Datasets:

Modalities:
Tabular
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
pandas
License:
File size: 10,606 Bytes
4d4c7f5
 
b8629ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e678c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d4c7f5
e55295e
261a96b
e55295e
1e678c3
e55295e
1e678c3
 
 
 
261a96b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e678c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e55295e
1e678c3
 
 
 
 
 
 
 
e55295e
 
1e678c3
 
 
e55295e
1e678c3
 
 
 
 
 
e55295e
 
1e678c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e55295e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2816f86
1e678c3
2816f86
 
1e678c3
2816f86
 
1e678c3
2816f86
 
1e678c3
2816f86
 
1e678c3
2816f86
1e678c3
2816f86
1e678c3
4af2e34
1e678c3
2816f86
d9fe14f
1e678c3
 
 
 
 
 
2816f86
 
1e678c3
2816f86
1e678c3
 
 
 
179dd21
 
 
 
 
 
 
 
 
1e678c3
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
---
license: apache-2.0
dataset_info:
  features:
  - name: message_id
    dtype: string
  - name: parent_id
    dtype: string
  - name: user_id
    dtype: string
  - name: created_date
    dtype: string
  - name: text
    dtype: string
  - name: role
    dtype: string
  - name: lang
    dtype: string
  - name: review_count
    dtype: int32
  - name: review_result
    dtype: bool
  - name: deleted
    dtype: bool
  - name: rank
    dtype: int32
  - name: synthetic
    dtype: bool
  - name: model_name
    dtype: string
  - name: detoxify
    struct:
    - name: toxicity
      dtype: float64
    - name: severe_toxicity
      dtype: float64
    - name: obscene
      dtype: float64
    - name: identity_attack
      dtype: float64
    - name: insult
      dtype: float64
    - name: threat
      dtype: float64
    - name: sexual_explicit
      dtype: float64
  - name: message_tree_id
    dtype: string
  - name: tree_state
    dtype: string
  - name: emojis
    sequence:
    - name: name
      dtype: string
    - name: count
      dtype: int32
  - name: labels
    sequence:
    - name: name
      dtype: string
    - name: value
      dtype: float64
    - name: count
      dtype: int32
  splits:
  - name: train
    num_bytes: 158850455
    num_examples: 128575
  - name: validation
    num_bytes: 7963122
    num_examples: 6599
  download_size: 66674129
  dataset_size: 166813577
language:
- en
- es
- ru
- de
- pl
- th
- vi
- sv
- bn
- da
- he
- it
- fa
- sk
- id
- nb
- el
- nl
- hu
- eu
- zh
- eo
- ja
- ca
- cs
- bg
- fi
- pt
- tr
- ro
- ar
- uk
- gl
- fr
- ko
tags:
- human-feedback
size_categories:
- 100K<n<1M
pretty_name: OpenAssistant Conversations Release 2
---

# Open Assistant Conversations Dataset Release 2 (OASST2)

## Dataset Description

- **Homepage:** https://www.open-assistant.io/
- **Repository:** https://github.com/LAION-AI/Open-Assistant
- **Paper:** https://arxiv.org/abs/2304.07327

### Dataset Structure

This dataset contains message trees. Each message tree has an initial prompt message as the root node, 
which can have multiple child messages as replies, and these child messages can have multiple replies. 

All messages have a role property: this can either be "assistant" or "prompter". The roles in 
conversation threads from prompt to leaf node strictly alternate between "prompter" and "assistant".

This version of the dataset contains data collected on the [open-assistant.io](https://open-assistant.io/) website until Nov 5 2023.

### JSON Example: Message

For readability, the following JSON examples are shown formatted with indentation on multiple lines.
Objects are stored without indentation (on single lines) in the actual jsonl files.

```json
{
    "message_id": "218440fd-5317-4355-91dc-d001416df62b",
    "parent_id": "13592dfb-a6f9-4748-a92c-32b34e239bb4",
    "user_id": "8e95461f-5e94-4d8b-a2fb-d4717ce973e4",
    "text": "It was the winter of 2035, and artificial intelligence (..)",
    "role": "assistant",
    "lang": "en",
    "review_count": 3,
    "review_result": true,
    "deleted": false,
    "rank": 0,
    "synthetic": true,
    "model_name": "oasst-sft-0_3000,max_new_tokens=400 (..)",
    "labels": {
        "spam": { "value": 0.0, "count": 3 },
        "lang_mismatch": { "value": 0.0, "count": 3 },
        "pii": { "value": 0.0, "count": 3 },
        "not_appropriate": { "value": 0.0, "count": 3 },
        "hate_speech": { "value": 0.0, "count": 3 },
        "sexual_content": { "value": 0.0, "count": 3 },
        "quality": { "value": 0.416, "count": 3 },
        "toxicity": { "value": 0.16, "count": 3 },
        "humor": { "value": 0.0, "count": 3 },
        "creativity": { "value": 0.33, "count": 3 },
        "violence": { "value": 0.16, "count": 3 }
    }
}
```

### JSON Example: Conversation Tree

For readability, only a subset of the message properties is shown here.

```json
{
  "message_tree_id": "14fbb664-a620-45ce-bee4-7c519b16a793",
  "tree_state": "ready_for_export",
  "prompt": {
    "message_id": "14fbb664-a620-45ce-bee4-7c519b16a793",
    "text": "Why can't we divide by 0? (..)",
    "role": "prompter",
    "lang": "en",
    "replies": [
      {
        "message_id": "894d30b6-56b4-4605-a504-89dd15d4d1c8",
        "text": "The reason we cannot divide by zero is because (..)",
        "role": "assistant",
        "lang": "en",
        "replies": [
          // ...
        ]
      },
      {
        "message_id": "84d0913b-0fd9-4508-8ef5-205626a7039d",
        "text": "The reason that the result of a division by zero is (..)",
        "role": "assistant",
        "lang": "en",
        "replies": [
          {
            "message_id": "3352725e-f424-4e3b-a627-b6db831bdbaa",
            "text": "Math is confusing. Like those weird Irrational (..)",
            "role": "prompter",
            "lang": "en",
            "replies": [
              {
                "message_id": "f46207ca-3149-46e9-a466-9163d4ce499c",
                "text": "Irrational numbers are simply numbers (..)",
                "role": "assistant",
                "lang": "en",
                "replies": []
              },
              // ...
            ]
          }
        ]
      }
    ]
  }
}
```

Please refer to [oasst-data](https://github.com/LAION-AI/Open-Assistant/tree/main/oasst-data) for
details about the data structure and Python code to read and write jsonl files containing oasst data objects.


## Main Dataset Files

Conversation data is provided either as nested messages in trees (extension `.trees.jsonl.gz`) 
or as a flat list (table) of messages (extension `.messages.jsonl.gz`).


### Ready For Export Trees

```
2023-11-05_oasst2_ready.trees.jsonl.gz      13,854 trees with 135,174 total messages
2023-11-05_oasst2_ready.messages.jsonl.gz   135,174 messages
```

#### 2023-11-05_oasst2_ready.trees.jsonl.gz Stats
```
Trees            : 13,854
Messages         : 135,174
Oldest message   : 2023-01-16 20:24:26.211711+00:00
Youngest message : 2023-11-04 15:23:03.239343+00:00
Detoxify ratings : 111,448
Accepted messages: 129,517
Deleted messages : 4,376
Tree counts by state:
  - ready_for_export: 13,854
Message counts by language:
  - en: 64,513
  - es: 28,199
  - ru: 13,935
  - zh: 8,615
  - de: 6,145
  - fr: 3,880
  - pt-BR: 2,699
  - th: 1,560
  - ca: 1,283
  - it: 943
  - uk-UA: 845
  - ja: 788
  - pl: 435
  - eo: 295
  - eu: 274
  - vi: 207
  - fi: 138
  - hu: 113
  - ar: 80
  - nl: 72
  - da: 44
  - tr: 37
  - ko: 24
  - he: 24
  - id: 12
  - cs: 12
  - bn: 1
  - sv: 1
```

Trees in ready_for_export state without spam and deleted messages including message labels. The oasst_ready-trees file usually is sufficient for supervised fine-tuning (SFT) & reward model (RM) training.

### All Trees

```
2023-11-05_oasst2_all.trees.jsonl.gz        70,642 trees with 208,584 total messages
2023-11-05_oasst2_all.messages.jsonl.gz     208,584 messages
```

All trees, including those in states prompt_lottery_waiting (trees that consist of only one message, namely the initial prompt), aborted_low_grade (trees that stopped growing because the messages had low quality), and halted_by_moderator.

#### 2023-11-05_oasst2_all.trees.jsonl.gz Stats

```
Trees            : 70,642
Messages         : 208,584
Oldest message   : 2023-01-16 20:24:26.211711+00:00
Youngest message : 2023-11-05 10:24:44.484910+00:00
Detoxify ratings : 156,570
Accepted messages: 189,288
Deleted messages : 5,414
Tree counts by state:
  - ready_for_export: 13,854
  - prompt_lottery_waiting: 44,550
  - halted_by_moderator: 3,089
  - initial_prompt_review: 4,319
  - growing: 3,102
  - aborted_low_grade: 1,708
  - ranking: 20
Message counts by language:
  - en: 85,115
  - es: 47,513
  - ru: 15,990
  - zh: 11,205
  - de: 8,398
  - fr: 5,841
  - pt-BR: 4,540
  - th: 3,236
  - ca: 2,586
  - it: 2,144
  - ja: 1,904
  - uk-UA: 1,889
  - ko: 1,635
  - pl: 1,510
  - eo: 1,405
  - nl: 1,354
  - ar: 1,274
  - vi: 1,137
  - fi: 1,098
  - eu: 995
  - hu: 961
  - tr: 803
  - sv: 763
  - id: 669
  - gl: 574
  - da: 502
  - he: 498
  - cs: 476
  - ro: 434
  - sk: 410
  - fa: 394
  - el: 388
  - bar: 217
  - nb-NO: 196
  - bg: 176
  - bn: 128
  - sl: 119
  - sr: 63
  - swg: 23
  - hi: 14
  - lt: 7
```

### Supplemental Exports: Spam & Prompts 

```
2023-11-05_oasst2_spam.messages.jsonl.gz    19,296 matching messages
```

These are messages which were deleted or have a negative review result ("review_result": false). Besides low quality, a frequent reason for message deletion is a wrong language tag.

```
2023-11-05_oasst2_prompts.messages.jsonl.gz 64,592 matching messages
```

These are all the kept initial prompt messages with positive review result (no spam) of trees in `ready_for_export` or `prompt_lottery_waiting` state.

### Using the Huggingface Datasets

While HF datasets is ideal for tabular datasets, it is not a natural fit for nested data structures like the OpenAssistant conversation trees.
Nevertheless, we make all messages which can also be found in the file `2023-11-05_oasst2_ready.messages.jsonl.gz` available in parquet format as train/validation splits. 
These are directly loadable by [Huggingface Datasets](https://pypi.org/project/datasets/).

To load the oasst2 train & validation splits use:

```python
from datasets import load_dataset
ds = load_dataset("OpenAssistant/oasst2")
train = ds['train']      # len(train)=128575 (95%)
val = ds['validation']   # len(val)=6599 (5%)
```

The messages appear in depth-first order of the message trees.

Full conversation trees can be reconstructed from the flat messages table by using the `parent_id` 
and `message_id` properties to identify the parent-child relationship of messages. The `message_tree_id` 
and `tree_state` properties (only present in flat messages files) can be used to find all messages of a message tree or to select trees by their state.

### Data Visualisation

Explore the content of the prompts from the English subset using [Bunka](https://github.com/charlesdedampierre/BunkaTopics) open-source visualization technology. 
The interactive map [available on a HF space](https://huggingface.co/spaces/bunkalab/visualisation-oasst2) allows to explore each datapoint to get a more precise overview of the contents.

<a href="https://i.imgur.com/B2H8LR3.png">
  <img src="https://i.imgur.com/B2H8LR3.png" alt="Bunka oasst2 Map" width="35%"/>
</a>

## Contact

- Discord [Open Assistant Discord Server](https://ykilcher.com/open-assistant-discord)
- GitHub: [LAION-AI/Open-Assistant](https://github.com/LAION-AI/Open-Assistant)
- E-Mail: [[email protected]](mailto:[email protected])