File size: 78,742 Bytes
2873ac9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 |
import csv
import os
import datasets
import numpy as np
from datetime import datetime
import pandas as pd
from datasets import IterableDataset
from scipy.stats import skew
import sys
import pickle
from sklearn.preprocessing import LabelEncoder
DATASET_SAVE_PATH = os.path.join(os.path.expanduser('~'),"mimic3_dataset")
os.makedirs(DATASET_SAVE_PATH,exist_ok=True)
np.set_printoptions(threshold=sys.maxsize)
np.set_printoptions(suppress=True)
###################################
# SOME UTILS #
###################################
def get_progression(current,total,length=20,filled_str="=",empty_str="-"):
nb = round(length*current/total)
return "["+(nb*filled_str)+((length-nb)*empty_str)+"]"
def is_empty_value(value,empty_value):
"""
Returns if value is an empty value (for exemple np.nan if empty_value is np.nan)
value must not be a list
"""
return (isinstance(value,float) and np.isnan(empty_value) and np.isnan(value)) or ((type(value) != list) and (value == empty_value))
def is_empty_list(l,empty_value):
"""
Returns if list is filled only with empty values (for exemple empty_value==np.nan and empty_value==[np.nan,np.nan])
value must be a list
"""
if isinstance(l,float) or isinstance(l,str) or isinstance(l,int):
return False
for elem in l:
if not is_empty_value(elem,empty_value):
return False
return True
def dtc(x):
"""
string to datetime
"""
return datetime.strptime(x, '%Y-%m-%d %H:%M:%S')
def bic(x):
"""
string to int
"""
try:
return (-1 if x == "" else int(x))
except:
print("error",x)
return -1
def bfc(x):
"""
string to float
"""
try:
return (-1 if x == "" else float(x))
except:
print("error",x)
return -1
def id_to_string(id):
"""
id (string or float) to float
"""
if (isinstance(id,float) and np.isnan(id)) or not id or id == "":
return id
try:
return str(int(float(id)))
except:
return str(id)
################################################################################
################################################################################
## ##
## DATASET TO NUMPY ARRAY ##
## ##
################################################################################
################################################################################
###################################
# ABOUT DATA NORMALIZATION #
###################################
def calculate_normalization(iterator):
"""
calculates means and stds over every columns of every episode given by iterator\n
"""
nb = 0
sum_x = None
sum_x_sq = None
#feeding data
for batch in iterator:
x = np.array(batch[0])
nb += x.shape[0]*x.shape[1]
if sum_x is None:
sum_x = np.sum(x, axis=(0,1))
sum_x_sq = np.sum(x**2, axis=(0,1))
else:
sum_x += np.sum(x, axis=(0,1))
sum_x_sq += np.sum(x**2, axis=(0,1))
#Computing mean
means = (1.0 / nb) * sum_x
eps = 1e-7
#Computing stds
stds = np.sqrt((1.0/(nb - 1)) * (sum_x_sq - (2.0 * sum_x * means) + (nb * means**2)))
stds[stds < eps] = eps
return means,stds
def normalize(X, means, stds, columns=[]):
"""
normalizes X with means and stds. Columns is the list of columns you want to normalize. if no columns given everything is normalized\n
"""
ret = 1.0 * X
if len(columns) > 0:
for col in columns:
ret[:,:,col] = (X[:,:,col] - means[col]) / stds[col]
else:
for col in range(X.shape[2]):
ret[:,:,col] = (X[:,:,col] - means[col]) / stds[col]
return ret
def try_load_normalizer(path, nb_columns):
"""
Tries to load means and stds from saved file.\n
If files (path) doesn't exist returns empty means and stds lists
nb_columns is the number of columns in the dataset (not the number of columns you load)
"""
means,stds = np.zeros(nb_columns),np.ones(nb_columns)
if not os.path.isfile(path):
return [],[]
with open(path, newline='') as csvfile:
spamreader = csv.DictReader(csvfile, delimiter=',')
for row in spamreader:
means[int(row["column"])] = float(row["mean"])
stds[int(row["column"])] = float(row["std"])
return means,stds
###################################
# THE DICTIONARIES / CONSTANTS #
###################################
#The default values for some columns
normal_values = {
"Capillary refill rate": 0.0,
"Diastolic blood pressure": 59.0,
"Fraction inspired oxygen": 0.21,
"Glascow coma scale eye opening": "4 Spontaneously",
"Glascow coma scale motor response": "6 Obeys Commands",
"Glascow coma scale total": "15.0",
"Glascow coma scale verbal response": "5 Oriented",
"Glucose": 128.0,
"Heart Rate": 86,
"Height": 170.0,
"Mean blood pressure": 77.0,
"Oxygen saturation": 98.0,
"Respiratory rate": 19,
"Systolic blood pressure": 118.0,
"Temperature": 36.6,
"Weight": 81.0,
"pH": 7.4
}
#Dictionary to transform some string values in columns to integers or indexes
discretizer = {
"Glascow coma scale eye opening": [
(["None"],0),
(["1 No Response"],1),
(["2 To pain","To Pain"],2),
(["3 To speech","To Speech"],3),
(["4 Spontaneously","Spontaneously"],4),
],
"Glascow coma scale motor response": [
(["1 No Response","No response"],1),
(["2 Abnorm extensn","Abnormal extension"],2),
(["3 Abnorm flexion","Abnormal Flexion"],3),
(["4 Flex-withdraws","Flex-withdraws"],4),
(["5 Localizes Pain","Localizes Pain"],5),
(["6 Obeys Commands","Obeys Commands"],6),
],
"Glascow coma scale total": [
(["3.0"],3),
(["4.0"],4),
(["5.0"],5),
(["6.0"],6),
(["7.0"],7),
(["8.0"],8),
(["9.0"],9),
(["10.0"],10),
(["11.0"],11),
(["12.0"],12),
(["13.0"],13),
(["14.0"],14),
(["15.0"],15),
],
"Glascow coma scale verbal response": [
(["1 No Response","No Response-ETT","1.0 ET/Trach","No Response"],1),
(["2 Incomp sounds","Incomprehensible sounds"],2),
(["3 Inapprop words","Inappropriate Words"],3),
(["4 Confused","Confused"],4),
(["5 Oriented","Oriented"],5),
]
}
#The loaded files dictionaries
itemiddict = {}
######################################################################
# NORMALIZATION TYPE "WINDOW" WITH AMOUNT/RATE PROBLEM #
######################################################################
def normalize_onehot_episodes_window(row, code_column="", value_column=False, period_length=48.0, window_size=1e-1):
"""
returns a dict which keys are the items of code_column, and values lists representing the sliding window over period_length of size window_size
made for hot encodings
"""
N_bins = int(period_length / window_size + 1.0 - 0.000001)
returned_rates = {}
for idx,starttime in enumerate(row["STARTTIME"]):
if not pd.isnull(row["ENDTIME"][idx]) and row["ENDTIME"][idx] != None and row["ENDTIME"][idx] != "":
endtime = row["ENDTIME"][idx]
isRate = True
else:
endtime = starttime
isRate = False
code = row[code_column][idx]
if code == "" or (isinstance(code,float) and np.isnan(code)) or pd.isnull(code):
continue
first_bin_id = int(starttime / window_size - 0.000001)
last_bin_id = min(N_bins-1,int(endtime / window_size - 0.000001))
val = 1
if value_column:
val = row["RATE"][idx]*60 if isRate else row["AMOUNT"][idx]*60
#If code not in dict we add an array of size N_bins containing zeros
if not code in returned_rates:
returned_rates[code] = [0]*N_bins
#We add the current value to the good timestamp in the rates array
for bin_id in range(first_bin_id,last_bin_id+1):
returned_rates[code][bin_id] += val
return returned_rates
#######################################
# NORMALIZATION TYPE "WINDOW" #
#######################################
def normalize_episodes_window(row, period_length=48.0, window_size=1e-1):
"""
returns a window for the first period_length hours with window_size hours
values in the dict "row" must not be lists
"""
#Getting types in every columns
types = {}
for e in row["episode"]:
if isinstance(row["episode"][e][0],float):
types[e] = float
else:
types[e] = str
episode = {}
#Number of rows
N_bins = int(period_length / window_size + 1.0 - 0.000001)
#Building every column with empty values
for e in row["episode"]:
if e != "Hours":
episode[e] = [np.nan]*N_bins
#Filling with avaible data in the episode
for idx,time in enumerate(row["episode"]["Hours"]):
#Calculating row of the current data
bin_id = int(time / window_size - 0.000001)
#Filling for every column
for col in episode:
v = row["episode"][col][idx]
#If data is not empty we add it
if v != "" and not (isinstance(v,float) and np.isnan(v)) and not v == None:
episode[col][bin_id] = v
return episode
#######################################
# NORMALIZATION TYPE "STATISTICS" #
#######################################
def normalize_episodes_statistics(row, column_scale=True,windows = [(0,1),(0,0.10),(0,0.25),(0,0.50),(0.90,1),(0.75,1),(0.50,1)],functions = [(min,"min"), (max,"max"), (np.mean,"mean"), (np.std,"std"), (skew,"skew"), (len,"len")]):
"""
Doing statistics over episode (row["episode"]) and returning array of it
windows is an array containing all the periods to do statistics on (tuples of percentages, ex: (0.5,0.6) means "between 50% and 60% of the episode")\n
functions are the functions to apply to compute statistics\n
column_scale=True means we calculate the percentages between first and last value for every column. False means we calculate the pourcentages between first and last hours in episode.
"""
episode = row["episode"]
returned_episode = {x:[] for _,x in functions}
#First and last hour (we will keep it if column_scale=False)
L = row["episode"]["Hours"][0]
R = row["episode"]["Hours"][-1]
length = R - L
#For every column in episode
for e in episode:
#If column_scale we find first and last hour that has value (!= np.nan)
if column_scale:
Li = 0
Ri = len(row["episode"]["Hours"])-1
while Li < len(row["episode"]["Hours"])-1 and (np.isnan(row["episode"][e][Li]) or row["episode"][e][Li] == ""):
Li += 1
while Ri >= 0 and (np.isnan(row["episode"][e][Ri]) or row["episode"][e][Ri] == ""):
Ri -= 1
if Ri < 0 or Li >= len(row["episode"]["Hours"]):
Li,Ri = 0,0
L = row["episode"]["Hours"][Li]
R = row["episode"]["Hours"][Ri]
length = R - L
#We ignore Hour column
if e == "Hours":
continue
#For every statistics windows
for window in windows:
#We calculate first and last hour for current column
start_index,end_index = window
start_index,end_index = L + start_index*length,L + end_index*length
onepiece = []
#For every value in the column, if is on the window we add it to statistics
for i,x in enumerate(row["episode"][e]):
if not np.isnan(x) and end_index+1e-6 > row["episode"]["Hours"][i] > start_index-1e-6:
onepiece.append(x)
#If there are no values to do statistics on, we return array of np.nan
if len(onepiece) == 0:
for function,fname in functions:
returned_episode[fname].append(np.nan)
#else we compute every functions on the list
else:
for function,fname in functions:
returned_episode[fname].append(function(onepiece))
return returned_episode
#######################################
# SINGLE VALUE TRANSFORMATION #
#######################################
def convert_CODE_to_onehot(itemid, d_path, field):
"""
returns a oneshot encoding for item of itemid
the dict is found in (d_path)
the fields the itemid are in the dict are in columns field
"""
global itemiddict
#If itemiddict doesn't contain the field we load id
if not field in itemiddict:
itemiddict[field] = pd.DataFrame()
for e in d_path:
itemiddict[field] = pd.concat([itemiddict[field],pd.read_csv(e,converters={field:lambda x:str(x)})],ignore_index=True)
itemiddict[field] = itemiddict[field].sort_values(by=field,ignore_index=True).reset_index(drop=True)
#We build the oneshot encoding of size of the field column
length = len(itemiddict[field].index)
one_hot = np.zeros((length))
#Filling the onehot encoding
if itemid != "" and itemid != 0:
idx = itemiddict[field][field].searchsorted(str(itemid))
if idx > 0:
one_hot[idx-1] = 1
return one_hot
def codes_to_onehot(episode):
"""
returns the episode with every not float value as onehot encodings
"""
episode = episode.copy()
#For every column in the episode
for e in episode:
#If the column is in the local discretizer
if e in discretizer:
#Computing size of the onehot encoding
size = 0
for die in discretizer[e]:
size += len(die[0])
#for every value in the column
for i in range(len(episode[e])):
v = episode[e][i]
#If the value we are transforming means something
if (not isinstance(v,float) or not np.isnan(v)) and v != "" and v != 0:
#Transforming the value to onehot encoding
episode[e][i] = np.zeros(size,dtype=int)
index = 0
#Finding the index in the onehot encoding to put 1
for die in discretizer[e]:
for item in die[0]:
if str(v) == item:
episode[e][i][index] = 1
index += 1
#If the value is empty returns a full 0 array
else:
episode[e][i] = np.full(size,fill_value=np.nan)
#Special column that may contain floats but must be converted to onehot encoding
elif e == "Capillary refill rate":
for i in range(len(episode[e])):
v = episode[e][i]
episode[e][i] = np.zeros(2,dtype=int)
if v != "" and float(v) == 1:
episode[e][i][1] = 1
elif v != "" and float(v) == 0:
episode[e][i][0] = 1
return episode
def convert_CODE_to_int(itemid, d_path, field):
"""
returns an int encoding for item of itemid
the dict is found in (d_path)
the fields the itemid are in the dict are in columns field
"""
global itemiddict
#If the field is not avaible in local, we load it from d_path
if not field in itemiddict:
itemiddict[field] = pd.DataFrame()
for e in d_path:
itemiddict[field] = pd.concat([itemiddict[field],pd.read_csv(e,converters={field:lambda x:str(x)})],ignore_index=True)
itemiddict[field] = itemiddict[field].sort_values(by=field,ignore_index=True).reset_index(drop=True)
#If the itemid is avaible we return the associated value we find
if itemid != "" and itemid != 0:
idx = itemiddict[field][field].searchsorted(str(itemid))
if idx > 0:
return idx-1
return np.nan
def codes_to_int(episode):
"""
returns the episode with every not float value as int encodings
"""
episode = episode.copy()
#For every column in episode
for e in episode:
#If the column is avaible in local discretizer
if e in discretizer:
#For every value in the column
for i in range(len(episode[e])):
v = episode[e][i]
#If the current value is not None or NaN, we find the encoding
if not isinstance(v,float) or not np.isnan(v):
#If the value is not empty or 0 we find in the encoder
if v != "" and v != 0:
value = np.nan
for die in discretizer[e]:
if str(v) in die[0]:
value = die[1]
episode[e][i] = value
#Else we said it's not found
else:
episode[e][i] = np.nan
return episode
#######################################
# FULL EPISODE TRANSFORM UTILS #
#######################################
def convert_to_numpy_arrays(episode, empty_value=np.nan):
"""
returns the episode as numpy array of shape (row_number,features_width(=features are the keys in episode, can contain arrays,list or values))
"""
#Computing features length
features_width = 0
row_number = 0
for e in episode["episode"]:
x = episode["episode"][e][0]
if isinstance(x,int) or isinstance(x,float) or x == "":
features_width += 1
else:
features_width += len(x)
row_number = len(episode["episode"][e])
#Computing y_true length
y_length = 0
for e in episode:
if e != "episode":
y_length += 1
#Computing y_true
y_true = np.empty(y_length)
index = 0
for e in episode:
if e != "episode":
y_true[index] = episode[e]
index+=1
#Computing features
features = np.empty((row_number,features_width))
index = 0
#For every column in episode
for e in episode["episode"]:
#For every row in the column
for line,x in enumerate(episode["episode"][e]):
#If the value is empty, we fill with empty_value
if (isinstance(x,float) and np.isnan(x)) or x == "":
features[line,index] = empty_value
#Else we fill the array with the numeric value
elif isinstance(x,int) or isinstance(x,float):
features[line,index] = x
#Else (is array or list)
else:
is_empty_array = True
#We check if the array contains only np.nan (is empty)
for elem in x:
if not is_empty_value(elem,np.nan):
is_empty_array = False
break
#If the array is not empty, if we copy the value of it in the right place in the returned array
if not is_empty_array:
features[line,index:index+len(x)] = x
#Else we fill the part of the returned array with empty_value so user knows the data is missing here
else:
features[line,index:index+len(x)] = np.full(len(x),empty_value)
#checking the number of elements we added in the returned array
column_exemple = episode["episode"][e][0]
if isinstance(column_exemple,int) or isinstance(column_exemple,float) or x == "":
index += 1
else:
index += len(x)
return features,y_true
def filter_episode(row, episode_filter):
"""
Row contains an episode and the y_trues.
Filters row["episode"] to remove rows within it that satisfies the episode_filter
"""
episode = {col:[] for col in row["episode"]}
for i in range(len(row["episode"]["Hours"])):
#Calculating a row (dico) (= row["episode"][:][i])
dico = {header:row["episode"][header][i] for header in row["episode"]}
#If episode_filter returns true we add the row
if episode_filter(dico):
for col in episode:
episode[col].append(row["episode"][col][i])
#Building returned episode
returned = {}
for col in row:
if col != "episode":
returned[col] = row[col]
returned["episode"] = episode
return returned
#######################################
# ABOUT IMPUTING VALUES #
#######################################
def input_values(features, empty_value=np.nan, strategy="previous"):
"""
Inputing values in the features (to replace empty_value values in features) with strategy
strategy is in ["previous", "previous-next"]
"""
features = features.copy()
#Inputing previous value if exists, next else, empty_value if no next
if strategy == "previous-next":
for col in features:
col_vals = features[col]
for i in range(len(col_vals)):
#If current value if the empty_value
if is_empty_list(col_vals[i],np.nan) or is_empty_value(col_vals[i], empty_value):
prev_index = i-1
#We find the previous value
while prev_index >= 0 and (is_empty_list(col_vals[prev_index],np.nan) or is_empty_value(col_vals[prev_index], empty_value)):
prev_index -= 1
#If found we input it
if prev_index >= 0:
features[col][i] = col_vals[prev_index]
#Else we check next value
else:
prev_index = i+1
while prev_index < len(col_vals) and (is_empty_list(col_vals[prev_index],np.nan) or is_empty_value(col_vals[prev_index], empty_value)):
prev_index += 1
if prev_index >= i+1 and prev_index < len(col_vals):
features[col][i] = col_vals[prev_index]
elif col in normal_values:
features[col][i] = normal_values[col]
elif strategy == "previous":
for col in features:
col_vals = features[col]
for i in range(len(col_vals)):
#If current value if the empty_value
if is_empty_list(col_vals[i],np.nan) or is_empty_value(col_vals[i], empty_value):
prev_index = i-1
#We find the previous value
while prev_index >= 0 and (is_empty_list(col_vals[prev_index],np.nan) or is_empty_value(col_vals[prev_index], empty_value)):
prev_index -= 1
#If found we input it
if prev_index >= 0:
features[col][i] = col_vals[prev_index]
#Else we input normal value if found
elif col in normal_values:
features[col][i] = normal_values[col]
return features
def add_mask(episode):
"""
Adding special features to the episode for every column, which is an array of 1 for every not null value
Can be used before DataImputer to know where data were imputed
"""
keys = [key for key in episode.keys()]
for e in keys:
episode["mask_"+e] = []
for el in episode[e]:
if el == "" or (isinstance(el,float) and np.isnan(el)):
episode["mask_"+e].append(0)
else:
episode["mask_"+e].append(1)
return episode
#######################################
# DATASET TO READABLE DATA FOR ML #
#######################################
def preprocess_to_learn(
episode,
code_to_onehot=True,
episode_filter=None,
mode="full",
window_period_length=48.0,
window_size=0.7,
statistics_mode_column_scale=True,
empty_value=np.nan,
input_strategy=None,
add_mask_columns=False,
):
"""
Main function to transform dataset rows to numpy arrays\n
episode is the episode to transform\n
code_to_onehot is True if you want to transform non-float data to onehot, else it is converted to int\n
episode_filter is a filter function you want to apply to episodes to remove rows\n
mode is the mode of transformation. Avaible : statistics (for randomforest), window (for LSTM)\n\n
window_period_length is the length of episode to do windows in (for window mode)\n
window_size is the size of the window (for window mode)\n\n
statistics_mode_column_scale is the column mode for statistics mode (see normalize_episodes_statistics)\n
empty_value is the value to put where no data\n
input_strategy can be "previous" or "previous-next" or "None" (see input_values)\n
add_mask_columns adds mask features before imputing missing data (see add_mask) \n
episode_length is the episode length for window mode\n
"""
#Filtering rows from the episode
if episode_filter == None:
discr_episode = episode
else:
discr_episode = filter_episode(episode, episode_filter)
#Discretization of data
if mode == "statistics":
discr_episode["episode"] = codes_to_int(discr_episode["episode"])
discr_episode["episode"] = normalize_episodes_statistics(discr_episode,column_scale=statistics_mode_column_scale)
elif mode == "window":
discr_episode["episode"] = normalize_episodes_window(discr_episode, window_period_length, window_size)
#Adding mask
if add_mask_columns:
discr_episode["episode"] = add_mask(discr_episode["episode"])
#Trying to input some missing values
discr_episode["episode"] = input_values(discr_episode["episode"],empty_value=empty_value,strategy=input_strategy)
#Transforming text to integer (index of string in file) or onehot vector
if mode != "statistics":
if code_to_onehot:
discr_episode["episode"] = codes_to_onehot(discr_episode["episode"])
else:
discr_episode["episode"] = codes_to_int(discr_episode["episode"])
#Transforming to numpy array from dict
returned = convert_to_numpy_arrays(discr_episode, empty_value=empty_value)
return returned
#######################################
# ITERATOR FROM DATASET #
#######################################
def my_generator(dataset,transform):
iterator = iter(dataset)
for x in iterator:
yield transform(x)
def mapped_iterabledataset(dataset, function):
return IterableDataset.from_generator(my_generator, gen_kwargs={"dataset": dataset,"transform":function})
################################################################################
################################################################################
## ##
## DATASET CREATION AND DOWNLOADING ##
## ##
################################################################################
################################################################################
def do_listfile(task,subfolder,mimic3_benchmark_data_folder,mimic3_benchmark_new_data_folder,stays,inputevents,procedurevents,diagnoses,insurances):
file = subfolder+"_listfile.csv"
print("working on",task+"/"+file)
listfile = pd.read_csv(os.path.join(mimic3_benchmark_data_folder,file),sep=',')
listfile = listfile.sort_values(by=["stay"]) if not "period_length" in listfile else listfile.sort_values(by=["stay","period_length"])
subfolder = "train"
if "test" in file:
subfolder = "test"
to_save = []
if task == "mimic4-in-hospital-mortality":
for idx,(_,x) in enumerate(listfile.iterrows()):
print(get_progression(idx,len(listfile.index),length=20),str(round(100*idx/len(listfile.index),2))+"%",file,end="\r")
current_dict = {}
#Getting episode/subject ids
fname = x["stay"].split("_")
subject_id = fname[0]
episode_number = int(fname[1][7:])
#Getting current episode start date
current_ep_desc = pd.read_csv(os.path.join(DATASET_SAVE_PATH,"root",subfolder,subject_id,"episode"+str(episode_number)+".csv"))
icustay_id = current_ep_desc.at[current_ep_desc.index[0],"Icustay"]
deathtime = stays.loc[stays["ICUSTAY_ID"] == icustay_id]
dt = np.nan
bd = np.nan
#Doing basic data (age ethnicity and gender)
for _,y in deathtime.iterrows():
if isinstance(y["DEATHTIME"], str) and y["DEATHTIME"] != "":
dt = dtc(y["DEATHTIME"])
bd = dtc(y["INTIME"])
current_dict["age"] = y["AGE"]
current_dict["ethnicity"] = y["ETHNICITY"]
current_dict["gender"] = y["GENDER"]
current_dict["insurance"] = insurances.loc[insurances["HADM_ID"] == y["HADM_ID"]]["INSURANCE"].iloc[0]
#checking if is dead or not, and if data is valid
valid = True
if isinstance(dt, datetime):
sec = (dt - bd).total_seconds() >= 54*3600
if sec:
current_dict["label"] = 1
else:
valid = False
else:
current_dict["label"] = 0
if not valid:
continue
#Building diagnoses
current_diags = diagnoses[diagnoses["ICUSTAY_ID"] == icustay_id]
ICD9_list = []
for _,icd_code in current_diags.iterrows():
ICD9_list.append(icd_code["ICD9_CODE"])
current_dict["Cond"] = {"fids":ICD9_list}
def map_date(date):
if isinstance(date,datetime):
return (date - bd).total_seconds()/3600.0
else:
return date
#Building procedurevents
pde = procedurevents[procedurevents["ICUSTAY_ID"] == icustay_id].applymap(map_date,na_action="ignore")
current_dict["Proc"] = normalize_onehot_episodes_window(pde.to_dict(orient='list'), value_column=False, code_column="ITEMID", period_length=48.0, window_size=1)
#Building inputevents
ie = inputevents[inputevents["ICUSTAY_ID"] == icustay_id].applymap(map_date,na_action="ignore")
current_dict["Med"] = normalize_onehot_episodes_window(ie.to_dict(orient='list'), value_column=True, code_column="ITEMID", period_length=48.0, window_size=1)
#Building chartevents
current_ep_charts = pd.read_csv(os.path.join(DATASET_SAVE_PATH,"in-hospital-mortality",subfolder,x["stay"])).to_dict(orient='list')
current_dict["Chart"] = normalize_episodes_window({"episode":current_ep_charts})
#The output events are in the chartevents
current_dict["Out"] = {}
to_save.append(current_dict)
else:
for idx,(_,x) in enumerate(listfile.iterrows()):
print(get_progression(idx,len(listfile.index),length=20),str(round(100*idx/len(listfile.index),2))+"%",file,end="\r")
to_save.append(x)
os.makedirs(mimic3_benchmark_new_data_folder,exist_ok=True)
with open(os.path.join(mimic3_benchmark_new_data_folder,file[:-3]+"pkl"), "wb+") as fp:
pickle.dump(to_save,fp,pickle.HIGHEST_PROTOCOL)
def generate_dics(diagnoses, inputevents, procedurevents, insurances, stays, mimic3_path):
#Diagnoses dictionary
if not os.path.isfile(os.path.join(DATASET_SAVE_PATH,"icd_dict.csv")):
print("creating icd indexes")
#Loading Diagnoses
used_col = ["ICD9_CODE","SHORT_TITLE","LONG_TITLE"]
dtype = {"ICD9_CODE":str,"SHORT_TITLE":str,"LONG_TITLE":str}
dcsv = pd.read_csv(mimic3_path+"/D_ICD_DIAGNOSES.csv",sep=',',usecols=used_col,dtype=dtype)
print("icd ressources loaded")
dic = {}
for _,row in diagnoses.iterrows():
if not row["ICD9_CODE"] in dic:
fif = dcsv.loc[dcsv["ICD9_CODE"] == row["ICD9_CODE"]]
dic[row["ICD9_CODE"]] = {"SHORT_TITLE":fif["SHORT_TITLE"].values[0],"LONG_TITLE":fif["LONG_TITLE"].values[0]}
with open(os.path.join(DATASET_SAVE_PATH,'icd_dict.csv'), 'w') as f:
f.write("ICD9_CODE,SHORT_TITLE,LONG_TITLE\n")
for key in dic.keys():
f.write("%s,\"%s\",\"%s\"\n"%(key,dic[key]["SHORT_TITLE"],dic[key]["LONG_TITLE"]))
#itemids dictionary
if not os.path.isfile(os.path.join(DATASET_SAVE_PATH,"ie_itemid_dict.csv")):
print("creating itemid indexes")
#Loading itemids
used_col = ["ITEMID","LABEL","ABBREVIATION"]
dtype = {"ITEMID":int,"LABEL":str,"ABBREVIATION":str}
itemidcsv = pd.read_csv(mimic3_path+"/D_ITEMS.csv",sep=',',usecols=used_col,dtype=dtype)
print("itemid ressources loaded")
dic = {}
for _,row in inputevents.iterrows():
if not row["ITEMID"] in dic:
fif = itemidcsv.loc[itemidcsv["ITEMID"] == row["ITEMID"]]
dic[row["ITEMID"]] = {"LABEL":fif["LABEL"].values[0],"ABBREVIATION":fif["ABBREVIATION"].values[0]}
with open(os.path.join(DATASET_SAVE_PATH,'ie_itemid_dict.csv'), 'w') as f:
f.write("ITEMID,LABEL,ABBREVIATION\n")
for key in dic.keys():
f.write("%s,\"%s\",\"%s\"\n"%(key,dic[key]["ABBREVIATION"],dic[key]["LABEL"]))
dic = {}
for _,row in procedurevents.iterrows():
if not row["ITEMID"] in dic:
fif = itemidcsv.loc[itemidcsv["ITEMID"] == row["ITEMID"]]
dic[row["ITEMID"]] = {"LABEL":fif["LABEL"].values[0],"ABBREVIATION":fif["ABBREVIATION"].values[0]}
with open(os.path.join(DATASET_SAVE_PATH,'pe_itemid_dict.csv'), 'w') as f:
f.write("ITEMID,LABEL,ABBREVIATION\n")
for key in dic.keys():
f.write("%s,\"%s\",\"%s\"\n"%(key,dic[key]["ABBREVIATION"],dic[key]["LABEL"]))
#insurances dictionary
if not os.path.isfile(os.path.join(DATASET_SAVE_PATH,"insurances_dict.csv")):
print("creating insurances indexes")
dic = {}
index = 0
for _,row in insurances.iterrows():
if not row["INSURANCE"] in dic:
dic[row["INSURANCE"]] = index
index += 1
with open(os.path.join(DATASET_SAVE_PATH,'insurances_dict.csv'), 'w') as f:
f.write("INSURANCE,INDEX\n")
for key in dic.keys():
f.write("\"%s\",%s\n"%(key,dic[key]))
#gender dictionary
if not os.path.isfile(os.path.join(DATASET_SAVE_PATH,"genders_dict.csv")):
print("creating genders indexes")
dic = {}
index = 0
for _,row in stays.iterrows():
if not row["GENDER"] in dic:
dic[row["GENDER"]] = index
index += 1
with open(os.path.join(DATASET_SAVE_PATH,'genders_dict.csv'), 'w') as f:
f.write("GENDER,INDEX\n")
for key in dic.keys():
f.write("\"%s\",%s\n"%(key,dic[key]))
#age dictionary
if not os.path.isfile(os.path.join(DATASET_SAVE_PATH,"ages_dict.csv")):
print("creating ages indexes")
dic = {}
index = 0
for _,row in stays.iterrows():
if not round(row["AGE"]) in dic:
dic[round(row["AGE"])] = index
index += 1
with open(os.path.join(DATASET_SAVE_PATH,'ages_dict.csv'), 'w') as f:
f.write("AGE,INDEX\n")
for key in dic.keys():
f.write("%s,%s\n"%(key,dic[key]))
#ethny dictionary
if not os.path.isfile(os.path.join(DATASET_SAVE_PATH,"ethnicities_dict.csv")):
print("creating ethnicities indexes")
dic = {}
index = 0
for _,row in stays.iterrows():
if not row["ETHNICITY"] in dic:
dic[row["ETHNICITY"]] = index
index += 1
with open(os.path.join(DATASET_SAVE_PATH,'ethnicities_dict.csv'), 'w') as f:
f.write("ETHNICITY,INDEX\n")
for key in dic.keys():
f.write("\"%s\",%s\n"%(key,dic[key]))
def clean_units(df):
df.loc[df["AMOUNTUOM"].isin(["grams","L"]),"AMOUNT"] = df.loc[df["AMOUNTUOM"].isin(["grams","L"]),"AMOUNT"].apply((lambda x:x*1000))
df.loc[df["AMOUNTUOM"].isin(["ounces"]),"AMOUNT"] = df.loc[df["AMOUNTUOM"].isin(["ounces"]),"AMOUNT"].apply((lambda x:x*28.3495*1000))
df.loc[df["AMOUNTUOM"].isin(["uL"]),"AMOUNT"] = df.loc[df["AMOUNTUOM"].isin(["uL"]),"AMOUNT"].apply((lambda x:x/1000))
df.loc[df["AMOUNTUOM"].isin(["mlhr","Hours"]),"AMOUNT"] = df.loc[df["AMOUNTUOM"].isin(["mlhr","Hours"]),"AMOUNT"].apply((lambda x:x/60))
df.loc[df["RATEUOM"].isin(["mLhour","unitshour","mcghour","mcgkghour","mgkghour","mLkghour","mEq.hour"]),"RATE"] = df.loc[df["RATEUOM"].isin(["mLhour","unitshour","mcghour","mcgkghour","mgkghour","mLkghour","mEq.hour"]),"RATE"].apply((lambda x:x/60))
df.loc[df["RATEUOM"].isin(["gramshour"]),"RATE"] = df.loc[df["RATEUOM"].isin(["gramshour"]),"RATE"].apply((lambda x:x*1000/60))
df.loc[df["RATEUOM"].isin(["gramsmin","gramskgmin"]),"RATE"] = df.loc[df["RATEUOM"].isin(["gramsmin","gramskgmin"]),"RATE"].apply((lambda x:x*1000))
def load_mimic3_files(mimic3_dir):
#Loading inputevents
used_col = ["SUBJECT_ID","ICUSTAY_ID","CHARTTIME","ITEMID","AMOUNT","AMOUNTUOM","RATE","RATEUOM"]
dtype = {"AMOUNTUOM":str,"RATEUOM":str}
converters={"SUBJECT_ID":bic,"ICUSTAY_ID":bic,"CHARTTIME":dtc,"ITEMID":bic,"AMOUNT":bfc,"RATE":bfc}
inputevents = pd.read_csv(mimic3_dir+"/INPUTEVENTS_CV.csv",sep=',',usecols=used_col,dtype=dtype,converters=converters)
inputevents.rename(columns={"CHARTTIME": "STARTTIME"}, inplace=True)
print("inputevents 1/2 loaded")
used_col = ["SUBJECT_ID","ICUSTAY_ID","STARTTIME","ENDTIME","ITEMID","AMOUNT","AMOUNTUOM","RATE","RATEUOM"]
dtype = {"AMOUNTUOM":str,"RATEUOM":str}
converters={"SUBJECT_ID":bic,"ICUSTAY_ID":bic,"STARTTIME":dtc,"ENDTIME":dtc,"ITEMID":bic,"AMOUNT":bfc,"RATE":bfc}
inputevents_2 = pd.read_csv(mimic3_dir+"/INPUTEVENTS_MV.csv",sep=',',usecols=used_col,dtype=dtype,converters=converters)
inputevents = pd.concat([inputevents,inputevents_2])
inputevents.drop(inputevents[(inputevents["SUBJECT_ID"] == -1) | (inputevents["ICUSTAY_ID"] == -1)].index, inplace=True)
clean_units(inputevents)
print("inputevents 2/2 loaded")
#Loading procedurevents
used_col = ["SUBJECT_ID","ICUSTAY_ID","STARTTIME","ENDTIME","ITEMID"]
converters={"SUBJECT_ID":bic,"ICUSTAY_ID":bic,"STARTTIME":dtc,"ENDTIME":dtc,"ITEMID":bic}
procedurevents = pd.read_csv(mimic3_dir+"/PROCEDUREEVENTS_MV.csv",sep=',',usecols=used_col,converters=converters)
procedurevents.drop(procedurevents[(procedurevents["SUBJECT_ID"] == -1) | (procedurevents["ICUSTAY_ID"] == -1)].index, inplace=True)
print("procedurevents loaded")
#Loading Diagnoses
used_col = ["SUBJECT_ID","SEQ_NUM","ICD9_CODE","ICUSTAY_ID"]
dtype = {"ICD9_CODE":str}
converters={"SUBJECT_ID":bic,"SEQ_NUM":bic,"ICUSTAY_ID":bic}
diagnoses = pd.read_csv(os.path.join(DATASET_SAVE_PATH,"root","all_diagnoses.csv"),sep=',',usecols=used_col,dtype=dtype,converters=converters)
print("diagnoses loaded")
#Loading stays
used_col = ["SUBJECT_ID","HADM_ID","ICUSTAY_ID","INTIME","DEATHTIME","ETHNICITY","GENDER","AGE"]
dtype = {"INTIME":str,"DEATHTIME":str,"ETHNICITY":str,"GENDER":str}
converters={"SUBJECT_ID":bic,"HADM_ID":bic,"ICUSTAY_ID":bic,"AGE":bfc}
stays = pd.read_csv(os.path.join(DATASET_SAVE_PATH,"root","all_stays.csv"),sep=',',usecols=used_col,dtype=dtype,converters=converters)
print("stays loaded")
#Loading insurances
used_col = ["SUBJECT_ID","HADM_ID","INSURANCE"]
dtype = {"INSURANCE":str}
converters={"SUBJECT_ID":bic,"HADM_ID":bic}
insurances = pd.read_csv(mimic3_dir+"/ADMISSIONS.csv",sep=',',usecols=used_col,dtype=dtype,converters=converters)
print("insurances loaded")
generate_dics(diagnoses, inputevents, procedurevents, insurances, stays, mimic3_dir)
diagnoses.drop(diagnoses[(diagnoses["SUBJECT_ID"] == -1) | (diagnoses["ICUSTAY_ID"] == -1)].index, inplace=True)
diagnoses.drop(diagnoses[(diagnoses["ICD9_CODE"] == 7981) | (diagnoses["ICD9_CODE"] == 7982) | (diagnoses["ICD9_CODE"] == 7989)].index, inplace=True)
diagnoses["Hours"] = 0
diagnoses = diagnoses.sort_values(by="SEQ_NUM")
return stays,inputevents,procedurevents,diagnoses,insurances
def do_directory_cleaning(current_file):
if "IC9_CODE" in current_file:
current_file["ICD9_CODE"] = current_file["ICD9_CODE"].apply(id_to_string)
#Cleaning
current_file.loc[current_file["AMOUNT"] == -1, "AMOUNT"] = np.nan
current_file.loc[current_file["RATE"] == -1, "RATE"] = np.nan
current_file["ITEMID"] = current_file["ITEMID"].astype(pd.Int64Dtype())
if "SEQ_NUM" in current_file:
current_file["SEQ_NUM"] = current_file["SEQ_NUM"].astype(pd.Int64Dtype())
clean_units(current_file)
current_file = current_file.drop(["AMOUNTUOM","RATEUOM"], axis=1)
return current_file
def load_mimic3_benchmark(mimic3_path):
mimic3_path = os.path.join(os.getcwd(),mimic3_path)
starting_dir = os.getcwd()
os.chdir(DATASET_SAVE_PATH)
print("Starting preprocessing of raw mimic3 data...")
if not os.path.isdir("mimic3-benchmarks"):
print("MIMIC3-BENCHMARK Data not found... Loading mimic3-benchmark github...")
os.system('git clone https://github.com/YerevaNN/mimic3-benchmarks.git')
if not os.path.isdir("mimic3-benchmarks"):
print("Could not load the github... Exiting...")
exit(1)
os.chdir("mimic3-benchmarks")
print("Preprocessing of data... This step may take hours.")
print("Extracting subjects...")
os.system("python -m mimic3benchmark.scripts.extract_subjects "+mimic3_path+" ../root/")
print("Fixing issues...")
os.system("python -m mimic3benchmark.scripts.validate_events ../root/")
print("Extracting episodes...")
os.system("python -m mimic3benchmark.scripts.extract_episodes_from_subjects ../root/")
print("Spliting train and test...")
os.system("python -m mimic3benchmark.scripts.split_train_and_test ../root/")
print("Creating specific tasks")
os.system("python -m mimic3benchmark.scripts.create_in_hospital_mortality ../root/ ../in-hospital-mortality/")
os.system("python -m mimic3benchmark.scripts.create_decompensation ../root/ ../decompensation/")
os.system("python -m mimic3benchmark.scripts.create_length_of_stay ../root/ ../length-of-stay/")
os.system("python -m mimic3benchmark.scripts.create_phenotyping ../root/ ../phenotyping/")
os.system("python -m mimic3benchmark.scripts.create_multitask ../root/ ../multitask/")
print("Spliting validation...")
os.system("python -m mimic3models.split_train_val ../in-hospital-mortality/")
os.system("python -m mimic3models.split_train_val ../decompensation/")
os.system("python -m mimic3models.split_train_val ../length-of-stay/")
os.system("python -m mimic3models.split_train_val ../phenotyping/")
os.system("python -m mimic3models.split_train_val ../multitask/")
os.chdir(starting_dir)
def preprocess(task,mimic3_dir=None):
origin_task = task
if "mimic4-" in task:
origin_task = task[7:]
original_task_path = os.path.join(DATASET_SAVE_PATH,origin_task)
print("need of",original_task_path,"to generate new task...")
if not os.path.isdir(original_task_path):
if mimic3_dir == None:
mimic3_dir = input("Preprocessing has to be done, please enter mimic3's path : ")
if not os.path.isdir(mimic3_dir):
print("Could not load mimic3 files...")
exit(1)
load_mimic3_benchmark(mimic3_dir)
loaded,inputevents,procedurevents,diagnoses = False,None,None,None
mimic3_benchmark_data_folder,mimic3_benchmark_new_data_folder = None,None
if "mimic4-" in task:
print("the requested task is a mimic4-benchmark task...")
#Data folder
mimic3_benchmark_data_folder = os.path.join(DATASET_SAVE_PATH,task[7:])
#New data folder
mimic3_benchmark_new_data_folder = os.path.join(DATASET_SAVE_PATH,task)
for subfolder in ["train","test","val"]:
print("checking subfolder",subfolder)
#Chargement des fichiers mimic3 pour modification
if not os.path.isfile(os.path.join(DATASET_SAVE_PATH,task,subfolder+"_listfile.pkl")):
if not loaded:
if mimic3_dir == None:
mimic3_dir = input("preprocessing has to be done, please enter mimic3's path : ")
if not os.path.isdir(mimic3_dir):
print("Could not load mimic3 files...")
exit(1)
print("this task does not exist yet... loading required files to create the task. this may take 20 minutes")
stays,inputevents,procedurevents,diagnoses,insurances = load_mimic3_files(mimic3_dir)
loaded = True
print("creating the subfolder",subfolder,"| estimated time : 1h")
do_listfile(task, subfolder, mimic3_benchmark_data_folder, mimic3_benchmark_new_data_folder, stays, inputevents, procedurevents, diagnoses, insurances)
if not os.path.isfile("icd_dict.csv"):
if mimic3_dir == None:
mimic3_dir = input("preprocessing has to be done, please enter mimic3's path : ")
if not os.path.isdir(mimic3_dir):
print("Could not load mimic3 files...")
exit(1)
print("loading data and creating dicts...")
load_mimic3_files(mimic3_dir)
################################################################################
################################################################################
## ##
## HUGGING FACE DATASET ##
## ##
################################################################################
################################################################################
class Mimic3DatasetConfig(datasets.BuilderConfig):
def __init__(self, **kwargs):
super().__init__(**kwargs)
class Mimic3Benchmark_Dataset(datasets.GeneratorBasedBuilder):
def __init__(self, **kwargs):
self.code_to_onehot=kwargs.pop("code_to_onehot",True)
self.episode_filter=kwargs.pop("episode_filter",None)
self.mode=kwargs.pop("mode","statistics")
self.window_period_length=kwargs.pop("window_period_length",48.0)
self.window_size=kwargs.pop("window_size",0.7)
self.empty_value=kwargs.pop("empty_value",np.nan)
self.input_strategy=kwargs.pop("input_strategy",None)
self.add_mask_columns=kwargs.pop("add_mask_columns",False)
self.statistics_mode_column_scale=kwargs.pop("statistics_mode_column_scale",True)
self.mimic3_path=kwargs.pop("mimic3_path",None)
self.mimic4_text_demos = kwargs.pop("mimic4_text_demos",True)
self.mimic4_text_charts = kwargs.pop("mimic4_text_charts",True)
self.mimic4_text_meds = kwargs.pop("mimic4_text_meds",True)
self.mimic4_text_cond = kwargs.pop("mimic4_text_cond",True)
self.mimic4_text_procs = kwargs.pop("mimic4_text_procs",True)
self.full_meds_loaded = False
self.full_proc_loaded = False
self.full_cond_loaded = False
self.full_gens_loaded = False
self.full_ages_loaded = False
self.full_eths_loaded = False
self.full_ins_loaded = False
super().__init__(**kwargs)
VERSION = datasets.Version("1.0.0")
BUILDER_CONFIGS = [
Mimic3DatasetConfig(name="in-hospital-mortality", version=VERSION, description="This datasets covers the in-hospital-mortality benchmark of mimiciii-benchmark"),
Mimic3DatasetConfig(name="decompensation", version=VERSION, description="This datasets covers the decompensation benchmark of mimiciii-benchmark"),
Mimic3DatasetConfig(name="length-of-stay", version=VERSION, description="This datasets covers the length-of-stay benchmark of mimiciii-benchmark"),
Mimic3DatasetConfig(name="multitask", version=VERSION, description="This datasets covers the multitask benchmark of mimiciii-benchmark"),
Mimic3DatasetConfig(name="phenotyping", version=VERSION, description="This datasets covers the in phenotyping benchmark of mimiciii-benchmark"),
Mimic3DatasetConfig(name="mimic4-in-hospital-mortality", version=VERSION, description="This datasets covers the mimic4-in-hospital-mortality benchmark of mimiciii-benchmark"),
]
def _info(self):
if self.config.name in ["in-hospital-mortality", "decompensation", "phenotyping", "mimic4-in-hospital-mortality", "length-of-stay"]:
if self.config.name == "phenotyping":
return datasets.DatasetInfo(
description="Dataset "+self.config.name,
features=datasets.Features(
{
"Acute and unspecified renal failure": datasets.Value("float"),
"Acute cerebrovascular disease": datasets.Value("float"),
"Acute myocardial infarction": datasets.Value("float"),
"Cardiac dysrhythmias": datasets.Value("float"),
"Chronic kidney disease": datasets.Value("float"),
"Chronic obstructive pulmonary disease and bronchiectasis": datasets.Value("float"),
"Complications of surgical procedures or medical care": datasets.Value("float"),
"Conduction disorders": datasets.Value("float"),
"Congestive heart failure; nonhypertensive": datasets.Value("float"),
"Coronary atherosclerosis and other heart disease": datasets.Value("float"),
"Diabetes mellitus with complications": datasets.Value("float"),
"Diabetes mellitus without complication": datasets.Value("float"),
"Disorders of lipid metabolism": datasets.Value("float"),
"Essential hypertension": datasets.Value("float"),
"Fluid and electrolyte disorders": datasets.Value("float"),
"Gastrointestinal hemorrhage": datasets.Value("float"),
"Hypertension with complications and secondary hypertension": datasets.Value("float"),
"Other liver diseases": datasets.Value("float"),
"Other lower respiratory disease": datasets.Value("float"),
"Other upper respiratory disease": datasets.Value("float"),
"Pleurisy; pneumothorax; pulmonary collapse": datasets.Value("float"),
"Pneumonia (except that caused by tuberculosis or sexually transmitted disease)": datasets.Value("float"),
"Respiratory failure; insufficiency; arrest (adult)": datasets.Value("float"),
"Septicemia (except in labor)": datasets.Value("float"),
"Shock": datasets.Value("float"),
"episode": datasets.Array2D(shape=(None,None), dtype=float)
}),
homepage="",
license="",
citation="",
)
elif self.config.name == "mimic4-in-hospital-mortality" and self.mode in ["mimic4-aggreg"]:
return datasets.DatasetInfo(
description="Dataset "+self.config.name,
features = datasets.Features(
{
"label": datasets.ClassLabel(num_classes=2,names=["0", "1"]),
"features" : datasets.Sequence(datasets.Value("float32")),
"columns": datasets.Squence(datasets.value("string"))
}
),
homepage="",
license="",
citation="",)
elif self.config.name == "mimic4-in-hospital-mortality" and self.mode == "mimic4-naive-prompt":
return datasets.DatasetInfo(
description="Dataset "+self.config.name,
features = datasets.Features(
{
"label": datasets.ClassLabel(num_classes=2,names=["0", "1"]),
"features" : datasets.Value(dtype='string', id=None),
}
),
homepage="",
license="",
citation="",)
elif self.config.name == "mimic4-in-hospital-mortality" and self.mode == "mimic4-tensor":
return datasets.DatasetInfo(
description="Dataset "+self.config.name,
features = datasets.Features(
{
"label": datasets.ClassLabel(num_classes=2,names=["0", "1"]),
"DEMO": datasets.Sequence(datasets.Value("int64")),
"COND" : datasets.Sequence(datasets.Value("int64")),
"MEDS" : datasets.Array2D(shape=(None, None), dtype='int64') ,
"PROC" : datasets.Array2D(shape=(None, None), dtype='int64') ,
"CHART/LAB" : datasets.Array2D(shape=(None, None), dtype='int64')
}
),
homepage="",
license="",
citation="",)
return datasets.DatasetInfo(
description="Dataset "+self.config.name,
features=datasets.Features(
{
"y_true": datasets.Value("float"),
"episode": datasets.Array2D(shape=(None,None), dtype=float)
}),
homepage="",
license="",
citation="",
)
def _split_generators(self, dl_manager):
self.path = os.path.join(DATASET_SAVE_PATH,self.config.name)
preprocess(self.config.name,self.mimic3_path)
if "mimic4" in self.config.name:
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath":os.path.join(self.path,"train_listfile.pkl"),
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"filepath":os.path.join(self.path,"val_listfile.pkl"),
"split": "validation",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath":os.path.join(self.path,"test_listfile.pkl"),
"split": "test"
},
),
]
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath":os.path.join(self.path,"train_listfile.csv"),
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"filepath":os.path.join(self.path,"val_listfile.csv"),
"split": "validation",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath":os.path.join(self.path,"test_listfile.csv"),
"split": "test"
},
),
]
def _generate_exemples_CHARTONLY(self, filepath):
key = 0
with open(filepath, encoding="utf-8") as f:
reader1 = csv.DictReader(f)
for data in reader1:
y_trues = {}
for e in data:
if e != "period_length" and e != "stay":
y_trues[e] = data[e]
if "period_length" in data:
period_length = float(data["period_length"])
else:
period_length = self.window_period_length
stay = data["stay"]
if os.path.isfile(os.path.join(self.path,"test",stay)):
stay = os.path.join(self.path,"test",stay)
else:
stay = os.path.join(self.path,"train",stay)
# stay = self.path+"/train/30820_episode1_timeseries.csv"
# period_length = 42.0
episode = {
"Hours": [],
"Capillary refill rate": [],
"Diastolic blood pressure": [],
"Fraction inspired oxygen": [],
"Glascow coma scale eye opening": [],
"Glascow coma scale motor response": [],
"Glascow coma scale total": [],
"Glascow coma scale verbal response": [],
"Glucose": [],
"Heart Rate": [],
"Height": [],
"Mean blood pressure": [],
"Oxygen saturation": [],
"Respiratory rate": [],
"Systolic blood pressure": [],
"Temperature": [],
"Weight": [],
"pH": [],
}
with open(stay, encoding="utf-8") as f2:
reader2 = csv.DictReader(f2)
for data2 in reader2:
if self.config.name in ["length-of-stay","decompensation"] and float(data2["Hours"]) > period_length + 1e-6:
break
episode["Hours"].append(float(data2["Hours"]) if data2["Hours"] else 0.0)
episode["Capillary refill rate"].append(float(data2["Capillary refill rate"]) if data2["Capillary refill rate"] else np.nan)
episode["Diastolic blood pressure"].append(float(data2["Diastolic blood pressure"]) if data2["Diastolic blood pressure"] else np.nan)
episode["Fraction inspired oxygen"].append(float(data2["Fraction inspired oxygen"]) if data2["Fraction inspired oxygen"] else np.nan)
episode["Glascow coma scale eye opening"].append(data2["Glascow coma scale eye opening"])
episode["Glascow coma scale motor response"].append(data2["Glascow coma scale motor response"])
episode["Glascow coma scale total"].append(float(data2["Glascow coma scale total"]) if data2["Glascow coma scale total"] else np.nan)
episode["Glascow coma scale verbal response"].append(data2["Glascow coma scale verbal response"])
episode["Glucose"].append(float(data2["Glucose"]) if data2["Glucose"] else np.nan)
episode["Heart Rate"].append(float(data2["Heart Rate"]) if data2["Heart Rate"] else np.nan)
episode["Height"].append(float(data2["Height"]) if data2["Height"] else np.nan)
episode["Mean blood pressure"].append(float(data2["Mean blood pressure"]) if data2["Mean blood pressure"] else np.nan)
episode["Oxygen saturation"].append(float(data2["Oxygen saturation"]) if data2["Oxygen saturation"] else np.nan)
episode["Respiratory rate"].append(float(data2["Respiratory rate"]) if data2["Respiratory rate"] else np.nan)
episode["Systolic blood pressure"].append(float(data2["Systolic blood pressure"]) if data2["Systolic blood pressure"] else np.nan)
episode["Temperature"].append(float(data2["Temperature"]) if data2["Temperature"] else np.nan)
episode["Weight"].append(float(data2["Weight"]) if data2["Weight"] else np.nan)
episode["pH"].append(float(data2["pH"]) if data2["pH"] else np.nan)
X,Y = preprocess_to_learn(
{
"episode":episode
},
code_to_onehot=self.code_to_onehot,
episode_filter=self.episode_filter,
mode=self.mode,
window_size=self.window_size,
empty_value=self.empty_value,
input_strategy=self.input_strategy,
add_mask_columns=self.add_mask_columns,
statistics_mode_column_scale=self.statistics_mode_column_scale,
window_period_length=period_length
)
# print(np.around(X.flatten(),4).tolist())
# exit(0)
y_trues["episode"] = X
yield key, y_trues
key += 1
##################################################################################################################################################
#### GENERATION D'EXEMPLES COMPLETS MODE TENSOR (CHARTS + INPUTEVENTS + DIAGNOSES) ##### DE THOURIA ##############################################
##################################################################################################################################################
def load_vocab(self):
if self.full_gens_loaded == False:
self.full_gens = pd.read_csv(os.path.join(DATASET_SAVE_PATH,"genders_dict.csv"))["GENDER"].tolist()
self.full_gens_loaded = True
self.full_gens_len = len(self.full_gens)
self.full_gens_reverse = {k: v for v, k in enumerate(self.full_gens)}
if self.full_eths_loaded == False:
self.full_eths = pd.read_csv(os.path.join(DATASET_SAVE_PATH,"ethnicities_dict.csv"))["ETHNICITY"].tolist()
self.full_eths_loaded = True
self.full_eths_len = len(self.full_eths)
self.full_eths_reverse = {k: v for v, k in enumerate(self.full_eths)}
if self.full_ins_loaded == False:
self.full_ins = pd.read_csv(os.path.join(DATASET_SAVE_PATH,"insurances_dict.csv"))["INSURANCE"].tolist()
self.full_ins_loaded = True
self.full_ins_len = len(self.full_ins)
self.full_ins_reverse = {k: v for v, k in enumerate(self.full_ins)}
if self.full_cond_loaded == False:
self.full_cond = pd.read_csv(os.path.join(DATASET_SAVE_PATH,"icd_dict.csv"),names=["COND","SHORT","LONG"],skiprows=1)
self.full_cond_loaded = True
self.full_cond_len = len(self.full_cond)
if self.full_proc_loaded == False:
self.full_proc = pd.read_csv(os.path.join(DATASET_SAVE_PATH,"pe_itemid_dict.csv"),names=["PROC","SHORT","LONG"],skiprows=1)
self.full_proc_loaded = True
self.full_proc_len = len(self.full_proc["PROC"])
if self.full_meds_loaded == False:
self.full_meds = pd.read_csv(os.path.join(DATASET_SAVE_PATH,"ie_itemid_dict.csv"),names=["MEDS","LONG","SHORT"],skiprows=1)
self.full_meds_loaded = True
self.full_meds_len = len(self.full_meds["MEDS"])
if self.full_ages_loaded == False:
self.full_ages = pd.read_csv(os.path.join(DATASET_SAVE_PATH,"ages_dict.csv"),names=["AGE","INDEX"],skiprows=1)["AGE"]
self.full_ages_loaded = True
self.full_ages_len = len(self.full_ages)
self.full_ages_reverse = {k: v for v, k in enumerate(self.full_ages)}
self.chartDic = pd.DataFrame({"CHART":["Capillary refill rate","Diastolic blood pressure","Fraction inspired oxygen","Glascow coma scale eye opening","Glascow coma scale motor response","Glascow coma scale total","Glascow coma scale verbal response","Glucose","Heart Rate","Height","Mean blood pressure","Oxygen saturation","Respiratory rate","Systolic blood pressure","Temperature","Weight","pH"]})
def generate_deep(self,data):
dyn,cond_df,demo=self.concat_data(data)
charts = dyn['CHART'].values
meds = dyn['MEDS'].values
proc = dyn['PROC'].values
stat = cond_df.values[0]
y = int(demo['label'])
demo["gender"].replace(self.full_gens_reverse, inplace=True)
demo["ethnicity"].replace(self.full_eths_reverse, inplace=True)
demo["insurance"].replace(self.full_ins_reverse, inplace=True)
demo["Age"] = demo["Age"].round()
demo["insurance"].replace(self.full_ages_reverse, inplace=True)
demo = demo[["gender","ethnicity","insurance","Age"]].values[0]
return stat, demo, meds, charts, proc, y
def _generate_examples_deep(self, filepath):
self.load_vocab()
with open(filepath, 'rb') as fp:
dico = pickle.load(fp)
for key, data in enumerate(dico):
stat, demo, meds, chart, proc, y = self.generate_deep(data)
yielded = {
'label': y,
'DEMO': demo,
'COND': stat,
'MEDS': meds,
'PROC': proc,
'CHART/LAB': chart,
}
yield int(key), yielded
##################################################################################################################################################
#### GENERATION D'EXEMPLES COMPLETS MODE CONCAT/AGGREG (CHARTS + INPUTEVENTS + DIAGNOSES) ##### DE THOURIA #######################################
##################################################################################################################################################
def concat_data(self,data):
meds = data['Med']
proc = data['Proc']
chart = codes_to_int(input_values(data['Chart']))
cond = data['Cond']['fids']
cond_df,proc_df,chart_df,meds_df=pd.DataFrame(),pd.DataFrame(),pd.DataFrame(),pd.DataFrame()
#demographic
demo=pd.DataFrame(columns=['Age','gender','ethnicity','label','insurance'])
new_row = {'Age': data['age'], 'gender': data['gender'], 'ethnicity': data['ethnicity'], 'label': data['label'], 'insurance': data['insurance']}
demo = demo.append(new_row, ignore_index=True)
##########COND#########
#get all conds
features=pd.DataFrame(np.zeros([1,len(self.full_cond)]),columns=self.full_cond['COND'])
#onehot encode
cond_df = pd.DataFrame(cond,columns=['COND'])
cond_df['val'] = 1
cond_df = (cond_df.drop_duplicates()).pivot(columns='COND',values='val').reset_index(drop=True)
cond_df = cond_df.fillna(0)
oneh = cond_df.sum().to_frame().T
combined_df = pd.concat([features,oneh],ignore_index=True).fillna(0)
combined_oneh = combined_df.sum().to_frame().T
cond_df = combined_oneh
for c in cond_df.columns :
if c not in features:
cond_df = cond_df.drop(columns=[c])
##########PROC#########
feat=proc.keys()
proc_val=[proc[key] for key in feat]
procedures=pd.DataFrame(self.full_proc["PROC"],columns=['PROC'])
features=pd.DataFrame(np.zeros([1,len(procedures)]),columns=procedures['PROC'])
features.columns=pd.MultiIndex.from_product([["PROC"], features.columns])
procs=pd.DataFrame(columns=feat)
for p,v in zip(feat,proc_val):
procs[p]=v
procs.columns=pd.MultiIndex.from_product([["PROC"], procs.columns])
proc_df = pd.concat([features,procs],ignore_index=True).fillna(0)
##########CHART#########
feat=chart.keys()
chart_val=[chart[key] for key in feat]
charts=pd.DataFrame(self.chartDic,columns=['CHART'])
features=pd.DataFrame(np.zeros([1,len(charts)]),columns=charts['CHART'])
features.columns=pd.MultiIndex.from_product([["CHART"], features.columns])
chart=pd.DataFrame(columns=feat)
for c,v in zip(feat,chart_val):
chart[c]=v
chart.columns=pd.MultiIndex.from_product([["CHART"], chart.columns])
chart_df = pd.concat([features,chart],ignore_index=True).fillna(0)
###MEDS
feat=[str(x) for x in meds.keys()]
med_val=[meds[int(key)] for key in feat]
meds=[str(x) for x in self.full_meds["MEDS"]]
features=pd.DataFrame(np.zeros([1,len(meds)]),columns=meds)
features.columns=pd.MultiIndex.from_product([["MEDS"], features.columns])
med=pd.DataFrame(columns=feat)
for m,v in zip(feat,med_val):
med[m]=v
med.columns=pd.MultiIndex.from_product([["MEDS"], med.columns])
meds_df = pd.concat([features,med],ignore_index=True).fillna(0)
dyn_df = pd.concat([meds_df,proc_df,chart_df], axis=1)
return dyn_df,cond_df,demo
def _generate_ml(self,dyn,stat,demo,concat_cols,concat):
X_df=pd.DataFrame()
if concat:
dyna=dyn.copy()
dyna.columns=dyna.columns.droplevel(0)
dyna=dyna.to_numpy()
dyna=np.nan_to_num(dyna, copy=False)
dyna=dyna.reshape(1,-1)
#dyn_df=pd.DataFrame(data=dyna,columns=concat_cols)
dyn_df=pd.DataFrame(data=dyna)
else:
dyn_df=pd.DataFrame()
for key in dyn.columns.levels[0]:
dyn_temp=dyn[key]
if ((key=="CHART") or (key=="MEDS")):
agg=dyn_temp.aggregate("mean")
agg=agg.reset_index()
else:
agg=dyn_temp.aggregate("max")
agg=agg.reset_index()
if dyn_df.empty:
dyn_df=agg
else:
dyn_df=pd.concat([dyn_df,agg],axis=0)
dyn_df=dyn_df.T
dyn_df.columns = dyn_df.iloc[0]
dyn_df=dyn_df.iloc[1:,:]
X_df=pd.concat([dyn_df,stat],axis=1)
X_df=pd.concat([X_df,demo],axis=1)
return X_df
def _generate_examples_encoded(self, filepath, concat):
self.load_vocab()
gen_encoder,eth_encoder,ins_encoder = LabelEncoder(),LabelEncoder(),LabelEncoder()
gen_encoder.fit(self.full_gens)
eth_encoder.fit(self.full_eths)
ins_encoder.fit(self.full_ins)
with open(filepath, 'rb') as fp:
dico = pickle.load(fp)
df = pd.DataFrame(dico)
for i, data in df.iterrows():
concat_cols=[]
dyn_df,cond_df,demo=self.concat_data(data)
dyn=dyn_df.copy()
dyn.columns=dyn.columns.droplevel(0)
cols=dyn.columns
time=dyn.shape[0]
# for t in range(time):
# cols_t = [str(x) + "_"+str(t) for x in cols]
# concat_cols.extend(cols_t)
demo['gender']=gen_encoder.transform(demo['gender'])
demo['ethnicity']=eth_encoder.transform(demo['ethnicity'])
demo['insurance']=ins_encoder.transform(demo['insurance'])
label = data['label']
demo = demo.drop(['label'],axis=1)
X = self._generate_ml(dyn = dyn_df, stat = cond_df, demo = demo, concat_cols = concat_cols, concat = concat)
columns = X.columns
X = X.values.tolist()[0]
yield int(i), {
"label": label,
"features": X,
"columns":columns
}
def _generate_examples_text(self, filepath):
self.load_vocab()
with open(filepath, 'rb') as fp:
dico = pickle.load(fp)
for i, data in enumerate(dico):
#adding demos informations
age = str(round(data['age']))
gender = str(data['gender'])
if gender == "M":
gender = "male"
elif gender == "F":
gender = "female"
ethnicity = str(data['ethnicity'])
insurance = str(data['insurance'])
X = ""
if self.mimic4_text_demos or self.mimic4_text_cond:
X = "The patient "
if self.mimic4_text_demos:
if self.mimic4_text_cond:
X += "("+ethnicity+" "+gender+", "+age+" years old, covered by "+insurance+") "
else:
X += "is "+ethnicity+" "+gender+", "+age+" years old, covered by "+insurance+". "
#adding diagnosis
if self.mimic4_text_cond:
X += "was diagnosed with "
cond = data['Cond']['fids']
for idx,c in enumerate(cond):
X += self.full_cond.loc[self.full_cond["COND"] == str(c)]["LONG"].values[0]+("; " if idx+1 < len(cond) else ". ")
#removing nan charts and aggregation
if self.mimic4_text_charts:
for x in data["Chart"]:
data["Chart"][x] = [xi for xi in data["Chart"][x] if not (xi == "" or (isinstance(xi,float) and np.isnan(xi)))]
data["Chart"] = codes_to_int(data["Chart"])
chart = {x:round(np.mean([it for it in data['Chart'][x]]),3) for x in data["Chart"] if len(data["Chart"][x]) > 0}
#specials columns for chartevents
for col in ["Glascow coma scale eye opening","Glascow coma scale motor response","Glascow coma scale verbal response"]:
if not col in chart:
continue
chart[col] = int(round(chart[col]))
for dtem in discretizer[col]:
if dtem[1] == chart[col]:
chart[col] = dtem[0][-1]
for col in ["Glascow coma scale total"]:
if not col in chart:
continue
chart[col] = int(round(chart[col]))
X += "The chart events measured were : "
for idx,c in enumerate(chart):
X += str(chart[c]) + " for " + c + ("; " if (idx+1 < len(chart.keys())) else ". ")
#medications
if self.mimic4_text_meds:
meds = data['Med']
if len(meds.keys()) != 0:
X += "The mean amounts of medications administered during the episode were : "
meds = {x:round(np.mean([it for it in meds[x]]),3) for x in meds if len(meds[x]) > 0}
for idx,c in enumerate(meds):
if meds[c] != 0:
short = self.full_meds.loc[self.full_meds["MEDS"] == int(c)]["SHORT"].values[0]
long = self.full_meds.loc[self.full_meds["MEDS"] == int(c)]["LONG"].values[0]
name = long if (long != "nan" and not (isinstance(long,float) and np.isnan(long))) else short
if (name != "nan" and not (isinstance(name,float) and np.isnan(name))):
X += str(meds[c]) + " of " + name + ("; " if (idx+1 < len(meds.keys())) else ". ")
else:
X += "No medication was administered."
#procedures
if self.mimic4_text_procs:
proc = data['Proc']
if len(proc.keys()) != 0:
X += "The procedures performed were: "
for idx,c in enumerate(proc):
short = self.full_proc.loc[self.full_proc["PROC"] == int(c)]["SHORT"].values[0]
long = self.full_proc.loc[self.full_proc["PROC"] == int(c)]["LONG"].values[0]
name = long if (long != "nan" and not (isinstance(long,float) and np.isnan(long))) else short
if (name != "nan" and not (isinstance(name,float) and np.isnan(name))):
X += str(name) + ("; " if (idx+1 < len(meds.keys())) else ". ")
else:
X += "No procedure was performed."
yield int(i), {
"label": data['label'],
"features": X,
}
#### GENERATION D'EXEMPLES ###############################################################
def _generate_examples(self, filepath, split):
if "mimic4" in self.config.name:
if self.mode == "mimic4-aggreg":
yield from self._generate_examples_encoded(filepath,False)
elif self.mode == "mimic4-tensor":
yield from self._generate_examples_deep(filepath)
elif self.mode == "mimic4-naive-prompt":
yield from self._generate_examples_text(filepath)
else:
yield from self._generate_exemples_CHARTONLY(filepath) |