MattiaSangermano commited on
Commit
03821fe
·
verified ·
1 Parent(s): 8f8dbe7

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +121 -115
README.md CHANGED
@@ -1,116 +1,122 @@
1
- ---
2
- license: cc-by-nc-sa-4.0
3
- dataset_info:
4
- features:
5
- - name: id
6
- dtype: int64
7
- - name: text
8
- dtype: string
9
- - name: latitude
10
- dtype: float64
11
- - name: longitude
12
- dtype: float64
13
- - name: region
14
- dtype:
15
- class_label:
16
- names:
17
- '0': Abruzzo
18
- '1': Basilicata
19
- '2': Calabria
20
- '3': Campania
21
- '4': Emilia Romagna
22
- '5': Friuli-Venezia Giulia
23
- '6': Lazio
24
- '7': Liguria
25
- '8': Lombardia
26
- '9': Marche
27
- '10': Molise
28
- '11': Piemonte
29
- '12': Puglia
30
- '13': Sardegna
31
- '14': Sicilia
32
- '15': Toscana
33
- '16': Trentino-Alto Adige
34
- '17': Umbria
35
- '18': Valle d'Aosta
36
- '19': Veneto
37
- splits:
38
- - name: train
39
- num_bytes: 2182990
40
- num_examples: 13500
41
- - name: validation
42
- num_bytes: 78947
43
- num_examples: 552
44
- - name: test
45
- num_bytes: 115317
46
- num_examples: 818
47
- download_size: 1626816
48
- dataset_size: 2377254
49
- configs:
50
- - config_name: default
51
- data_files:
52
- - split: train
53
- path: data/train-*
54
- - split: validation
55
- path: data/validation-*
56
- - split: test
57
- path: data/test-*
58
- ---
59
-
60
- # GeoLingIt: Geolocation of Linguistic Variation in Italy
61
-
62
- **Disclaimer: This dataset is not the official GeoLingIt repository from EVALITA. For the official repository and more information, please visit the [EVALITA GeoLingIt page](https://sites.google.com/view/geolingit/home).**
63
-
64
- ## Dataset Summary
65
-
66
- GeoLingIt is a dataset for studying the geolocation of linguistic variation in Italy using social media posts that exhibit non-standard Italian language. The dataset is part of the EVALITA 2023 evaluation campaign and aims to advance natural language processing (NLP) techniques for non-standard Italian while providing sociolinguistic insights into language variation across Italy.
67
-
68
- The dataset includes tweets that feature linguistic patterns from various Italian dialects, regional varieties, and local languages. Social media content, such as tweets, often includes informal language that reflects local dialects and regional varieties. This provides a unique opportunity to explore linguistic variation on a large scale and improve language technologies for Italian and minority languages.
69
-
70
- ## Dataset Structure
71
-
72
- ### Data Format
73
-
74
- The dataset supports two main tasks:
75
-
76
- - **Coarse-grained Geolocation**: Predict the region of provenance for each tweet.
77
- - **Fine-grained Geolocation**: Predict the exact longitude and latitude coordinates for each tweet.
78
-
79
- The dataset composed of the following columns:
80
-
81
- - `id`: An anonymized identifier for the tweet.
82
- - `text`: The content of the tweet with anonymized user mentions, email addresses, URLs, and location mentions.
83
- - `region`: The region of provenance for the tweet (for coarse-grained geolocation).
84
- - `latitude`: The latitude coordinate of the tweet (for fine-grained geolocation).
85
- - `longitude`: The longitude coordinate of the tweet (for fine-grained geolocation).
86
-
87
- ### Source Data
88
-
89
- The tweets were collected from Twitter and filtered to include only those that exhibit non-standard Italian language. Each tweet includes geotagging information (latitude, longitude, and place name) within Italy.
90
-
91
- ## Ethical Considerations
92
-
93
- The dataset is anonymized to protect user privacy, with user mentions, email addresses, and URLs replaced by placeholders. Latitude and longitude coordinates represent cities as a whole, avoiding specific place identification. The data is intended for aggregate analysis to study diatopic linguistic variation.
94
-
95
- ## Potential Issues
96
-
97
- Since the dataset consists of social media posts, it may contain profanities, slurs, and hateful content. Users should be aware of this when working with the data.
98
-
99
- ## Citation
100
-
101
- If you use this dataset, please cite the original authors:
102
-
103
- ```
104
- @inproceedings{ramponi-casula-2023-diatopit,
105
- title = "{D}iatop{I}t: A Corpus of Social Media Posts for the Study of Diatopic Language Variation in {I}taly",
106
- author = "Ramponi, Alan and
107
- Casula, Camilla",
108
- booktitle = "Tenth Workshop on NLP for Similar Languages, Varieties and Dialects (VarDial 2023)",
109
- month = may,
110
- year = "2023",
111
- address = "Dubrovnik, Croatia",
112
- publisher = "Association for Computational Linguistics",
113
- url = "https://aclanthology.org/2023.vardial-1.19",
114
- pages = "187--199",
115
- }
 
 
 
 
 
 
116
  ```
 
1
+ ---
2
+ license: cc-by-nc-sa-4.0
3
+ dataset_info:
4
+ features:
5
+ - name: id
6
+ dtype: int64
7
+ - name: text
8
+ dtype: string
9
+ - name: latitude
10
+ dtype: float64
11
+ - name: longitude
12
+ dtype: float64
13
+ - name: region
14
+ dtype:
15
+ class_label:
16
+ names:
17
+ '0': Abruzzo
18
+ '1': Basilicata
19
+ '2': Calabria
20
+ '3': Campania
21
+ '4': Emilia Romagna
22
+ '5': Friuli-Venezia Giulia
23
+ '6': Lazio
24
+ '7': Liguria
25
+ '8': Lombardia
26
+ '9': Marche
27
+ '10': Molise
28
+ '11': Piemonte
29
+ '12': Puglia
30
+ '13': Sardegna
31
+ '14': Sicilia
32
+ '15': Toscana
33
+ '16': Trentino-Alto Adige
34
+ '17': Umbria
35
+ '18': Valle d'Aosta
36
+ '19': Veneto
37
+ splits:
38
+ - name: train
39
+ num_bytes: 2182990
40
+ num_examples: 13500
41
+ - name: validation
42
+ num_bytes: 78947
43
+ num_examples: 552
44
+ - name: test
45
+ num_bytes: 115317
46
+ num_examples: 818
47
+ download_size: 1626816
48
+ dataset_size: 2377254
49
+ configs:
50
+ - config_name: default
51
+ data_files:
52
+ - split: train
53
+ path: data/train-*
54
+ - split: validation
55
+ path: data/validation-*
56
+ - split: test
57
+ path: data/test-*
58
+ task_categories:
59
+ - text-classification
60
+ language:
61
+ - it
62
+ size_categories:
63
+ - 10K<n<100K
64
+ ---
65
+
66
+ # GeoLingIt: Geolocation of Linguistic Variation in Italy
67
+
68
+ **Disclaimer: This dataset is not the official GeoLingIt repository from EVALITA. For the official repository and more information, please visit the [EVALITA GeoLingIt page](https://sites.google.com/view/geolingit/home).**
69
+
70
+ ## Dataset Summary
71
+
72
+ GeoLingIt is a dataset for studying the geolocation of linguistic variation in Italy using social media posts that exhibit non-standard Italian language. The dataset is part of the EVALITA 2023 evaluation campaign and aims to advance natural language processing (NLP) techniques for non-standard Italian while providing sociolinguistic insights into language variation across Italy.
73
+
74
+ The dataset includes tweets that feature linguistic patterns from various Italian dialects, regional varieties, and local languages. Social media content, such as tweets, often includes informal language that reflects local dialects and regional varieties. This provides a unique opportunity to explore linguistic variation on a large scale and improve language technologies for Italian and minority languages.
75
+
76
+ ## Dataset Structure
77
+
78
+ ### Data Format
79
+
80
+ The dataset supports two main tasks:
81
+
82
+ - **Coarse-grained Geolocation**: Predict the region of provenance for each tweet.
83
+ - **Fine-grained Geolocation**: Predict the exact longitude and latitude coordinates for each tweet.
84
+
85
+ The dataset composed of the following columns:
86
+
87
+ - `id`: An anonymized identifier for the tweet.
88
+ - `text`: The content of the tweet with anonymized user mentions, email addresses, URLs, and location mentions.
89
+ - `region`: The region of provenance for the tweet (for coarse-grained geolocation).
90
+ - `latitude`: The latitude coordinate of the tweet (for fine-grained geolocation).
91
+ - `longitude`: The longitude coordinate of the tweet (for fine-grained geolocation).
92
+
93
+ ### Source Data
94
+
95
+ The tweets were collected from Twitter and filtered to include only those that exhibit non-standard Italian language. Each tweet includes geotagging information (latitude, longitude, and place name) within Italy.
96
+
97
+ ## Ethical Considerations
98
+
99
+ The dataset is anonymized to protect user privacy, with user mentions, email addresses, and URLs replaced by placeholders. Latitude and longitude coordinates represent cities as a whole, avoiding specific place identification. The data is intended for aggregate analysis to study diatopic linguistic variation.
100
+
101
+ ## Potential Issues
102
+
103
+ Since the dataset consists of social media posts, it may contain profanities, slurs, and hateful content. Users should be aware of this when working with the data.
104
+
105
+ ## Citation
106
+
107
+ If you use this dataset, please cite the original authors:
108
+
109
+ ```
110
+ @inproceedings{ramponi-casula-2023-diatopit,
111
+ title = "{D}iatop{I}t: A Corpus of Social Media Posts for the Study of Diatopic Language Variation in {I}taly",
112
+ author = "Ramponi, Alan and
113
+ Casula, Camilla",
114
+ booktitle = "Tenth Workshop on NLP for Similar Languages, Varieties and Dialects (VarDial 2023)",
115
+ month = may,
116
+ year = "2023",
117
+ address = "Dubrovnik, Croatia",
118
+ publisher = "Association for Computational Linguistics",
119
+ url = "https://aclanthology.org/2023.vardial-1.19",
120
+ pages = "187--199",
121
+ }
122
  ```