|
|
|
import json |
|
import pandas as pd |
|
import datasets |
|
|
|
logger = datasets.logging.get_logger(__name__) |
|
|
|
_DESCRIPTION = """\ |
|
Klue Machine Reading Comprehension Data |
|
""" |
|
|
|
_URL = "https://huggingface.co/datasets/LeverageX/klue-mrc/resolve/main/" |
|
_URLS = { |
|
"train_data": _URL + "klue-mrc-v1.1_train.json", |
|
"validation_data": _URL + "klue-mrc-v1.1_dev.json", |
|
} |
|
|
|
class KoreanNewspaper(datasets.GeneratorBasedBuilder): |
|
|
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig( |
|
name="KLUE Machine Reading Comprehension", |
|
version=datasets.Version("1.0.0", ""), |
|
description="For LeverageX Project", |
|
), |
|
] |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"context": datasets.Value("string"), |
|
"question": datasets.Value("string"), |
|
"answers": |
|
{ |
|
"answer_start" : datasets.Sequence(datasets.Value("int32")), |
|
"text":datasets.Sequence(datasets.Value("string")) |
|
}, |
|
"guid":datasets.Value("string"), |
|
|
|
} |
|
), |
|
|
|
|
|
supervised_keys=None, |
|
homepage="https://klue-benchmark.com/tasks/70/overview/description", |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
downloaded_files = dl_manager.download_and_extract(_URLS) |
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train_data"]}), |
|
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["validation_data"]}), |
|
] |
|
|
|
def _generate_examples(self, filepath): |
|
"""This function returns the examples in the raw (text) form.""" |
|
logger.info("generating examples from = %s", filepath) |
|
key = 0 |
|
with open(filepath, encoding="utf-8") as f : |
|
data = json.load(f) |
|
|
|
data = data['data'] |
|
|
|
for info in data : |
|
title = info['title'] |
|
news_category = info['news_category'] |
|
source = info['source'] |
|
|
|
paragraphs = info['paragraphs'] |
|
|
|
if len(paragraphs) == 0 : |
|
continue |
|
|
|
context = paragraphs[0]['context'] |
|
qas = paragraphs[0]['qas'] |
|
|
|
for q in qas : |
|
question = q['question'] |
|
|
|
answer_key = 'answers' if len(q['answers']) > 0 else 'plausible_answers' |
|
answer = q[answer_key] |
|
|
|
answer_text_list = [] |
|
answer_start_list = [] |
|
|
|
for ans in answer : |
|
answer_text_list.append(ans['text']) |
|
answer_start_list.append(ans['answer_start']) |
|
|
|
answer_data = {'text' : answer_text_list, 'answer_start' : answer_start_list} |
|
guid = q['guid'] |
|
|
|
yield key, { |
|
"guid" : guid, |
|
"context" : context, |
|
"question" : question, |
|
"answers" : answer_data |
|
} |
|
key += 1 |