|
"""XWinograd""" |
|
|
|
import json |
|
|
|
import datasets |
|
|
|
|
|
logger = datasets.logging.get_logger(__name__) |
|
|
|
|
|
_CITATION = """\ |
|
@misc{tikhonov2021heads, |
|
title={It's All in the Heads: Using Attention Heads as a Baseline for Cross-Lingual Transfer in Commonsense Reasoning}, |
|
author={Alexey Tikhonov and Max Ryabinin}, |
|
year={2021}, |
|
eprint={2106.12066}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
A multilingual collection of Winograd Schemas in six languages \ |
|
that can be used for evaluation of cross-lingual commonsense reasoning capabilities. |
|
""" |
|
_LANG = ["en", "fr", "jp", "pt", "ru", "zh"] |
|
_URL = "https://huggingface.co/datasets/Muennighoff/xwinograd/raw/main/test/{lang}.json" |
|
_VERSION = datasets.Version("1.1.0", "") |
|
|
|
|
|
class XWinograd(datasets.GeneratorBasedBuilder): |
|
"""XWinograd""" |
|
|
|
|
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig( |
|
name=lang, |
|
description=f"XWinograd in {lang}", |
|
version=_VERSION, |
|
) |
|
for lang in _LANG |
|
] |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"sentence": datasets.Value("string"), |
|
"option1": datasets.Value("string"), |
|
"option2": datasets.Value("string"), |
|
"answer": datasets.Value("string") |
|
} |
|
), |
|
supervised_keys=None, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
|
|
downloaded_files = dl_manager.download(_URL.format(lang=self.config.name)) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={'filepath': downloaded_files} |
|
) |
|
] |
|
|
|
def _generate_examples(self, filepath): |
|
"""This function returns the examples in the raw (text) form.""" |
|
logger.info("Generating examples from = %s", filepath) |
|
|
|
with open(filepath, encoding="utf-8") as f: |
|
for id_, row in enumerate(f): |
|
data = json.loads(row) |
|
|
|
yield id_, { |
|
"sentence": data["sentence"], |
|
"option1": data["option1"], |
|
"option2": data["option2"], |
|
"answer": data["answer"], |
|
} |
|
|