Datasets:
Tasks:
Automatic Speech Recognition
Formats:
parquet
Languages:
English
Size:
1M - 10M
ArXiv:
License:
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import json | |
import os | |
import datasets | |
from datasets.tasks import AutomaticSpeechRecognition | |
from tqdm.auto import tqdm | |
# Find for instance the citation on arxiv or on the dataset repo/website | |
_CITATION = """\ | |
@article{DBLP:journals/corr/abs-2111-09344, | |
author = {Daniel Galvez and | |
Greg Diamos and | |
Juan Ciro and | |
Juan Felipe Ceron and | |
Keith Achorn and | |
Anjali Gopi and | |
David Kanter and | |
Maximilian Lam and | |
Mark Mazumder and | |
Vijay Janapa Reddi}, | |
title = {The People's Speech: A Large-Scale Diverse English Speech Recognition | |
Dataset for Commercial Usage}, | |
journal = {CoRR}, | |
volume = {abs/2111.09344}, | |
year = {2021}, | |
url = {https://arxiv.org/abs/2111.09344}, | |
eprinttype = {arXiv}, | |
eprint = {2111.09344}, | |
timestamp = {Mon, 22 Nov 2021 16:44:07 +0100}, | |
biburl = {https://dblp.org/rec/journals/corr/abs-2111-09344.bib}, | |
bibsource = {dblp computer science bibliography, https://dblp.org} | |
} | |
""" | |
# You can copy an official description | |
_DESCRIPTION = """\ | |
The People's Speech is a free-to-download 30,000-hour and growing supervised | |
conversational English speech recognition dataset licensed for academic and | |
commercial usage under CC-BY-SA (with a CC-BY subset). | |
""" | |
_HOMEPAGE = "https://mlcommons.org/en/peoples-speech/" | |
_LICENSE = [ | |
"cc-by-2.0", "cc-by-2.5", "cc-by-3.0", "cc-by-4.0", "cc-by-sa-2.5", | |
"cc-by-sa-3.0", "cc-by-sa-4.0" | |
] | |
_BASE_URL = "https://huggingface.co/datasets/MLCommons/peoples_speech/resolve/main/" | |
# relative path to data inside dataset's repo | |
_DATA_URL = _BASE_URL + "{split}/{config}/{config}_{archive_id:06d}.tar" | |
# relative path to file containing number of audio archives inside dataset's repo | |
_N_FILES_URL = _BASE_URL + "{split}/{config}/n_files.txt" | |
# relative path to metadata inside dataset's repo | |
_MANIFEST_URL = _BASE_URL + "{split}/{config}.json" | |
class PeoplesSpeech(datasets.GeneratorBasedBuilder): | |
"""The People's Speech dataset.""" | |
VERSION = datasets.Version("1.1.0") | |
BUILDER_CONFIGS = [ | |
datasets.BuilderConfig(name="microset", version=VERSION, description="Small subset of clean data for example pusposes."), | |
datasets.BuilderConfig(name="clean", version=VERSION, description="Clean, CC-BY licensed subset."), | |
datasets.BuilderConfig(name="dirty", version=VERSION, description="Dirty, CC-BY licensed subset."), | |
datasets.BuilderConfig(name="clean_sa", version=VERSION, description="Clean, CC-BY-SA licensed subset."), | |
datasets.BuilderConfig(name="dirty_sa", version=VERSION, description="Dirty, CC-BY-SA licensed subset."), | |
] | |
DEFAULT_CONFIG_NAME = "clean" | |
DEFAULT_WRITER_BATCH_SIZE = 1 | |
def _info(self): | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=datasets.Features( | |
{ | |
"id": datasets.Value("string"), | |
"audio": datasets.Audio(sampling_rate=16_000), | |
"duration_ms": datasets.Value("int32"), | |
"text": datasets.Value("string"), | |
} | |
), | |
task_templates=[AutomaticSpeechRecognition()], | |
supervised_keys=("file", "text"), | |
homepage=_HOMEPAGE, | |
license="/".join(_LICENSE), # license must be a string | |
citation=_CITATION, | |
) | |
def _get_n_files(self, dl_manager, split, config): | |
n_files_url = _N_FILES_URL.format(split=split, config=config) | |
n_files_path = dl_manager.download_and_extract(n_files_url) | |
with open(n_files_path, encoding="utf-8") as f: | |
return int(f.read().strip()) | |
def _split_generators(self, dl_manager): | |
if self.config.name == "microset": | |
# take only first data archive for demo purposes | |
url = [_DATA_URL.format(split="train", config="clean", archive_id=0)] | |
archive_path = dl_manager.download(url) | |
local_extracted_archive_path = dl_manager.extract(archive_path) if not dl_manager.is_streaming else [None] | |
manifest_url = _MANIFEST_URL.format(split="train", config="clean_000000") # train/clean_000000.json | |
manifest_path = dl_manager.download_and_extract(manifest_url) | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
gen_kwargs={ | |
"local_extracted_archive_paths": local_extracted_archive_path, | |
# use iter_archive here to access the files in the TAR archives: | |
"archives": [dl_manager.iter_archive(path) for path in archive_path], | |
"manifest_path": manifest_path, | |
}, | |
), | |
] | |
n_files_train = self._get_n_files(dl_manager, split="train", config=self.config.name) | |
n_files_validation = self._get_n_files(dl_manager, split="validation", config="validation") | |
n_files_test = self._get_n_files(dl_manager, split="test", config="test") | |
urls = { | |
"train": [_DATA_URL.format(split="train", config=self.config.name, archive_id=i) for i in range(n_files_train)], | |
"validation": [_DATA_URL.format(split="validation", config="validation", archive_id=i) for i in range(n_files_validation)], | |
"test": [_DATA_URL.format(split="test", config="test", archive_id=i) for i in range(n_files_test)], | |
} | |
archive_paths = dl_manager.download(urls) | |
# In non-streaming mode, we extract the archives to have the data locally: | |
local_extracted_archive_paths = dl_manager.extract(archive_paths) if not dl_manager.is_streaming else \ | |
{ | |
"train": [None] * len(archive_paths), | |
"validation": [None] * len(archive_paths), | |
"test": [None] * len(archive_paths), | |
} | |
manifest_urls = { | |
"train": _MANIFEST_URL.format(split="train", config=self.config.name), | |
"validation": _MANIFEST_URL.format(split="validation", config="validation"), | |
"test": _MANIFEST_URL.format(split="test", config="test"), | |
} | |
manifest_paths = dl_manager.download_and_extract(manifest_urls) | |
# To access the audio data from the TAR archives using the download manager, | |
# we have to use the dl_manager.iter_archive method | |
# | |
# This is because dl_manager.download_and_extract | |
# doesn't work to stream TAR archives in streaming mode. | |
# (we have to stream the files of a TAR archive one by one) | |
# | |
# The iter_archive method returns an iterable of (path_within_archive, file_obj) for every | |
# file in a TAR archive. | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
gen_kwargs={ | |
"local_extracted_archive_paths": local_extracted_archive_paths["train"], | |
# use iter_archive here to access the files in the TAR archives: | |
"archives": [dl_manager.iter_archive(path) for path in archive_paths["train"]], | |
"manifest_path": manifest_paths["train"], | |
}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.VALIDATION, | |
gen_kwargs={ | |
"local_extracted_archive_paths": local_extracted_archive_paths["validation"], | |
# use iter_archive here to access the files in the TAR archives: | |
"archives": [dl_manager.iter_archive(path) for path in archive_paths["validation"]], | |
"manifest_path": manifest_paths["validation"], | |
}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.TEST, | |
gen_kwargs={ | |
"local_extracted_archive_paths": local_extracted_archive_paths["validation"], | |
# use iter_archive here to access the files in the TAR archives: | |
"archives": [dl_manager.iter_archive(path) for path in archive_paths["test"]], | |
"manifest_path": manifest_paths["test"], | |
}, | |
), | |
] | |
def _generate_examples(self, local_extracted_archive_paths, archives, manifest_path): | |
meta = dict() | |
with open(manifest_path, "r", encoding="utf-8") as f: | |
for line in tqdm(f, desc="reading metadata file"): | |
sample_meta = json.loads(line) | |
_id = sample_meta["audio_document_id"] | |
texts = sample_meta["training_data"]["label"] | |
audio_filenames = sample_meta["training_data"]["name"] | |
durations = sample_meta["training_data"]["duration_ms"] | |
for audio_filename, text, duration in zip(audio_filenames, texts, durations): | |
audio_filename = audio_filename.lstrip("./") | |
meta[audio_filename] = { | |
"audio_document_id": _id, | |
"text": text, | |
"duration_ms": duration | |
} | |
for local_extracted_archive_path, archive in zip(local_extracted_archive_paths, archives): | |
# Here we iterate over all the files within the TAR archive: | |
for audio_filename, audio_file in archive: | |
audio_filename = audio_filename.lstrip("./") | |
# if an audio file exists locally (i.e. in default, non-streaming mode) set the full path to it | |
# joining path to directory that the archive was extracted to and audio filename. | |
path = os.path.join(local_extracted_archive_path, audio_filename) if local_extracted_archive_path \ | |
else audio_filename | |
yield audio_filename, { | |
"id": audio_filename, | |
"audio": {"path": path, "bytes": audio_file.read()}, | |
"text": meta[audio_filename]["text"], | |
"duration_ms": meta[audio_filename]["duration_ms"] | |
} | |