La-matrice commited on
Commit
e57783c
·
verified ·
1 Parent(s): b9629e6

Upload normalization.py

Browse files

Normalization process of our original dataset

Files changed (1) hide show
  1. normalization.py +55 -0
normalization.py ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pandas as pd
2
+ import pyarrow as pa
3
+ import pyarrow.parquet as pq
4
+
5
+ # Define normalization parameters
6
+ norm_params = {
7
+ 'LAT': {'min_val': -66.817333, 'max_val': 51.055833},
8
+ 'LON': {'min_val': -178.116667, 'max_val': 171.358333},
9
+ 'ALTI': {'min_val': 0.0, 'max_val': 3845.0},
10
+ 'AAAAMMJJHH': {'min_val': 1777010107, 'max_val': 2024030803},
11
+ 'ANNEE': {'min_val': 1777, 'max_val': 2024},
12
+ 'MOIS': {'min_val': 1, 'max_val': 12},
13
+ 'JOUR': {'min_val': 1, 'max_val': 31},
14
+ 'HEURE': {'min_val': 0, 'max_val': 23},
15
+ }
16
+
17
+ def normalize_column(column, min_val, max_val):
18
+ """Normalize pandas Series from [min_val, max_val] to [0, 1]."""
19
+ # Ensure column is treated as float for division to work properly.
20
+ return (column.astype('float64') - min_val) / (max_val - min_val)
21
+
22
+ # Load the dataset in chunks
23
+ dataset_path = 'C:/Users/View/Desktop/oetem/dataset/dataset.parquet'
24
+ parquet_file = pq.ParquetFile(dataset_path)
25
+
26
+ # Determine the output file path
27
+ output_path = 'C:/Users/View/Desktop/oetem/dataset/dataset_normalized.parquet'
28
+
29
+ # Initialize variables for writing
30
+ writer = None
31
+ schema = None
32
+
33
+ # Process and normalize chunks
34
+ for i in range(parquet_file.num_row_groups):
35
+ table = parquet_file.read_row_group(i, columns=list(norm_params.keys()) + [' T'])
36
+ chunk = table.to_pandas()
37
+
38
+ # Normalize the columns
39
+ for col, params in norm_params.items():
40
+ chunk[col] = normalize_column(chunk[col], min_val=params['min_val'], max_val=params['max_val'])
41
+
42
+ # Convert the DataFrame back to a PyArrow Table for writing
43
+ #table = pa.Table.from_pandas(chunk)
44
+ table = pa.Table.from_pandas(chunk, preserve_index=False)
45
+
46
+ # If first chunk, initialize the writer with the schema
47
+ if writer is None:
48
+ schema = table.schema
49
+ writer = pq.ParquetWriter(output_path, schema)
50
+
51
+ writer.write_table(table)
52
+
53
+ # Close the writer to finalize the file
54
+ if writer is not None:
55
+ writer.close()