File size: 1,707 Bytes
ae0e3d8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
---
task_categories:
- image-classification
---
# AutoTrain Dataset for project: cancer-lakera
## Dataset Description
This dataset has been automatically processed by AutoTrain for project cancer-lakera.
### Languages
The BCP-47 code for the dataset's language is unk.
## Dataset Structure
### Data Instances
A sample from this dataset looks as follows:
```json
[
{
"image": "<600x450 RGB PIL image>",
"feat_image_id": "ISIC_0024329",
"feat_lesion_id": "HAM_0002954",
"target": 0,
"feat_dx_type": "histo",
"feat_age": 75.0,
"feat_sex": "female",
"feat_localization": "lower extremity"
},
{
"image": "<600x450 RGB PIL image>",
"feat_image_id": "ISIC_0024372",
"feat_lesion_id": "HAM_0005389",
"target": 0,
"feat_dx_type": "histo",
"feat_age": 70.0,
"feat_sex": "male",
"feat_localization": "lower extremity"
}
]
```
### Dataset Fields
The dataset has the following fields (also called "features"):
```json
{
"image": "Image(decode=True, id=None)",
"feat_image_id": "Value(dtype='string', id=None)",
"feat_lesion_id": "Value(dtype='string', id=None)",
"target": "ClassLabel(names=['actinic_keratoses', 'basal_cell_carcinoma', 'benign_keratosis-like_lesions'], id=None)",
"feat_dx_type": "Value(dtype='string', id=None)",
"feat_age": "Value(dtype='float64', id=None)",
"feat_sex": "Value(dtype='string', id=None)",
"feat_localization": "Value(dtype='string', id=None)"
}
```
### Dataset Splits
This dataset is split into a train and validation split. The split sizes are as follow:
| Split name | Num samples |
| ------------ | ------------------- |
| train | 1200 |
| valid | 150 |
|