parquet-converter commited on
Commit
8437959
·
1 Parent(s): f33e8d0

Update parquet files

Browse files
.gitattributes DELETED
@@ -1,38 +0,0 @@
1
- *.7z filter=lfs diff=lfs merge=lfs -text
2
- *.arrow filter=lfs diff=lfs merge=lfs -text
3
- *.bin filter=lfs diff=lfs merge=lfs -text
4
- *.bz2 filter=lfs diff=lfs merge=lfs -text
5
- *.ftz filter=lfs diff=lfs merge=lfs -text
6
- *.gz filter=lfs diff=lfs merge=lfs -text
7
- *.h5 filter=lfs diff=lfs merge=lfs -text
8
- *.joblib filter=lfs diff=lfs merge=lfs -text
9
- *.lfs.* filter=lfs diff=lfs merge=lfs -text
10
- *.model filter=lfs diff=lfs merge=lfs -text
11
- *.msgpack filter=lfs diff=lfs merge=lfs -text
12
- *.onnx filter=lfs diff=lfs merge=lfs -text
13
- *.ot filter=lfs diff=lfs merge=lfs -text
14
- *.parquet filter=lfs diff=lfs merge=lfs -text
15
- *.pb filter=lfs diff=lfs merge=lfs -text
16
- *.pt filter=lfs diff=lfs merge=lfs -text
17
- *.pth filter=lfs diff=lfs merge=lfs -text
18
- *.rar filter=lfs diff=lfs merge=lfs -text
19
- saved_model/**/* filter=lfs diff=lfs merge=lfs -text
20
- *.tar.* filter=lfs diff=lfs merge=lfs -text
21
- *.tflite filter=lfs diff=lfs merge=lfs -text
22
- *.tgz filter=lfs diff=lfs merge=lfs -text
23
- *.wasm filter=lfs diff=lfs merge=lfs -text
24
- *.xz filter=lfs diff=lfs merge=lfs -text
25
- *.zip filter=lfs diff=lfs merge=lfs -text
26
- *.zstandard filter=lfs diff=lfs merge=lfs -text
27
- *tfevents* filter=lfs diff=lfs merge=lfs -text
28
- # Audio files - uncompressed
29
- *.pcm filter=lfs diff=lfs merge=lfs -text
30
- *.sam filter=lfs diff=lfs merge=lfs -text
31
- *.raw filter=lfs diff=lfs merge=lfs -text
32
- # Audio files - compressed
33
- *.aac filter=lfs diff=lfs merge=lfs -text
34
- *.flac filter=lfs diff=lfs merge=lfs -text
35
- *.mp3 filter=lfs diff=lfs merge=lfs -text
36
- *.ogg filter=lfs diff=lfs merge=lfs -text
37
- *.wav filter=lfs diff=lfs merge=lfs -text
38
- train.jsonl filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
README.md DELETED
@@ -1,127 +0,0 @@
1
- ---
2
- license: mit
3
- ---
4
-
5
- # Dataset Card for ogbg-molhiv
6
-
7
- ## Table of Contents
8
- - [Table of Contents](#table-of-contents)
9
- - [Dataset Description](#dataset-description)
10
- - [Dataset Summary](#dataset-summary)
11
- - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
12
- - [External Use](#external-use)
13
- - [PyGeometric](#pygeometric)
14
- - [Dataset Structure](#dataset-structure)
15
- - [Data Properties](#data-properties)
16
- - [Data Fields](#data-fields)
17
- - [Data Splits](#data-splits)
18
- - [Additional Information](#additional-information)
19
- - [Licensing Information](#licensing-information)
20
- - [Citation Information](#citation-information)
21
- - [Contributions](#contributions)
22
-
23
- ## Dataset Description
24
-
25
- - **[Homepage](https://ogb.stanford.edu/docs/graphprop/#ogbg-mol)**
26
- - **[Repository](https://github.com/snap-stanford/ogb):**:
27
- - **Paper:**: Open Graph Benchmark: Datasets for Machine Learning on Graphs (see citation)
28
- - **Leaderboard:**: [OGB leaderboard](https://ogb.stanford.edu/docs/leader_graphprop/#ogbg-molhiv) and [Papers with code leaderboard](https://paperswithcode.com/sota/graph-property-prediction-on-ogbg-molhiv)
29
-
30
- ### Dataset Summary
31
-
32
- The `ogbg-molhiv` dataset is a small molecular property prediction dataset, adapted from MoleculeNet by teams at Stanford, to be a part of the Open Graph Benchmark.
33
-
34
- ### Supported Tasks and Leaderboards
35
-
36
- `ogbg-molhiv` should be used for molecular property prediction (aiming to predict whether molecules inhibit HIV or not), a binary classification task. The score used is ROC-AUC.
37
-
38
- The associated leaderboards are here: [OGB leaderboard](https://ogb.stanford.edu/docs/leader_graphprop/#ogbg-molhiv) and [Papers with code leaderboard](https://paperswithcode.com/sota/graph-property-prediction-on-ogbg-molhiv).
39
-
40
- ## External Use
41
- ### PyGeometric
42
- To load in PyGeometric, do the following:
43
-
44
- ```python
45
- from datasets import load_dataset
46
-
47
- from torch_geometric.data import Data
48
- from torch_geometric.loader import DataLoader
49
-
50
- ogbg_molhiv = load_dataset("graphs-datasets/ogbg-molhiv")
51
- # For the train set (replace by valid or test as needed)
52
- ogbg_molhiv_pg_list = [Data(graph) for graph in ogbg_molhiv["train"]]
53
- ogbg_molhiv_pg = DataLoader(ogbg_molhiv_pg_list)
54
-
55
- ```
56
-
57
-
58
- ## Dataset Structure
59
-
60
- ### Data Properties
61
-
62
- | property | value |
63
- |---|---|
64
- | scale | small |
65
- | #graphs | 41,127 |
66
- | average #nodes | 25.5 |
67
- | average #edges | 27.5 |
68
- | average node degree | 2.2 |
69
- | average cluster coefficient | 0.002 |
70
- | MaxSCC ratio | 0.993 |
71
- | graph diameter | 12.0 |
72
-
73
- ### Data Fields
74
-
75
- Each row of a given file is a graph, with:
76
- - `x` (list: #nodes x #node-features): nodes
77
- - `edge_index` (list: 2 x #edges): pairs of nodes constituting edges
78
- - `edge_attr` (list: #edges x #edge-features): for the aforementioned edges, contains their features
79
- - `y` (list: 1 x #labels): contains the number of labels available to predict (here 1, equal to zero or one)
80
- - `num_nodes` (int): number of nodes of the graph
81
-
82
- ### Data Splits
83
-
84
- This data comes from the PyGeometric version of the dataset provided by OGB, and follows the provided data splits.
85
- This information can be found back using
86
- ```python
87
- from ogb.graphproppred import PygGraphPropPredDataset
88
-
89
- dataset = PygGraphPropPredDataset(name = 'ogbg-molhiv')
90
-
91
- split_idx = dataset.get_idx_split()
92
- train = dataset[split_idx['train']] # valid, test
93
- ```
94
-
95
- ## Additional Information
96
-
97
- ### Licensing Information
98
- The dataset has been released under MIT license.
99
-
100
- ### Citation Information
101
- ```
102
- @inproceedings{hu-etal-2020-open,
103
- author = {Weihua Hu and
104
- Matthias Fey and
105
- Marinka Zitnik and
106
- Yuxiao Dong and
107
- Hongyu Ren and
108
- Bowen Liu and
109
- Michele Catasta and
110
- Jure Leskovec},
111
- editor = {Hugo Larochelle and
112
- Marc Aurelio Ranzato and
113
- Raia Hadsell and
114
- Maria{-}Florina Balcan and
115
- Hsuan{-}Tien Lin},
116
- title = {Open Graph Benchmark: Datasets for Machine Learning on Graphs},
117
- booktitle = {Advances in Neural Information Processing Systems 33: Annual Conference
118
- on Neural Information Processing Systems 2020, NeurIPS 2020, December
119
- 6-12, 2020, virtual},
120
- year = {2020},
121
- url = {https://proceedings.neurips.cc/paper/2020/hash/fb60d411a5c5b72b2e7d3527cfc84fd0-Abstract.html},
122
- }
123
- ```
124
-
125
- ### Contributions
126
-
127
- Thanks to [@clefourrier](https://github.com/clefourrier) for adding this dataset.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
train.jsonl → graphs-datasets--ogbg-molhiv/json-test.parquet RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:3694070085d22f30b8b44b815c4c0e0811be26706c15668f8bfaa72bdd0297e5
3
- size 59094222
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:42d58a8a76369b8cb7c5091bb07dd59b243a13db4791a4f05680f86ec4ae88d8
3
+ size 569664
graphs-datasets--ogbg-molhiv/json-train.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:17840301db71c23661284c51acf4aff42151a6a4dc5a460b66222c730a60e7a4
3
+ size 4157024
graphs-datasets--ogbg-molhiv/json-validation.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:be1422f73cbc5a5938a0283bfe10576e9dd3f849f383a7782e644bd55f1692da
3
+ size 604859
test.jsonl DELETED
The diff for this file is too large to render. See raw diff
 
valid.jsonl DELETED
The diff for this file is too large to render. See raw diff