In particular, MPC
/// solves, at each time step k, the following problem to find an optimal u(k)
/// as a function of x(k):
///
/// @f[ \min_{u(k),\ldots,u(k+N),x(k+1),\ldots,x(k+N)}
/// \sum_{i=k}^{k+N} ((x(i) - xd(i))ᵀQ(x(i) - xd(i)) +
/// (u(i) - ud(i))ᵀR(u(i) - ud(i))) @f]
/// @f[ \mathrm{s.t. } x(k+1) = A(k)x(k) + B(k)u(k) @f]
///
/// and subject to linear inequality constraints on the inputs and states, where
/// N is the horizon length, Q and R are cost matrices, and xd and ud are the
/// desired states and inputs, respectively. Note that the present
/// implementation solves the QP in whole at every time step, discarding any
/// information between steps.
///
/// @system
/// name: LinearModelPredictiveController
/// input_ports:
/// - u0
/// output_ports:
/// - y0
/// @endsystem
///
/// @tparam_double_only
/// @ingroup control_systems
template <typename T>
class LinearModelPredictiveController : public LeafSystem<T> {
public:
DRAKE_NO_COPY_NO_MOVE_NO_ASSIGN(LinearModelPredictiveController)
// TODO(jadecastro) Implement a version that regulates to an arbitrary
// trajectory.
/// Constructor for an unconstrained MPC formulation with linearization
/// occurring about the provided base_context. Since this formulation is
/// devoid of any externally-imposed input/state constraints, the controller
/// essentially behaves the same as a finite-time LQR.
///
/// @param model The plant model of the System to be controlled.
/// @param base_context The fixed base point about which to linearize of the
/// system and regulate the system. To be valid, @p base_context must
/// correspond to an equilibrium point of the system.
/// @param Q A symmetric positive semi-definite state cost matrix of size
/// (num_states x num_states).
/// @param R A symmetric positive definite control effort cost matrix of size
/// (num_inputs x num_inputs).
/// @param time_period The discrete time period (in seconds) at which
/// controller updates occur.
/// @param time_horizon The prediction time horizon (seconds).
///
/// @pre model must have discrete states of dimension num_states and inputs
/// of dimension num_inputs.
/// @pre base_context must have discrete states set as appropriate for the
/// given @p model. The input must also be initialized via
/// `input_port.FixValue(base_context, u0)`, or otherwise initialized via
/// Diagram.
LinearModelPredictiveController(
std::unique_ptr<systems::System<double>> model,
std::unique_ptr<systems::Context<double>> base_context,
const Eigen::MatrixXd& Q, const Eigen::MatrixXd& R, double time_period,
double time_horizon);
// TODO(jadecastro) Get time_period directly from the plant model.
const InputPort<T>& get_state_port() const {
return this->get_input_port(state_input_index_);
}
const OutputPort<T>& get_control_port() const {
return this->get_output_port(control_output_index_);
}
private:
void CalcControl(const Context<T>& context, BasicVector<T>* control) const;
EventStatus DoNothingButPretendItWasSomething(const Context<T>&,
DiscreteValues<T>*) const;
// Sets up a DirectTranscription problem and solves for the current control
// input.
VectorX<T> SetupAndSolveQp(const Context<T>& base_context,
const VectorX<T>& current_state) const;
const int state_input_index_{-1};
const int control_output_index_{-1};
const std::unique_ptr<systems::System<double>> model_;
// The base context that contains the reference point to regulate.
const std::unique_ptr<systems::Context<double>> base_context_;
const int num_states_{};
const int num_inputs_{};
const Eigen::MatrixXd Q_;
const Eigen::MatrixXd R_;
const double time_period_{};
const double time_horizon_{};
// Description of the linearized plant model.
std::unique_ptr<LinearSystem<double>> linear_model_;
};
} // namespace controllers
} // namespace systems
} // namespace drake
| 0 |
/home/johnshepherd/drake/systems | /home/johnshepherd/drake/systems/controllers/inverse_dynamics_controller.cc | #include "drake/systems/controllers/inverse_dynamics_controller.h"
#include <memory>
#include <utility>
#include "drake/systems/controllers/inverse_dynamics.h"
#include "drake/systems/framework/diagram_builder.h"
#include "drake/systems/primitives/adder.h"
#include "drake/systems/primitives/constant_vector_source.h"
#include "drake/systems/primitives/demultiplexer.h"
using drake::multibody::MultibodyPlant;
namespace drake {
namespace systems {
namespace controllers {
template <typename T>
void InverseDynamicsController<T>::SetUp(
std::unique_ptr<multibody::MultibodyPlant<T>> owned_plant,
const VectorX<double>& kp, const VectorX<double>& ki,
const VectorX<double>& kd, const Context<T>* plant_context) {
DRAKE_DEMAND(multibody_plant_for_control_->is_finalized());
DiagramBuilder<T> builder;
InverseDynamics<T>* inverse_dynamics{};
if (owned_plant) {
inverse_dynamics = builder.template AddNamedSystem<InverseDynamics<T>>(
"InverseDynamics", std::move(owned_plant),
InverseDynamics<T>::kInverseDynamics, plant_context);
} else {
inverse_dynamics = builder.template AddNamedSystem<InverseDynamics<T>>(
"InverseDynamics", multibody_plant_for_control_,
InverseDynamics<T>::kInverseDynamics, plant_context);
}
const int num_positions = multibody_plant_for_control_->num_positions();
const int num_velocities = multibody_plant_for_control_->num_velocities();
const int num_actuators = multibody_plant_for_control_->num_actuators();
const int dim = kp.size();
DRAKE_DEMAND(num_positions == dim);
if (num_positions != num_actuators) {
throw std::runtime_error(fmt::format(R"""(
Your plant has {} positions, but only {} actuators.
InverseDynamicsController (currently) only supports fully-actuated robots. For
instance, you cannot use this directly if your robot/model has an unactuated
floating base.
Note that commonly, the MultibodyPlant used for control is not the same
one used for simulation; the simulation model might contain the robot and also
some objects in the world which the controller does not have direct
observations of nor control over. See
https://stackoverflow.com/q/75917723/9510020 for some further discussion.)""",
num_positions, num_actuators));
}
if (num_positions != num_velocities) {
throw std::runtime_error(fmt::format(R"""(
Your plant has {} positions, but {} velocities. Likely you have a quaternion
floating base. InverseDynamicsController currently requires that the
number of positions matches the number of velocities, and does not support
joints modeled with quaternions.)""", num_positions, num_velocities));
}
/*
(vd*)
--------------------
|
(q*, v*) |
---------> | | |
(q, v) |PID| |
---------> | | --+--> | |
| | inverse dynamics | ---> force
------------------> | |
*/
// Adds a PID.
pid_ = builder.template AddNamedSystem<PidController<T>>("pid", kp, ki, kd);
// Adds a adder to do PID's acceleration + reference acceleration.
auto adder = builder.template AddNamedSystem<Adder<T>>("+", 2, dim);
// Adds PID's output with reference acceleration
builder.Connect(pid_->get_output_port_control(), adder->get_input_port(0));
// Connects desired acceleration to inverse dynamics
builder.Connect(adder->get_output_port(),
inverse_dynamics->get_input_port_desired_acceleration());
// Exposes estimated state input port.
// Connects estimated state to PID.
estimated_state_ = builder.ExportInput(pid_->get_input_port_estimated_state(),
"estimated_state");
// Connects estimated state to inverse dynamics.
builder.ConnectInput(estimated_state_,
inverse_dynamics->get_input_port_estimated_state());
// Exposes reference state input port.
desired_state_ = builder.ExportInput(pid_->get_input_port_desired_state(),
"desired_state");
if (!has_reference_acceleration_) {
// Uses a zero constant source for reference acceleration.
auto zero_feedforward_acceleration =
builder.template AddNamedSystem<ConstantVectorSource<T>>(
"desired_acceleration=0", VectorX<T>::Zero(dim));
builder.Connect(zero_feedforward_acceleration->get_output_port(),
adder->get_input_port(1));
} else {
// Exposes reference acceleration input port.
desired_acceleration_ =
builder.ExportInput(adder->get_input_port(1), "desired_acceleration");
}
// Exposes inverse dynamics' output port.
generalized_force_ = builder.ExportOutput(
inverse_dynamics->get_output_port_generalized_force(),
"generalized_force");
// Finalize ourself.
builder.BuildInto(this);
}
template <typename T>
void InverseDynamicsController<T>::set_integral_value(
Context<T>* context, const Eigen::Ref<const VectorX<T>>& value) const {
Context<T>& pid_context =
Diagram<T>::GetMutableSubsystemContext(*pid_, context);
pid_->set_integral_value(&pid_context, value);
}
template <typename T>
InverseDynamicsController<T>::InverseDynamicsController(
const MultibodyPlant<T>& plant, const VectorX<double>& kp,
const VectorX<double>& ki, const VectorX<double>& kd,
bool has_reference_acceleration,
const Context<T>* plant_context)
: multibody_plant_for_control_(&plant),
has_reference_acceleration_(has_reference_acceleration) {
SetUp(nullptr, kp, ki, kd, plant_context);
}
template <typename T>
InverseDynamicsController<T>::InverseDynamicsController(
std::unique_ptr<multibody::MultibodyPlant<T>> plant,
const VectorX<double>& kp, const VectorX<double>& ki,
const VectorX<double>& kd, bool has_reference_acceleration,
const Context<T>* plant_context)
: multibody_plant_for_control_(plant.get()),
has_reference_acceleration_(has_reference_acceleration) {
SetUp(std::move(plant), kp, ki, kd, plant_context);
}
template <typename T>
InverseDynamicsController<T>::~InverseDynamicsController() = default;
} // namespace controllers
} // namespace systems
} // namespace drake
DRAKE_DEFINE_CLASS_TEMPLATE_INSTANTIATIONS_ON_DEFAULT_SCALARS(
class ::drake::systems::controllers::InverseDynamicsController)
| 0 |
/home/johnshepherd/drake/systems | /home/johnshepherd/drake/systems/controllers/pid_controller.h | #pragma once
#include <stdexcept>
#include "drake/common/drake_copyable.h"
#include "drake/systems/controllers/state_feedback_controller_interface.h"
#include "drake/systems/framework/leaf_system.h"
namespace drake {
namespace systems {
namespace controllers {
// TODO(siyuanfeng): Lift the assumption that q and v have the same dimension.
// TODO(siyuanfeng): Generalize "q_d - q", e.g. for rotation.
// N.B. Inheritance order must remain fixed for pydrake (#9243).
/**
* Implements the PID controller. Given estimated state `x_in = (q_in, v_in)`,
* the controlled state `x_c = (q_c, v_c)` is computed by `x_c = P_x * x_in`,
* where `P_x` is a state projection matrix. The desired state
* `x_d = (q_d, v_d)`, is in the same space as `x_c`. The output of this
* controller is:
* <pre>
* y = P_y * (kp * (q_d - q_c) + kd * (v_d - v_c) + ki * integral(q_d - q_c)),
* </pre>
* where `P_y` is the output projection matrix.
*
* @system
* name: PidController
* input_ports:
* - estimated_state
* - desired_state
* output_ports:
* - control
* @endsystem
*
* This system has one continuous state, which is the integral of position
* error, two input ports: estimated state `x_in` and desired state `x_d`, and
* one output port `y`. Note that this class assumes `|q_c| = |v_c|` and
* `|q_d| = |v_d|`. However, `|q_c|` does not have to equal to `|q_d|`. One
* typical use case for non-identity `P_x` and `P_y` is to select a subset of
* state for feedback.
*
* @tparam_default_scalar
* @ingroup control_systems
*/
template <typename T>
class PidController : public LeafSystem<T>,
public StateFeedbackControllerInterface<T> {
public:
DRAKE_NO_COPY_NO_MOVE_NO_ASSIGN(PidController)
/**
* Constructs a PID controller. `P_x` and `P_y` are identity
* matrices of proper sizes. The estimated and desired state inputs are
* 2 * @p kp's size, and the control output has @p kp's size.
* @param kp P gain.
* @param ki I gain.
* @param kd D gain.
*
* @throws std::exception if @p kp, @p ki and @p kd have different
* dimensions.
*/
PidController(const Eigen::VectorXd& kp, const Eigen::VectorXd& ki,
const Eigen::VectorXd& kd);
/**
* Constructs a PID controller. Calls the full constructor, with the output
* projection matrix `P_y` being the identity matrix.
* @param state_projection The state projection matrix `P_x`.
* @param kp P gain.
* @param ki I gain.
* @param kd D gain.
*
* @throws std::exception if @p kp, @p ki and @p kd have different
* dimensions or `P_x.row() != 2 * |kp|'.
*/
PidController(const MatrixX<double>& state_projection,
const Eigen::VectorXd& kp, const Eigen::VectorXd& ki,
const Eigen::VectorXd& kd);
/**
* Constructs a PID controller. This assumes that
* <pre>
* 1. |kp| = |kd| = |ki| = |q_d| = |v_d|
* 2. 2 * |q_d| = P_x.rows
* 3. |x_in| = P_x.cols
* 4. |y| = P_y.rows
* 4. |q_d| = P_y.cols
* </pre>
*
* @param state_projection The state projection matrix `P_x`.
* @param output_projection The output projection matrix `P_y`.
* @param kp P gain.
* @param ki I gain.
* @param kd V gain.
*
* @throws std::exception if any assumption is violated.
*/
PidController(const MatrixX<double>& state_projection,
const MatrixX<double>& output_projection,
const Eigen::VectorXd& kp, const Eigen::VectorXd& ki,
const Eigen::VectorXd& kd);
/** Scalar-converting copy constructor. See @ref system_scalar_conversion. */
template <typename U>
explicit PidController(const PidController<U>&);
/**
* Returns the proportional gain constant. This method should only be called
* if the proportional gain can be represented as a scalar value, i.e., every
* element in the proportional gain vector is the same. It will throw a
* `std::runtime_error` if the proportional gain cannot be represented as a
* scalar value.
*/
double get_Kp_singleton() const { return get_single_gain(kp_); }
/**
* Returns the integral gain constant. This method should only be called if
* the integral gain can be represented as a scalar value, i.e., every
* element in the integral gain vector is the same. It will throw a
* `std::runtime_error` if the integral gain cannot be represented as a
* scalar value.
*/
double get_Ki_singleton() const { return get_single_gain(ki_); }
/**
* Returns the derivative gain constant. This method should only be called if
* the derivative gain can be represented as a scalar value, i.e., every
* element in the derivative gain vector is the same. It will throw a
* `std::runtime_error` if the derivative gain cannot be represented as a
* scalar value.
*/
double get_Kd_singleton() const { return get_single_gain(kd_); }
/**
* Returns the proportional gain vector.
*/
const VectorX<double>& get_Kp_vector() const { return kp_; }
/**
* Returns the integral gain vector.
*/
const VectorX<double>& get_Ki_vector() const { return ki_; }
/**
* Returns the derivative gain vector.
*/
const VectorX<double>& get_Kd_vector() const { return kd_; }
/**
* Sets the integral part of the PidController to @p value.
* @p value must be a column vector of the appropriate size.
*/
void set_integral_value(Context<T>* context,
const Eigen::Ref<const VectorX<T>>& value) const {
VectorBase<T>& state_vector =
context->get_mutable_continuous_state_vector();
state_vector.SetFromVector(value);
}
/**
* Returns the input port for the estimated state.
*/
const InputPort<T>& get_input_port_estimated_state() const final {
return this->get_input_port(input_index_state_);
}
/**
* Returns the input port for the desired state.
*/
const InputPort<T>& get_input_port_desired_state() const final {
return this->get_input_port(input_index_desired_state_);
}
/**
* Returns the output port for computed control.
*/
const OutputPort<T>& get_output_port_control() const final {
return this->get_output_port(output_index_control_);
}
protected:
void DoCalcTimeDerivatives(const Context<T>& context,
ContinuousState<T>* derivatives) const override;
private:
template <typename>
friend class PidController;
static double get_single_gain(const VectorX<double>& gain) {
if (!gain.isConstant(gain[0])) {
throw std::runtime_error("Gain is not singleton.");
}
return gain[0];
}
void CalcControl(const Context<T>& context, BasicVector<T>* control) const;
VectorX<double> kp_;
VectorX<double> ki_;
VectorX<double> kd_;
// Size of controlled positions / output.
const int num_controlled_q_{0};
// Size of input actual state.
const int num_full_state_{0};
// Projection matrix from full state to controlled state, whose size is
// num_controlled_q_ * 2 X num_full_state_.
const MatrixX<double> state_projection_;
// Output projection matrix, whose size is num_controlled_q_ by the dimension
// of the output port.
const MatrixX<double> output_projection_;
int input_index_state_{-1};
int input_index_desired_state_{-1};
int output_index_control_{-1};
};
} // namespace controllers
} // namespace systems
} // namespace drake
| 0 |
/home/johnshepherd/drake/systems | /home/johnshepherd/drake/systems/controllers/finite_horizon_linear_quadratic_regulator.h | #pragma once
#include <memory>
#include <optional>
#include <variant>
#include "drake/common/copyable_unique_ptr.h"
#include "drake/common/trajectories/piecewise_polynomial.h"
#include "drake/systems/analysis/simulator_config.h"
#include "drake/systems/framework/system.h"
namespace drake {
namespace systems {
namespace controllers {
/**
A structure to facilitate passing the myriad of optional arguments to the
FiniteHorizonLinearQuadraticRegulator algorithms.
*/
struct FiniteHorizonLinearQuadraticRegulatorOptions {
FiniteHorizonLinearQuadraticRegulatorOptions() = default;
/**
A num_states x num_states positive semi-definite matrix which specified the
cost at the final time. If unset, then Qf will be set to the zero matrix.
*/
std::optional<Eigen::MatrixXd> Qf;
/**
A num_states x num_inputs matrix that describes the running cost
2(x-xd(t))'N(u-ud(t)). If unset, then N will be set to the zero matrix.
*/
std::optional<Eigen::MatrixXd> N;
/**
A nominal state trajectory. The system is linearized about this trajectory.
x0 must be defined over the entire interval [t0, tf]. If null, then x0 is
taken to be a constant trajectory (whose value is specified by the context
passed into the LQR method).
*/
const trajectories::Trajectory<double>* x0{nullptr};
/**
A nominal input trajectory. The system is linearized about this trajectory.
u0 must be defined over the entire interval, [t0, tf]. If null, then u0 is
taken to be a constant trajectory (whose value is specified by the context
passed into the LQR method).
*/
const trajectories::Trajectory<double>* u0{nullptr};
/**
A desired state trajectory. The objective is to regulate to this trajectory
-- the state component of the quadratic running cost is (x-xd(t))'*Q*(x-xd(t))
and the final cost is (x-xd(t))'Qf(x-xd(t)). If null, then xd(t) = x0(t).
*/
const trajectories::Trajectory<double>* xd{nullptr};
/**
A desired input trajectory. The objective is to regulate to this trajectory
-- the input component of the quadratic running cost is
(u-ud(t))'*R*(u-ud(t)). If null, then ud(t) = u0(t).
*/
const trajectories::Trajectory<double>* ud{nullptr};
/**
For systems with multiple input ports, we must specify which input port is
being used in the control design. @see systems::InputPortSelection.
*/
std::variant<systems::InputPortSelection, InputPortIndex> input_port_index{
systems::InputPortSelection::kUseFirstInputIfItExists};
/**
Enables the "square-root" method solution to the Riccati equation. This is
slightly more expensive and potentially less numerically accurate (errors are
bounded on the square root), but is more numerically robust. When `true`,
then you must also set a (positive definite and symmetric) Qf in this options
struct. */
bool use_square_root_method{false};
/**
For continuous-time dynamical systems, the Riccati equation is solved by the
Simulator (running backwards in time). Use this parameter to configure the
simulator (e.g. choose non-default integrator or integrator parameters). */
SimulatorConfig simulator_config{};
};
/**
A structure that contains the basic FiniteHorizonLinearQuadraticRegulator
results. The finite-horizon cost-to-go is given by (x-x0(t))'*S(t)*(x-x0(t)) +
2*(x-x₀(t))'sₓ(t) + s₀(t) and the optimal controller is given by u-u0(t) =
-K(t)*(x-x₀(t)) - k₀(t). Please don't overlook the factor of 2 in front of the
sₓ(t) term.
*/
struct FiniteHorizonLinearQuadraticRegulatorResult {
copyable_unique_ptr<trajectories::Trajectory<double>> x0;
copyable_unique_ptr<trajectories::Trajectory<double>> u0;
/// Note: This K is the K_x term in the derivation notes.
copyable_unique_ptr<trajectories::Trajectory<double>> K;
// Note: This S is the S_xx term in the derivation notes.
copyable_unique_ptr<trajectories::Trajectory<double>> S;
copyable_unique_ptr<trajectories::Trajectory<double>> k0;
copyable_unique_ptr<trajectories::Trajectory<double>> sx;
copyable_unique_ptr<trajectories::Trajectory<double>> s0;
};
// TODO(russt): Add support for difference-equation systems.
// TODO(russt): Add variants for specifying the cost with Q and/or R
// trajectories, full quadratic forms, and perhaps even symbolic and/or
// std::function cost l(t,x,u) whose's Hessian is evaluated via autodiff to give
// the terms.
/**
Solves the differential Riccati equation to compute the optimal controller and
optimal cost-to-go for the finite-horizon linear quadratic regulator:
@f[\min_u (x(t_f)-x_d(t_f))'Q_f(x(t_f)-x_d(t_f)) + \int_{t_0}^{t_f}
(x(t)-x_d(t))'Q(x(t)-x_d(t)) dt + \int_{t_0}^{t_f}
(u(t)-u_d(t))'R(u(t)-u_d(t)) dt + \int_{t_0}^{t_f}
2(x(t)-x_d(t))'N(u(t)-u_d(t)) dt \\
\text{s.t. } \dot{x} - \dot{x}_0(t) = A(t)(x(t) - x_0(t)) + B(t)(u(t) -
u_0(t)) + c(t)
@f]
where A(t), B(t), and c(t) are taken from the gradients of the continuous-time
dynamics ẋ = f(t,x,u), as A(t) = dfdx(t, x0(t), u0(t)), B(t) = dfdu(t, x0(t),
u0(t)), and c(t) = f(t, x0(t), u0(t)) - ẋ0(t). x0(t) and u0(t) can be
specified in @p options, otherwise are taken to be constant trajectories with
values given by @p context.
@param system a System<double> representing the plant.
@param context a Context<double> used to pass the default input, state, and
parameters. Note: Use @p options to specify time-varying nominal state
and/or input trajectories.
@param t0 is the initial time.
@param tf is the final time (with tf > t0).
@param Q is nxn positive semi-definite.
@param R is mxm positive definite.
@param options is the optional FiniteHorizonLinearQuadraticRegulatorOptions.
@pre @p system must be a System<double> with (only) n continuous state variables
and m inputs. It must be convertible to System<AutoDiffXd>.
@note Support for difference-equation systems (@see
System<T>::IsDifferenceEquationSystem()) by solving the differential Riccati
equation and richer specification of the objective are anticipated (they are
listed in the code as TODOs).
@ingroup control
*/
FiniteHorizonLinearQuadraticRegulatorResult
FiniteHorizonLinearQuadraticRegulator(
const System<double>& system, const Context<double>& context, double t0,
double tf, const Eigen::Ref<const Eigen::MatrixXd>& Q,
const Eigen::Ref<const Eigen::MatrixXd>& R,
const FiniteHorizonLinearQuadraticRegulatorOptions& options =
FiniteHorizonLinearQuadraticRegulatorOptions());
/** Variant of FiniteHorizonLinearQuadraticRegulator that returns a System
implementing the regulator (controller) as a System, with a single
"plant_state" input for the estimated plant state, and a single "control"
output for the regulator control output.
@see FiniteHorizonLinearQuadraticRegulator for details on the arguments.
@ingroup control_systems
*/
std::unique_ptr<System<double>> MakeFiniteHorizonLinearQuadraticRegulator(
const System<double>& system, const Context<double>& context, double t0,
double tf, const Eigen::Ref<const Eigen::MatrixXd>& Q,
const Eigen::Ref<const Eigen::MatrixXd>& R,
const FiniteHorizonLinearQuadraticRegulatorOptions& options =
FiniteHorizonLinearQuadraticRegulatorOptions());
} // namespace controllers
} // namespace systems
} // namespace drake
| 0 |
/home/johnshepherd/drake/systems | /home/johnshepherd/drake/systems/controllers/pid_controller.cc | #include "drake/systems/controllers/pid_controller.h"
#include <string>
#include "drake/common/default_scalars.h"
namespace drake {
namespace systems {
namespace controllers {
template <typename T>
PidController<T>::PidController(const Eigen::VectorXd& kp,
const Eigen::VectorXd& ki,
const Eigen::VectorXd& kd)
: PidController(MatrixX<double>::Identity(2 * kp.size(), 2 * kp.size()), kp,
ki, kd) {}
template <typename T>
PidController<T>::PidController(const MatrixX<double>& state_projection,
const Eigen::VectorXd& kp,
const Eigen::VectorXd& ki,
const Eigen::VectorXd& kd)
: PidController(state_projection,
MatrixX<double>::Identity(kp.size(), kp.size()), kp, ki,
kd) {}
template <typename T>
PidController<T>::PidController(const MatrixX<double>& state_projection,
const MatrixX<double>& output_projection,
const Eigen::VectorXd& kp,
const Eigen::VectorXd& ki,
const Eigen::VectorXd& kd)
: LeafSystem<T>(SystemTypeTag<PidController>{}),
kp_(kp),
ki_(ki),
kd_(kd),
num_controlled_q_(kp.size()),
num_full_state_(state_projection.cols()),
state_projection_(state_projection),
output_projection_(output_projection) {
if (kp_.size() != kd_.size() || kd_.size() != ki_.size()) {
throw std::logic_error(
"Gains must have equal length: |Kp| = " + std::to_string(kp_.size()) +
", |Ki| = " + std::to_string(ki_.size()) +
", |Kd| = " + std::to_string(kd_.size()));
}
if (state_projection_.rows() != 2 * num_controlled_q_) {
throw std::logic_error(
"State projection row dimension mismatch, expecting " +
std::to_string(2 * num_controlled_q_) + ", is " +
std::to_string(state_projection_.rows()));
}
if (output_projection_.cols() != kp_.size()) {
throw std::logic_error(
"Output projection column dimension mismatch, expecting " +
std::to_string(kp_.size()) + ", is " +
std::to_string(output_projection_.cols()));
}
this->DeclareContinuousState(num_controlled_q_);
output_index_control_ =
this->DeclareVectorOutputPort("control", output_projection_.rows(),
&PidController<T>::CalcControl)
.get_index();
input_index_state_ =
this->DeclareVectorInputPort("estimated_state", num_full_state_)
.get_index();
input_index_desired_state_ =
this->DeclareInputPort("desired_state", kVectorValued,
2 * num_controlled_q_)
.get_index();
}
template <typename T>
template <typename U>
PidController<T>::PidController(const PidController<U>& other)
: PidController(other.state_projection_, other.output_projection_,
other.kp_, other.ki_, other.kd_) {}
template <typename T>
void PidController<T>::DoCalcTimeDerivatives(
const Context<T>& context, ContinuousState<T>* derivatives) const {
const VectorX<T>& state = get_input_port_estimated_state().Eval(context);
const VectorX<T>& state_d = get_input_port_desired_state().Eval(context);
// The derivative of the continuous state is the instantaneous position error.
VectorBase<T>& derivatives_vector = derivatives->get_mutable_vector();
const VectorX<T> controlled_state_diff =
state_d - (state_projection_.cast<T>() * state);
derivatives_vector.SetFromVector(
controlled_state_diff.head(num_controlled_q_));
}
template <typename T>
void PidController<T>::CalcControl(const Context<T>& context,
BasicVector<T>* control) const {
const VectorX<T>& state = get_input_port_estimated_state().Eval(context);
const VectorX<T>& state_d = get_input_port_desired_state().Eval(context);
// State error.
const VectorX<T> controlled_state_diff =
state_d - (state_projection_.cast<T>() * state);
// Integral error, which is stored in the continuous state.
const VectorX<T>& state_vector =
dynamic_cast<const BasicVector<T>&>(context.get_continuous_state_vector())
.value();
// Sets output to the sum of all three terms.
control->SetFromVector(
output_projection_.cast<T>() *
((kp_.array() * controlled_state_diff.head(num_controlled_q_).array())
.matrix() +
(kd_.array() * controlled_state_diff.tail(num_controlled_q_).array())
.matrix() +
(ki_.array() * state_vector.array()).matrix()));
}
} // namespace controllers
} // namespace systems
} // namespace drake
DRAKE_DEFINE_CLASS_TEMPLATE_INSTANTIATIONS_ON_DEFAULT_SCALARS(
class ::drake::systems::controllers::PidController)
| 0 |
/home/johnshepherd/drake/systems | /home/johnshepherd/drake/systems/controllers/pid_controlled_system.h | #pragma once
#include <memory>
#include <utility>
#include "drake/common/drake_copyable.h"
#include "drake/systems/controllers/pid_controller.h"
#include "drake/systems/framework/diagram.h"
#include "drake/systems/framework/diagram_builder.h"
#include "drake/systems/framework/system.h"
#include "drake/systems/primitives/adder.h"
#include "drake/systems/primitives/constant_vector_source.h"
namespace drake {
namespace systems {
namespace controllers {
/// A system that encapsulates a PidController and a controlled System (a.k.a
/// the "plant").
///
/// The passed in plant must meet the following properties:
///
/// * Input port `plant_input_port_index` must be all of the control inputs
/// (size U). When the plant is a dynamics model, this is typically the
/// generalized effort (e.g., force or torque) command.
///
/// * The output port passed to the PidControlledSystem constructor must be
/// of size 2 * Q, where the first Q elements are the position states of
/// the plant, and the second Q elements are the velocity states of the
/// plant. Q >= U.
///
/// The resulting PidControlledSystem has two input ports with the following
/// properties:
///
/// * Input port zero is the feed forward control (size U), which will be added
/// onto the output of the PID controller. The sum is sent to the plant's
/// input.
///
/// * Input port one is the desired *controlled* states (2 * U) of the plant,
/// where the first half are the *controlled* positions, and the second half
/// are the *controlled* velocities.
///
/// All output ports of the plant are exposed as output ports of the
/// PidControlledSystem in the same order (and therefore with the same index)
/// as they appear in the plant.
///
/// Some of the constructors include a parameter called `feedback_selector`.
/// It is used to select the *controlled* states from the plant's state output
/// port. Let `S` be the gain matrix in parameter `feedback_selector`. `S` must
/// have dimensions of `(2 * U, 2 * Q)`. Typically, `S` contains one `1` in each
/// row, and zeros everywhere else. `S` does not affect the desired state input.
/// Let 'x' be the full state of the plant (size 2 * Q), and 'x_d' be the
/// desired state (size 2 * U), `S` is used to compute the state error as
/// `x_err = S * x - x_d`.
///
/// @system
/// name: PidControlledSystem
/// input_ports:
/// - desired_state
/// - feedforward_control
/// output_ports:
/// - (exported output port of plant, with same name)
/// - ...
/// - (exported output port of plant, with same name)
/// @endsystem
///
/// @tparam_nonsymbolic_scalar
/// @ingroup control_systems
template <typename T>
class PidControlledSystem : public Diagram<T> {
public:
DRAKE_NO_COPY_NO_MOVE_NO_ASSIGN(PidControlledSystem)
/// @p plant full state is used for feedback control, and all the dimensions
/// have homogeneous gains specified by @p Kp, @p Kd and @p Ki.
///
/// @param[in] plant The system to be controlled. This must not be `nullptr`.
/// @param[in] Kp the proportional constant.
/// @param[in] Ki the integral constant.
/// @param[in] Kd the derivative constant.
/// @param[in] state_output_port_index identifies the output port on the
/// plant that contains the (full) state information.
/// @param[in] plant_input_port_index identifies the input port on the plant
/// that takes in the input (computed as the output of the PID controller).
///
/// @pydrake_mkdoc_identifier{6args_double_gains}
PidControlledSystem(std::unique_ptr<System<T>> plant, double Kp, double Ki,
double Kd, int state_output_port_index = 0,
int plant_input_port_index = 0);
/// @p plant full state is used for feedback control, and the vectorized gains
/// are specified by @p Kp, @p Kd and @p Ki.
///
/// @param[in] plant The system to be controlled. This must not be `nullptr`.
/// @param[in] Kp the proportional vector constant.
/// @param[in] Ki the integral vector constant.
/// @param[in] Kd the derivative vector constant.
/// @param[in] state_output_port_index identifies the output port on the
/// plant that contains the (full) state information.
/// @param[in] plant_input_port_index identifies the input port on the plant
/// that takes in the input (computed as the output of the PID controller).
///
/// @pydrake_mkdoc_identifier{6args_vector_gains}
PidControlledSystem(std::unique_ptr<System<T>> plant,
const Eigen::VectorXd& Kp, const Eigen::VectorXd& Ki,
const Eigen::VectorXd& Kd,
int state_output_port_index = 0,
int plant_output_port_index = 0);
/// A constructor where the gains are scalar values and some of the plant's
/// output is part of the feedback signal as specified by
/// @p feedback_selector.
///
/// @param[in] plant The system to be controlled. This must not be `nullptr`.
/// @param[in] feedback_selector The matrix that selects which part of the
/// plant's full state is fed back to the PID controller. For semantic details
/// of this parameter, see this class's description.
/// @param[in] Kp the proportional constant.
/// @param[in] Ki the integral constant.
/// @param[in] Kd the derivative constant.
/// @param[in] state_output_port_index identifies the output port on the
/// plant that contains the (full) state information.
/// @param[in] plant_input_port_index identifies the input port on the plant
/// that takes in the input (computed as the output of the PID controller).
///
/// @pydrake_mkdoc_identifier{7args_double_gains}
PidControlledSystem(std::unique_ptr<System<T>> plant,
const MatrixX<double>& feedback_selector, double Kp,
double Ki, double Kd, int state_output_port_index = 0,
int plant_input_port_index = 0);
/// A constructor where the gains are vector values and some of the plant's
/// output is part of the feedback signal as specified by
/// @p feedback_selector.
///
/// @param[in] plant The system to be controlled. This must not be `nullptr`.
/// @param[in] feedback_selector The matrix that selects which part of the
/// plant's full state is fed back to the PID controller. For semantic details
/// of this parameter, see this class's description.
/// @param[in] Kp the proportional vector constant.
/// @param[in] Ki the integral vector constant.
/// @param[in] Kd the derivative vector constant.
/// @param[in] state_output_port_index identifies the output port on the
/// plant that contains the (full) state information.
/// @param[in] plant_input_port_index identifies the input port on the plant
/// that takes in the input (computed as the output of the PID controller).
///
/// @pydrake_mkdoc_identifier{7args_vector_gains}
PidControlledSystem(std::unique_ptr<System<T>> plant,
const MatrixX<double>& feedback_selector,
const Eigen::VectorXd& Kp, const Eigen::VectorXd& Ki,
const Eigen::VectorXd& Kd,
int state_output_port_index = 0,
int plant_input_port_index = 0);
~PidControlledSystem() override;
System<T>* plant() { return plant_; }
/// @return the input port for the feed forward control input.
const InputPort<T>& get_control_input_port() const {
return this->get_input_port(0);
}
/// @return the input port for the desired position/velocity state.
const InputPort<T>& get_state_input_port() const {
return this->get_input_port(1);
}
const OutputPort<T>& get_state_output_port() const {
return this->get_output_port(state_output_port_index_);
}
/// The return type of ConnectController.
struct ConnectResult {
/// The feed forward control input.
const InputPort<T>& control_input_port;
/// The feedback state input.
const InputPort<T>& state_input_port;
};
/// Creates a PidController and uses @p builder to connect @p plant_input and
/// @p plant_output from an existing plant. The controlled states are selected
/// by @p feedback_selector.
static ConnectResult ConnectController(
const InputPort<T>& plant_input,
const OutputPort<T>& plant_output,
const MatrixX<double>& feedback_selector,
const Eigen::VectorXd& Kp, const Eigen::VectorXd& Ki,
const Eigen::VectorXd& Kd, DiagramBuilder<T>* builder);
/// Creates a PidController and uses @p builder to connect @p plant_input and
/// @p plant_output from an existing plant. The plant's full state is used for
/// feedback.
static ConnectResult ConnectController(
const InputPort<T>& plant_input,
const OutputPort<T>& plant_output,
const Eigen::VectorXd& Kp, const Eigen::VectorXd& Ki,
const Eigen::VectorXd& Kd, DiagramBuilder<T>* builder);
/// Creates a PidController with input saturation and uses @p builder to
/// connect @p plant_input and @p plant_output from an existing plant. The
/// controlled states are selected by @p feedback_selector. The output of
/// the PidController is clipped to be within the specified bounds. Note
/// that using input limits along with integral gain constant may cause the
/// integrator to windup.
static ConnectResult ConnectControllerWithInputSaturation(
const InputPort<T>& plant_input,
const OutputPort<T>& plant_output,
const MatrixX<double>& feedback_selector,
const Eigen::VectorXd& Kp, const Eigen::VectorXd& Ki,
const Eigen::VectorXd& Kd, const VectorX<T>& min_plant_input,
const VectorX<T>& max_plant_input, DiagramBuilder<T>* builder);
/// Creates a PidController with input saturation and uses @p builder to
/// connect @p plant_input and @p plant_output from an existing plant. The
/// plant's full state is used for feedback. The output of the PidController
/// is clipped to be within the specified bounds. Note that using input
/// limits along with integral gain constant may cause the integrator to
/// windup.
static ConnectResult ConnectControllerWithInputSaturation(
const InputPort<T>& plant_input,
const OutputPort<T>& plant_output,
const Eigen::VectorXd& Kp, const Eigen::VectorXd& Ki,
const Eigen::VectorXd& Kd, const VectorX<T>& min_plant_input,
const VectorX<T>& max_plant_input, DiagramBuilder<T>* builder);
private:
// A helper function for the constructors. This is necessary to avoid seg
// faults caused by simultaneously moving the plant and calling methods on
// the plant when one constructor delegates to another constructor.
void Initialize(std::unique_ptr<System<T>> plant,
const MatrixX<double>& feedback_selector,
const Eigen::VectorXd& Kp, const Eigen::VectorXd& Ki,
const Eigen::VectorXd& Kd);
System<T>* plant_{nullptr};
const int state_output_port_index_;
const int plant_input_port_index_;
};
} // namespace controllers
} // namespace systems
} // namespace drake
| 0 |
/home/johnshepherd/drake/systems | /home/johnshepherd/drake/systems/controllers/finite_horizon_linear_quadratic_regulator.cc | #include "drake/systems/controllers/finite_horizon_linear_quadratic_regulator.h"
#include <algorithm>
#include <limits>
#include <memory>
#include <utility>
#include <vector>
#include "drake/common/drake_assert.h"
#include "drake/common/is_approx_equal_abstol.h"
#include "drake/math/autodiff.h"
#include "drake/math/autodiff_gradient.h"
#include "drake/math/matrix_util.h"
#include "drake/systems/analysis/simulator.h"
#include "drake/systems/analysis/simulator_config_functions.h"
#include "drake/systems/framework/leaf_system.h"
#include "drake/systems/framework/scalar_conversion_traits.h"
namespace drake {
namespace systems {
namespace controllers {
using trajectories::PiecewisePolynomial;
using trajectories::Trajectory;
namespace {
// Implements the *time-reversed* Riccati differential equation. When this
// system evaluates the contained system/cost at time t, it will always replace
// t=-t.
class RiccatiSystem : public LeafSystem<double> {
public:
DRAKE_NO_COPY_NO_MOVE_NO_ASSIGN(RiccatiSystem);
RiccatiSystem(const System<double>& system, const Context<double>& context,
const Eigen::Ref<const Eigen::MatrixXd>& Q,
const Eigen::Ref<const Eigen::MatrixXd>& R,
const Trajectory<double>& x0, const Trajectory<double>& u0,
const FiniteHorizonLinearQuadraticRegulatorOptions& options)
: system_(System<double>::ToAutoDiffXd(system)),
input_port_(
system_->get_input_port_selection(options.input_port_index)),
context_(system_->CreateDefaultContext()),
num_states_(context_->num_total_states()),
num_inputs_(input_port_->size()),
Q_(Q),
R_(R),
Rinv_(R.inverse()),
N_(options.N ? *options.N
: Eigen::MatrixXd::Zero(num_states_, num_inputs_)),
x0_(x0),
u0_(u0),
options_(options) {
if (input_port_->get_data_type() == PortDataType::kAbstractValued) {
throw std::logic_error(
"The specified input port is abstract-valued, but "
"FiniteHorizonLinearQuadraticRegulator only supports vector-valued "
"input ports. Did you perhaps forget to pass a non-default "
"`options.input_port_index`?");
}
DRAKE_DEMAND(input_port_->get_data_type() == PortDataType::kVectorValued);
DRAKE_DEMAND(context_->has_only_continuous_state());
DRAKE_DEMAND(num_states_ > 0);
DRAKE_DEMAND(num_inputs_ > 0);
const double kSymmetryTolerance = 1e-8;
DRAKE_DEMAND(Q.rows() == num_states_ && Q.cols() == num_states_);
DRAKE_DEMAND(math::IsPositiveDefinite(Q, 0.0, kSymmetryTolerance));
DRAKE_DEMAND(R.rows() == num_inputs_ && R.cols() == num_inputs_);
DRAKE_DEMAND(math::IsPositiveDefinite(
R, std::numeric_limits<double>::epsilon(), kSymmetryTolerance));
DRAKE_DEMAND(x0_.rows() == num_states_ && x0_.cols() == 1);
DRAKE_DEMAND(u0_.rows() == num_inputs_ && u0_.cols() == 1);
// If use_square_root_method = true, then the state is P (vectorized), then
// sx, then s0, where Sxx = PP'. Otherwise, the state is Sxx (vectorized),
// followed by sx, then s0.
this->DeclareContinuousState(num_states_ * num_states_ + num_states_ + 1);
// Initialize autodiff.
context_->SetTimeStateAndParametersFrom(context);
system_->FixInputPortsFrom(system, context, context_.get());
}
// Implement the (time-reversed) Riccati equation, as described in
// http://underactuated.mit.edu/lqr.html#finite_horizon_derivation .
void DoCalcTimeDerivatives(
const Context<double>& context,
ContinuousState<double>* derivatives) const override {
// Unpack the state.
const Eigen::VectorXd S_vectorized =
context.get_continuous_state_vector().CopyToVector();
const Eigen::VectorBlock<const Eigen::VectorXd> sx =
S_vectorized.segment(num_states_ * num_states_, num_states_);
// Allocate a vectorized version of the derivatives, and map into it.
Eigen::VectorXd minus_Sdot_vectorized = S_vectorized;
Eigen::VectorBlock<Eigen::VectorXd> minus_sxdot =
minus_Sdot_vectorized.segment(num_states_ * num_states_, num_states_);
double& minus_s0dot = minus_Sdot_vectorized[S_vectorized.size() - 1];
// Get (time-varying) linearization of the plant.
const double system_time = -context.get_time();
context_->SetTime(system_time);
auto autodiff_args = math::InitializeAutoDiffTuple(x0_.value(system_time),
u0_.value(system_time));
context_->SetContinuousState(std::get<0>(autodiff_args));
input_port_->FixValue(context_.get(), std::get<1>(autodiff_args));
const VectorX<AutoDiffXd> autodiff_xdot0 =
system_->EvalTimeDerivatives(*context_).CopyToVector();
const Eigen::MatrixXd AB = math::ExtractGradient(autodiff_xdot0);
const Eigen::Ref<const Eigen::MatrixXd>& A = AB.leftCols(num_states_);
const Eigen::Ref<const Eigen::MatrixXd>& B = AB.rightCols(num_inputs_);
const Eigen::VectorXd c =
math::ExtractValue(autodiff_xdot0) - x0_.EvalDerivative(system_time, 1);
// Desired trajectories relative to the nominal.
const Eigen::VectorXd xd0 =
options_.xd
? (options_.xd->value(system_time) - x0_.value(system_time)).eval()
: Eigen::VectorXd::Zero(num_states_);
const Eigen::VectorXd ud0 =
options_.ud
? (options_.ud->value(system_time) - u0_.value(system_time)).eval()
: Eigen::VectorXd::Zero(num_inputs_);
// Compute the Riccati dynamics.
Eigen::MatrixXd Sxx;
if (options_.use_square_root_method) {
const Eigen::Map<const Eigen::MatrixXd> P(S_vectorized.data(),
num_states_, num_states_);
Sxx = P * P.transpose();
const Eigen::MatrixXd PinvT = P.inverse().transpose();
Eigen::Map<Eigen::MatrixXd> minus_Pdot(minus_Sdot_vectorized.data(),
num_states_, num_states_);
minus_Pdot = A.transpose() * P -
0.5 * (N_ + Sxx * B) * Rinv_ *
(B.transpose() * P + N_.transpose() * PinvT) +
0.5 * Q_ * PinvT;
} else {
Sxx = Eigen::Map<const Eigen::MatrixXd>(S_vectorized.data(), num_states_,
num_states_);
Eigen::Map<Eigen::MatrixXd> minus_Sxxdot(
minus_Sdot_vectorized.data(), num_states_, num_states_);
minus_Sxxdot = Sxx * A + A.transpose() * Sxx -
(N_ + Sxx * B) * Rinv_ * (N_ + Sxx * B).transpose() + Q_;
}
const Eigen::VectorXd qx = -Q_ * xd0 - N_ * ud0;
const Eigen::VectorXd ru_plus_BTsx =
-R_ * ud0 - N_.transpose() * xd0 + B.transpose() * sx;
minus_sxdot = qx - (N_ + Sxx * B) * Rinv_ * ru_plus_BTsx +
A.transpose() * sx + Sxx * c;
minus_s0dot = xd0.dot(Q_ * xd0) + ud0.dot(R_ * ud0) +
2 * xd0.dot(N_ * ud0) -
ru_plus_BTsx.dot(Rinv_ * ru_plus_BTsx) + 2.0 * sx.dot(c);
derivatives->SetFromVector(minus_Sdot_vectorized);
}
// TODO(russt): It would be more elegant to think of S and K as an output of
// the RiccatiSystem, but we don't (yet) have a way to get the dense
// integration results of an output port.
// Takes a time-reversed dense solution for this Riccati system, applies the
// time-reversal, and unwraps the vectorized solution into its matrix
// components.
void MakeSTrajectories(
const PiecewisePolynomial<double>& riccati_solution,
FiniteHorizonLinearQuadraticRegulatorResult* result) const {
auto Sxx = std::make_unique<PiecewisePolynomial<double>>(
riccati_solution.Block(0, 0, num_states_ * num_states_, 1));
Sxx->Reshape(num_states_, num_states_);
if (options_.use_square_root_method) {
result->S = std::make_unique<PiecewisePolynomial<double>>(
*Sxx * (Sxx->Transpose()));
} else {
result->S = std::move(Sxx);
}
result->sx = std::make_unique<PiecewisePolynomial<double>>(
riccati_solution.Block(num_states_ * num_states_, 0, num_states_, 1));
result->s0 =
std::make_unique<PiecewisePolynomial<double>>(riccati_solution.Block(
num_states_ * num_states_ + num_states_, 0, 1, 1));
}
// Given a result structure already populated with the S and sx trajectories
// (already time-reversed and reshaped), constructs the K and k0 trajectories.
// Since derivatives are not easily available for B(t), we form a piecewise
// cubic polynomial approximation of the elements of Kx and k0 using Lagrange
// interpolating polynomials. Cubic seems natural, as the default "dense
// output" from the integrators is a cubic hermite spline; if we had
// considered K as an output from a simulation it seems natural to interpolate
// K with the same order approximation.
void MakeKTrajectories(
FiniteHorizonLinearQuadraticRegulatorResult* result) const {
const std::vector<double>& breaks =
dynamic_cast<PiecewisePolynomial<double>&>(*result->S)
.get_segment_times();
auto Kx = std::make_unique<PiecewisePolynomial<double>>();
auto k0 = std::make_unique<PiecewisePolynomial<double>>();
// TODO(russt): I believe there is a sampling theorem that should give me
// the optimal sampling times for the fixed-degree polynomial over the
// finite time interval. Find it and use it here.
const std::vector<double> scaled_sample_times = {0.0, 1. / 3., 2. / 3., 1.};
const int num_samples = scaled_sample_times.size();
std::vector<double> times(num_samples);
std::vector<Eigen::MatrixXd> Kx_samples(num_samples);
std::vector<Eigen::MatrixXd> k0_samples(num_samples);
for (size_t i = 0; i < breaks.size() - 1; ++i) {
int j_start = 0;
if (i > 0) {
// Then my first sample is the last sample from the previous segment.
times[0] = times[num_samples - 1];
Kx_samples[0] = Kx_samples[num_samples - 1];
k0_samples[0] = k0_samples[num_samples - 1];
j_start = 1;
}
for (int j = j_start; j < num_samples; ++j) {
const double time = scaled_sample_times[j] * breaks[i + 1] +
(1.0 - scaled_sample_times[j]) * breaks[i];
times[j] = time;
// Compute B.
context_->SetTime(time);
context_->SetContinuousState(x0_.value(time).cast<AutoDiffXd>().eval());
input_port_->FixValue(context_.get(),
math::InitializeAutoDiff(u0_.value(time)));
const VectorX<AutoDiffXd> autodiff_xdot0 =
system_->EvalTimeDerivatives(*context_).CopyToVector();
const Eigen::MatrixXd B = math::ExtractGradient(autodiff_xdot0);
// Desired trajectories relative to the nominal.
const Eigen::VectorXd xd0 =
options_.xd ? (options_.xd->value(time) - x0_.value(time)).eval()
: Eigen::VectorXd::Zero(num_states_);
const Eigen::VectorXd ud0 =
options_.ud ? (options_.ud->value(time) - u0_.value(time)).eval()
: Eigen::VectorXd::Zero(num_inputs_);
Kx_samples[j] = Rinv_ * (N_ + result->S->value(time) * B).transpose();
k0_samples[j] =
-ud0 + Rinv_ * (-N_.transpose() * xd0 +
B.transpose() * result->sx->value(time));
}
Kx->ConcatenateInTime(
PiecewisePolynomial<double>::LagrangeInterpolatingPolynomial(
times, Kx_samples));
k0->ConcatenateInTime(
PiecewisePolynomial<double>::LagrangeInterpolatingPolynomial(
times, k0_samples));
}
result->K = std::move(Kx);
result->k0 = std::move(k0);
}
private:
const std::unique_ptr<const System<AutoDiffXd>> system_;
const InputPort<AutoDiffXd>* const input_port_;
// Note: Use a mutable context here to avoid reallocating on every call to
// e.g. CalcTimeDerivatives. WARNING: this means that evaluation of the
// RiccatiSystem is not thread safe, but since the implementation is internal
// to this file, there are no entry points that would allow multi-threaded
// execution with the same RiccatiSystem instance.
// Note: This context_ is for system_, not `this`.
const std::unique_ptr<Context<AutoDiffXd>> context_;
const int num_states_;
const int num_inputs_;
const Eigen::Ref<const Eigen::MatrixXd>& Q_;
const Eigen::Ref<const Eigen::MatrixXd>& R_;
const Eigen::MatrixXd Rinv_;
const Eigen::MatrixXd N_;
const Trajectory<double>& x0_;
const Trajectory<double>& u0_;
const FiniteHorizonLinearQuadraticRegulatorOptions& options_;
};
} // namespace
FiniteHorizonLinearQuadraticRegulatorResult
FiniteHorizonLinearQuadraticRegulator(
const System<double>& system, const Context<double>& context, double t0,
double tf, const Eigen::Ref<const Eigen::MatrixXd>& Q,
const Eigen::Ref<const Eigen::MatrixXd>& R,
const FiniteHorizonLinearQuadraticRegulatorOptions& options) {
// Most argument consistency checks are handled by RiccatiSystem, but that
// System doesn't need to understand the time range, so we perform (only)
// those checks here.
system.ValidateContext(context);
DRAKE_DEMAND(system.num_input_ports() > 0);
DRAKE_DEMAND(tf > t0);
const int num_states = context.num_total_states();
std::unique_ptr<PiecewisePolynomial<double>> x0;
if (options.x0) {
DRAKE_DEMAND(options.x0->start_time() <= t0);
DRAKE_DEMAND(options.x0->end_time() >= tf);
DRAKE_DEMAND(options.x0->has_derivative());
} else {
// Make a constant trajectory with the state from context.
x0 = std::make_unique<PiecewisePolynomial<double>>(
context.get_continuous_state_vector().CopyToVector());
}
if (options.use_square_root_method && !options.Qf) {
throw std::logic_error(
"options.Qf is required when options.use_square_root_method is set to "
"'true'.");
}
std::unique_ptr<PiecewisePolynomial<double>> u0;
if (options.u0) {
DRAKE_DEMAND(options.u0->start_time() <= t0);
DRAKE_DEMAND(options.u0->end_time() >= tf);
} else {
// Make a constant trajectory with the input from context.
u0 = std::make_unique<PiecewisePolynomial<double>>(
system.get_input_port_selection(options.input_port_index)
->Eval(context));
}
RiccatiSystem riccati(system, context, Q, R, options.x0 ? *options.x0 : *x0,
options.u0 ? *options.u0 : *u0, options);
// Simulator doesn't support integrating backwards in time, so simulate the
// time-reversed Riccati equation from -tf to -t0, and reverse it after the
// fact.
Simulator<double> simulator(riccati);
ApplySimulatorConfig(options.simulator_config, &simulator);
// Set the initial conditions (the Riccati solution at tf).
if (options.Qf) {
const double kSymmetryTolerance = 1e-8;
DRAKE_DEMAND(options.Qf->rows() == num_states &&
options.Qf->cols() == num_states);
Eigen::VectorXd S_vectorized =
Eigen::VectorXd::Zero(num_states * num_states + num_states + 1);
if (options.use_square_root_method) {
// We require Qf = Qfᵀ ≻ 0.
DRAKE_DEMAND(math::IsSymmetric(*options.Qf, kSymmetryTolerance));
const double kEigenvalueTolerance = 1e-8;
// We use the SelfAdjointEigenSolver both to check PSD and to get the
// sqrt. The eigenvalue check is adopted from math::IsPositiveDefinite.
Eigen::SelfAdjointEigenSolver<Eigen::MatrixXd> eigensolver(*options.Qf);
DRAKE_THROW_UNLESS(eigensolver.info() == Eigen::Success);
const double max_abs_eigenvalue =
eigensolver.eigenvalues().cwiseAbs().maxCoeff();
if (eigensolver.eigenvalues().minCoeff() <
kEigenvalueTolerance * std::max(1., max_abs_eigenvalue)) {
throw std::logic_error(
"The SQRT method solution to the Riccati equation requires that Qf "
"is strictly positive definite. To use a positive semi-definite "
"Qf, set `options.use_square_root_method` to `false`.");
}
Eigen::Map<Eigen::MatrixXd> P(S_vectorized.data(), num_states,
num_states);
P = eigensolver.operatorSqrt();
} else {
// Qf = Qfᵀ ≽ 0 is sufficient.
DRAKE_DEMAND(
math::IsPositiveDefinite(*options.Qf, 0.0, kSymmetryTolerance));
Eigen::Map<Eigen::MatrixXd> Sxx(S_vectorized.data(), num_states,
num_states);
Sxx = *options.Qf;
}
if (options.xd) {
Eigen::VectorBlock<Eigen::VectorXd> sx =
S_vectorized.segment(num_states * num_states, num_states);
double& s0 = S_vectorized[S_vectorized.size() - 1];
const Eigen::VectorXd xd0 =
options.xd->value(tf) -
(options.x0 ? options.x0->value(tf) : x0->value(tf));
sx = -(*options.Qf) * xd0;
s0 = xd0.dot((*options.Qf) * xd0);
}
simulator.get_mutable_context().SetContinuousState(S_vectorized);
}
simulator.get_mutable_context().SetTime(-tf);
simulator.Initialize();
IntegratorBase<double>& integrator = simulator.get_mutable_integrator();
integrator.StartDenseIntegration();
simulator.AdvanceTo(-t0);
FiniteHorizonLinearQuadraticRegulatorResult result;
result.x0 = options.x0 ? options.x0->Clone() : std::move(x0);
result.u0 = options.u0 ? options.u0->Clone() : std::move(u0);
std::unique_ptr<PiecewisePolynomial<double>> riccati_solution =
integrator.StopDenseIntegration();
riccati_solution->ReverseTime();
riccati.MakeSTrajectories(*riccati_solution, &result);
riccati.MakeKTrajectories(&result);
return result;
}
namespace {
// Implements the (time-varying) linear controller described by a
// FiniteHorizonLinearQuadraticRegulatorResult.
// TODO(russt): Consider removing this class entirely and using
// TrajectoryAffineSystem instead, once we support enough Trajectory algebra
// (including adding and multiplying PiecewisePolynomial trajectories with
// different segment times).
template <typename T>
class Controller final : public LeafSystem<T> {
public:
DRAKE_NO_COPY_NO_MOVE_NO_ASSIGN(Controller)
// Constructs the controller, and assumes ownership of the required components
// of the FiniteHorizonLinearQuadraticRegulatorResult. This is appropriate,
// since the class is internal to this .cc file and is only ever constructed
// via a Make*Regulator() workflow which will discard the result structure.
Controller(std::unique_ptr<trajectories::Trajectory<double>> x0,
std::unique_ptr<trajectories::Trajectory<double>> u0,
std::unique_ptr<trajectories::Trajectory<double>> K,
std::unique_ptr<trajectories::Trajectory<double>> k0)
: LeafSystem<T>(SystemTypeTag<Controller>()),
x0_(std::move(x0)),
u0_(std::move(u0)),
K_(std::move(K)),
k0_(std::move(k0)) {
this->DeclareVectorInputPort("plant_state", K_->cols());
this->DeclareVectorOutputPort(
"command", K_->rows(), &Controller::CalcOutput,
{this->time_ticket(), this->input_port_ticket(InputPortIndex(0))});
}
// Scalar-type converting copy constructor. See @ref system_scalar_conversion.
template <typename U>
explicit Controller(const Controller<U>& other)
: Controller(other.x0_->Clone(), other.u0_->Clone(), other.K_->Clone(),
other.k0_->Clone()) {}
private:
template <typename U>
friend class Controller;
// Calculate the (time-varying) output.
void CalcOutput(const Context<T>& context, BasicVector<T>* output) const {
// Note: The stored trajectories are always double, even when T != double.
const double t = ExtractDoubleOrThrow(context.get_time());
const auto& x = this->get_input_port(0).Eval(context);
output->get_mutable_value() =
u0_->value(t) - K_->value(t) * (x - x0_->value(t)) - k0_->value(t);
}
std::unique_ptr<trajectories::Trajectory<double>> x0_;
std::unique_ptr<trajectories::Trajectory<double>> u0_;
std::unique_ptr<trajectories::Trajectory<double>> K_;
std::unique_ptr<trajectories::Trajectory<double>> k0_;
};
} // namespace
std::unique_ptr<System<double>> MakeFiniteHorizonLinearQuadraticRegulator(
const System<double>& system, const Context<double>& context, double t0,
double tf, const Eigen::Ref<const Eigen::MatrixXd>& Q,
const Eigen::Ref<const Eigen::MatrixXd>& R,
const FiniteHorizonLinearQuadraticRegulatorOptions& options) {
FiniteHorizonLinearQuadraticRegulatorResult result =
FiniteHorizonLinearQuadraticRegulator(system, context, t0, tf, Q, R,
options);
return std::make_unique<Controller<double>>(
std::move(result.x0), std::move(result.u0), std::move(result.K),
std::move(result.k0));
}
} // namespace controllers
} // namespace systems
} // namespace drake
| 0 |
/home/johnshepherd/drake/systems | /home/johnshepherd/drake/systems/controllers/inverse_dynamics.cc | #include "drake/systems/controllers/inverse_dynamics.h"
#include <utility>
#include <vector>
using drake::multibody::MultibodyForces;
using drake::multibody::MultibodyPlant;
namespace drake {
namespace systems {
namespace controllers {
template <typename T>
InverseDynamics<T>::InverseDynamics(
std::unique_ptr<multibody::MultibodyPlant<T>> owned_plant,
const MultibodyPlant<T>* plant, const InverseDynamicsMode mode,
const Context<T>* plant_context)
: LeafSystem<T>(SystemTypeTag<InverseDynamics>{}),
owned_plant_(std::move(owned_plant)),
plant_(owned_plant_ ? owned_plant_.get() : plant),
mode_(mode),
q_dim_(plant_->num_positions()),
v_dim_(plant_->num_velocities()) {
// Check that only one of owned_plant and plant where set.
DRAKE_DEMAND(owned_plant_ == nullptr || plant == nullptr);
DRAKE_DEMAND(plant_ != nullptr);
DRAKE_THROW_UNLESS(plant_->is_finalized());
if (plant_context != nullptr) {
plant_->ValidateContext(*plant_context);
}
estimated_state_ =
this->DeclareInputPort("estimated_state", kVectorValued, q_dim_ + v_dim_)
.get_index();
// We declare the all_input_ports ticket so that GetDirectFeedthrough does
// not try to cast to Symbolic for feedthrough evaluation.
generalized_force_ =
this->DeclareVectorOutputPort("generalized_force", v_dim_,
&InverseDynamics<T>::CalcOutputForce,
{this->all_input_ports_ticket()})
.get_index();
std::unique_ptr<Context<T>> model_plant_context =
plant_context == nullptr ? plant_->CreateDefaultContext()
: plant_context->Clone();
// Gravity compensation mode requires velocities to be zero.
if (this->is_pure_gravity_compensation()) {
plant_->SetVelocities(model_plant_context.get(),
VectorX<T>::Zero(plant_->num_velocities()));
}
// Declare cache entry for the multibody plant context.
plant_context_cache_index_ =
this->DeclareCacheEntry("plant_context_cache", *model_plant_context,
&InverseDynamics<T>::SetMultibodyContext,
{this->input_port_ticket(estimated_state_)})
.cache_index();
// Declare external forces cache entry and desired acceleration input port if
// this is doing inverse dynamics.
if (!this->is_pure_gravity_compensation()) {
external_forces_cache_index_ =
this->DeclareCacheEntry(
"external_forces_cache", MultibodyForces<T>(*plant_),
&InverseDynamics<T>::CalcMultibodyForces,
{this->cache_entry_ticket(plant_context_cache_index_)})
.cache_index();
desired_acceleration_ =
this->DeclareInputPort("desired_acceleration", kVectorValued, v_dim_)
.get_index();
}
}
template <typename T>
InverseDynamics<T>::InverseDynamics(const MultibodyPlant<T>* plant,
const InverseDynamicsMode mode,
const Context<T>* plant_context)
: InverseDynamics(nullptr, plant, mode, plant_context) {}
template <typename T>
InverseDynamics<T>::InverseDynamics(
std::unique_ptr<multibody::MultibodyPlant<T>> plant,
const InverseDynamicsMode mode, const Context<T>* plant_context)
: InverseDynamics(std::move(plant), nullptr, mode, plant_context) {}
template <typename T>
template <typename U>
typename InverseDynamics<T>::ScalarConversionData
InverseDynamics<T>::ScalarConvertHelper(const InverseDynamics<U>& other) {
// Convert plant.
auto this_plant = systems::System<U>::template ToScalarType<T>(*other.plant_);
auto this_plant_context = this_plant->CreateDefaultContext();
// Create context and connect required port.
auto other_context = other.CreateDefaultContext();
const int num_states = other.get_input_port_estimated_state().size();
other.get_input_port_estimated_state().FixValue(
other_context.get(),
Eigen::Matrix<U, Eigen::Dynamic, 1>::Zero(num_states));
// Convert plant context.
const auto& other_plant_context =
other.get_cache_entry(other.plant_context_cache_index_)
.template Eval<Context<U>>(*other_context);
this_plant_context->SetStateAndParametersFrom(other_plant_context);
InverseDynamicsMode mode = other.is_pure_gravity_compensation()
? kGravityCompensation
: kInverseDynamics;
return ScalarConversionData{std::move(this_plant), mode,
std::move(this_plant_context)};
}
template <typename T>
template <typename U>
InverseDynamics<T>::InverseDynamics(const InverseDynamics<U>& other)
: InverseDynamics(ScalarConvertHelper(other)) {}
template <typename T>
InverseDynamics<T>::InverseDynamics(ScalarConversionData&& data)
: InverseDynamics(std::move(data.plant), data.mode,
data.plant_context.get()) {}
template <typename T>
InverseDynamics<T>::~InverseDynamics() = default;
template <typename T>
void InverseDynamics<T>::SetMultibodyContext(const Context<T>& context,
Context<T>* plant_context) const {
const VectorX<T>& x = get_input_port_estimated_state().Eval(context);
if (this->is_pure_gravity_compensation()) {
// Velocities remain zero, as set in the constructor, for pure gravity
// compensation mode.
const VectorX<T> q = x.head(plant_->num_positions());
plant_->SetPositions(plant_context, q);
} else {
// Set the plant positions and velocities.
plant_->SetPositionsAndVelocities(plant_context, x);
}
}
template <typename T>
void InverseDynamics<T>::CalcMultibodyForces(
const Context<T>& context, MultibodyForces<T>* cache_value) const {
const auto& plant_context = this->get_cache_entry(plant_context_cache_index_)
.template Eval<Context<T>>(context);
plant_->CalcForceElementsContribution(plant_context, cache_value);
}
template <typename T>
void InverseDynamics<T>::CalcOutputForce(const Context<T>& context,
BasicVector<T>* output) const {
const auto& plant_context = this->get_cache_entry(plant_context_cache_index_)
.template Eval<Context<T>>(context);
if (this->is_pure_gravity_compensation()) {
output->get_mutable_value() =
-plant_->CalcGravityGeneralizedForces(plant_context);
} else {
const auto& external_forces =
this->get_cache_entry(external_forces_cache_index_)
.template Eval<MultibodyForces<T>>(context);
// Compute inverse dynamics.
const VectorX<T>& desired_vd =
get_input_port_desired_acceleration().Eval(context);
output->get_mutable_value() =
plant_->CalcInverseDynamics(plant_context, desired_vd, external_forces);
}
}
} // namespace controllers
} // namespace systems
} // namespace drake
DRAKE_DEFINE_CLASS_TEMPLATE_INSTANTIATIONS_ON_DEFAULT_SCALARS(
class ::drake::systems::controllers::InverseDynamics)
| 0 |
/home/johnshepherd/drake/systems | /home/johnshepherd/drake/systems/controllers/dynamic_programming.h | #pragma once
#include <list>
#include <memory>
#include <set>
#include <utility>
#include <variant>
#include "drake/common/symbolic/expression.h"
#include "drake/math/barycentric.h"
#include "drake/systems/analysis/simulator.h"
#include "drake/systems/framework/vector_system.h"
#include "drake/systems/primitives/barycentric_system.h"
namespace drake {
namespace systems {
namespace controllers {
/// Consolidates the many possible options to be passed to the dynamic
/// programming algorithms.
struct DynamicProgrammingOptions {
DynamicProgrammingOptions() = default;
/// A value between (0,1] that discounts future rewards.
/// @see FittedValueIteration.
double discount_factor{1.};
/// For algorithms that rely on approximations of the state-dynamics
/// (as in FittedValueIteration), this is a list of state dimensions for
/// which the state space maximum value should be "wrapped around" to
/// ensure that all values are in the range [low, high). The classic example
/// is for angles that are wrapped around at 2π.
struct PeriodicBoundaryCondition {
PeriodicBoundaryCondition(int state_index, double low, double high);
int state_index{-1};
double low{0.};
double high{2.*M_PI};
};
std::list<struct PeriodicBoundaryCondition> periodic_boundary_conditions;
/// Value iteration methods converge when the value function stops
/// changing (typically evaluated with the l∞ norm). This value sets that
/// threshold.
double convergence_tol = 1e-4;
/// If callable, this method is invoked during each major iteration of the
/// dynamic programming algorithm, in order to facilitate e.g. graphical
/// inspection/debugging of the results.
///
/// @note The first call happens at iteration 1 (after the value iteration
/// has run once), not zero.
std::function<void(
int iteration, const math::BarycentricMesh<double>& state_mesh,
const Eigen::RowVectorXd& cost_to_go, const Eigen::MatrixXd& policy)>
visualization_callback{nullptr};
/// For systems with multiple input ports, we must specify which input port is
/// being used in the control design. @see systems::InputPortSelection.
std::variant<systems::InputPortSelection, InputPortIndex> input_port_index{
systems::InputPortSelection::kUseFirstInputIfItExists};
/// (Advanced) Boolean which, if true, allows this algorithm to optimize
/// without considering the dynamics of any non-continuous states. This is
/// helpful for optimizing systems that might have some additional
/// book-keeping variables in their state. Only use this if you are sure that
/// the dynamics of the additional state variables cannot impact the dynamics
/// of the continuous states. @default false.
bool assume_non_continuous_states_are_fixed{false};
};
/// Implements Fitted Value Iteration on a (triangulated) Barycentric Mesh,
/// which designs a state-feedback policy to minimize the infinite-horizon cost
/// ∑ γⁿ g(x[n],u[n]), where γ is the discount factor in @p options.
///
/// For background, and a description of this algorithm, see
/// http://underactuated.csail.mit.edu/underactuated.html?chapter=dp .
/// It currently requires that the system to be optimized has only continuous
/// state and it is assumed to be time invariant. This code makes a
/// discrete-time approximation (using @p time_step) for the value iteration
/// update.
///
/// @param simulator contains the reference to the System being optimized and to
/// a Context for that system, which may contain non-default Parameters, etc.
/// The @p simulator is run for @p time_step seconds from every point on the
/// mesh in order to approximate the dynamics; all of the simulation parameters
/// (integrator, etc) are relevant during that evaluation.
///
/// @param cost_function is the continuous-time instantaneous cost. This
/// implementation of the discrete-time formulation above uses the approximation
/// g(x,u) = time_step*cost_function(x,u).
/// @param state_grid defines the mesh on the state space used to represent
/// the cost-to-go function and the resulting policy.
/// @param input_grid defines the discrete action space used in the value
/// iteration update.
/// @param time_step a time in seconds used for the discrete-time approximation.
/// @param options optional DynamicProgrammingOptions structure.
///
/// @return a std::pair containing the resulting policy, implemented as a
/// BarycentricMeshSystem, and the RowVectorXd J that defines the expected
/// cost-to-go on a BarycentricMesh using @p state_grid. The policy has a
/// single vector input (which is the continuous state of the system passed
/// in through @p simulator) and a single vector output (which is the input
/// of the system passed in through @p simulator).
///
/// @ingroup control
std::pair<std::unique_ptr<BarycentricMeshSystem<double>>, Eigen::RowVectorXd>
FittedValueIteration(
Simulator<double>* simulator,
const std::function<double(const Context<double>& context)>& cost_function,
const math::BarycentricMesh<double>::MeshGrid& state_grid,
const math::BarycentricMesh<double>::MeshGrid& input_grid, double time_step,
const DynamicProgrammingOptions& options = DynamicProgrammingOptions());
// TODO(russt): Handle the specific case where system is control affine and the
// cost function is quadratic positive-definite. (Adds requirements on the
// system and cost function (e.g. autodiff/symbolic), and doesn't need the
// input_grid argument).
// TODO(russt): Implement more general FittedValueIteration methods as the
// function approximation tools become available.
/// Implements the Linear Programming approach to approximate dynamic
/// programming. It optimizes the linear program
///
/// maximize ∑ Jₚ(x).
/// subject to ∀x, ∀u, Jₚ(x) ≤ g(x,u) + γJₚ(f(x,u)),
///
/// where g(x,u) is the one-step cost, Jₚ(x) is a (linearly) parameterized
/// cost-to-go function with parameter vector p, and γ is the discount factor in
/// @p options.
///
/// For background, and a description of this algorithm, see
/// http://underactuated.csail.mit.edu/underactuated.html?chapter=dp .
/// It currently requires that the system to be optimized has only continuous
/// state and it is assumed to be time invariant. This code makes a
/// discrete-time approximation (using @p time_step) for the value iteration
/// update.
///
/// @param simulator contains the reference to the System being optimized and to
/// a Context for that system, which may contain non-default Parameters, etc.
/// The @p simulator is run for @p time_step seconds from every pair of
/// input/state sample points in order to approximate the dynamics; all of
/// the simulation parameters (integrator, etc) are relevant during that
/// evaluation.
///
/// @param cost_function is the continuous-time instantaneous cost. This
/// implementation of the discrete-time formulation above uses the approximation
/// g(x,u) = time_step*cost_function(x,u).
///
/// @param linearly_parameterized_cost_to_go_function must define a function
/// to approximate the cost-to-go, which takes the state vector as the first
/// input and the parameter vector as the second input. This can be any
/// function of the form
/// Jₚ(x) = ∑ pᵢ φᵢ(x).
/// This algorithm will pass in a VectorX of symbolic::Variable in order to
/// set up the linear program.
///
/// @param state_samples is a list of sample states (one per column) at which
/// to apply the optimization constraints and the objective.
///
/// @param input_samples is a list of inputs (one per column) which are
/// evaluated *at every sample point*.
/// @param time_step a time in seconds used for the discrete-time approximation.
/// @param options optional DynamicProgrammingOptions structure.
///
/// @return params the VectorXd of parameters that optimizes the
/// supplied cost-to-go function.
///
/// @ingroup control_systems
Eigen::VectorXd LinearProgrammingApproximateDynamicProgramming(
Simulator<double>* simulator,
const std::function<double(const Context<double>& context)>& cost_function,
const std::function<symbolic::Expression(
const Eigen::Ref<const Eigen::VectorXd>& state,
const VectorX<symbolic::Variable>& parameters)>&
linearly_parameterized_cost_to_go_function,
int num_parameters,
const Eigen::Ref<const Eigen::MatrixXd>& state_samples,
const Eigen::Ref<const Eigen::MatrixXd>& input_samples,
double time_step,
const DynamicProgrammingOptions& options = DynamicProgrammingOptions());
// TODO(russt): could easily provide a version of LPADP that accepts the same
// inputs as the barycentric fitted value iteration, by creating samples at
// all of the mesh points, and returns a RowVectorXd for the cost function
// values. I could lambda the cost_to_go_function.
} // namespace controllers
} // namespace systems
} // namespace drake
| 0 |
/home/johnshepherd/drake/systems | /home/johnshepherd/drake/systems/controllers/dynamic_programming.cc | #include "drake/systems/controllers/dynamic_programming.h"
#include <limits>
#include <utility>
#include <vector>
#include "drake/common/text_logging.h"
#include "drake/math/wrap_to.h"
#include "drake/solvers/mathematical_program.h"
#include "drake/solvers/solve.h"
#include "drake/systems/analysis/simulator.h"
namespace drake {
namespace systems {
namespace controllers {
DynamicProgrammingOptions::PeriodicBoundaryCondition::PeriodicBoundaryCondition(
int state_index_in, double low_in, double high_in)
: state_index(state_index_in), low(low_in), high(high_in) {
DRAKE_DEMAND(low_in < high_in);
}
std::pair<std::unique_ptr<BarycentricMeshSystem<double>>, Eigen::RowVectorXd>
FittedValueIteration(
Simulator<double>* simulator,
const std::function<double(const Context<double>& context)>& cost_function,
const math::BarycentricMesh<double>::MeshGrid& state_grid,
const math::BarycentricMesh<double>::MeshGrid& input_grid, double time_step,
const DynamicProgrammingOptions& options) {
DRAKE_DEMAND(options.discount_factor > 0. && options.discount_factor <= 1.);
const int state_size = state_grid.size();
const int input_size = input_grid.size();
DRAKE_DEMAND(state_size > 0);
DRAKE_DEMAND(input_size > 0);
const auto& system = simulator->get_system();
auto& context = simulator->get_mutable_context();
math::BarycentricMesh<double> state_mesh(state_grid);
math::BarycentricMesh<double> input_mesh(input_grid);
const int num_states = state_mesh.get_num_mesh_points();
const int num_inputs = input_mesh.get_num_mesh_points();
const int num_state_indices = state_mesh.get_num_interpolants();
// TODO(russt): handle discrete state.
DRAKE_DEMAND(context.has_only_continuous_state() ||
options.assume_non_continuous_states_are_fixed);
DRAKE_DEMAND(context.num_continuous_states() == state_size);
const InputPort<double>* input_port =
system.get_input_port_selection(options.input_port_index);
DRAKE_DEMAND(input_port != nullptr);
DRAKE_DEMAND(input_port->size() == input_size);
// Verify that the input port is not abstract valued.
if (input_port->get_data_type() == PortDataType::kAbstractValued) {
throw std::logic_error(
"The specified input port is abstract-valued, but FittedValueIteration "
"only supports vector-valued input ports. Did you perhaps forget to "
"pass a non-default `options.input_port_index`?");
}
DRAKE_DEMAND(time_step > 0.);
// TODO(russt): check that the system is time-invariant.
// Make sure all periodic boundary conditions are in range.
for (const auto& b : options.periodic_boundary_conditions) {
DRAKE_DEMAND(b.state_index >= 0 && b.state_index < state_size);
DRAKE_DEMAND(b.low < b.high);
DRAKE_DEMAND(b.low >= *(state_grid[b.state_index].begin()));
DRAKE_DEMAND(b.high <= *(state_grid[b.state_index].rbegin()));
}
// The transition probabilities are represented as a sparse matrix,
// where Tind[input](:,state) is a list of non-zero indexes into the
// state_mesh, and T[input](:,state) is the associated list of coefficients.
// cost[input](j) is the cost of taking action input from state mesh index j.
std::vector<Eigen::MatrixXi> Tind(num_inputs);
std::vector<Eigen::MatrixXd> T(num_inputs);
std::vector<Eigen::RowVectorXd> cost(num_inputs);
drake::log()->info("Computing transition and cost matrices.");
auto& sim_state = context.get_mutable_continuous_state_vector();
Eigen::VectorXd input_vec(input_mesh.get_input_size());
Eigen::VectorXd state_vec(state_mesh.get_input_size());
Eigen::VectorXi Tind_tmp(num_state_indices);
Eigen::VectorXd T_tmp(num_state_indices);
for (int input = 0; input < num_inputs; input++) {
Tind[input].resize(num_state_indices, num_states);
T[input].resize(num_state_indices, num_states);
cost[input].resize(num_states);
input_mesh.get_mesh_point(input, &input_vec);
input_port->FixValue(&context, input_vec);
for (int state = 0; state < num_states; state++) {
context.SetTime(0.0);
sim_state.SetFromVector(state_mesh.get_mesh_point(state));
simulator->Initialize();
cost[input](state) = time_step * cost_function(context);
simulator->AdvanceTo(time_step);
state_vec = sim_state.CopyToVector();
for (const auto& b : options.periodic_boundary_conditions) {
state_vec[b.state_index] =
math::wrap_to(state_vec[b.state_index], b.low, b.high);
}
state_mesh.EvalBarycentricWeights(state_vec, &Tind_tmp, &T_tmp);
Tind[input].col(state) = Tind_tmp;
T[input].col(state) = T_tmp;
}
}
drake::log()->info("Done computing transition and cost matrices.");
// Perform value iteration loop.
Eigen::RowVectorXd J = Eigen::RowVectorXd::Zero(num_states);
Eigen::RowVectorXd Jnext(num_states);
Eigen::MatrixXd Pi(input_mesh.get_input_size(), num_states);
drake::log()->info("Running value iteration.");
double max_diff = std::numeric_limits<double>::infinity();
int iteration = 0;
while (max_diff > options.convergence_tol) {
for (int state = 0; state < num_states; state++) {
Jnext(state) = std::numeric_limits<double>::infinity();
int best_input = 0;
for (int input = 0; input < num_inputs; input++) {
// Q(x,u) = g(x,u) + γ J(f(x,u)).
double Q = cost[input](state);
for (int index = 0; index < num_state_indices; index++) {
Q += options.discount_factor * T[input](index, state) *
J(Tind[input](index, state));
}
// Cost-to-go: J = minᵤ Q(x,u).
// Policy: π(x) = argminᵤ Q(x,u).
if (Q < Jnext(state)) {
Jnext(state) = Q;
best_input = input;
}
}
Pi.col(state) = input_mesh.get_mesh_point(best_input);
}
max_diff = (J - Jnext).lpNorm<Eigen::Infinity>();
J = Jnext;
iteration++;
if (options.visualization_callback) {
options.visualization_callback(iteration, state_mesh, J, Pi);
}
}
drake::log()->info("Value iteration converged to requested tolerance.");
// Create the policy.
auto policy = std::make_unique<BarycentricMeshSystem<double>>(state_mesh, Pi);
return std::make_pair(std::move(policy), J);
}
Eigen::VectorXd LinearProgrammingApproximateDynamicProgramming(
Simulator<double>* simulator,
const std::function<double(const Context<double>& context)>& cost_function,
const std::function<
symbolic::Expression(const Eigen::Ref<const Eigen::VectorXd>& state,
const VectorX<symbolic::Variable>& parameters)>&
linearly_parameterized_cost_to_go_function,
int num_parameters, const Eigen::Ref<const Eigen::MatrixXd>& state_samples,
const Eigen::Ref<const Eigen::MatrixXd>& input_samples, double time_step,
const DynamicProgrammingOptions& options) {
// discount_factor needs to be < 1 to avoid unbounded solutions (J = J* + ∞).
DRAKE_DEMAND(options.discount_factor > 0. && options.discount_factor <= 1.);
DRAKE_DEMAND(num_parameters > 0);
const int state_size = state_samples.rows();
const int input_size = input_samples.rows();
const int num_states = state_samples.cols();
const int num_inputs = input_samples.cols();
DRAKE_DEMAND(state_size > 0);
DRAKE_DEMAND(input_size > 0);
const auto& system = simulator->get_system();
auto& context = simulator->get_mutable_context();
// TODO(russt): handle discrete state.
DRAKE_DEMAND(context.has_only_continuous_state());
DRAKE_DEMAND(context.num_continuous_states() == state_size);
DRAKE_DEMAND(context.num_input_ports() == 1);
DRAKE_DEMAND(system.num_total_inputs() == input_size);
DRAKE_DEMAND(time_step > 0.);
// TODO(russt): check that the system is time-invariant.
// TODO(russt): implement wrapping (API doesn't provide enough info yet).
// Make sure all periodic boundary conditions are in range.
for (const auto& b : options.periodic_boundary_conditions) {
DRAKE_DEMAND(b.state_index >= 0 && b.state_index < state_size);
DRAKE_DEMAND(b.low < b.high);
}
drake::log()->info(
"Computing one-step dynamics and setting up the linear program.");
solvers::MathematicalProgram prog;
const solvers::VectorXDecisionVariable params =
prog.NewContinuousVariables(num_parameters, "a");
// Alias the function name for readability below.
const auto& J = linearly_parameterized_cost_to_go_function;
// Maximize ∑ J.
for (int state = 0; state < num_states; state++) {
prog.AddLinearCost(-J(state_samples.col(state), params));
}
// ∀x, ∀u, J(x) ≤ cost(x,u) + γJ(f(x,u)).
auto& sim_state = context.get_mutable_continuous_state_vector();
Eigen::VectorXd state_vec(state_size);
Eigen::VectorXd next_state_vec(state_size);
for (int input = 0; input < num_inputs; input++) {
system.get_input_port(0).FixValue(&context, input_samples.col(input));
for (int state = 0; state < num_states; state++) {
context.SetTime(0.0);
state_vec = state_samples.col(state);
sim_state.SetFromVector(state_vec);
simulator->Initialize();
const double cost = time_step * cost_function(context);
simulator->AdvanceTo(time_step);
next_state_vec = sim_state.CopyToVector();
for (const auto& b : options.periodic_boundary_conditions) {
next_state_vec[b.state_index] =
math::wrap_to(next_state_vec[b.state_index], b.low, b.high);
}
const symbolic::Formula f =
(J(state_vec, params) <=
cost + options.discount_factor * J(next_state_vec, params));
// Filter out constraints that are trivially true (because
// AddConstraint throws).
if (!symbolic::is_true(f)) {
prog.AddLinearConstraint(f);
}
}
}
drake::log()->info("Solving linear program.");
const solvers::MathematicalProgramResult result = Solve(prog);
if (!result.is_success()) {
drake::log()->error("No solution found. SolutionResult = " +
to_string(result.get_solution_result()));
}
drake::log()->info("Done solving linear program.");
return result.GetSolution(params);
}
} // namespace controllers
} // namespace systems
} // namespace drake
| 0 |
/home/johnshepherd/drake/systems | /home/johnshepherd/drake/systems/controllers/inverse_dynamics_controller.h | #pragma once
#include <memory>
#include <stdexcept>
#include <string>
#include "drake/common/default_scalars.h"
#include "drake/common/drake_copyable.h"
#include "drake/multibody/plant/multibody_plant.h"
#include "drake/systems/controllers/inverse_dynamics.h"
#include "drake/systems/controllers/pid_controller.h"
#include "drake/systems/controllers/state_feedback_controller_interface.h"
#include "drake/systems/framework/diagram.h"
namespace drake {
namespace systems {
namespace controllers {
// N.B. Inheritance order must remain fixed for pydrake (#9243).
/**
* A state feedback controller that uses a PidController to generate desired
* accelerations, which are then converted into torques using InverseDynamics.
* More specifically, the output of this controller is:
* <pre>
* force = inverse_dynamics(q, v, vd_command), where
* vd_command = kp(q_d - q) + kd(v_d - v) + ki int(q_d - q) + vd_d.
* </pre>
* Here `q` and `v` stand for the generalized position and velocity, and `vd`
* is the generalized acceleration. The subscript `_d` indicates desired
* values, and `vd_command` indicates the acceleration command (which includes
* the stabilization terms) passed to the inverse dynamics computation.
*
* @system
* name: InverseDynamicsController
* input_ports:
* - estimated_state
* - desired_state
* - <span style="color:gray">desired_acceleration</span>
* output_ports:
* - generalized_force
* @endsystem
*
* @note As an alternative to adding a separate controller system to your
* diagram, you can model gravity compensation with PD controllers using
* MultibodyPlant APIs. Refer to MultibodyPlant::set_gravity_enabled() as an
* alternative to modeling gravity compensation. To model PD controlled
* actuators, refer to @ref mbp_actuation "Actuation".
*
* The desired acceleration port shown in <span style="color:gray">gray</span>
* may be absent, depending on the arguments passed to the constructor.
*
* Note that this class assumes the robot is fully actuated, its position and
* velocity have the same dimension, and it does not have a floating base. If
* violated, the program will abort. This controller was not designed for
* closed-loop systems: the controller accounts for neither constraint forces
* nor actuator forces applied at loop constraints. Use on such systems is not
* recommended.
*
* @see InverseDynamics for an accounting of all forces incorporated into the
* inverse dynamics computation.
*
* @tparam_default_scalar
* @ingroup control_systems
*/
template <typename T>
class InverseDynamicsController final
: public Diagram<T>,
public StateFeedbackControllerInterface<T> {
public:
DRAKE_NO_COPY_NO_MOVE_NO_ASSIGN(InverseDynamicsController)
/**
* Constructs an inverse dynamics controller for the given `plant` model.
* The %InverseDynamicsController holds an internal, non-owned reference to
* the MultibodyPlant object so you must ensure that `plant` has a longer
* lifetime than `this` %InverseDynamicsController.
* @param plant The model of the plant for control.
* @param kp Position gain.
* @param ki Integral gain.
* @param kd Velocity gain.
* @param has_reference_acceleration If true, there is an extra BasicVector
* input port for `vd_d`. If false, `vd_d` is treated as zero, and no extra
* input port is declared.
* @param plant_context The context of the `plant` that can be used to
* override the plant's default parameters. Note that this will be copied at
* time of construction, so there are no lifetime constraints.
* @pre `plant` has been finalized (plant.is_finalized() returns `true`).
* Also, `plant` and `plant_context` must be compatible.
* @throws std::exception if
* - The plant is not finalized (see MultibodyPlant::Finalize()).
* - The plant is not compatible with the plant context.
* - The number of generalized velocities is not equal to the number of
* generalized positions.
* - The model is not fully actuated.
* - Vector kp, ki and kd do not all have the same size equal to the number
* of generalized positions.
*/
InverseDynamicsController(
const multibody::MultibodyPlant<T>& plant,
const VectorX<double>& kp,
const VectorX<double>& ki,
const VectorX<double>& kd,
bool has_reference_acceleration,
const Context<T>* plant_context = nullptr);
/**
* Constructs an inverse dynamics controller and takes the ownership of the
* input `plant`.
*
* @exclude_from_pydrake_mkdoc{This overload is not bound.}
*/
InverseDynamicsController(std::unique_ptr<multibody::MultibodyPlant<T>> plant,
const VectorX<double>& kp,
const VectorX<double>& ki,
const VectorX<double>& kd,
bool has_reference_acceleration,
const Context<T>* plant_context = nullptr);
// Scalar-converting copy constructor. See @ref system_scalar_conversion.
template <typename U>
explicit InverseDynamicsController(const InverseDynamicsController<U>& other);
~InverseDynamicsController() override;
/**
* Sets the integral part of the PidController to @p value.
* @p value must be a column vector of the appropriate size.
*/
void set_integral_value(Context<T>* context,
const Eigen::Ref<const VectorX<T>>& value) const;
/**
* Returns the input port for the reference acceleration.
*/
const InputPort<T>& get_input_port_desired_acceleration() const {
DRAKE_THROW_UNLESS(has_reference_acceleration_);
DRAKE_DEMAND(desired_acceleration_.is_valid());
return Diagram<T>::get_input_port(desired_acceleration_);
}
/**
* Returns the input port for the estimated state.
*/
const InputPort<T>& get_input_port_estimated_state() const final {
return this->get_input_port(estimated_state_);
}
/**
* Returns the input port for the desired state.
*/
const InputPort<T>& get_input_port_desired_state() const final {
return this->get_input_port(desired_state_);
}
/**
* Returns the output port for computed control.
*/
const OutputPort<T>& get_output_port_control() const final {
return this->get_output_port(generalized_force_);
}
/**
* Returns a constant pointer to the MultibodyPlant used for control.
*/
const multibody::MultibodyPlant<T>* get_multibody_plant_for_control() const {
return multibody_plant_for_control_;
}
private:
void SetUp(std::unique_ptr<multibody::MultibodyPlant<T>> owned_plant,
const VectorX<double>& kp, const VectorX<double>& ki,
const VectorX<double>& kd,
const Context<T>* plant_context);
const multibody::MultibodyPlant<T>* multibody_plant_for_control_{nullptr};
PidController<T>* pid_{nullptr};
const bool has_reference_acceleration_{false};
InputPortIndex estimated_state_;
InputPortIndex desired_state_;
InputPortIndex desired_acceleration_;
OutputPortIndex generalized_force_;
};
} // namespace controllers
} // namespace systems
} // namespace drake
DRAKE_DECLARE_CLASS_TEMPLATE_INSTANTIATIONS_ON_DEFAULT_SCALARS(
class ::drake::systems::controllers::InverseDynamicsController)
| 0 |
/home/johnshepherd/drake/systems | /home/johnshepherd/drake/systems/controllers/state_feedback_controller_interface.h | #pragma once
#include "drake/common/drake_copyable.h"
#include "drake/systems/framework/input_port.h"
#include "drake/systems/framework/output_port.h"
namespace drake {
namespace systems {
namespace controllers {
/**
* Interface for state feedback controllers. This class needs to be extended by
* concrete implementations. It provides named accessors to actual and desired
* state input ports and control output port.
*/
template <typename T>
class StateFeedbackControllerInterface {
public:
DRAKE_NO_COPY_NO_MOVE_NO_ASSIGN(StateFeedbackControllerInterface)
/**
* Returns the input port for the estimated state.
*/
virtual const InputPort<T>& get_input_port_estimated_state()
const = 0;
/**
* Returns the input port for the desired state.
*/
virtual const InputPort<T>& get_input_port_desired_state()
const = 0;
/**
* Returns the output port for computed control.
*/
virtual const OutputPort<T>& get_output_port_control() const = 0;
protected:
StateFeedbackControllerInterface() {}
virtual ~StateFeedbackControllerInterface() {}
};
} // namespace controllers
} // namespace systems
} // namespace drake
| 0 |
/home/johnshepherd/drake/systems | /home/johnshepherd/drake/systems/controllers/pid_controlled_system.cc | #include "drake/systems/controllers/pid_controlled_system.h"
#include "drake/common/default_scalars.h"
#include "drake/common/drake_assert.h"
#include "drake/systems/primitives/saturation.h"
namespace drake {
namespace systems {
namespace controllers {
template <typename T>
PidControlledSystem<T>::PidControlledSystem(std::unique_ptr<System<T>> plant,
double Kp, double Ki, double Kd,
int state_output_port_index,
int plant_input_port_index)
: state_output_port_index_(state_output_port_index),
plant_input_port_index_{plant_input_port_index} {
const int input_size = plant->get_input_port(plant_input_port_index_).size();
const Eigen::VectorXd Kp_v = Eigen::VectorXd::Ones(input_size) * Kp;
const Eigen::VectorXd Ki_v = Eigen::VectorXd::Ones(input_size) * Ki;
const Eigen::VectorXd Kd_v = Eigen::VectorXd::Ones(input_size) * Kd;
const MatrixX<double> selector = MatrixX<double>::Identity(
plant->get_input_port(plant_input_port_index_).size() * 2,
plant->get_input_port(plant_input_port_index_).size() * 2);
Initialize(std::move(plant), selector, Kp_v, Ki_v, Kd_v);
}
template <typename T>
PidControlledSystem<T>::PidControlledSystem(std::unique_ptr<System<T>> plant,
const Eigen::VectorXd& Kp,
const Eigen::VectorXd& Ki,
const Eigen::VectorXd& Kd,
int state_output_port_index,
int plant_input_port_index)
: PidControlledSystem(
std::move(plant),
MatrixX<double>::Identity(2 * Kp.size(), 2 * Kp.size()), Kp, Ki, Kd,
state_output_port_index, plant_input_port_index) {}
template <typename T>
PidControlledSystem<T>::PidControlledSystem(
std::unique_ptr<System<T>> plant, const MatrixX<double>& feedback_selector,
double Kp, double Ki, double Kd, int state_output_port_index,
int plant_input_port_index)
: state_output_port_index_(state_output_port_index),
plant_input_port_index_{plant_input_port_index} {
const int input_size = plant->get_input_port(plant_input_port_index_).size();
const Eigen::VectorXd Kp_v = Eigen::VectorXd::Ones(input_size) * Kp;
const Eigen::VectorXd Ki_v = Eigen::VectorXd::Ones(input_size) * Ki;
const Eigen::VectorXd Kd_v = Eigen::VectorXd::Ones(input_size) * Kd;
Initialize(std::move(plant), feedback_selector, Kp_v, Ki_v, Kd_v);
}
template <typename T>
PidControlledSystem<T>::PidControlledSystem(
std::unique_ptr<System<T>> plant, const MatrixX<double>& feedback_selector,
const Eigen::VectorXd& Kp, const Eigen::VectorXd& Ki,
const Eigen::VectorXd& Kd, int state_output_port_index,
int plant_input_port_index)
: state_output_port_index_(state_output_port_index),
plant_input_port_index_{plant_input_port_index} {
Initialize(std::move(plant), feedback_selector, Kp, Ki, Kd);
}
template <typename T>
void PidControlledSystem<T>::Initialize(
std::unique_ptr<System<T>> plant, const MatrixX<double>& feedback_selector,
const Eigen::VectorXd& Kp, const Eigen::VectorXd& Ki,
const Eigen::VectorXd& Kd) {
DRAKE_DEMAND(plant != nullptr);
DiagramBuilder<T> builder;
plant_ = builder.template AddSystem(std::move(plant));
DRAKE_ASSERT(plant_->num_input_ports() >= 1);
DRAKE_ASSERT(plant_->num_output_ports() >= 1);
// state_output_port_index_ will be checked by the get_output_port call below.
auto input_ports =
ConnectController(plant_->get_input_port(plant_input_port_index_),
plant_->get_output_port(state_output_port_index_),
feedback_selector, Kp, Ki, Kd, &builder);
builder.ExportInput(input_ports.control_input_port, "feedforward_control");
builder.ExportInput(input_ports.state_input_port, "desired_state");
for (int i=0; i < plant_->num_output_ports(); i++) {
const auto& port = plant_->get_output_port(i);
builder.ExportOutput(port, port.get_name());
}
builder.BuildInto(this);
}
template <typename T>
typename PidControlledSystem<T>::ConnectResult
PidControlledSystem<T>::ConnectController(
const InputPort<T>& plant_input,
const OutputPort<T>& plant_output,
const MatrixX<double>& feedback_selector, const Eigen::VectorXd& Kp,
const Eigen::VectorXd& Ki, const Eigen::VectorXd& Kd,
DiagramBuilder<T>* builder) {
auto controller = builder->template AddSystem<PidController<T>>(
feedback_selector,
Kp, Ki, Kd);
auto plant_input_adder =
builder->template AddSystem<Adder<T>>(2, plant_input.size());
builder->Connect(plant_output, controller->get_input_port_estimated_state());
builder->Connect(controller->get_output_port_control(),
plant_input_adder->get_input_port(0));
builder->Connect(plant_input_adder->get_output_port(), plant_input);
return ConnectResult{
plant_input_adder->get_input_port(1),
controller->get_input_port_desired_state()};
}
template <typename T>
typename PidControlledSystem<T>::ConnectResult
PidControlledSystem<T>::ConnectController(
const InputPort<T>& plant_input,
const OutputPort<T>& plant_output,
const Eigen::VectorXd& Kp, const Eigen::VectorXd& Ki,
const Eigen::VectorXd& Kd,
DiagramBuilder<T>* builder) {
return ConnectController(plant_input, plant_output,
MatrixX<double>::Identity(plant_output.size(), plant_output.size()),
Kp, Ki, Kd, builder);
}
template <typename T>
typename PidControlledSystem<T>::ConnectResult
PidControlledSystem<T>::ConnectControllerWithInputSaturation(
const InputPort<T>& plant_input,
const OutputPort<T>& plant_output,
const MatrixX<double>& feedback_selector, const Eigen::VectorXd& Kp,
const Eigen::VectorXd& Ki, const Eigen::VectorXd& Kd,
const VectorX<T>& min_plant_input, const VectorX<T>& max_plant_input,
DiagramBuilder<T>* builder) {
auto saturation = builder->template AddSystem<Saturation<T>>(
min_plant_input, max_plant_input);
builder->Connect(saturation->get_output_port(), plant_input);
return
PidControlledSystem<T>::ConnectController(saturation->get_input_port(),
plant_output, feedback_selector, Kp, Ki, Kd, builder);
}
template <typename T>
typename PidControlledSystem<T>::ConnectResult
PidControlledSystem<T>::ConnectControllerWithInputSaturation(
const InputPort<T>& plant_input,
const OutputPort<T>& plant_output,
const Eigen::VectorXd& Kp, const Eigen::VectorXd& Ki,
const Eigen::VectorXd& Kd, const VectorX<T>& min_plant_input,
const VectorX<T>& max_plant_input, DiagramBuilder<T>* builder) {
return ConnectControllerWithInputSaturation(plant_input, plant_output,
MatrixX<double>::Identity(plant_output.size(), plant_output.size()),
Kp, Ki, Kd, min_plant_input, max_plant_input, builder);
}
template <typename T>
PidControlledSystem<T>::~PidControlledSystem() {}
} // namespace controllers
} // namespace systems
} // namespace drake
DRAKE_DEFINE_CLASS_TEMPLATE_INSTANTIATIONS_ON_DEFAULT_NONSYMBOLIC_SCALARS(
class ::drake::systems::controllers::PidControlledSystem)
| 0 |
/home/johnshepherd/drake/systems | /home/johnshepherd/drake/systems/controllers/linear_model_predictive_controller.cc | #include "drake/systems/controllers/linear_model_predictive_controller.h"
#include <memory>
#include <utility>
#include "drake/common/eigen_types.h"
#include "drake/planning/trajectory_optimization/direct_transcription.h"
#include "drake/solvers/solve.h"
namespace drake {
namespace systems {
namespace controllers {
using planning::trajectory_optimization::DirectTranscription;
using solvers::VectorXDecisionVariable;
template <typename T>
LinearModelPredictiveController<T>::LinearModelPredictiveController(
std::unique_ptr<systems::System<double>> model,
std::unique_ptr<systems::Context<double>> base_context,
const Eigen::MatrixXd& Q, const Eigen::MatrixXd& R, double time_period,
double time_horizon)
: state_input_index_(
this->DeclareVectorInputPort(kUseDefaultName, Q.cols()).get_index()),
control_output_index_(
this->DeclareVectorOutputPort(
kUseDefaultName, R.cols(),
&LinearModelPredictiveController<T>::CalcControl)
.get_index()),
model_(std::move(model)),
base_context_(std::move(base_context)),
num_states_(model_->CreateDefaultContext()->get_discrete_state(0).size()),
num_inputs_(model_->get_input_port().size()),
Q_(Q),
R_(R),
time_period_(time_period),
time_horizon_(time_horizon) {
DRAKE_DEMAND(time_period_ > 0.);
DRAKE_DEMAND(time_horizon_ > 0.);
// Check that the model is SISO
model_->get_input_port();
model_->get_output_port();
// Check that the model has discrete states belonging to a single group.
const auto model_context = model_->CreateDefaultContext();
DRAKE_DEMAND(model_context->num_discrete_state_groups() == 1);
DRAKE_DEMAND(model_context->num_continuous_states() == 0);
DRAKE_DEMAND(model_context->num_abstract_states() == 0);
// Check that the provided x0, u0, Q, R are consistent with the model.
DRAKE_DEMAND(num_states_ > 0 && num_inputs_ > 0);
DRAKE_DEMAND(Q.rows() == num_states_ && Q.cols() == num_states_);
DRAKE_DEMAND(R.rows() == num_inputs_ && R.cols() == num_inputs_);
// N.B. A Cholesky decomposition exists if and only if it is positive
// semidefinite, however it turns out that Eigen's algorithm for checking this
// is incomplete: it only succeeds on *strictly* positive definite
// matrices. We exploit the fact here to check for strict
// positive-definiteness of R.
Eigen::LLT<Eigen::MatrixXd> R_cholesky(R);
if (R_cholesky.info() != Eigen::Success) {
throw std::runtime_error("R must be positive definite");
}
// TODO(jwnimmer-tri) This seems like a misunderstood attempt at implementing
// discrete dynamics. The intent *appears* to be that SetupAndSolveQp should
// be run once every time_step. However, both because its result is NOT stored
// as state and because the output is direct-feedthrough from the input, we do
// not actually embody any kind of discrete dynamics. Anytime a user evaluates
// the output port after the input port has changed, we'll redo the QP, even
// when the current time is not an integer multiple of the step.
this->DeclarePeriodicDiscreteUpdateEvent(
time_period_, 0.0,
&LinearModelPredictiveController<T>::DoNothingButPretendItWasSomething);
if (base_context_ != nullptr) {
linear_model_ = Linearize(*model_, *base_context_);
}
}
template <typename T>
void LinearModelPredictiveController<T>::CalcControl(
const Context<T>& context, BasicVector<T>* control) const {
const VectorX<T>& current_state = get_state_port().Eval(context);
const Eigen::VectorXd current_input =
SetupAndSolveQp(*base_context_, current_state);
const VectorX<T> input_ref = model_->get_input_port().Eval(*base_context_);
control->SetFromVector(current_input + input_ref);
// TODO(jadecastro) Implement the time-varying case.
}
template <typename T>
EventStatus
LinearModelPredictiveController<T>::DoNothingButPretendItWasSomething(
const Context<T>&, DiscreteValues<T>*) const {
return EventStatus::Succeeded();
}
template <typename T>
VectorX<T> LinearModelPredictiveController<T>::SetupAndSolveQp(
const Context<T>& base_context, const VectorX<T>& current_state) const {
DRAKE_DEMAND(linear_model_ != nullptr);
const int kNumSampleTimes =
static_cast<int>(time_horizon_ / time_period_ + 0.5);
DirectTranscription dirtran(linear_model_.get(), *base_context_,
kNumSampleTimes);
auto& prog = dirtran.prog();
const auto state_error = dirtran.state();
const auto input_error = dirtran.input();
dirtran.AddRunningCost(state_error.transpose() * Q_ * state_error +
input_error.transpose() * R_ * input_error);
const VectorX<T> state_ref =
base_context.get_discrete_state().get_vector().CopyToVector();
prog.AddLinearConstraint(dirtran.initial_state() ==
current_state - state_ref);
const auto result = Solve(prog);
DRAKE_DEMAND(result.is_success());
return dirtran.GetInputSamples(result).col(0);
}
template class LinearModelPredictiveController<double>;
} // namespace controllers
} // namespace systems
} // namespace drake
| 0 |
/home/johnshepherd/drake/systems/controllers | /home/johnshepherd/drake/systems/controllers/stub/zmp_planner.h | #pragma once
#include "drake/common/drake_deprecated.h"
#include "drake/planning/locomotion/zmp_planner.h"
namespace drake {
namespace systems {
namespace controllers {
using ZmpPlanner DRAKE_DEPRECATED("2024-08-01",
"Use drake/planning/locomotion/zmp_planner.h instead.")
= drake::planning::ZmpPlanner;
} // namespace controllers
} // namespace systems
} // namespace drake
| 0 |
/home/johnshepherd/drake/systems/controllers | /home/johnshepherd/drake/systems/controllers/test_utilities/BUILD.bazel | load("//tools/lint:lint.bzl", "add_lint_tests")
load(
"//tools/skylark:drake_cc.bzl",
"drake_cc_googletest",
"drake_cc_library",
"drake_cc_package_library",
)
package(default_visibility = ["//visibility:public"])
drake_cc_package_library(
name = "test_utilities",
testonly = 1,
visibility = ["//visibility:public"],
deps = [
":compute_torque",
],
)
drake_cc_library(
name = "compute_torque",
testonly = 1,
hdrs = ["compute_torque.h"],
deps = [
"//multibody/plant",
"//systems/framework",
],
)
add_lint_tests(enable_clang_format_lint = False)
| 0 |
/home/johnshepherd/drake/systems/controllers | /home/johnshepherd/drake/systems/controllers/test_utilities/compute_torque.h | #pragma once
#include <vector>
#include "drake/common/eigen_types.h"
#include "drake/multibody/plant/multibody_plant.h"
namespace drake {
namespace systems {
namespace controllers_test {
// Computes torque predicted by inverse dynamics for use with inverse dynamics
// and inverse dynamics controller testing.
VectorX<double> ComputeTorque(
const multibody::MultibodyPlant<double>& plant,
const VectorX<double>& q,
const VectorX<double>& v,
const VectorX<double>& vd_d,
systems::Context<double>* context) {
// Populate the context.
plant.SetPositions(context, q);
plant.SetVelocities(context, v);
// Compute inverse dynamics.
multibody::MultibodyForces<double> external_forces(plant);
plant.CalcForceElementsContribution(*context, &external_forces);
return plant.CalcInverseDynamics(*context, vd_d, external_forces);
}
} // namespace controllers_test
} // namespace systems
} // namespace drake
| 0 |
/home/johnshepherd/drake/systems/controllers | /home/johnshepherd/drake/systems/controllers/test/inverse_dynamics_controller_test.cc | #include "drake/systems/controllers/inverse_dynamics_controller.h"
#include <gtest/gtest.h>
#include "drake/common/test_utilities/eigen_matrix_compare.h"
#include "drake/common/test_utilities/expect_throws_message.h"
#include "drake/multibody/parsing/parser.h"
#include "drake/systems/controllers/test_utilities/compute_torque.h"
using drake::multibody::MultibodyPlant;
using Eigen::VectorXd;
namespace drake {
namespace systems {
namespace controllers {
namespace {
class InverseDynamicsControllerTest : public ::testing::Test {
protected:
void SetPidGains(VectorX<double>* kp, VectorX<double>* ki,
VectorX<double>* kd) {
*kp << 1, 2, 3, 4, 5, 6, 7;
*ki << 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7;
*kd = *kp / 2.;
}
void ConfigTestAndCheck(InverseDynamicsController<double>* test_sys,
const VectorX<double>& kp, const VectorX<double>& ki,
const VectorX<double>& kd,
const Context<double>* robot_context = nullptr) {
EXPECT_EQ(test_sys->get_output_port().get_index(), 0);
auto inverse_dynamics_context = test_sys->CreateDefaultContext();
auto output = test_sys->AllocateOutput();
const MultibodyPlant<double>& robot_plant =
*test_sys->get_multibody_plant_for_control();
// Sets current state and reference state and acceleration values.
const int dim = robot_plant.num_positions();
VectorX<double> q(dim), v(dim), q_r(dim), v_r(dim), vd_r(dim);
q << 0.3, 0.2, 0.1, 0, -0.1, -0.2, -0.3;
v = q * 3;
q_r = (q + VectorX<double>::Constant(dim, 0.1)) * 2.;
v_r.setZero();
vd_r << 1, 2, 3, 4, 5, 6, 7;
// Connects inputs.
VectorX<double> state_input(robot_plant.num_positions() +
robot_plant.num_velocities());
state_input << q, v;
VectorX<double> reference_state_input(robot_plant.num_positions() +
robot_plant.num_velocities());
reference_state_input << q_r, v_r;
VectorX<double> reference_acceleration_input(robot_plant.num_velocities());
reference_acceleration_input << vd_r;
test_sys->get_input_port_estimated_state().FixValue(
inverse_dynamics_context.get(), state_input);
test_sys->get_input_port_desired_state().FixValue(
inverse_dynamics_context.get(), reference_state_input);
test_sys->get_input_port_desired_acceleration().FixValue(
inverse_dynamics_context.get(), reference_acceleration_input);
// Sets integrated position error.
VectorX<double> q_int(dim);
q_int << -1, -2, -3, -4, -5, -6, -7;
test_sys->set_integral_value(inverse_dynamics_context.get(), q_int);
// Computes output.
test_sys->CalcOutput(*inverse_dynamics_context, output.get());
// The results should equal to this.
VectorX<double> vd_d = (kp.array() * (q_r - q).array()).matrix() +
(kd.array() * (v_r - v).array()).matrix() +
(ki.array() * q_int.array()).matrix() + vd_r;
std::unique_ptr<Context<double>> workspace_context =
robot_context == nullptr ? robot_plant.CreateDefaultContext()
: robot_context->Clone();
VectorX<double> expected_torque = controllers_test::ComputeTorque(
robot_plant, q, v, vd_d, workspace_context.get());
// Checks the expected and computed gravity torque.
const BasicVector<double>* output_vector = output->get_vector_data(0);
EXPECT_TRUE(CompareMatrices(expected_torque, output_vector->get_value(),
1e-10, MatrixCompareType::absolute));
}
};
// Tests the computed torque from InverseDynamicsController matches hand
// derived results for the kuka iiwa arm at a given state (q, v), when
// asked to track reference state (q_r, v_r) and reference acceleration (vd_r).
// This test verifies the case that inverse dynamics controller only references
// the input robot plant.
TEST_F(InverseDynamicsControllerTest, TestTorqueWithReferencedPlant) {
auto robot = std::make_unique<MultibodyPlant<double>>(0.0);
multibody::Parser(robot.get())
.AddModelsFromUrl(
"package://drake_models/iiwa_description/sdf/"
"iiwa14_no_collision.sdf");
robot->WeldFrames(robot->world_frame(), robot->GetFrameByName("iiwa_link_0"));
robot->Finalize();
// Sets pid gains.
const int dim = robot->num_positions();
VectorX<double> kp(dim), ki(dim), kd(dim);
SetPidGains(&kp, &ki, &kd);
auto dut = std::make_unique<InverseDynamicsController<double>>(
*robot, kp, ki, kd, true /* expose reference acceleration port */);
ConfigTestAndCheck(dut.get(), kp, ki, kd);
// Test with custom context.
auto custom_context = robot->CreateDefaultContext();
const auto& iiwa_link_7 = robot->GetBodyByName("iiwa_link_7");
iiwa_link_7.SetMass(custom_context.get(), 10.0);
dut = std::make_unique<InverseDynamicsController<double>>(
*robot, kp, ki, kd, true, custom_context.get());
ConfigTestAndCheck(dut.get(), kp, ki, kd, custom_context.get());
}
// Tests the computed torque. This test is similar to the previous test. The
// difference is that the inverse dynamics controller is created by owning the
// input robot plant.
TEST_F(InverseDynamicsControllerTest, TestTorqueWithOwnedPlant) {
auto robot = std::make_unique<MultibodyPlant<double>>(0.0);
multibody::Parser(robot.get())
.AddModelsFromUrl(
"package://drake_models/iiwa_description/sdf/"
"iiwa14_no_collision.sdf");
robot->WeldFrames(robot->world_frame(), robot->GetFrameByName("iiwa_link_0"));
robot->Finalize();
// Sets pid gains.
const int dim = robot->num_positions();
VectorX<double> kp(dim), ki(dim), kd(dim);
SetPidGains(&kp, &ki, &kd);
auto dut = std::make_unique<InverseDynamicsController<double>>(
std::move(robot), kp, ki, kd,
true /* expose reference acceleration port */);
ConfigTestAndCheck(dut.get(), kp, ki, kd);
}
// Tests the computed torque. This test is similar to the previous test. The
// difference is that a custom robot context is used.
TEST_F(InverseDynamicsControllerTest,
TestTorqueWithOwnedPlantAndCustomContext) {
auto robot = std::make_unique<MultibodyPlant<double>>(0.0);
multibody::Parser(robot.get())
.AddModelsFromUrl(
"package://drake_models/iiwa_description/sdf/"
"iiwa14_no_collision.sdf");
robot->WeldFrames(robot->world_frame(), robot->GetFrameByName("iiwa_link_0"));
robot->Finalize();
// Sets pid gains.
const int dim = robot->num_positions();
VectorX<double> kp(dim), ki(dim), kd(dim);
SetPidGains(&kp, &ki, &kd);
// Create custom context.
auto custom_context = robot->CreateDefaultContext();
const auto& iiwa_link_7 = robot->GetBodyByName("iiwa_link_7");
iiwa_link_7.SetMass(custom_context.get(), 10.0);
auto dut = std::make_unique<InverseDynamicsController<double>>(
std::move(robot), kp, ki, kd, true, custom_context.get());
ConfigTestAndCheck(dut.get(), kp, ki, kd, custom_context.get());
}
GTEST_TEST(AdditionalInverseDynamicsTest, ScalarConversion) {
auto mbp = std::make_unique<MultibodyPlant<double>>(0.0);
multibody::Parser(mbp.get()).AddModelsFromUrl(
"package://drake_models/iiwa_description/sdf/iiwa14_no_collision.sdf");
mbp->WeldFrames(mbp->world_frame(), mbp->GetFrameByName("iiwa_link_0"));
mbp->Finalize();
const int num_states = mbp->num_multibody_states();
const int dim = mbp->num_positions();
VectorXd kp = VectorXd::Constant(dim, 0.12),
ki = VectorXd::Constant(dim, 0.34),
kd = VectorXd::Constant(dim, 0.56);
InverseDynamicsController<double> idc(*mbp, kp, ki, kd, true);
// Test AutoDiffXd.
auto idc_ad = System<double>::ToAutoDiffXd<Diagram>(idc);
// Note: With the current scalar conversion support, we can get a
// unique_ptr<Diagram<T>> but not a unique_ptr<InverseDynamicsController<T>>.
// Check the multibody plant.
EXPECT_EQ(idc_ad->get_input_port(0).size(), num_states);
// Check the PID gains.
const auto* pid_ad = dynamic_cast<const PidController<AutoDiffXd>*>(
&idc_ad->GetSubsystemByName("pid"));
ASSERT_NE(pid_ad, nullptr);
EXPECT_TRUE(CompareMatrices(pid_ad->get_Kp_vector(), kp));
EXPECT_TRUE(CompareMatrices(pid_ad->get_Ki_vector(), ki));
EXPECT_TRUE(CompareMatrices(pid_ad->get_Kd_vector(), kd));
// Check has_reference_acceleration.
EXPECT_EQ(idc_ad->num_input_ports(), 3);
// Test Expression.
auto idc_sym = idc.ToSymbolic();
EXPECT_EQ(idc_sym->get_input_port(0).size(), num_states);
InverseDynamicsController<double> idc_with_ownership(std::move(mbp), kp, ki,
kd, true);
// Test AutoDiffXd.
idc_ad = System<double>::ToAutoDiffXd<Diagram>(idc_with_ownership);
// Note: With the current scalar conversion support, we can get a
// unique_ptr<Diagram<T>> but not a unique_ptr<InverseDynamicsController<T>>.
// Check the multibody plant.
EXPECT_EQ(idc_ad->get_input_port(0).size(), num_states);
// Check the PID gains.
pid_ad = dynamic_cast<const PidController<AutoDiffXd>*>(
&idc_ad->GetSubsystemByName("pid"));
ASSERT_NE(pid_ad, nullptr);
EXPECT_TRUE(CompareMatrices(pid_ad->get_Kp_vector(), kp));
EXPECT_TRUE(CompareMatrices(pid_ad->get_Ki_vector(), ki));
EXPECT_TRUE(CompareMatrices(pid_ad->get_Kd_vector(), kd));
// Check has_reference_acceleration.
EXPECT_EQ(idc_ad->num_input_ports(), 3);
// Test Expression.
idc_sym = idc_with_ownership.ToSymbolic();
EXPECT_EQ(idc_sym->get_input_port(0).size(), num_states);
}
} // namespace
} // namespace controllers
} // namespace systems
} // namespace drake
| 0 |
/home/johnshepherd/drake/systems/controllers | /home/johnshepherd/drake/systems/controllers/test/dynamic_programming_test.cc | #include "drake/systems/controllers/dynamic_programming.h"
#include <cmath>
#include <gtest/gtest.h>
#include "drake/common/find_resource.h"
#include "drake/common/proto/call_python.h"
#include "drake/common/test_utilities/eigen_matrix_compare.h"
#include "drake/math/barycentric.h"
#include "drake/multibody/parsing/parser.h"
#include "drake/multibody/plant/multibody_plant.h"
#include "drake/systems/controllers/linear_quadratic_regulator.h"
#include "drake/systems/framework/diagram_builder.h"
#include "drake/systems/primitives/integrator.h"
#include "drake/systems/primitives/linear_system.h"
namespace drake {
namespace systems {
namespace controllers {
namespace {
// Minimum-time problem for the single integrator (which has a trivial solution,
// that can be achieved exactly on a mesh when time_step=1).
// ẋ = u, u ∈ {-1,0,1}.
// g(x,u) = 0 if x == 0, 1 otherwise.
// The optimal solution is: J(x) = |x|.
GTEST_TEST(FittedValueIterationTest, SingleIntegrator) {
const int kNumStates = 1;
Integrator<double> sys(kNumStates);
Simulator<double> simulator(sys);
// minimum time cost function (1 for all non-zero states).
const auto cost_function = [](const Context<double>& context) {
double x = context.get_continuous_state()[0];
return (std::abs(x) > 0.1) ? 1. : 0.;
};
const math::BarycentricMesh<double>::MeshGrid state_grid(
{{-4., -3., -2., -1., 0., 1., 2., 3., 4.}});
const math::BarycentricMesh<double>::MeshGrid input_grid({{-1., 0., 1.}});
const double time_step = 1.0;
std::unique_ptr<BarycentricMeshSystem<double>> policy;
Eigen::RowVectorXd cost_to_go_values;
std::tie(policy, cost_to_go_values) = FittedValueIteration(
&simulator, cost_function, state_grid, input_grid, time_step);
// Optimal cost-to-go is |x|.
Eigen::RowVectorXd J_expected(static_cast<int>(state_grid[0].size()));
J_expected << 4., 3., 2., 1., 0., 1., 2., 3., 4.;
EXPECT_TRUE(CompareMatrices(cost_to_go_values, J_expected, 1e-8));
// Optimal policy is 1 if x < 0, 0 if x = 0, -1 if x > 0.
EXPECT_EQ(policy->get_output_port().size(), 1);
auto context = policy->CreateDefaultContext();
auto output = policy->get_output_port().Allocate();
for (const double x : state_grid[0]) {
policy->get_input_port().FixValue(context.get(), x);
policy->get_output_port().Calc(*context, output.get());
double y = output->get_value<BasicVector<double>>()[0];
EXPECT_EQ(y, (x < 0) - (x > 0)); // implements -sgn(x).
}
}
// Single integrator minimum time problem, but with the goal at -3, and the
// state wrapped on itself.
GTEST_TEST(FittedValueIterationTest, PeriodicBoundary) {
const int kNumStates = 1;
Integrator<double> sys(kNumStates);
Simulator<double> simulator(sys);
// minimum time cost function (1 for all non-zero states).
const auto cost_function = [](const Context<double>& context) {
double x = context.get_continuous_state()[0];
return (std::abs(x + 3.) > 0.1) ? 1. : 0.;
};
const math::BarycentricMesh<double>::MeshGrid state_grid(
{{-4., -3., -2., -1., 0., 1., 2., 3., 4.}});
const math::BarycentricMesh<double>::MeshGrid input_grid({{-1., 0., 1.}});
const double time_step = 1.0;
DynamicProgrammingOptions options;
options.periodic_boundary_conditions.push_back(
DynamicProgrammingOptions::PeriodicBoundaryCondition(0, -4., 4.));
std::unique_ptr<BarycentricMeshSystem<double>> policy;
Eigen::RowVectorXd cost_to_go_values;
std::tie(policy, cost_to_go_values) = FittedValueIteration(
&simulator, cost_function, state_grid, input_grid, time_step, options);
// Optimal cost-to-go is |x|.
Eigen::RowVectorXd J_expected(static_cast<int>(state_grid[0].size()));
J_expected << 1., 0., 1., 2., 3., 4., 3., 2., 1.;
EXPECT_TRUE(CompareMatrices(cost_to_go_values, J_expected, 1e-4));
}
// Plot in Python. (Costs little here and is very useful for any future
// debugging).
void VisualizationCallback(int iteration,
const math::BarycentricMesh<double>& state_mesh,
const Eigen::RowVectorXd& cost_to_go,
const Eigen::MatrixXd& policy) {
Eigen::VectorXd Qbins(state_mesh.get_input_grid()[0].size());
Eigen::VectorXd Qdotbins(state_mesh.get_input_grid()[1].size());
Eigen::Map<const Eigen::MatrixXd> J(cost_to_go.data(), Qbins.size(),
Qdotbins.size());
int i = 0;
for (const double q : state_mesh.get_input_grid()[0]) {
Qbins(i++) = q;
}
i = 0;
for (const double qdot : state_mesh.get_input_grid()[1]) {
Qdotbins(i++) = qdot;
}
using common::CallPython;
CallPython("surf", Qbins, Qdotbins, J.transpose());
CallPython("xlabel", "q");
CallPython("ylabel", "qdot");
CallPython("title", "iteration " + std::to_string(iteration));
}
// Linear quadratic regulator for the double integrator.
// q̈ = u, g(x,u) = x'Qx + u'Ru.
// Note: we only expect the numerical solution to be very approximate, due to
// discretization errors.
GTEST_TEST(FittedValueIteration, DoubleIntegrator) {
Eigen::Matrix2d A;
A << 0., 1., 0., 0.;
const Eigen::Vector2d B{0., 1.};
const Eigen::Matrix2d C = Eigen::Matrix2d::Identity();
const Eigen::Vector2d D = Eigen::Vector2d::Zero();
LinearSystem<double> sys(A, B, C, D);
const Eigen::Matrix2d Q = Eigen::Matrix2d::Identity();
const double R = 1.;
Simulator<double> simulator(sys);
// Quadratic regulator cost function.
const auto cost_function = [&sys, &Q, &R](const Context<double>& context) {
const Eigen::Vector2d x = context.get_continuous_state().CopyToVector();
const double u = sys.get_input_port().Eval(context)[0];
return x.dot(Q * x) + u * R * u;
};
math::BarycentricMesh<double>::MeshGrid state_grid(2);
for (double x = -3.; x <= 3.; x += .2) {
state_grid[0].insert(x);
}
for (double xdot = -4.; xdot <= 4.; xdot += .2) {
state_grid[1].insert(xdot);
}
math::BarycentricMesh<double>::MeshGrid input_grid(1);
for (double u = -6.; u <= 6.; u += .5) {
input_grid[0].insert(u);
}
const double time_step = .01;
DynamicProgrammingOptions options;
options.visualization_callback = VisualizationCallback;
options.discount_factor = 1.;
std::unique_ptr<BarycentricMeshSystem<double>> policy;
Eigen::MatrixXd cost_to_go_values;
std::tie(policy, cost_to_go_values) = FittedValueIteration(
&simulator, cost_function, state_grid, input_grid, time_step, options);
// Note: Compare against continuous time solution, even though we are solving
// a discretized version. Confirmed in MATLAB (due to #8034) that cost-to-go
// is equal to the 3rd decimal, using
// sys = ss(A,B,eye(2),zero(2,1))
// dsys = c2d(sys,.01)
// [K,S] = dlqr(dsys.A,dsys.B,Q*dt,R*dt)
auto optimal = LinearQuadraticRegulator(A, B, Q, Vector1d(R));
math::BarycentricMesh<double> state_mesh(state_grid);
for (double q = -2.5; q <= 2.5; q += 1.) {
for (double qdot = -3.5; qdot <= 3.5; qdot += 1.) {
const Eigen::Vector2d x{q, qdot};
const double J = x.dot(optimal.S * x);
// Note: Magnitudes range from 0 to ~60.
// We don't expect these solutions to be too similar (the differ mostly at
// the positive and negative orthants, were the boundary effects have an
// impact, but also on the total magnitude of the cost through, due to the
// approximation on the grid and the (more importantly) the discretization
// of actions. The matlab plots above are as expected, and this guard
// will make sure they remain close.
EXPECT_NEAR(state_mesh.Eval(cost_to_go_values, x)[0], J, 1. + .2 * J);
}
}
}
// Ensure that FittedValueIteration can be called on a MultibodyPlant/SceneGraph
// combo.
GTEST_TEST(FittedValueIteration, MultibodyPlant) {
DiagramBuilder<double> builder;
multibody::MultibodyPlant<double>* mbp;
geometry::SceneGraph<double>* scene_graph;
std::tie(mbp, scene_graph) =
multibody::AddMultibodyPlantSceneGraph(&builder, 0.0);
multibody::Parser(mbp, scene_graph)
.AddModels(FindResourceOrThrow("drake/examples/pendulum/Pendulum.urdf"));
mbp->Finalize();
// Export an input that we don't need, and export it first, just to test the
// input_port_index option.
builder.ExportInput(mbp->get_applied_generalized_force_input_port(),
"extra_input");
builder.ExportInput(mbp->get_actuation_input_port(), "pendulum_input");
auto diagram = builder.Build();
Simulator<double> simulator(*diagram);
const double time_step = 0.1;
math::BarycentricMesh<double>::MeshGrid state_grid(2);
math::BarycentricMesh<double>::MeshGrid input_grid(1);
// Note: these meshes are intentionally small for this unit test.
for (int i = 0; i < 5; i++) {
state_grid[0].insert(2.0 * M_PI * i / 4);
state_grid[1].insert(-10.0 + 4 * i);
input_grid[0].insert(-2.5 + i / 2.0);
}
DynamicProgrammingOptions options;
options.input_port_index = diagram->get_input_port(1).get_index();
options.assume_non_continuous_states_are_fixed = true;
options.periodic_boundary_conditions = {
DynamicProgrammingOptions::PeriodicBoundaryCondition(0, 0, 2 * M_PI)};
// Quadratic regulator cost function.
const auto cost_function = [&diagram](const Context<double>& context) {
const Eigen::Matrix2d Q = Eigen::Matrix2d::Identity();
const double R = 1.;
const Eigen::Vector2d x = context.get_continuous_state().CopyToVector();
const double u = diagram->get_input_port(1).Eval(context)[0];
return x.dot(Q * x) + u * R * u;
};
// Just check that it runs without error.
options.discount_factor = 1.;
options.convergence_tol = 1e4;
FittedValueIteration(&simulator, cost_function, state_grid, input_grid,
time_step, options);
}
// Minimum-time problem for the single integrator (which has a trivial solution,
// that can be achieved exactly on a mesh when time_step=1).
// ẋ = u, u ∈ {-1,0,1}.
// g(x,u) = 0 if x == 0, 1 otherwise.
// The optimal solution is: J(x) = |x|.
GTEST_TEST(LinearProgrammingTest, SingleIntegrator) {
const int kNumStates = 1;
Integrator<double> sys(kNumStates);
Simulator<double> simulator(sys);
// minimum time cost function (1 for all non-zero states).
const auto cost_function = [](const Context<double>& context) {
double x = context.get_continuous_state()[0];
return (std::abs(x) > 0.1) ? 1. : 0.;
};
const int kNumParameters = 1;
const auto cost_to_go_function = [](
const Eigen::Ref<const Eigen::VectorXd>& state,
const VectorX<symbolic::Variable>& parameters) {
using std::abs;
return parameters[0] * abs(state[0]);
};
Eigen::RowVectorXd state_samples(9);
state_samples << -4., -3., -2., -1., 0., 1., 2., 3., 4.;
const Eigen::RowVector3d input_samples{-1., 0., 1.};
const double time_step = 1.0;
DynamicProgrammingOptions options;
options.discount_factor = 1.;
Eigen::VectorXd J = LinearProgrammingApproximateDynamicProgramming(
&simulator, cost_function, cost_to_go_function, kNumParameters,
state_samples, input_samples, time_step, options);
// Optimal cost-to-go is |x|.
EXPECT_NEAR(J[0], 1., 1e-6);
}
} // namespace
} // namespace controllers
} // namespace systems
} // namespace drake
| 0 |
/home/johnshepherd/drake/systems/controllers | /home/johnshepherd/drake/systems/controllers/test/deprecated_zmp_planner_test.cc | #include <gtest/gtest.h>
#include "drake/systems/controllers/zmp_planner.h"
namespace drake {
namespace systems {
namespace controllers {
namespace {
GTEST_TEST(DeprecatedZmpPlannerTest, Simple) {
ZmpPlanner dut;
EXPECT_FALSE(dut.has_planned());
}
} // namespace
} // namespace controllers
} // namespace systems
} // namespace drake
| 0 |
/home/johnshepherd/drake/systems/controllers | /home/johnshepherd/drake/systems/controllers/test/linear_quadratic_regulator_test.cc | #include "drake/systems/controllers/linear_quadratic_regulator.h"
#include <gtest/gtest.h>
#include "drake/common/find_resource.h"
#include "drake/common/test_utilities/eigen_matrix_compare.h"
#include "drake/common/test_utilities/expect_no_throw.h"
#include "drake/examples/acrobot/acrobot_plant.h"
#include "drake/multibody/parsing/parser.h"
#include "drake/multibody/plant/multibody_plant.h"
#include "drake/systems/primitives/linear_system.h"
namespace drake {
namespace systems {
namespace controllers {
namespace {
GTEST_TEST(TestLqr, TestException) {
// A double integrator
Eigen::Matrix2d A;
A << 0, 1, 0, 0;
const Eigen::Vector2d B(0, 1);
Eigen::Matrix2d Q = Eigen::Matrix2d::Identity();
Eigen::Matrix<double, 1, 1> R = Eigen::MatrixXd::Identity(1, 1);
Eigen::Vector2d N = Eigen::Vector2d::Zero();
DRAKE_EXPECT_NO_THROW(LinearQuadraticRegulator(A, B, Q, R, N));
DRAKE_EXPECT_NO_THROW(LinearQuadraticRegulator(A, B, Q, R));
// R is not positive definite, should throw exception.
EXPECT_THROW(LinearQuadraticRegulator(
A, B, Q, Eigen::Matrix<double, 1, 1>::Zero()), std::runtime_error);
EXPECT_THROW(LinearQuadraticRegulator(
A, B, Q, Eigen::Matrix<double, 1, 1>::Zero(), N), std::runtime_error);
}
void TestLqrAgainstKnownSolution(
double tolerance, const Eigen::Ref<const Eigen::MatrixXd>& K_known,
const Eigen::Ref<const Eigen::MatrixXd>& S_known,
const Eigen::Ref<const Eigen::MatrixXd>& A,
const Eigen::Ref<const Eigen::MatrixXd>& B,
const Eigen::Ref<const Eigen::MatrixXd>& Q,
const Eigen::Ref<const Eigen::MatrixXd>& R,
const Eigen::Ref<const Eigen::MatrixXd>& N =
Eigen::Matrix<double, 0, 0>::Zero()) {
LinearQuadraticRegulatorResult result =
LinearQuadraticRegulator(A, B, Q, R, N);
EXPECT_TRUE(CompareMatrices(K_known, result.K, tolerance,
MatrixCompareType::absolute));
EXPECT_TRUE(CompareMatrices(S_known, result.S, tolerance,
MatrixCompareType::absolute));
}
void TestLqrLinearSystemAgainstKnownSolution(
double tolerance, const LinearSystem<double>& sys,
const Eigen::Ref<const Eigen::MatrixXd>& K_known,
const Eigen::Ref<const Eigen::MatrixXd>& Q,
const Eigen::Ref<const Eigen::MatrixXd>& R,
const Eigen::Ref<const Eigen::MatrixXd>& N =
Eigen::Matrix<double, 0, 0>::Zero()) {
std::unique_ptr<LinearSystem<double>> linear_lqr =
LinearQuadraticRegulator(sys, Q, R, N);
int n = sys.A().rows();
int m = sys.B().cols();
EXPECT_TRUE(CompareMatrices(linear_lqr->A(),
Eigen::Matrix<double, 0, 0>::Zero(), tolerance,
MatrixCompareType::absolute));
EXPECT_TRUE(CompareMatrices(linear_lqr->B(),
Eigen::MatrixXd::Zero(0, n), tolerance,
MatrixCompareType::absolute));
EXPECT_TRUE(CompareMatrices(linear_lqr->C(),
Eigen::MatrixXd::Zero(m, 0), tolerance,
MatrixCompareType::absolute));
EXPECT_TRUE(CompareMatrices(linear_lqr->D(), -K_known, tolerance,
MatrixCompareType::absolute));
EXPECT_EQ(linear_lqr->time_period(), sys.time_period());
}
void TestLqrAffineSystemAgainstKnownSolution(
double tolerance, const LinearSystem<double>& sys,
const Eigen::Ref<const Eigen::MatrixXd>& K_known,
const Eigen::Ref<const Eigen::MatrixXd>& Q,
const Eigen::Ref<const Eigen::MatrixXd>& R,
const Eigen::Ref<const Eigen::MatrixXd>& N =
Eigen::Matrix<double, 0, 0>::Zero()) {
int n = sys.A().rows();
int m = sys.B().cols();
auto context = sys.CreateDefaultContext();
Eigen::VectorXd x0 = Eigen::VectorXd::Zero(n);
Eigen::VectorXd u0 = Eigen::VectorXd::Zero(m);
sys.get_input_port().FixValue(context.get(), u0);
if (sys.time_period() == 0.0) {
context->SetContinuousState(x0);
} else {
context->SetDiscreteState(0, x0);
}
std::unique_ptr<AffineSystem<double>> lqr =
LinearQuadraticRegulator(sys, *context, Q, R, N);
EXPECT_TRUE(CompareMatrices(lqr->A(), Eigen::Matrix<double, 0, 0>::Zero(),
tolerance, MatrixCompareType::absolute));
EXPECT_TRUE(CompareMatrices(lqr->B(), Eigen::MatrixXd::Zero(0, n),
tolerance, MatrixCompareType::absolute));
EXPECT_TRUE(CompareMatrices(lqr->f0(), Eigen::Matrix<double, 0, 1>::Zero(),
tolerance, MatrixCompareType::absolute));
EXPECT_TRUE(CompareMatrices(lqr->C(), Eigen::MatrixXd::Zero(m, 0),
tolerance, MatrixCompareType::absolute));
EXPECT_TRUE(CompareMatrices(lqr->D(), -K_known,
tolerance, MatrixCompareType::absolute));
EXPECT_TRUE(CompareMatrices(lqr->y0(), u0 + K_known * x0,
tolerance, MatrixCompareType::absolute));
EXPECT_EQ(lqr->time_period(), sys.time_period());
}
// Test if the LQR solution satisfies the HJB equality
// minᵤ xᵀQx + uᵀRu + 2xᵀNu + 2xᵀS(Ax+Bu) = 0
void TestLqrWithHjb(
const Eigen::Ref<const Eigen::MatrixXd>& A,
const Eigen::Ref<const Eigen::MatrixXd>& B,
const Eigen::Ref<const Eigen::MatrixXd>& Q,
const Eigen::Ref<const Eigen::MatrixXd>& R,
const Eigen::Ref<const Eigen::MatrixXd>& N = Eigen::MatrixXd(0, 0),
const Eigen::Ref<const Eigen::MatrixXd>& F = Eigen::MatrixXd(0, 0)) {
const auto lqr_result = LinearQuadraticRegulator(A, B, Q, R, N, F);
const int nx = A.rows();
const int nu = B.cols();
// We first try to remove the constraint F*x = 0 by considering a new slack
// variable y, where y is in the null-space of F, namely y = Pᵀx. We then
// define the dynamics and cost using this new variable y.
// minᵤ yᵀQy*y + uᵀRy*u + 2xᵀNy*u + 2xᵀSy(Ay*x+By*u) = 0
Eigen::MatrixXd Ay = A;
Eigen::MatrixXd By = B;
Eigen::MatrixXd Qy = Q;
Eigen::MatrixXd Ry = R;
Eigen::MatrixXd Ny = N.rows() == 0 ? Eigen::MatrixXd::Zero(nx, nu) : N;
Eigen::MatrixXd P = Eigen::MatrixXd::Identity(nx, nx);
if (F.rows() != 0) {
// First find P
Eigen::ColPivHouseholderQR<Eigen::MatrixXd> qr_F(F.transpose());
ASSERT_EQ(qr_F.info(), Eigen::Success);
const Eigen::MatrixXd F_Q = qr_F.matrixQ();
P = F_Q.rightCols(nx - qr_F.rank()).transpose();
Ay = P * A * P.transpose();
By = P * B;
Qy = P * Q * P.transpose();
Ry = R;
Ny = P * Ny;
}
const Eigen::MatrixXd Pt = P.transpose();
const int ny = Pt.cols();
// The minimization over u on the quadratic function occurs where the gradient
// w.r.t u is 0. Ru = −(ByᵀSy + Nyᵀ)y
// Since u = -Kx, we have Ru = -R*K*x = -R*K*Pᵀy
// Hence R*K*Pᵀ= ByᵀSy + Nyᵀ. where Sy = P*Sx*Pᵀ
const Eigen::MatrixXd Sy = P * lqr_result.S * Pt;
const double tol = 1E-9;
EXPECT_TRUE(CompareMatrices(Ry * lqr_result.K * Pt,
By.transpose() * Sy + Ny.transpose(), tol));
// Now make sure that by plugging in u = -Kx = -KPᵀy, the left hand side of
// HJB is zero.
const Eigen::MatrixXd Ky = lqr_result.K * Pt;
EXPECT_TRUE(CompareMatrices(Qy + Ky.transpose() * Ry * Ky - Ny * Ky -
Ky.transpose() * Ny.transpose() + Sy * Ay +
Ay.transpose() * Sy - Sy * By * Ky -
Ky.transpose() * By.transpose() * Sy,
Eigen::MatrixXd::Zero(ny, ny), tol));
}
GTEST_TEST(TestLqr, DoubleIntegrator) {
// Double integrator dynamics: qddot = u, where q is the position coordinate.
Eigen::Matrix2d A;
Eigen::Vector2d B;
A << 0, 1, 0, 0;
B << 0, 1;
LinearSystem<double> sys(A, B, Eigen::Matrix<double, 0, 2>::Zero(),
Eigen::Matrix<double, 0, 1>::Zero());
// Trivial cost:
Eigen::Matrix2d Q;
Eigen::Matrix<double, 1, 1> R;
Q << 1, 0, 0, 1;
R << 1;
// Analytical solution
Eigen::Matrix<double, 1, 2> K;
K << 1, std::sqrt(3);
Eigen::Matrix<double, 2, 2> S;
S << std::sqrt(3), 1, 1, std::sqrt(3);
double tol = 1e-10;
TestLqrAgainstKnownSolution(tol, K, S, A, B, Q, R);
// Test LinearSystem version of the LQR
TestLqrLinearSystemAgainstKnownSolution(tol, sys, K, Q, R);
// Call it as a generic System (by passing in a Context).
// Should get the same result, but as an affine system.
TestLqrAffineSystemAgainstKnownSolution(tol, sys, K, Q, R);
// A different cost function with the same Q and R, and an extra N = [1; 0].
Eigen::Vector2d N(1, 0);
// Known solution
K = Eigen::Vector2d(1, 1);
S = Eigen::Matrix2d::Identity();
TestLqrAgainstKnownSolution(tol, K, S, A, B, Q, R, N);
// Test LinearSystem version of the LQR
TestLqrLinearSystemAgainstKnownSolution(tol, sys, K, Q, R, N);
// Test AffineSystem version of the LQR
TestLqrAffineSystemAgainstKnownSolution(tol, sys, K, Q, R, N);
TestLqrWithHjb(A, B, Q, R, N);
}
GTEST_TEST(TestLqr, ConstrainedLinearSystem) {
// Test the LQR for a constrained system
// ẋ = Ax+Bu
// Fx = 0
Eigen::Matrix3d A;
// clang-format off
A << 1, 0, 2,
0, 1, 3,
0, 2, -1;
// clang-format on
Eigen::Matrix<double, 3, 2> B;
// clang-format off
B << 1, 3,
0, 2,
1, -1;
// clang-format on
const Eigen::RowVector3d F(1, 2, -3);
Eigen::Matrix3d Q;
// clang-format off
Q << 4, 0, 2,
0, 9, 3,
2, 3, 8;
// clang-format on
Eigen::Matrix2d R;
// clang-format off
R << 1, 3,
3, 10;
// clang-format on
Eigen::Matrix<double, 3, 2> N;
N << 1, 0.5, 0.5, -1, 0, 1;
TestLqrWithHjb(A, B, Q, R);
TestLqrWithHjb(A, B, Q, R, N);
TestLqrWithHjb(A, B, Q, R, Eigen::MatrixXd(0, 0), F);
TestLqrWithHjb(A, B, Q, R, N, F);
}
GTEST_TEST(TestLqr, DiscreteDoubleIntegrator) {
Eigen::Matrix2d A;
Eigen::Vector2d B;
A << 1, 1, 0, 1;
B << 0, 1;
// Trivial cost:
Eigen::Matrix2d Q = Eigen::Matrix2d::Identity();
Vector1d R = Vector1d::Identity();
// Solution from dlqr in Matlab.
Eigen::RowVector2d K;
K << 0.422082440385453, 1.243928853903714;
Eigen::Matrix2d S;
// clang-format off
S << 2.947122966707012, 2.369205407092467,
2.369205407092467, 4.613134260996183;
// clang-format on
LinearQuadraticRegulatorResult result =
DiscreteTimeLinearQuadraticRegulator(A, B, Q, R);
const double tol = 1e-10;
EXPECT_TRUE(CompareMatrices(result.K, K, tol));
EXPECT_TRUE(CompareMatrices(result.S, S, tol));
LinearSystem<double> sys(A, B, Eigen::Matrix<double, 0, 2>::Zero(),
Eigen::Matrix<double, 0, 1>::Zero(), 0.1);
// Test LinearSystem version of the LQR
TestLqrLinearSystemAgainstKnownSolution(tol, sys, K, Q, R);
// Test AffineSystem version of the LQR
TestLqrAffineSystemAgainstKnownSolution(tol, sys, K, Q, R);
}
// Adds test coverage for calling LQR from a LeafSystem and from a
// MultibodyPlant.
GTEST_TEST(TestLqr, AcrobotTest) {
const examples::acrobot::AcrobotPlant<double> plant;
auto context = plant.CreateDefaultContext();
// Set nominal state to the upright fixed point.
examples::acrobot::AcrobotState<double>& state =
plant.get_mutable_state(context.get());
state.set_theta1(M_PI);
state.set_theta2(0.0);
state.set_theta1dot(0.0);
state.set_theta2dot(0.0);
plant.GetInputPort("elbow_torque").FixValue(context.get(), 0.0);
const Eigen::Matrix4d Q = Eigen::Vector4d(10.0, 10.0, 1.0, 1.0).asDiagonal();
const Vector1d R(1);
const auto controller = LinearQuadraticRegulator(plant, *context, Q, R);
// Confirm that I get the same result by linearizing explicitly.
const auto linear_system = Linearize(plant, *context);
const auto lqr_result = LinearQuadraticRegulator(
linear_system->A(), linear_system->B(), Q, R);
EXPECT_TRUE(CompareMatrices(-lqr_result.K, controller->D(), 1e-12));
// Confirm that I get the same result via MultibodyPlant.
multibody::MultibodyPlant<double> mbp(0.0);
multibody::Parser(&mbp).AddModels(
FindResourceOrThrow("drake/examples/acrobot/Acrobot.urdf"));
mbp.Finalize();
auto mbp_context = mbp.CreateDefaultContext();
mbp.SetPositions(mbp_context.get(), Eigen::Vector2d(M_PI, 0));
mbp.get_actuation_input_port().FixValue(mbp_context.get(), 0.0);
const auto mbp_controller = LinearQuadraticRegulator(
mbp, *mbp_context, Q, R, Eigen::Matrix<double, 4, 1>::Zero(),
mbp.get_actuation_input_port().get_index());
EXPECT_TRUE(CompareMatrices(mbp_controller->D(), controller->D(), 1e-9));
}
} // namespace
} // namespace controllers
} // namespace systems
} // namespace drake
| 0 |
/home/johnshepherd/drake/systems/controllers | /home/johnshepherd/drake/systems/controllers/test/joint_stiffness_controller_test.cc | #include "drake/systems/controllers/joint_stiffness_controller.h"
#include <gtest/gtest.h>
#include "drake/common/test_utilities/eigen_matrix_compare.h"
#include "drake/common/test_utilities/expect_throws_message.h"
#include "drake/multibody/parsing/parser.h"
namespace drake {
namespace systems {
namespace controllers {
namespace {
using Eigen::Vector2d;
using Eigen::Vector4d;
using Eigen::VectorXd;
using multibody::MultibodyPlant;
GTEST_TEST(JointStiffnessControllerTest, SimpleDoublePendulum) {
DiagramBuilder<double> builder;
auto plant = builder.AddSystem<MultibodyPlant>(0.0);
multibody::Parser(plant).AddModelsFromUrl(
"package://drake/multibody/benchmarks/acrobot/double_pendulum.urdf");
plant->WeldFrames(plant->world_frame(), plant->GetFrameByName("base"));
plant->Finalize();
Vector2d kp{0.3, 0.4}, kd{0.1, 0.2};
auto controller = builder.AddSystem<JointStiffnessController>(*plant, kp, kd);
EXPECT_EQ(&controller->get_multibody_plant(), plant);
builder.Connect(plant->get_state_output_port(),
controller->get_input_port_estimated_state());
builder.Connect(controller->get_output_port(),
plant->get_actuation_input_port());
builder.ExportInput(controller->get_input_port_desired_state(),
"desired_state");
auto diagram = builder.Build();
auto context = diagram->CreateDefaultContext();
auto& plant_context = plant->GetMyMutableContextFromRoot(context.get());
auto& controller_context =
controller->GetMyMutableContextFromRoot(context.get());
Vector4d x{-0.7, 0.1, 0.5, 0.4}, x_d{-0.75, 0.3, 0.02, -0.5};
plant->SetPositionsAndVelocities(&plant_context, x);
diagram->get_input_port().FixValue(context.get(), x_d);
// We expect the controller to cancel gravity and damping, and add the
// stiffness terms.
const double kDamping = 0.1; // must match double_pendulum.urdf
VectorXd tau_expected = -plant->CalcGravityGeneralizedForces(plant_context) +
kDamping * x.tail<2>() +
(kp.array() * (x_d.head<2>() - x.head<2>()).array() +
kd.array() * (x_d.tail<2>() - x.tail<2>()).array())
.matrix();
VectorXd tau = controller->get_output_port().Eval(controller_context);
EXPECT_TRUE(CompareMatrices(tau, tau_expected, 1e-14));
}
GTEST_TEST(JointStiffnessControllerTest, ScalarConversion) {
auto mbp = std::make_unique<MultibodyPlant<double>>(0.0);
multibody::Parser(mbp.get()).AddModelsFromUrl(
"package://drake_models/iiwa_description/sdf/iiwa14_no_collision.sdf");
mbp->WeldFrames(mbp->world_frame(), mbp->GetFrameByName("iiwa_link_0"));
mbp->Finalize();
const int num_states = mbp->num_multibody_states();
const int num_q = mbp->num_positions();
VectorXd kp = VectorXd::Constant(num_q, 0.12),
kd = VectorXd::Constant(num_q, 0.34);
JointStiffnessController<double> controller(*mbp, kp, kd);
// Test AutoDiffXd.
auto controller_ad = systems::System<double>::ToAutoDiffXd(controller);
// Check the multibody plant.
EXPECT_EQ(controller_ad->get_input_port_estimated_state().size(), num_states);
// Test Expression.
auto controller_sym = systems::System<double>::ToSymbolic(controller);
EXPECT_EQ(controller_sym->get_input_port_estimated_state().size(),
num_states);
JointStiffnessController<double> controller_with_ownership(std::move(mbp), kp,
kd);
// Test AutoDiffXd.
controller_ad =
systems::System<double>::ToAutoDiffXd(controller_with_ownership);
// Check the multibody plant.
EXPECT_EQ(controller_ad->get_input_port_estimated_state().size(), num_states);
// Test Expression.
controller_sym =
systems::System<double>::ToSymbolic(controller_with_ownership);
EXPECT_EQ(controller_sym->get_input_port_estimated_state().size(),
num_states);
}
} // namespace
} // namespace controllers
} // namespace systems
} // namespace drake
| 0 |
/home/johnshepherd/drake/systems/controllers | /home/johnshepherd/drake/systems/controllers/test/inverse_dynamics_test.cc | #include "drake/systems/controllers/inverse_dynamics.h"
#include <memory>
#include <stdexcept>
#include <string>
#include <gtest/gtest.h>
#include "drake/common/drake_assert.h"
#include "drake/common/eigen_types.h"
#include "drake/common/test_utilities/eigen_matrix_compare.h"
#include "drake/common/test_utilities/expect_throws_message.h"
#include "drake/multibody/math/spatial_algebra.h"
#include "drake/multibody/parsing/parser.h"
#include "drake/multibody/tree/multibody_tree.h"
#include "drake/systems/controllers/test_utilities/compute_torque.h"
#include "drake/systems/framework/basic_vector.h"
#include "drake/systems/framework/fixed_input_port_value.h"
using drake::multibody::MultibodyPlant;
using Eigen::VectorXd;
using std::make_unique;
namespace drake {
namespace systems {
namespace controllers {
namespace {
class InverseDynamicsTest : public ::testing::Test {
protected:
void Init(std::unique_ptr<MultibodyPlant<double>> plant,
const InverseDynamics<double>::InverseDynamicsMode mode,
std::unique_ptr<Context<double>> plant_context = nullptr) {
multibody_plant_ = std::move(plant);
multibody_context_ = (plant_context == nullptr)
? multibody_plant_->CreateDefaultContext()
: std::move(plant_context);
inverse_dynamics_ = make_unique<InverseDynamics<double>>(
multibody_plant_.get(), mode, multibody_context_.get());
FinishInit(mode);
}
void FinishInit(const InverseDynamics<double>::InverseDynamicsMode mode) {
inverse_dynamics_context_ = inverse_dynamics_->CreateDefaultContext();
output_ = inverse_dynamics_->AllocateOutput();
// Checks that the system has no state.
EXPECT_TRUE(inverse_dynamics_context_->is_stateless());
// Checks that the number of input and output ports are as desired.
if (mode == InverseDynamics<double>::kGravityCompensation) {
EXPECT_EQ(inverse_dynamics_->num_input_ports(), 1);
} else {
EXPECT_EQ(inverse_dynamics_->num_input_ports(), 2);
}
EXPECT_EQ(inverse_dynamics_->num_output_ports(), 1);
}
void CheckGravityTorque(const Eigen::VectorXd& position) {
CheckTorque(position, VectorXd::Zero(num_velocities()),
VectorXd::Zero(num_velocities()));
}
void CheckTorque(const Eigen::VectorXd& position,
const Eigen::VectorXd& velocity,
const Eigen::VectorXd& acceleration_desired) {
// Desired acceleration.
VectorXd vd_d = VectorXd::Zero(num_velocities());
if (!inverse_dynamics_->is_pure_gravity_compensation()) {
vd_d = acceleration_desired;
}
VectorXd state_input(num_positions() + num_velocities());
state_input << position, velocity;
inverse_dynamics_->get_input_port_estimated_state().FixValue(
inverse_dynamics_context_.get(), state_input);
if (!inverse_dynamics_->is_pure_gravity_compensation()) {
inverse_dynamics_->get_input_port_desired_acceleration().FixValue(
inverse_dynamics_context_.get(), vd_d);
}
// Hook input of the expected size.
inverse_dynamics_->CalcOutput(*inverse_dynamics_context_, output_.get());
// Compute the expected torque.
VectorXd expected_torque;
ASSERT_TRUE(multibody_plant_.get());
ASSERT_TRUE(multibody_context_);
expected_torque = controllers_test::ComputeTorque(
*multibody_plant_, position, velocity, vd_d, multibody_context_.get());
// Checks the expected and computed gravity torque.
const BasicVector<double>* output_vector = output_->get_vector_data(0);
EXPECT_TRUE(CompareMatrices(expected_torque, output_vector->get_value(),
1e-10, MatrixCompareType::absolute));
}
// Determines whether gravity is modeled by checking the generalized forces
// due to gravity.
bool GravityModeled(const VectorXd& q) const {
multibody_plant_->SetPositions(multibody_context_.get(), q);
// Verify that gravitational forces are nonzero (validating that the tree
// is put into the proper configuration and gravity is modeled).
const VectorXd tau_g =
multibody_plant_->CalcGravityGeneralizedForces(*multibody_context_);
return tau_g.norm() > std::numeric_limits<double>::epsilon();
}
private:
int num_positions() const {
DRAKE_DEMAND(multibody_plant_.get() != nullptr);
return multibody_plant_->num_positions();
}
int num_velocities() const {
DRAKE_DEMAND(multibody_plant_.get() != nullptr);
return multibody_plant_->num_velocities();
}
std::unique_ptr<MultibodyPlant<double>> multibody_plant_;
std::unique_ptr<InverseDynamics<double>> inverse_dynamics_;
std::unique_ptr<Context<double>> inverse_dynamics_context_;
std::unique_ptr<Context<double>> multibody_context_;
std::unique_ptr<SystemOutput<double>> output_;
};
// Tests that inverse dynamics returns the expected torque for a given state and
// desired acceleration for the iiwa arm.
TEST_F(InverseDynamicsTest, InverseDynamicsTest) {
auto mbp = std::make_unique<MultibodyPlant<double>>(0.0);
multibody::Parser(mbp.get()).AddModelsFromUrl(
"package://drake_models/iiwa_description/sdf/iiwa14_no_collision.sdf");
mbp->WeldFrames(mbp->world_frame(), mbp->GetFrameByName("iiwa_link_0"));
// Add gravitational forces, finalize the model, and transfer ownership.
mbp->mutable_gravity_field().set_gravity_vector(-9.8 *
Vector3<double>::UnitZ());
mbp->Finalize();
Init(std::move(mbp),
InverseDynamics<double>::InverseDynamicsMode::kInverseDynamics);
Eigen::VectorXd q = Eigen::VectorXd::Zero(7);
Eigen::VectorXd v = Eigen::VectorXd::Zero(7);
Eigen::VectorXd vd_d = Eigen::VectorXd::Zero(7);
for (int i = 0; i < 7; ++i) {
q[i] = i * 0.1 - 0.3;
v[i] = i - 3;
vd_d[i] = i - 3;
}
// Check that gravity is modeled.
EXPECT_TRUE(GravityModeled(q));
CheckTorque(q, v, vd_d);
}
// Tests that inverse dynamics returns the expected torque for a given state and
// desired acceleration for the iiwa arm with a custom context.
TEST_F(InverseDynamicsTest, InverseDynamicsWithCustomContextTest) {
auto mbp = std::make_unique<MultibodyPlant<double>>(0.0);
multibody::Parser(mbp.get()).AddModelsFromUrl(
"package://drake_models/iiwa_description/sdf/iiwa14_no_collision.sdf");
mbp->WeldFrames(mbp->world_frame(), mbp->GetFrameByName("iiwa_link_0"));
mbp->Finalize();
// Create custom context.
auto custom_context = mbp->CreateDefaultContext();
const auto& iiwa_link_7 = mbp->GetBodyByName("iiwa_link_7");
iiwa_link_7.SetMass(custom_context.get(), 10.0);
// Transfer ownership.
Init(std::move(mbp),
InverseDynamics<double>::InverseDynamicsMode::kInverseDynamics,
std::move(custom_context));
Eigen::VectorXd q = Eigen::VectorXd::Zero(7);
Eigen::VectorXd v = Eigen::VectorXd::Zero(7);
Eigen::VectorXd vd_d = Eigen::VectorXd::Zero(7);
for (int i = 0; i < 7; ++i) {
q[i] = i * 0.1 - 0.3;
v[i] = i - 3;
vd_d[i] = i - 3;
}
// Check torques with the custom context.
CheckTorque(q, v, vd_d);
}
// Tests that the expected value of the gravity compensating torque and the
// value computed by the InverseDynamics in pure gravity compensation mode
// for a given joint configuration of the KUKA IIWA Arm are identical.
TEST_F(InverseDynamicsTest, GravityCompensationTest) {
auto mbp = std::make_unique<MultibodyPlant<double>>(0.0);
const std::string url =
"package://drake_models/iiwa_description/sdf/iiwa14_no_collision.sdf";
multibody::Parser(mbp.get()).AddModelsFromUrl(url);
mbp->WeldFrames(mbp->world_frame(), mbp->GetFrameByName("iiwa_link_0"));
mbp->mutable_gravity_field().set_gravity_vector(Vector3<double>::Zero());
// Finalize the model and transfer ownership.
mbp->Finalize();
Init(std::move(mbp),
InverseDynamics<double>::InverseDynamicsMode::kGravityCompensation);
// Defines an arbitrary robot position vector.
Eigen::VectorXd robot_position = Eigen::VectorXd::Zero(7);
robot_position << 0.01, -0.01, 0.01, 0.5, 0.01, -0.01, 0.01;
// Verify that gravity is *not* modeled.
EXPECT_FALSE(GravityModeled(robot_position));
// Re-initialize the model so we can add gravity.
mbp = std::make_unique<MultibodyPlant<double>>(0.0);
multibody::Parser(mbp.get()).AddModelsFromUrl(url);
mbp->WeldFrames(mbp->world_frame(), mbp->GetFrameByName("iiwa_link_0"));
// Add gravitational forces, finalize the model, and transfer ownership.
mbp->mutable_gravity_field().set_gravity_vector(-9.8 *
Vector3<double>::UnitZ());
mbp->Finalize();
Init(std::move(mbp),
InverseDynamics<double>::InverseDynamicsMode::kGravityCompensation);
// Verify that gravity is modeled.
EXPECT_TRUE(GravityModeled(robot_position));
CheckGravityTorque(robot_position);
}
GTEST_TEST(AdditionalInverseDynamicsTest, ScalarConversion) {
auto mbp = std::make_unique<MultibodyPlant<double>>(0.0);
multibody::Parser(mbp.get()).AddModelsFromUrl(
"package://drake_models/iiwa_description/sdf/iiwa14_no_collision.sdf");
mbp->WeldFrames(mbp->world_frame(), mbp->GetFrameByName("iiwa_link_0"));
mbp->Finalize();
const int num_states = mbp->num_multibody_states();
InverseDynamics<double> id(mbp.get());
// Test AutoDiffXd.
auto id_ad = systems::System<double>::ToAutoDiffXd(id);
// Check the multibody plant.
EXPECT_EQ(id_ad->get_input_port_estimated_state().size(), num_states);
// Check the mode.
EXPECT_FALSE(id_ad->is_pure_gravity_compensation());
// Test Expression.
auto id_sym = systems::System<double>::ToSymbolic(id);
EXPECT_EQ(id_sym->get_input_port_estimated_state().size(), num_states);
EXPECT_FALSE(id_sym->is_pure_gravity_compensation());
// Create custom context.
auto custom_context = mbp->CreateDefaultContext();
const auto& iiwa_link_7 = mbp->GetBodyByName("iiwa_link_7");
iiwa_link_7.SetMass(custom_context.get(), 10.0);
auto mbp_copy = drake::multibody::MultibodyPlant<double>::Clone(*mbp);
InverseDynamics<double> id_with_modified_mass(
std::move(mbp), InverseDynamics<double>::kGravityCompensation,
custom_context.get());
// Test AutoDiffXd.
id_ad = systems::System<double>::ToAutoDiffXd(id_with_modified_mass);
// Check the multibody plant.
EXPECT_EQ(id_ad->get_input_port_estimated_state().size(), num_states);
// Check the mode.
EXPECT_TRUE(id_ad->is_pure_gravity_compensation());
// Test Expression.
id_sym = systems::System<double>::ToSymbolic(id_with_modified_mass);
EXPECT_EQ(id_sym->get_input_port_estimated_state().size(), num_states);
EXPECT_TRUE(id_sym->is_pure_gravity_compensation());
// Test AutoDiffXd to double.
auto id_double = systems::System<AutoDiffXd>::ToScalarType<double>(*id_ad);
// Check the multibody plant.
EXPECT_EQ(id_double->get_input_port_estimated_state().size(), num_states);
// Check the mode.
EXPECT_TRUE(id_double->is_pure_gravity_compensation());
// Check gravity torque with custom context.
custom_context = mbp_copy->CreateDefaultContext();
iiwa_link_7.SetMass(custom_context.get(), 10.0);
Eigen::VectorXd robot_position = Eigen::VectorXd::Zero(7);
robot_position << 0.01, -0.01, 0.01, 0.5, 0.01, -0.01, 0.01;
VectorXd state_input(14);
state_input << robot_position, Eigen::VectorXd::Zero(7);
auto id_double_context = id_double->CreateDefaultContext();
id_double->get_input_port_estimated_state().FixValue(id_double_context.get(),
state_input);
auto output = id_double->AllocateOutput();
id_double->CalcOutput(*id_double_context, output.get());
VectorXd expected_torque;
expected_torque = controllers_test::ComputeTorque(
*mbp_copy, robot_position, Eigen::VectorXd::Zero(7),
Eigen::VectorXd::Zero(7), custom_context.get());
auto output_vector = output->get_vector_data(0);
EXPECT_TRUE(CompareMatrices(expected_torque, output_vector->get_value(),
1e-14, MatrixCompareType::absolute));
}
} // namespace
} // namespace controllers
} // namespace systems
} // namespace drake
| 0 |
/home/johnshepherd/drake/systems/controllers | /home/johnshepherd/drake/systems/controllers/test/pid_controller_test.cc | #include "drake/systems/controllers/pid_controller.h"
#include <memory>
#include <string>
#include <gtest/gtest.h>
#include "drake/common/eigen_types.h"
#include "drake/common/test_utilities/eigen_matrix_compare.h"
#include "drake/common/test_utilities/expect_no_throw.h"
#include "drake/systems/framework/basic_vector.h"
#include "drake/systems/framework/fixed_input_port_value.h"
using std::make_unique;
namespace drake {
namespace systems {
namespace controllers {
namespace {
typedef Eigen::Matrix<double, 3, 1, Eigen::DontAlign> Vector3d;
class PidControllerTest : public ::testing::Test {
protected:
void SetUp() override {
context_ = controller_.CreateDefaultContext();
output_ = controller_.AllocateOutput();
derivatives_ = controller_.AllocateTimeDerivatives();
// State:
VectorX<double> vec0 = VectorX<double>::Zero(port_size_ * 2);
controller_.get_input_port(0).FixValue(context_.get(), vec0);
// Desired state:
VectorX<double> vec1(port_size_ * 2);
vec1 << error_signal_, error_rate_signal_;
controller_.get_input_port(1).FixValue(context_.get(), vec1);
}
const int port_size_{3};
const VectorX<double> kp_{VectorX<double>::Ones(port_size_) * 2.0};
const VectorX<double> ki_{VectorX<double>::Ones(port_size_) * 3.0};
const VectorX<double> kd_{VectorX<double>::Ones(port_size_) * 1.0};
PidController<double> controller_{kp_, ki_, kd_};
std::unique_ptr<Context<double>> context_;
std::unique_ptr<SystemOutput<double>> output_;
std::unique_ptr<ContinuousState<double>> derivatives_;
// Error = estimated - desired.
Vector3d error_signal_{1.0, 2.0, 3.0};
Vector3d error_rate_signal_{1.3, 0.9, 3.14};
};
TEST_F(PidControllerTest, PortNames) {
EXPECT_EQ(controller_.GetInputPort("estimated_state").get_index(),
controller_.get_input_port_estimated_state().get_index());
EXPECT_EQ(controller_.GetInputPort("desired_state").get_index(),
controller_.get_input_port_desired_state().get_index());
EXPECT_EQ(controller_.GetOutputPort("control").get_index(),
controller_.get_output_port_control().get_index());
}
// Tests getter methods for controller constants.
TEST_F(PidControllerTest, Getters) {
ASSERT_EQ(kp_, controller_.get_Kp_vector());
ASSERT_EQ(ki_, controller_.get_Ki_vector());
ASSERT_EQ(kd_, controller_.get_Kd_vector());
DRAKE_EXPECT_NO_THROW(controller_.get_Kp_singleton());
DRAKE_EXPECT_NO_THROW(controller_.get_Ki_singleton());
DRAKE_EXPECT_NO_THROW(controller_.get_Kd_singleton());
}
TEST_F(PidControllerTest, GetterVectors) {
const Eigen::Vector2d kp{1.0, 2.0};
const Eigen::Vector2d ki{1.0, 2.0};
const Eigen::Vector2d kd{1.0, 2.0};
PidController<double> controller{kp, ki, kd};
DRAKE_EXPECT_NO_THROW(controller.get_Kp_vector());
DRAKE_EXPECT_NO_THROW(controller.get_Ki_vector());
DRAKE_EXPECT_NO_THROW(controller.get_Kd_vector());
ASSERT_EQ(kp, controller.get_Kp_vector());
ASSERT_EQ(ki, controller.get_Ki_vector());
ASSERT_EQ(kd, controller.get_Kd_vector());
EXPECT_THROW(controller.get_Kp_singleton(), std::runtime_error);
}
TEST_F(PidControllerTest, GetterVectorKi) {
const Eigen::Vector2d kp{1.0, 2.0};
const Eigen::Vector2d ki{1.0, 2.0};
const Eigen::Vector2d kd{1.0, 2.0};
PidController<double> controller{kp, ki, kd};
EXPECT_THROW(controller.get_Ki_singleton(), std::runtime_error);
}
TEST_F(PidControllerTest, GetterVectorKd) {
const Eigen::Vector2d kp{1.0, 2.0};
const Eigen::Vector2d ki{1.0, 2.0};
const Eigen::Vector2d kd{1.0, 2.0};
PidController<double> controller{kp, ki, kd};
EXPECT_THROW(controller.get_Kd_singleton(), std::runtime_error);
}
// Evaluates the output and asserts correctness.
TEST_F(PidControllerTest, CalcOutput) {
ASSERT_NE(nullptr, context_);
ASSERT_NE(nullptr, output_);
// Evaluates the output.
controller_.CalcOutput(*context_, output_.get());
ASSERT_EQ(1, output_->num_ports());
const BasicVector<double>* output_vector = output_->get_vector_data(0);
EXPECT_EQ(3, output_vector->size());
EXPECT_EQ((kp_.array() * error_signal_.array() +
kd_.array() * error_rate_signal_.array())
.matrix(),
output_vector->get_value());
// Initializes the integral to a non-zero value. A more interesting example.
VectorX<double> integral_value(port_size_);
integral_value << 3.0, 2.0, 1.0;
controller_.set_integral_value(context_.get(), integral_value);
controller_.CalcOutput(*context_, output_.get());
EXPECT_EQ((kp_.array() * error_signal_.array() +
ki_.array() * integral_value.array() +
kd_.array() * error_rate_signal_.array())
.matrix(),
output_vector->get_value());
}
// Evaluates derivatives and asserts correctness.
TEST_F(PidControllerTest, CalcTimeDerivatives) {
ASSERT_NE(nullptr, context_);
ASSERT_NE(nullptr, derivatives_);
// Evaluates the derivatives.
controller_.CalcTimeDerivatives(*context_, derivatives_.get());
ASSERT_EQ(3, derivatives_->size());
ASSERT_EQ(0, derivatives_->get_generalized_position().size());
ASSERT_EQ(0, derivatives_->get_generalized_velocity().size());
ASSERT_EQ(3, derivatives_->get_misc_continuous_state().size());
EXPECT_EQ(error_signal_, derivatives_->CopyToVector());
}
TEST_F(PidControllerTest, DirectFeedthrough) {
// When the proportional or derivative gain is nonzero, there is direct
// feedthrough from both the state and error inputs to the output.
EXPECT_TRUE(controller_.HasAnyDirectFeedthrough());
EXPECT_TRUE(controller_.HasDirectFeedthrough(0, 0));
EXPECT_TRUE(controller_.HasDirectFeedthrough(1, 0));
// When the gains are all zero, there is no direct feedthrough from any
// input to any output.
const VectorX<double> zero{VectorX<double>::Zero(port_size_)};
PidController<double> zero_controller(zero, zero, zero);
EXPECT_FALSE(zero_controller.HasAnyDirectFeedthrough());
}
TEST_F(PidControllerTest, ToAutoDiff) {
std::unique_ptr<System<AutoDiffXd>> clone = controller_.ToAutoDiffXd();
ASSERT_NE(clone, nullptr);
const auto* const downcast =
dynamic_cast<PidController<AutoDiffXd>*>(clone.get());
ASSERT_NE(downcast, nullptr);
EXPECT_EQ(downcast->get_Kp_vector(), kp_);
EXPECT_EQ(downcast->get_Ki_vector(), ki_);
EXPECT_EQ(downcast->get_Kd_vector(), kd_);
}
GTEST_TEST(PidConstructorTest, TestThrow) {
// Gains size mismatch.
EXPECT_THROW(PidController<double>(VectorX<double>(2), VectorX<double>(3),
VectorX<double>(3)),
std::logic_error);
// State projection row != 2 * |kp|.
EXPECT_THROW(PidController<double>(MatrixX<double>(5, 2), VectorX<double>(3),
VectorX<double>(3), VectorX<double>(3)),
std::logic_error);
// Output projection col != |kp|
EXPECT_THROW(PidController<double>(MatrixX<double>(6, 2),
MatrixX<double>(3, 2), VectorX<double>(3),
VectorX<double>(3), VectorX<double>(3)),
std::logic_error);
}
// Tests the full version with non identity P_input and P_output.
GTEST_TEST(PidIOProjectionTest, Test) {
const int num_full_q = 3;
const int num_controlled_q = 2;
const int num_control = 3;
std::srand(1234);
const VectorX<double> kp = VectorX<double>::Random(num_controlled_q);
const VectorX<double> kd = VectorX<double>::Random(num_controlled_q);
const VectorX<double> ki = VectorX<double>::Random(num_controlled_q);
MatrixX<double> P_input =
MatrixX<double>::Random(2 * num_controlled_q, 2 * num_full_q);
MatrixX<double> P_output =
MatrixX<double>::Random(num_control, num_controlled_q);
PidController<double> dut(P_input, P_output, kp, ki, kd);
auto context = dut.CreateDefaultContext();
auto output = dut.AllocateOutput();
VectorX<double> x = VectorX<double>::Random(2 * num_full_q);
VectorX<double> x_d = VectorX<double>::Random(2 * num_controlled_q);
VectorX<double> integral = VectorX<double>::Random(num_controlled_q);
// State:
dut.get_input_port(0).FixValue(context.get(), x);
// Desired state:
dut.get_input_port(1).FixValue(context.get(), x_d);
// Integral:
dut.set_integral_value(context.get(), integral);
dut.CalcOutput(*context, output.get());
VectorX<double> x_err = x_d - P_input * x;
auto q_err = x_err.head(num_controlled_q);
auto v_err = x_err.tail(num_controlled_q);
VectorX<double> output_expected = (kp.array() * q_err.array()).matrix() +
(kd.array() * v_err.array()).matrix() +
(ki.array() * integral.array()).matrix();
output_expected = P_output * output_expected;
EXPECT_TRUE(CompareMatrices(output_expected,
output->get_vector_data(0)->get_value(), 1e-12,
MatrixCompareType::absolute));
}
} // namespace
} // namespace controllers
} // namespace systems
} // namespace drake
| 0 |
/home/johnshepherd/drake/systems/controllers | /home/johnshepherd/drake/systems/controllers/test/pid_controlled_system_test.cc | #include "drake/systems/controllers/pid_controlled_system.h"
#include <memory>
#include <gtest/gtest.h>
#include "drake/common/eigen_types.h"
#include "drake/common/test_utilities/expect_no_throw.h"
#include "drake/systems/framework/diagram.h"
#include "drake/systems/framework/diagram_builder.h"
#include "drake/systems/framework/leaf_system.h"
#include "drake/systems/primitives/constant_vector_source.h"
#include "drake/systems/primitives/saturation.h"
namespace drake {
namespace systems {
namespace controllers {
namespace {
// This is the parent class of the two test plants defined below.
class TestPlant : public LeafSystem<double> {
public:
TestPlant() {}
double GetInputValue(const Context<double>& context) {
return get_input_port(0).Eval(context)[0];
}
};
// A plant with an input port zero of size 1 and an output port zero of size 2.
// This is the minimum sized output port zero relative to the size of its input
// port zero, meaning all of the elements in its output port zero are fed back
// to the PID controller. A diagram of the resulting PidControlledSystem is
// given below, where X is the desired state of the plant and Q is the actual
// state of the plant.
//
// 2 +---------------+
// X ---/--->| | 1 +-----------+ 2
// | PidController |--/-->| TestPlant |---/---+---> Q
// +-->| | +-----------+ |
// | +---------------+ |
// | |
// +----------------------------------------------+
//
class TestPlantWithMinOutputs : public TestPlant {
public:
TestPlantWithMinOutputs() {
DeclareVectorInputPort(kUseDefaultName, 1);
DeclareVectorOutputPort(kUseDefaultName, 2,
&TestPlantWithMinOutputs::CalcOutputVector,
{this->nothing_ticket()});
}
void CalcOutputVector(const Context<double>&,
BasicVector<double>* output) const {
BasicVector<double>& output_vector = *output;
output_vector[0] = 1.;
output_vector[1] = 0.1;
}
};
// A plant with an input port one of size 1 and an output port zero of size 6.
// The plant's output port zero has four elements that should not be fed back
// to the PID controller. A feedback selector system is used to determine which
// two elements of the plant's output port zero are fed back to the PID
// controller. A diagram of the resulting PidControlledSystem is given below,
// where X is the desired state of the plant and Q is the actual state of the
// plant.
//
// 2 +---------------+
// X ---/--->| | 1 +-----------+ 6
// | PidController |--/-->| TestPlant |---/---+---> Q
// +-->| | +-----------+ |
// | +---------------+ |
// | |
// | 2 +------------------+ |
// +----------/-----------| FeedbackSelector |----+
// +------------------+
//
class TestPlantWithMoreOutputs : public TestPlant {
public:
TestPlantWithMoreOutputs() {
DeclareVectorInputPort(kUseDefaultName, 1);
DeclareVectorOutputPort(kUseDefaultName, 6,
&TestPlantWithMoreOutputs::CalcOutputVector,
{this->nothing_ticket()});
}
void CalcOutputVector(const Context<double>&,
BasicVector<double>* output) const {
BasicVector<double>& output_vector = *output;
output_vector[0] = 1.;
output_vector[1] = 0.1;
output_vector[2] = 3.14;
output_vector[3] = 6.89;
output_vector[4] = 90.37;
output_vector[5] = 498.9;
}
};
class TestPlantWithMoreOutputPorts : public TestPlant {
public:
TestPlantWithMoreOutputPorts() {
// Declare some empty plant input port.
DeclareVectorInputPort(kUseDefaultName, 0);
DeclareVectorInputPort(kUseDefaultName, 1);
// Declare some non-state output port.
DeclareVectorOutputPort(
kUseDefaultName, 3,
&TestPlantWithMoreOutputPorts::CalcNonStateOutputVector,
{this->nothing_ticket()});
DeclareVectorOutputPort(
kUseDefaultName, 2,
&TestPlantWithMoreOutputPorts::CalcStateOutputVector,
{this->nothing_ticket()});
}
void CalcNonStateOutputVector(const Context<double>&,
BasicVector<double>* output) const {
BasicVector<double>& output_vector = *output;
output_vector[0] = 2.;
output_vector[1] = 0.2;
output_vector[2] = 0.02;
}
void CalcStateOutputVector(const Context<double>&,
BasicVector<double>* output) const {
BasicVector<double>& output_vector = *output;
output_vector[0] = 43.;
output_vector[1] = 0.68;
}
};
class PidControlledSystemTest : public ::testing::Test {
protected:
// Instantiates a PidControlledSystem based on the supplied plant and
// feedback selector. Verifies that the output of the PID controller is
// correct relative to the hard-coded input and gain values.
void DoPidControlledSystemTest(
std::unique_ptr<TestPlant> plant,
const MatrixX<double>& feedback_selector) {
DiagramBuilder<double> builder;
const Vector1d input(1.);
const Eigen::Vector2d state(1.1, 0.2);
auto input_source = builder.AddSystem<ConstantVectorSource>(input);
input_source->set_name("input");
auto state_source = builder.AddSystem<ConstantVectorSource>(state);
state_source->set_name("state");
auto controller = builder.AddSystem<PidControlledSystem>(
std::move(plant), feedback_selector, Kp_, Ki_, Kd_);
builder.Connect(input_source->get_output_port(),
controller->get_input_port(0));
builder.Connect(state_source->get_output_port(),
controller->get_input_port(1));
builder.ExportOutput(controller->get_output_port(0));
diagram_ = builder.Build();
auto context = diagram_->CreateDefaultContext();
auto output = diagram_->AllocateOutput();
const systems::Context<double>& plant_context =
diagram_->GetSubsystemContext(*controller->plant(),
*context);
diagram_->CalcOutput(*context, output.get());
const BasicVector<double>* output_vec = output->get_vector_data(0);
const double pid_input = dynamic_cast<TestPlant*>(controller->plant())
->GetInputValue(plant_context);
EXPECT_EQ(pid_input, input[0] +
(state[0] - output_vec->get_value()[0]) * Kp_(0) +
(state[1] - output_vec->get_value()[1]) * Kd_(0));
}
const Vector1d Kp_{2};
const Vector1d Ki_{0};
const Vector1d Kd_{0.1};
std::unique_ptr<Diagram<double>> diagram_;
};
// Tests that the PidController preserves the names of the plant.
TEST_F(PidControlledSystemTest, ExistingNamesRespected) {
auto plant = std::make_unique<TestPlantWithMinOutputs>();
plant->set_name("my awesome plant!");
auto plant_ptr = plant.get();
const int state_size = plant->get_output_port(0).size();
PidControlledSystem<double> controller(
std::move(plant), MatrixX<double>::Identity(state_size, state_size),
Kp_, Ki_, Kd_);
EXPECT_EQ("my awesome plant!", plant_ptr->get_name());
}
// Tests a plant where the size of output port zero is twice the size of input
// port zero.
TEST_F(PidControlledSystemTest, SimplePidControlledSystem) {
// Our test plant is just a multiplexer which takes the input and outputs it
// twice.
auto plant = std::make_unique<TestPlantWithMinOutputs>();
const int state_size = plant->get_output_port(0).size();
DoPidControlledSystemTest(std::move(plant),
MatrixX<double>::Identity(state_size, state_size));
}
// Tests a plant where the size of output port zero is more than twice the size
// of input port zero.
TEST_F(PidControlledSystemTest, PlantWithMoreOutputs) {
auto plant = std::make_unique<TestPlantWithMoreOutputs>();
const int plant_output_size = plant->get_output_port(0).size();
const int controller_feedback_size = plant->get_input_port(0).size() * 2;
// Selects the first two signals from the plant's output port zero as the
// feedback for the controller.
MatrixX<double> feedback_selector_matrix(controller_feedback_size,
plant_output_size);
EXPECT_EQ(feedback_selector_matrix.rows(), 2);
EXPECT_EQ(feedback_selector_matrix.cols(), 6);
feedback_selector_matrix << 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0;
DoPidControlledSystemTest(std::move(plant), feedback_selector_matrix);
}
// Tests that additional output ports of the plant are exposed through the
// new diagram.
TEST_F(PidControlledSystemTest, PlantWithMoreOutputPorts) {
auto plant = std::make_unique<TestPlantWithMoreOutputPorts>();
const int state_output_port_index = 1;
const int plant_input_port_index = 1;
PidControlledSystem<double> system(std::move(plant), Kp_, Ki_, Kd_,
state_output_port_index,
plant_input_port_index);
EXPECT_EQ(system.num_output_ports(), 2);
EXPECT_EQ(system.get_output_port(0).size(), 3);
EXPECT_EQ(system.get_output_port(1).size(), 2);
auto context = system.CreateDefaultContext();
auto output = system.AllocateOutput();
system.CalcOutput(*context, output.get());
EXPECT_EQ(output->get_vector_data(0)->GetAtIndex(1), 0.2);
EXPECT_EQ(output->get_vector_data(1)->GetAtIndex(1), 0.68);
}
class ConnectControllerTest : public ::testing::Test {
protected:
void SetUp() override {
auto plant_ptr = std::make_unique<TestPlantWithMinOutputs>();
feedback_selector_ = MatrixX<double>::Identity(
plant_ptr->get_output_port(0).size(),
plant_ptr->get_output_port(0).size());
plant_ = builder_.AddSystem(std::move(plant_ptr));
input_source_ = builder_.AddSystem<ConstantVectorSource>(plant_input_);
state_source_ = builder_.AddSystem<ConstantVectorSource>(desired_state_);
builder_.ExportOutput(plant_->get_output_port(0));
}
void ConnectPidPorts(
PidControlledSystem<double>::ConnectResult plant_pid_ports) {
builder_.Connect(input_source_->get_output_port(),
plant_pid_ports.control_input_port);
builder_.Connect(state_source_->get_output_port(),
plant_pid_ports.state_input_port);
}
double ComputePidInput() {
auto standard_diagram = builder_.Build();
auto context = standard_diagram->CreateDefaultContext();
auto plant_output =
standard_diagram->GetSubsystemByName(plant_->get_name())
.AllocateOutput();
auto& plant_context =
standard_diagram->GetSubsystemContext(*plant_, *context);
plant_->CalcOutput(plant_context, plant_output.get());
const BasicVector<double>* output_vec = plant_output->get_vector_data(0);
const double pid_input =
dynamic_cast<TestPlant*>(plant_)->GetInputValue(plant_context);
output_position_ = output_vec->get_value()[0];
output_velocity_ = output_vec->get_value()[1];
return pid_input;
}
TestPlantWithMinOutputs* plant_;
const Vector1d Kp{4};
const Vector1d Ki{0};
const Vector1d Kd{0.5};
DiagramBuilder<double> builder_;
ConstantVectorSource<double>* input_source_ = nullptr;
ConstantVectorSource<double>* state_source_ = nullptr;
MatrixX<double> feedback_selector_;
const Vector1d plant_input_{1.0};
const Eigen::Vector2d desired_state_{1.1, 0.2};
double output_position_{0.0};
double output_velocity_{0.0};
};
// Tests a plant where the controller is attached with the ConnectController
// method.
TEST_F(ConnectControllerTest, NonSaturatingController) {
auto plant_pid_ports = PidControlledSystem<double>::ConnectController(
plant_->get_input_port(0), plant_->get_output_port(0),
feedback_selector_, Kp, Ki, Kd, &builder_);
ConnectPidPorts(plant_pid_ports);
const double pid_input = ComputePidInput();
double calculated_input = plant_input_[0] +
(desired_state_[0] - output_position_) * Kp(0) +
(desired_state_[1] - output_velocity_) * Kd(0);
EXPECT_EQ(pid_input, calculated_input);
}
// Tests a plant where the controller is attached with the ConnectController
// method and a Saturation in the input to the plant.
TEST_F(ConnectControllerTest, SaturatingController) {
// Sets the max input in the case of saturation_test.
const double saturation_max = 0.5;
auto plant_pid_ports =
PidControlledSystem<double>::ConnectControllerWithInputSaturation(
plant_->get_input_port(0), plant_->get_output_port(0),
feedback_selector_, Kp, Ki, Kd, Vector1d(0.0) /* u_min */,
Vector1d(saturation_max), &builder_);
ConnectPidPorts(plant_pid_ports);
const double pid_input = ComputePidInput();
double calculated_input = saturation_max;
EXPECT_EQ(pid_input, calculated_input);
}
// Ensure that multiple plants can coexist in the same diagram (yes,
// this was broken at one point).
TEST_F(ConnectControllerTest, MultipleControllerTest) {
auto plant_pid_ports = PidControlledSystem<double>::ConnectController(
plant_->get_input_port(0), plant_->get_output_port(0),
feedback_selector_, Kp, Ki, Kd, &builder_);
ConnectPidPorts(plant_pid_ports);
// Add another PidControlledSystem and confirm there's nothing that
// prevents two plants from existing in the same diagram.
SetUp();
auto second_plant_pid_ports = PidControlledSystem<double>::ConnectController(
plant_->get_input_port(0), plant_->get_output_port(0),
feedback_selector_, Kp, Ki, Kd, &builder_);
ConnectPidPorts(second_plant_pid_ports);
DRAKE_EXPECT_NO_THROW(builder_.Build());
}
} // namespace
} // namespace controllers
} // namespace systems
} // namespace drake
| 0 |
/home/johnshepherd/drake/systems/controllers | /home/johnshepherd/drake/systems/controllers/test/linear_model_predictive_controller_test.cc | #include "drake/systems/controllers/linear_model_predictive_controller.h"
#include <gtest/gtest.h>
#include "drake/common/test_utilities/eigen_matrix_compare.h"
#include "drake/math/discrete_algebraic_riccati_equation.h"
#include "drake/systems/analysis/simulator.h"
#include "drake/systems/framework/diagram.h"
#include "drake/systems/framework/diagram_builder.h"
#include "drake/systems/primitives/linear_system.h"
namespace drake {
namespace systems {
namespace controllers {
namespace {
using math::DiscreteAlgebraicRiccatiEquation;
class TestMpcWithDoubleIntegrator : public ::testing::Test {
protected:
void SetUp() override {
const double kTimeStep = 0.1; // discrete time step.
const double kTimeHorizon = 10.; // Time horizon.
// A discrete approximation of a double integrator.
Eigen::Matrix2d A;
Eigen::Vector2d B;
A << 1, 0.1, 0, 1;
B << 0.005, 0.1;
const auto C = Eigen::Matrix<double, 2, 2>::Identity();
const auto D = Eigen::Matrix<double, 2, 1>::Zero();
std::unique_ptr<LinearSystem<double>> system =
std::make_unique<LinearSystem<double>>(A, B, C, D, kTimeStep);
// Nominal, fixed reference condition.
const Eigen::Vector2d x0 = Eigen::Vector2d::Zero();
const Vector1d u0 = Vector1d::Zero();
std::unique_ptr<Context<double>> system_context =
system->CreateDefaultContext();
system->get_input_port().FixValue(system_context.get(), u0);
system_context->SetDiscreteState(0, x0);
dut_.reset(new LinearModelPredictiveController<double>(
std::move(system), std::move(system_context), Q_, R_, kTimeStep,
kTimeHorizon));
// Store another copy of the linear plant model.
system_.reset(new LinearSystem<double>(A, B, C, D, kTimeStep));
}
// Cost matrices.
const Eigen::Matrix2d Q_ = Eigen::Matrix2d::Identity();
const Vector1d R_ = Vector1d::Constant(1.);
std::unique_ptr<LinearModelPredictiveController<double>> dut_;
std::unique_ptr<LinearSystem<double>> system_;
};
TEST_F(TestMpcWithDoubleIntegrator, TestAgainstInfiniteHorizonSolution) {
const double kTolerance = 1e-5;
const Eigen::Matrix2d A = system_->A();
const Eigen::Matrix<double, 2, 1> B = system_->B();
// Analytical solution to the LQR problem.
const Eigen::Matrix2d S = DiscreteAlgebraicRiccatiEquation(A, B, Q_, R_);
const Eigen::Matrix<double, 1, 2> K =
-(R_ + B.transpose() * S * B).inverse() * (B.transpose() * S * A);
const Eigen::Matrix<double, 2, 1> x0 = Eigen::Vector2d::Ones();
auto context = dut_->CreateDefaultContext();
dut_->get_input_port(0).FixValue(context.get(), x0);
std::unique_ptr<SystemOutput<double>> output = dut_->AllocateOutput();
dut_->CalcOutput(*context, output.get());
EXPECT_TRUE(CompareMatrices(K * x0, output->get_vector_data(0)->get_value(),
kTolerance));
}
namespace {
// A discrete-time cubic polynomial system.
template <typename T>
class CubicPolynomialSystem final : public LeafSystem<T> {
public:
explicit CubicPolynomialSystem(double time_step)
: LeafSystem<T>(SystemTypeTag<CubicPolynomialSystem>{}),
time_step_(time_step) {
this->DeclareInputPort(kUseDefaultName, kVectorValued, 1);
this->DeclareVectorOutputPort(kUseDefaultName, 2,
&CubicPolynomialSystem::OutputState,
{this->all_state_ticket()});
this->DeclareDiscreteState(2);
this->DeclarePeriodicDiscreteUpdateEvent(
time_step, 0.0, &CubicPolynomialSystem<T>::CalcDiscreteUpdate);
}
template <typename U>
CubicPolynomialSystem(const CubicPolynomialSystem<U>& other)
: CubicPolynomialSystem(other.time_step_) {}
private:
template <typename> friend class CubicPolynomialSystem;
// x1(k+1) = u(k)
// x2(k+1) = -x1³(k)
void CalcDiscreteUpdate(
const Context<T>& context,
DiscreteValues<T>* next_state) const {
using std::pow;
const T& x1 = context.get_discrete_state(0).get_value()[0];
const T& u = this->get_input_port(0).Eval(context)[0];
next_state->set_value(0, Vector2<T>{u, pow(x1, 3.)});
}
void OutputState(const systems::Context<T>& context,
BasicVector<T>* output) const {
output->set_value(context.get_discrete_state(0).get_value());
}
const double time_step_{0.};
};
} // namespace
class TestMpcWithCubicSystem : public ::testing::Test {
protected:
const System<double>& GetSystemByName(std::string name,
const Diagram<double>& diagram) {
const System<double>* result{nullptr};
for (const System<double>* system : diagram.GetSystems()) {
if (system->get_name() == name) result = system;
}
return *result;
}
void MakeTimeInvariantMpcController() {
EXPECT_NE(nullptr, system_);
auto context = system_->CreateDefaultContext();
// Set nominal input to zero.
system_->get_input_port(0).FixValue(context.get(), 0.);
// Set the nominal state.
BasicVector<double>& x =
context->get_mutable_discrete_state().get_mutable_vector();
x.SetFromVector(Eigen::Vector2d::Zero()); // Fixed point is zero.
dut_.reset(new LinearModelPredictiveController<double>(
std::move(system_), std::move(context), Q_, R_, time_step_,
time_horizon_));
}
void MakeControlledSystem(bool is_time_varying) {
EXPECT_FALSE(is_time_varying); // TODO(jadecastro) Introduce tests for the
// time-varying case.
EXPECT_EQ(nullptr, diagram_);
system_.reset(new CubicPolynomialSystem<double>(time_step_));
EXPECT_FALSE(system_->HasAnyDirectFeedthrough());
DiagramBuilder<double> builder;
auto cubic_system = builder.AddSystem<CubicPolynomialSystem>(time_step_);
cubic_system->set_name("cubic_system");
MakeTimeInvariantMpcController();
EXPECT_NE(nullptr, dut_);
auto controller = builder.AddSystem(std::move(dut_));
controller->set_name("controller");
builder.Connect(cubic_system->get_output_port(0),
controller->get_state_port());
builder.Connect(controller->get_control_port(),
cubic_system->get_input_port(0));
diagram_ = builder.Build();
}
void Simulate() {
EXPECT_NE(nullptr, diagram_);
EXPECT_EQ(nullptr, simulator_);
simulator_.reset(new Simulator<double>(*diagram_));
const auto& cubic_system = GetSystemByName("cubic_system", *diagram_);
Context<double>& cubic_system_context =
diagram_->GetMutableSubsystemContext(
cubic_system, &simulator_->get_mutable_context());
BasicVector<double>& x0 =
cubic_system_context.get_mutable_discrete_state().get_mutable_vector();
// Set an initial condition near the fixed point.
x0.SetFromVector(10. * Eigen::Vector2d::Ones());
simulator_->set_target_realtime_rate(1.);
simulator_->Initialize();
simulator_->AdvanceTo(time_horizon_);
}
const double time_step_ = 0.1;
const double time_horizon_ = 0.2;
// Set up the quadratic cost matrices.
const Eigen::Matrix2d Q_ = Eigen::Matrix2d::Identity();
const Vector1d R_ = Vector1d::Constant(1.);
std::unique_ptr<Simulator<double>> simulator_;
private:
std::unique_ptr<LinearModelPredictiveController<double>> dut_;
std::unique_ptr<CubicPolynomialSystem<double>> system_;
std::unique_ptr<Diagram<double>> diagram_;
};
TEST_F(TestMpcWithCubicSystem, TimeInvariantMpc) {
const double kTolerance = 1e-10;
MakeControlledSystem(false /* is NOT time-varying */);
Simulate();
// Result should be deadbeat; expect convergence to within a tiny tolerance in
// one step.
Eigen::Vector2d result =
simulator_->get_mutable_context().get_discrete_state(0).get_value();
EXPECT_TRUE(CompareMatrices(result, Eigen::Vector2d::Zero(), kTolerance));
}
GTEST_TEST(TestMpcConstructor, ThrowIfRNotStrictlyPositiveDefinite) {
const auto A = Eigen::Matrix<double, 2, 2>::Identity();
const auto B = Eigen::Matrix<double, 2, 2>::Identity();
const auto C = Eigen::Matrix<double, 2, 2>::Identity();
const auto D = Eigen::Matrix<double, 2, 2>::Zero();
std::unique_ptr<LinearSystem<double>> system =
std::make_unique<LinearSystem<double>>(A, B, C, D, 1.);
std::unique_ptr<Context<double>> context = system->CreateDefaultContext();
system->get_input_port().FixValue(context.get(), Eigen::Vector2d::Zero());
const Eigen::Matrix2d Q = Eigen::Matrix2d::Identity();
// Provide a positive-definite matrix (but not strict).
Eigen::Matrix2d R = Eigen::Matrix2d::Identity();
R(0, 0) = 0.;
// Expect the constructor to throw since R is not strictly positive definite.
EXPECT_THROW(LinearModelPredictiveController<double>(
std::move(system), std::move(context), Q, R, 1., 1.),
std::runtime_error);
}
} // namespace
} // namespace controllers
} // namespace systems
} // namespace drake
| 0 |
/home/johnshepherd/drake/systems/controllers | /home/johnshepherd/drake/systems/controllers/test/finite_horizon_linear_quadratic_regulator_test.cc | #include "drake/systems/controllers/finite_horizon_linear_quadratic_regulator.h"
#include <gtest/gtest.h>
#include "drake/common/test_utilities/eigen_matrix_compare.h"
#include "drake/systems/controllers/linear_quadratic_regulator.h"
#include "drake/systems/framework/test_utilities/scalar_conversion.h"
#include "drake/systems/primitives/linear_system.h"
#include "drake/systems/primitives/symbolic_vector_system.h"
namespace drake {
namespace systems {
namespace controllers {
namespace {
// For a time-invariant system and cost, the LinearQuadraticRegulator should be
// a stable fixed-point for the finite-horizon solution.
GTEST_TEST(FiniteHorizonLQRTest, InfiniteHorizonTest) {
// Double integrator dynamics: qddot = u, where q is the position coordinate.
Eigen::Matrix2d A;
Eigen::Vector2d B;
A << 0, 1, 0, 0;
B << 0, 1;
LinearSystem<double> sys(A, B, Eigen::Matrix<double, 0, 2>::Zero(),
Eigen::Matrix<double, 0, 1>::Zero());
Eigen::Matrix2d Q = Eigen::Matrix2d::Identity();
Vector1d R = Vector1d(4.12);
Eigen::Vector2d N(2.2, 1.3);
LinearQuadraticRegulatorResult lqr_result =
LinearQuadraticRegulator(A, B, Q, R, N);
const double t0 = 0;
const double tf = 40.0;
FiniteHorizonLinearQuadraticRegulatorOptions options;
auto context = sys.CreateDefaultContext();
sys.get_input_port().FixValue(context.get(), 0.0);
options.N = N;
// Test that it converges towards the fixed point from zero final cost.
FiniteHorizonLinearQuadraticRegulatorResult result =
FiniteHorizonLinearQuadraticRegulator(sys, *context, t0, tf, Q, R,
options);
EXPECT_EQ(result.S->start_time(), t0);
EXPECT_EQ(result.S->end_time(), tf);
EXPECT_EQ(result.sx->start_time(), t0);
EXPECT_EQ(result.sx->end_time(), tf);
EXPECT_EQ(result.s0->start_time(), t0);
EXPECT_EQ(result.s0->end_time(), tf);
// Confirm that it's initialized to zero.
EXPECT_TRUE(result.S->value(tf).isZero(1e-12));
EXPECT_TRUE(result.sx->value(tf).isZero(1e-12));
EXPECT_TRUE(result.s0->value(tf).isZero(1e-12));
// Confirm that it converges to the infinite-horizon solution.
EXPECT_TRUE(CompareMatrices(result.S->value(t0), lqr_result.S, 1e-5));
EXPECT_TRUE(result.sx->value(t0).isZero(1e-12));
EXPECT_TRUE(result.s0->value(t0).isZero(1e-12));
EXPECT_EQ(result.K->start_time(), t0);
EXPECT_EQ(result.K->end_time(), tf);
EXPECT_TRUE(CompareMatrices(result.K->value(t0), lqr_result.K, 1e-5));
EXPECT_TRUE(result.k0->value(t0).isZero(1e-12));
EXPECT_TRUE(CompareMatrices(result.x0->value(t0), Eigen::Vector2d::Zero()));
EXPECT_TRUE(CompareMatrices(result.x0->value(tf), Eigen::Vector2d::Zero()));
EXPECT_TRUE(CompareMatrices(result.u0->value(t0), Vector1d::Zero()));
EXPECT_TRUE(CompareMatrices(result.u0->value(tf), Vector1d::Zero()));
// Test that the System version also works.
const std::unique_ptr<System<double>> regulator =
MakeFiniteHorizonLinearQuadraticRegulator(sys, *context, t0, tf, Q, R,
options);
auto regulator_context = regulator->CreateDefaultContext();
const Eigen::Vector2d x(.1, -.3);
regulator->get_input_port(0).FixValue(regulator_context.get(), x);
EXPECT_EQ(regulator->get_input_port(0).size(), 2);
EXPECT_EQ(regulator->get_output_port(0).size(), 1);
EXPECT_TRUE(
CompareMatrices(regulator->get_output_port(0).Eval(*regulator_context),
-lqr_result.K * x, 1e-5));
// Test that it stays at the fixed-point if initialized at the fixed point.
options.Qf = lqr_result.S;
result = FiniteHorizonLinearQuadraticRegulator(sys, *context, t0, t0 + 2.0, Q,
R, options);
EXPECT_TRUE(CompareMatrices(result.S->value(t0), lqr_result.S, 1e-12));
EXPECT_TRUE(CompareMatrices(result.K->value(t0), lqr_result.K, 1e-12));
// Already confirmed above that sx, s0, and k0 stay zero.
// Test that the Square Root Method also maintains the fixed point.
options.use_square_root_method = true;
result = FiniteHorizonLinearQuadraticRegulator(sys, *context, t0, t0 + 2.0, Q,
R, options);
EXPECT_TRUE(CompareMatrices(result.S->value(t0), lqr_result.S, 1e-4));
EXPECT_TRUE(CompareMatrices(result.K->value(t0), lqr_result.K, 1e-4));
EXPECT_TRUE(CompareMatrices(result.x0->value(t0), Eigen::Vector2d::Zero()));
EXPECT_TRUE(CompareMatrices(result.x0->value(tf), Eigen::Vector2d::Zero()));
EXPECT_TRUE(CompareMatrices(result.u0->value(t0), Vector1d::Zero()));
EXPECT_TRUE(CompareMatrices(result.u0->value(tf), Vector1d::Zero()));
}
// Verify that we can stabilize a non-zero fixed-point specified via the
// nominal trajectory options.
GTEST_TEST(FiniteHorizonLQRTest, NominalTrajectoryTest) {
symbolic::Variable x("x");
symbolic::Variable u("u");
const auto system = SymbolicVectorSystemBuilder()
.state(x)
.input(u)
.dynamics(-x + pow(x, 3) + u)
.Build();
auto context = system->CreateDefaultContext();
system->get_input_port().FixValue(context.get(), 0.0);
const Vector1d Q(1.0);
const Vector1d R(1.0);
FiniteHorizonLinearQuadraticRegulatorOptions options;
// We can make any state a fixed point using u = x - x^3.
for (const double x0 : std::vector<double>({-2, -1., 0., 1, 2})) {
const Vector1d x0v(x0);
const Vector1d u0v(x0 - std::pow(x0, 3));
context->SetContinuousState(x0v);
system->get_input_port().FixValue(context.get(), u0v);
auto linear_sys = Linearize(*system, *context);
LinearQuadraticRegulatorResult lqr_result = LinearQuadraticRegulator(
linear_sys->A(), linear_sys->B(), Q, R, Eigen::Matrix<double, 0, 0>());
// Test that it stays at the fixed-point if initialized at the fixed point.
const double t0 = 2;
const double tf = 2.3;
options.Qf = lqr_result.S;
trajectories::PiecewisePolynomial<double> x0_traj(x0v);
options.x0 = &x0_traj;
options.xd = &x0_traj;
trajectories::PiecewisePolynomial<double> u0_traj(u0v);
options.u0 = &u0_traj;
FiniteHorizonLinearQuadraticRegulatorResult result =
FiniteHorizonLinearQuadraticRegulator(*system, *context, t0, tf, Q, R,
options);
EXPECT_TRUE(
CompareMatrices(result.S->value(t0), result.S->value(tf), 1e-12));
EXPECT_TRUE(CompareMatrices(result.S->value(t0), lqr_result.S, 1e-12));
EXPECT_TRUE(CompareMatrices(result.K->value(t0), lqr_result.K, 1e-12));
EXPECT_TRUE(CompareMatrices(result.x0->value(t0), x0v));
EXPECT_TRUE(CompareMatrices(result.x0->value(tf), x0v));
EXPECT_TRUE(CompareMatrices(result.u0->value(t0), u0v));
EXPECT_TRUE(CompareMatrices(result.u0->value(tf), u0v));
// Test that the System version also works.
const std::unique_ptr<System<double>> regulator =
MakeFiniteHorizonLinearQuadraticRegulator(*system, *context, t0, tf, Q,
R, options);
auto regulator_context = regulator->CreateDefaultContext();
const Vector1d xs(-.3);
regulator->get_input_port(0).FixValue(regulator_context.get(), xs);
EXPECT_EQ(regulator->get_input_port(0).size(), 1);
EXPECT_EQ(regulator->get_output_port(0).size(), 1);
EXPECT_TRUE(
CompareMatrices(regulator->get_output_port(0).Eval(*regulator_context),
u0v - lqr_result.K * (xs - x0v), 1e-5));
}
}
// Tests the affine terms by setting options.xd != options.x0. We can stabilize
// the double integrator away from the origin, and the resulting solution should
// be match the quadratic form from LQR, but shifted to the new desired fixed
// point.
GTEST_TEST(FiniteHorizonLQRTest, DoubleIntegratorWithNonZeroGoal) {
// Double integrator dynamics: qddot = u, where q is the position coordinate.
Eigen::Matrix2d A;
Eigen::Vector2d B;
A << 0, 1, 0, 0;
B << 0, 1;
LinearSystem<double> sys(A, B, Eigen::Matrix<double, 0, 2>::Zero(),
Eigen::Matrix<double, 0, 1>::Zero());
Eigen::Matrix2d Q = Eigen::Matrix2d::Identity();
Vector1d R = Vector1d(4.12);
Eigen::Vector2d N(2.2, 1.3);
LinearQuadraticRegulatorResult lqr_result =
LinearQuadraticRegulator(A, B, Q, R);
const double t0 = 0;
const double tf = 15.0;
FiniteHorizonLinearQuadraticRegulatorOptions options;
auto context = sys.CreateDefaultContext();
sys.get_input_port().FixValue(context.get(), 0.0);
const Eigen::Vector2d xdv(2.87, 0);
trajectories::PiecewisePolynomial<double> xd_traj(xdv);
options.xd = &xd_traj;
FiniteHorizonLinearQuadraticRegulatorResult result =
FiniteHorizonLinearQuadraticRegulator(sys, *context, t0, tf, Q, R,
options);
// Confirm that it converges to the solution (the same quadratic form, but
// shifted to the new origin): Sxx = lqr.S, sx = -Sxx*xd, s0 = xd'*Sxx*xd.
EXPECT_TRUE(CompareMatrices(result.S->value(t0), lqr_result.S, 1e-5));
EXPECT_TRUE(CompareMatrices(result.sx->value(t0), -lqr_result.S * xdv, 1e-5));
EXPECT_TRUE(CompareMatrices(result.s0->value(t0),
xdv.transpose() * lqr_result.S * xdv, 1e-5));
// The controller should be the same linear controller, but also shifted to
// the new origin: Kx = lqr.K, k0 = -Kx*xdv.
EXPECT_TRUE(CompareMatrices(result.K->value(t0), lqr_result.K, 1e-5));
EXPECT_TRUE(CompareMatrices(result.k0->value(t0), -lqr_result.K * xdv, 1e-5));
// Test that the System version also works.
const std::unique_ptr<System<double>> regulator =
MakeFiniteHorizonLinearQuadraticRegulator(sys, *context, t0, tf, Q, R,
options);
auto regulator_context = regulator->CreateDefaultContext();
const Eigen::Vector2d x(.1, -.3);
regulator->get_input_port(0).FixValue(regulator_context.get(), x);
EXPECT_TRUE(
CompareMatrices(regulator->get_output_port(0).Eval(*regulator_context),
-lqr_result.K * (x - xdv), 1e-5));
}
// Tests the affine terms by solving LQR from a different coordinate system.
// Given an affine system: xdot = Ax + Bu + c, with B invertible, we have a
// fixed point at x0=0, B*u0 = -c. Normally, we would stabilize as a linear
// system in relative to x0, u0 using LQR. Here we will leave the coordinate
// system alone (x0=0, u0=0), but set B*ud = -c. The steady-state solution to
// the finite-horizon LQR problem will contain non-zero affine terms in order
// to get back to the offset form of this LQR controller.
GTEST_TEST(FiniteHorizonLQRTest, AffineSystemTest) {
Eigen::Matrix2d A;
Eigen::Matrix2d B;
Eigen::Vector2d c;
A << 0, 1, 0, 0;
B << 5, 6, 7, 8;
c << 9, 10;
AffineSystem<double> sys(A, B, c, Eigen::Matrix<double, 0, 2>(),
Eigen::Matrix<double, 0, 2>(),
Eigen::Matrix<double, 0, 1>());
Eigen::Matrix2d Q;
Eigen::Matrix2d R;
Eigen::Matrix2d N;
Q << 0.8, 0.7, 0.7, 0.9;
R << 1.4, 0.2, 0.2, 1.2;
N << 0.1, 0.2, 0.3, 0.4;
// Solve it again with the other interface to get access to S.
LinearQuadraticRegulatorResult lqr_result =
LinearQuadraticRegulator(A, B, Q, R, N);
const double t0 = 0;
const double tf = 70.0;
FiniteHorizonLinearQuadraticRegulatorOptions options;
auto context = sys.CreateDefaultContext();
sys.get_input_port().FixValue(context.get(), Eigen::Vector2d::Zero());
const Eigen::Vector2d udv = -B.inverse() * c;
trajectories::PiecewisePolynomial<double> ud_traj(udv);
options.ud = &ud_traj;
options.N = N;
options.Qf = lqr_result.S;
FiniteHorizonLinearQuadraticRegulatorResult result =
FiniteHorizonLinearQuadraticRegulator(sys, *context, t0, tf, Q, R,
options);
// The LQR x'Sx is the correct solution, because this is equivalent to solving
// the in linear system in xbar=(x-x0), ubar=(u-0); and the LQR solution is
// xbar'Sxbar, with x0=0. However, in the finite-horizon version, all of the
// affine terms must be correct to cancel each other out.
EXPECT_TRUE(CompareMatrices(result.S->value(t0), lqr_result.S, 2e-5));
EXPECT_TRUE(result.sx->value(t0).isZero(1e-5));
EXPECT_TRUE(result.s0->value(t0).isZero(1e-5));
// The LQR controller would be u0 - Kx, so Kx = lqr.K, k0 = -u0.
EXPECT_TRUE(CompareMatrices(result.K->value(t0), lqr_result.K, 2e-4));
EXPECT_TRUE(CompareMatrices(result.k0->value(t0), -udv, 1e-5));
// Test that the System version also works.
const std::unique_ptr<System<double>> regulator =
MakeFiniteHorizonLinearQuadraticRegulator(sys, *context, t0, tf, Q, R,
options);
auto regulator_context = regulator->CreateDefaultContext();
const Eigen::Vector2d x(.1, -.3);
regulator->get_input_port(0).FixValue(regulator_context.get(), x);
EXPECT_TRUE(
CompareMatrices(regulator->get_output_port(0).Eval(*regulator_context),
udv - lqr_result.K * x, 4e-5));
// Test that the square root method also works.
options.use_square_root_method = true;
result = FiniteHorizonLinearQuadraticRegulator(sys, *context, t0, tf, Q, R,
options);
EXPECT_TRUE(CompareMatrices(result.S->value(t0), lqr_result.S, 1e-4));
EXPECT_TRUE(result.sx->value(t0).isZero(1e-5));
EXPECT_TRUE(result.s0->value(t0).isZero(1e-5));
EXPECT_TRUE(CompareMatrices(result.K->value(t0), lqr_result.K, 1e-4));
EXPECT_TRUE(CompareMatrices(result.k0->value(t0), -udv, 1e-4));
}
// Ensures that we can scalar convert the System version of the regulator.
GTEST_TEST(FiniteHorizonLQRTest, ResultSystemIsScalarConvertible) {
Eigen::Matrix2d A;
Eigen::Vector2d B;
A << 0, 1, 0, 0;
B << 0, 1;
LinearSystem<double> sys(A, B, Eigen::Matrix<double, 0, 2>::Zero(),
Eigen::Matrix<double, 0, 1>::Zero());
auto context = sys.CreateDefaultContext();
sys.get_input_port().FixValue(context.get(), 0.0);
const double t0 = 0.0;
Eigen::Matrix2d Q = Eigen::Matrix2d::Identity();
Vector1d R = Vector1d(1.0);
const std::unique_ptr<System<double>> regulator =
MakeFiniteHorizonLinearQuadraticRegulator(sys, *context, t0, t0 + 0.1, Q,
R);
EXPECT_TRUE(is_autodiffxd_convertible(*regulator, [&](const auto& converted) {
EXPECT_EQ(converted.num_input_ports(), 1);
EXPECT_EQ(converted.num_total_inputs(), 2);
EXPECT_EQ(converted.num_output_ports(), 1);
EXPECT_EQ(converted.num_total_outputs(), 1);
}));
EXPECT_TRUE(is_symbolic_convertible(*regulator));
}
GTEST_TEST(FiniteHorizonLQRTest, SimulatorConfig) {
// Double integrator dynamics: qddot = u, where q is the position coordinate.
Eigen::Matrix2d A;
Eigen::Vector2d B;
A << 0, 1, 0, 0;
B << 0, 1;
LinearSystem<double> sys(A, B, Eigen::Matrix<double, 0, 2>::Zero(),
Eigen::Matrix<double, 0, 1>::Zero());
Eigen::Matrix2d Q = Eigen::Matrix2d::Identity();
Vector1d R = Vector1d(4.12);
const double t0 = 0;
const double tf = 3.0;
FiniteHorizonLinearQuadraticRegulatorOptions options;
options.simulator_config.use_error_control = false;
options.simulator_config.max_step_size = 0.1;
auto context = sys.CreateDefaultContext();
sys.get_input_port().FixValue(context.get(), 0.0);
FiniteHorizonLinearQuadraticRegulatorResult result =
FiniteHorizonLinearQuadraticRegulator(sys, *context, t0, tf, Q, R,
options);
const trajectories::PiecewisePolynomial<double>* S =
dynamic_cast<const trajectories::PiecewisePolynomial<double>*>(
result.S.get());
ASSERT_NE(S, nullptr);
EXPECT_EQ(S->get_number_of_segments(), 30);
options.simulator_config.max_step_size = 0.2;
result = FiniteHorizonLinearQuadraticRegulator(sys, *context, t0, tf, Q, R,
options);
S = dynamic_cast<const trajectories::PiecewisePolynomial<double>*>(
result.S.get());
ASSERT_NE(S, nullptr);
EXPECT_EQ(S->get_number_of_segments(), 15);
}
} // namespace
} // namespace controllers
} // namespace systems
} // namespace drake
| 0 |
/home/johnshepherd/drake/systems/controllers | /home/johnshepherd/drake/systems/controllers/test/setpoint_test.cc | #include "drake/systems/controllers/setpoint.h"
#include <gtest/gtest.h>
#include "drake/common/test_utilities/eigen_matrix_compare.h"
namespace drake {
namespace systems {
namespace controllers {
// Test rotational difference between the desired and measured orientation.
// They are both generated by rotating around the same vector, and they differ
// in the angle of rotation.
GTEST_TEST(testQPInverseDynamicsController, testPoseSetpoint) {
// Desired values are specified with suffix "_d"
const double ang_d = 0.3;
const Vector3<double> vec_d = Vector3<double>(-0.3, 0.6, 0.9).normalized();
// Desired orientation
const math::RigidTransform<double> pose_d(AngleAxis<double>(ang_d, vec_d),
Vector3<double>::Zero());
// Set Kp to 1, and everything else to zeros, so the computed acceleration
// is the rotation difference.
CartesianSetpoint<double> setpoint(pose_d.GetAsIsometry3(),
Vector6<double>::Zero(),
Vector6<double>::Zero(),
Vector6<double>::Constant(1),
Vector6<double>::Zero());
math::RigidTransform<double> pose = pose_d;
Vector6<double> acc, expected;
expected.setZero();
for (double ang = ang_d; ang < ang_d + 2 * M_PI + 0.1; ang += 0.1) {
pose.set_rotation(AngleAxis<double>(ang, vec_d));
acc = setpoint.ComputeTargetAcceleration(
pose.GetAsIsometry3(), Vector6<double>::Zero());
double err = ang_d - ang;
if (err > M_PI)
err -= 2 * M_PI;
else if (err < -M_PI)
err += 2 * M_PI;
expected.head<3>() = err * vec_d;
EXPECT_TRUE(
CompareMatrices(acc, expected, 1e-8, MatrixCompareType::absolute));
}
}
} // namespace controllers
} // namespace systems
} // namespace drake
| 0 |