|
""" |
|
NOTE: Major TOM standard does not require any specific type of thumbnail to be computed. |
|
|
|
Instead these are shared as optional help since this is how the Core dataset thumbnails have been computed. |
|
""" |
|
|
|
from rasterio.io import MemoryFile |
|
from PIL import Image |
|
import numpy as np |
|
|
|
def s1rtc_thumbnail(vv, vh, vv_NODATA = -32768.0, vh_NODATA = -32768.0): |
|
""" |
|
Takes vv and vh numpy arrays along with the corresponding NODATA values (default is -32768.0) |
|
|
|
Returns a numpy array with the thumbnail |
|
""" |
|
|
|
|
|
vv_mask = vv != vv_NODATA |
|
vh_mask = vh != vh_NODATA |
|
|
|
|
|
vv[vv<0] = vv[vv>=0].min() |
|
vh[vh<0] = vh[vh>=0].min() |
|
|
|
|
|
vv_dB = 10*np.log10(vv) |
|
vh_dB = 10*np.log10(vh) |
|
|
|
|
|
vv_dB = (vv_dB - vv_dB[vv_mask].min()) / (vv_dB[vv_mask].max() - vv_dB[vv_mask].min()) * 255 |
|
vh_dB = (vh_dB - vh_dB[vh_mask].min()) / (vh_dB[vh_mask].max() - vh_dB[vh_mask].min()) * 255 |
|
|
|
|
|
vv_dB[vv_mask==0] = 0 |
|
vh_dB[vh_mask==0] = 0 |
|
|
|
|
|
return np.stack([vv_dB, |
|
255*(vv_dB+vh_dB)/np.max(vv_dB+vh_dB), |
|
vh_dB |
|
],-1).astype(np.uint8) |
|
|
|
def s1rtc_thumbnail_from_datarow(datarow): |
|
""" |
|
Takes a datarow directly from one of the data parquet files |
|
|
|
Returns a PIL Image |
|
""" |
|
|
|
with MemoryFile(datarow['vv'][0].as_py()) as mem_f: |
|
with mem_f.open(driver='GTiff') as f: |
|
vv=f.read().squeeze() |
|
vv_NODATA = f.nodata |
|
|
|
with MemoryFile(datarow['vh'][0].as_py()) as mem_f: |
|
with mem_f.open(driver='GTiff') as f: |
|
vh=f.read().squeeze() |
|
vh_NODATA = f.nodata |
|
|
|
img = s1rtc_thumbnail(vv, vh, vv_NODATA=vv_NODATA, vh_NODATA=vh_NODATA) |
|
|
|
return Image.fromarray(img) |
|
|
|
if __name__ == '__main__': |
|
from fsspec.parquet import open_parquet_file |
|
import pyarrow.parquet as pq |
|
|
|
print('[example run] reading file from HuggingFace...') |
|
url = "https://huggingface.co/datasets/Major-TOM/Core-S1RTC/resolve/main/images/part_00001.parquet" |
|
with open_parquet_file(url) as f: |
|
with pq.ParquetFile(f) as pf: |
|
first_row_group = pf.read_row_group(1) |
|
|
|
print('[example run] computing the thumbnail...') |
|
thumbnail = s1rtc_thumbnail_from_datarow(first_row_group) |
|
|
|
thumbnail_fname = 'example_thumbnail.png' |
|
thumbnail.save(thumbnail_fname, format = 'PNG') |
|
print('[example run] saved as "{}"'.format(thumbnail_fname)) |