WikiHowNFQA / WikiHowNFQA.py
Lurunchik's picture
add splitting
afb5c76
from datasets import DatasetInfo, SplitGenerator, ClassLabel, Sequence, Split, GeneratorBasedBuilder
from datasets.features import Features, Value
import json
class WikiHowNFQADataset(GeneratorBasedBuilder):
VERSION = "1.0.0"
def _info(self):
features = Features({
'article_id': Value('int32'),
'question': Value('string'),
'answer': Value('string'),
'related_document_urls_wayback_snapshots': Sequence(Value('string')),
'split': ClassLabel(names=['train', 'valid', 'test']),
'cluster': Value('int32'),
})
return DatasetInfo(
description="WikiHowNFQA dataset",
features=features,
homepage="https://huggingface.co/datasets/Lurunchik/WikiHowNFQA",
citation="""@inproceedings{bolotova2023wikihowqa,
title={WikiHowQA: A Comprehensive Benchmark for Multi-Document Non-Factoid Question Answering},
author={Bolotova, Valeriia and Blinov, Vladislav and Filippova, Sofya and Scholer, Falk and Sanderson, Mark},
booktitle="Proceedings of the 61th Conference of the Association for Computational Linguistics",
year={2023}
}"""
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
downloaded_file = dl_manager.download_and_extract('https://huggingface.co/datasets/Lurunchik/WikiHowNFQA/resolve/main/WikiHowNFQA.jsonl')
return [
SplitGenerator(
name=Split.TRAIN,
gen_kwargs={
"filepath": downloaded_file,
"split": "train",
},
),
SplitGenerator(
name=Split.VALIDATION,
gen_kwargs={
"filepath": downloaded_file,
"split": "valid",
},
),
SplitGenerator(
name=Split.TEST,
gen_kwargs={
"filepath": downloaded_file,
"split": "test",
},
),
]
def _generate_examples(self, filepath, split):
with open(filepath, encoding="utf-8") as f:
for id_, line in enumerate(f):
data = json.loads(line)
if data['split'] == split:
yield id_, {
'article_id': data['article_id'],
'question': data['question'],
'answer': data['answer'],
'related_document_urls_wayback_snapshots': data['related_document_urls_wayback_snapshots'],
'split': data['split'],
'cluster': data['cluster'],
}
WikiHowNFQADataset().download_and_prepare()