Datasets:

Modalities:
Image
Text
Formats:
text
ArXiv:
Tags:
art
Libraries:
Datasets
License:
NGonthier commited on
Commit
6f25df5
·
verified ·
1 Parent(s): 0078a81

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +40 -0
README.md ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ task_categories:
4
+ - object-detection
5
+ tags:
6
+ - art
7
+ size_categories:
8
+ - 1K<n<10K
9
+ ---
10
+
11
+
12
+ 🖼️ The dataset **IconArt** dataset was introduced in the following paper : ["Weakly Supervised Object Detection in Artworks" Gonthier et al. ECCV 2018 Workshop Computer Vision for Art Analysis - VISART 2018](https://arxiv.org/abs/1810.02569).
13
+ This datasest is designed to evaluate Weakly Supervised object detection methods in paintings.
14
+
15
+ You can also find [project page for the paper here.](https://wsoda.telecom-paristech.fr/downloads/dataset/)
16
+
17
+ This dataset contains 5955 images (from [WikiCommons](https://commons.wikimedia.org/wiki/Accueil)) : a train set of 2978 images and a test set of 2977 images (for classification task). 1480 of the 2977 test images are annotated with bounding boxes for 10 visual categories.
18
+ The classes are ‘angel’,‘beard’,‘capital’,‘Child_Jesus’,‘crucifixion_of_Jesus’,‘Mary’,‘nudity’,‘ruins’,‘Saint_Sebastien’,‘turban’.
19
+
20
+ [Most of the methods](https://arxiv.org/abs/2008.01178) only run evaluation on the easiest 7 classes : ‘angel’,‘Child_Jesus’,‘crucifixion_of_Jesus’,‘Mary’,‘nudity’, ‘ruins’,‘Saint_Sebastien’.
21
+
22
+ In this folder you can find 3 other folders, the JPEGImages one contains the JPEG images.
23
+ The Annotations contain the bounding boxes in a PASCAL VOC template (XML file).
24
+ The ImageSets/Main folder contain 3 files :
25
+ - train.txt : contain the name of the images of the train set
26
+ - test.txt : contain the name of the images annotated with an instance level
27
+ - IconArt_v2.csv the class information per image (0 or 1 per class) but also if the image below to the train set or test one and then if the image is associated to bounding boxes annotations (Anno column).
28
+
29
+ ## Reference
30
+
31
+ If you use IconArt please cite the related paper:
32
+ ```
33
+ @InProceedings{Gonthier_2018_ECCV_Workshops,
34
+ author = {Gonthier, Nicolas and Gousseau, Yann and Ladjal, Said and Bonfait, Olivier},
35
+ title = {Weakly Supervised Object Detection in Artworks},
36
+ booktitle = {Proceedings of the European Conference on Computer Vision (ECCV) Workshops},
37
+ month = {September},
38
+ year = {2018}
39
+ }
40
+ ```