|
import pandas as pd |
|
import os |
|
import gzip |
|
import random |
|
import re |
|
from tqdm import tqdm |
|
def get_all_files_in_directory(directory): |
|
all_files = [] |
|
for root, dirs, files in os.walk(directory): |
|
root = root[len(directory):] |
|
if root.startswith('\\') or root.startswith('/'): |
|
root = root[1:] |
|
for file in files: |
|
file_path = os.path.join(root, file) |
|
all_files.append(file_path) |
|
return all_files |
|
|
|
class Fileset(list): |
|
def __init__(self, path, ext='', _read=None): |
|
if isinstance(path, str): |
|
self.root = path |
|
self.extend(f for f in get_all_files_in_directory(self.root) if f.endswith(ext)) |
|
self._read = _read |
|
|
|
def __getitem__(self, index): |
|
if isinstance(index, int): |
|
if self._read: |
|
return self._read(os.path.join(self.root, super().__getitem__(index))) |
|
else: |
|
return os.path.join(self.root, super().__getitem__(index)) |
|
else: |
|
fileset = Fileset(None) |
|
fileset.root = self.root |
|
fileset._read = self._read |
|
fileset.extend(super().__getitem__(index)) |
|
return fileset |
|
|
|
def readOne(filePath): |
|
with gzip.open(filePath, 'rt', encoding='utf-8') if filePath.endswith('.gz') else open(filePath, encoding='utf-8') as f: |
|
retn = [line.strip() for line in f] |
|
return retn |
|
|
|
rawcorpus = Fileset(r'D:\datasets\h-corpus\h-ss-corpus','.txt.gz', _read=readOne) |
|
corpus = [] |
|
queries = [] |
|
qrels = [] |
|
|
|
reg_4 = re.compile(r'(.)\1{3,}') |
|
def has_four_or_more_repeated_chars(text): |
|
return bool(reg_4.search(text)) |
|
|
|
def randsqidx(tmp): |
|
for i in range(20): |
|
sqidx = random.randint(10, len(tmp) - 10) |
|
if any(len(tmp[i]) < 20 or len(tmp[i]) > 512 or has_four_or_more_repeated_chars(tmp[i]) for i in range(sqidx-2, sqidx+3)): |
|
continue |
|
return sqidx |
|
return -1 |
|
|
|
def appendqrels(tmp, sqidx, _range, sr): |
|
qidx = len(queries) |
|
queries.append((qidx, tmp[sqidx])) |
|
if corpus: |
|
cidx = corpus[-1][0] + 3 |
|
else: |
|
cidx = 2 |
|
for k in _range: |
|
corpus.append((cidx+k, tmp[sqidx+k])) |
|
qrels.append((qidx, cidx+k, sr[k+2])) |
|
|
|
def split3(s): |
|
retn = [] |
|
cache = '' |
|
for one in s: |
|
cache += one |
|
if len(cache) < 64: |
|
continue |
|
if one in ('?', '!', '。', '?', '!'): |
|
retn.append(cache) |
|
cache = '' |
|
|
|
return retn |
|
|
|
def main(): |
|
for i in tqdm(range(len(rawcorpus)), desc="Converting"): |
|
tmp = rawcorpus[i] |
|
if len(tmp) < 30: |
|
continue |
|
if random.randint(0, 3): |
|
sqidx = randsqidx(tmp) |
|
if sqidx > 2: |
|
appendqrels(tmp, sqidx, (-2, -1, 1, 2), (0.95, 0.97, 1, 0.97, 0.95)) |
|
continue |
|
for s in tmp: |
|
if len(s) <= 512: |
|
continue |
|
s = split3(s) |
|
if len(s) < 3: |
|
continue |
|
sqidx = random.randint(1, len(s)-2) |
|
appendqrels(s, sqidx, (-1, 1), (0.95, 1, 1, 1, 0.95)) |
|
break |
|
|
|
main() |
|
|
|
corpus_pd = pd.DataFrame(corpus, columns=['cid', 'text'], dtype=str) |
|
queries_pd = pd.DataFrame(queries, columns=['qid', 'text'], dtype=str) |
|
qrels_pd = pd.DataFrame(qrels, columns=['qid', 'cid', 'score'], dtype=str) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
corpus_pd['cid'] = corpus_pd['cid'].astype(str) |
|
queries_pd['qid'] = queries_pd['qid'].astype(str) |
|
qrels_pd['qid'] = qrels_pd['qid'].astype(str) |
|
qrels_pd['cid'] = qrels_pd['cid'].astype(str) |
|
qrels_pd['score'] = (qrels_pd['score']*100).astype(int) |
|
|
|
corpus_pd.to_parquet( |
|
r"D:\datasets\H2Retrieval\data\corpus.parquet.gz", |
|
engine="pyarrow", |
|
compression="gzip", |
|
) |
|
queries_pd.to_parquet( |
|
r"D:\datasets\H2Retrieval\data\queries.parquet.gz", |
|
engine="pyarrow", |
|
compression="gzip", |
|
) |
|
qrels_pd.to_parquet( |
|
r"D:\datasets\H2Retrieval\data\qrels.parquet.gz", |
|
engine="pyarrow", |
|
compression="gzip", |
|
) |