Datasets:

Languages:
Chinese
ArXiv:
License:
小臣子吃大橙子 commited on
Commit
f315363
·
1 Parent(s): b6d2702

upload MULTI_v1.3.1_20241210_release.zip and update README

Browse files
MULTI_v1.2.2_20240212_release.zip → MULTI_v1.3.1_20241210_release.zip RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:1d543d52546829202b59935d5aba5b6737fe83833aa184752f527b2c58e2ff41
3
- size 449903284
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8d234585be95049b3c9385d3e8e3a6901a854c3fba60532034be36b66ae86378
3
+ size 499451021
README.md CHANGED
@@ -30,23 +30,6 @@ viewer: False
30
 
31
  Rapid progress in multimodal large language models (MLLMs) highlights the need to introduce challenging yet realistic benchmarks to the academic community, while existing benchmarks primarily focus on understanding simple natural images and short context. In this paper, we present***MULTI***, as a cutting-edge benchmark for evaluating MLLMs on understanding complex tables and images, and reasoning with long context. **MULTI** provides multimodal inputs and requires responses that are either precise or open-ended, reflecting real-life examination styles. **MULTI** includes over 18,000 questions and challenges MLLMs with a variety of tasks, ranging from formula derivation to image detail analysis and cross-modality reasoning. We also introduce***MULTI-Elite***, a 500-question selected hard subset, and ***MULTI-Extend***, with more than 4,500 external knowledge context pieces. Our evaluation indicates significant potential for MLLM advancement, with GPT-4V achieving a **63.7%** accuracy rate on **MULTI**, in contrast to other MLLMs scoring between **28.5%** and **55.3%**. **MULTI** serves not only as a robust evaluation platform but also paves the way for the development of expert-level AI.
32
 
33
- ## 🏆 Leaderboard
34
-
35
- | Modality | Model | Version | Overall | MULTI-Elite |
36
- |:--------:|:-------------:| -------------------------- |:-------:|:-----------:|
37
- | 🖼️ | GPT-4V | gpt-4-vision-preview | 63.7 | 14.0 |
38
- | 🖼️ | Yi-VL | Yi-34B-Chat | 55.3 | 26.2 |
39
- | 🖼️ | Gemini Vision | gemini-pro-vision | 53.7 | 12.4 |
40
- | 📃 | Gemini | gemini-pro | 52.2 | 10.5 |
41
- | 📃 | GPT-4 | gpt-4-1106-preview | 50.2 | 5.8 |
42
- | 📃 | DFM-2.0 | dfm-2.0-70b-preview | 49.7 | 18.0 |
43
- | 🖼️ | InternVL | InternVL-Chat-Chinese-V1.1 | 44.9 | 20.7 |
44
- | 🖼️ | Qwen-VL | Qwen-VL-Chat | 39.0 | 10.5 |
45
- | 📃 | ChatGPT | gpt-3.5-turbo-1106 | 35.9 | 4.7 |
46
- | 🖼️ | VisCPM | VisCPM-Chat | 33.4 | 13.0 |
47
- | 📃 | MOSS | moss-moon-003-sft | 32.6 | 13.1 |
48
- | 🖼️ | VisualGLM | visualglm-6b | 31.1 | 12.8 |
49
- | 🖼️ | Chinese-LLaVA | Chinese-LLaVA-Cllama2 | 28.5 | 12.3 |
50
 
51
  ## ⏬ Download
52
 
@@ -62,10 +45,13 @@ The structure of `./data` should be something like:
62
  ```
63
  ./data
64
  ├── images # folder containing images
65
- ├── problem_v1.2.2_20240212_release.json # MULTI
66
  ├── knowledge_v1.2.2_20240212_release.json # MULTI-Extend
67
- ├── hard_list_v1.2.1_20240206.json # MULTI-Elite
68
- └── captions_v1.2.0_20231217.csv # image captions generated by BLIP-6.7b
 
 
 
69
  ```
70
 
71
  ## 📝 How to Evaluate
@@ -94,17 +80,17 @@ If you just want to generate data for a specific setting (using `--debug` argume
94
 
95
  For a quick start, see these examples:
96
 
97
- Test GPT-4V model on whole MULTI with multimodal input, using MULTI-Extend as external knowledge:
98
 
99
  ```shell
100
  python eval.py \
101
- --problem_file ../data/problem_v1.2.2_20240212_release.json \
102
- --knowledge_file ../data/knowledge_v1.2.2_20240212_release.json \
103
  --questions_type 0,1,2,3 \
104
  --image_type 0,1,2 \
105
  --input_type 2 \
106
- --model gpt-4v \
107
- --model_version gpt-4-vision-preview \
108
  --api_key sk-************************************************
109
  ```
110
 
@@ -112,9 +98,9 @@ Test Qwen-VL model on MULTI-Elite with image caption input, skip all questions n
112
 
113
  ```shell
114
  python eval.py \
115
- --problem_file ../data/problem_v1.2.2_20240212_release.json \
116
- --subset ../data/hard_list_v1.2.1_20240206.json \
117
- --caption_file ../data/captions_v1.2.0_20231217.csv \
118
  --questions_type 0,1 \
119
  --image_type 1,2 \
120
  --input_type 1 \
 
30
 
31
  Rapid progress in multimodal large language models (MLLMs) highlights the need to introduce challenging yet realistic benchmarks to the academic community, while existing benchmarks primarily focus on understanding simple natural images and short context. In this paper, we present***MULTI***, as a cutting-edge benchmark for evaluating MLLMs on understanding complex tables and images, and reasoning with long context. **MULTI** provides multimodal inputs and requires responses that are either precise or open-ended, reflecting real-life examination styles. **MULTI** includes over 18,000 questions and challenges MLLMs with a variety of tasks, ranging from formula derivation to image detail analysis and cross-modality reasoning. We also introduce***MULTI-Elite***, a 500-question selected hard subset, and ***MULTI-Extend***, with more than 4,500 external knowledge context pieces. Our evaluation indicates significant potential for MLLM advancement, with GPT-4V achieving a **63.7%** accuracy rate on **MULTI**, in contrast to other MLLMs scoring between **28.5%** and **55.3%**. **MULTI** serves not only as a robust evaluation platform but also paves the way for the development of expert-level AI.
32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33
 
34
  ## ⏬ Download
35
 
 
45
  ```
46
  ./data
47
  ├── images # folder containing images
48
+ ├── problem_v1.3.1_20241210_release.json # MULTI
49
  ├── knowledge_v1.2.2_20240212_release.json # MULTI-Extend
50
+ ├── hard_list_v1.3.0_20241203.json # MULTI-Elite
51
+ ├── captions_v1.3.1_20241210_blip.csv # image captions generated by BLIP-6.7B
52
+ ├── captions_v1.3.1_20241210_points.csv # image captions generated by POINTS-1-5
53
+ ├── ocr_v1.3.1_20241210_easyocr.csv # OCR data generated by EasyOCR
54
+ └── ocr_v1.3.1_20241210_points.csv # OCR data generated by POINTS-1-5
55
  ```
56
 
57
  ## 📝 How to Evaluate
 
80
 
81
  For a quick start, see these examples:
82
 
83
+ Test GPT-4o model on whole MULTI with multimodal input, using MULTI-Extend as external knowledge:
84
 
85
  ```shell
86
  python eval.py \
87
+ --problem_file ../data/problem_{version}.json \
88
+ --knowledge_file ../data/knowledge_{version}.json \
89
  --questions_type 0,1,2,3 \
90
  --image_type 0,1,2 \
91
  --input_type 2 \
92
+ --model gpt-4o \
93
+ --model_version gpt-4o-latest \
94
  --api_key sk-************************************************
95
  ```
96
 
 
98
 
99
  ```shell
100
  python eval.py \
101
+ --problem_file ../data/problem_{version}.json \
102
+ --subset ../data/hard_list_{version}.json \
103
+ --caption_file ../data/captions_{version}.csv \
104
  --questions_type 0,1 \
105
  --image_type 1,2 \
106
  --input_type 1 \
README_zh.md CHANGED
@@ -22,24 +22,6 @@
22
 
23
  在多模态大型语言模型(MLLMs)迅速进步的背景下,提出具有挑战性且符合现实场景的基准测试变得尤为重要,而现有的基准测试主要关注于理解简单的自然图像和短文本。在本文中,我们介绍了***MULTI***,作为一个前沿的基准测试,用于评测MLLMs在理解复杂的表格和图像、以及进行长文本推理的能力。**MULTI**提供多模态输入,并要求回答是精确的或开放式的,反映了现实生活中的考试风格。**MULTI**包括超过 18,000 个问题,挑战MLLMs进行多种任务,从公式推导到图像细节分析和跨模态推理。我们还引入了***MULTI-Elite***,一个精心挑选的包含500个问题的难题子集,以及***MULTI-Extend***,包含超过 4,500 个外部知识上下文。我们的评测显示了MLLMs进步的巨大潜力,GPT-4V在**MULTI**上的准确率达到了 **63.7%**,而其他MLLMs的得分介于 **28.5%** 和 **55.3%** 之间。**MULTI**不仅作为一个稳健的评测平台,也为专家级AI的发展指明了道路。
24
 
25
- ## 🏆 Leaderboard
26
-
27
- | 模态 | 模型 | 版本 | 总体 | MULTI-Elite |
28
- |:----:|:-------------:| -------------------------- |:----:|:-----------:|
29
- | 🖼️ | GPT-4V | gpt-4-vision-preview | 63.7 | 14.0 |
30
- | 🖼️ | Yi-VL | Yi-34B-Chat | 55.3 | 26.2 |
31
- | 🖼️ | Gemini Vision | gemini-pro-vision | 53.7 | 12.4 |
32
- | 📃 | Gemini | gemini-pro | 52.2 | 10.5 |
33
- | 📃 | GPT-4 | gpt-4-1106-preview | 50.2 | 5.8 |
34
- | 📃 | DFM-2.0 | dfm-2.0-70b-preview | 49.7 | 18.0 |
35
- | 🖼️ | InternVL | InternVL-Chat-Chinese-V1.1 | 44.9 | 20.7 |
36
- | 🖼️ | Qwen-VL | Qwen-VL-Chat | 39.0 | 10.5 |
37
- | 📃 | ChatGPT | gpt-3.5-turbo-1106 | 35.9 | 4.7 |
38
- | 🖼️ | VisCPM | VisCPM-Chat | 33.4 | 13.0 |
39
- | 📃 | MOSS | moss-moon-003-sft | 32.6 | 13.1 |
40
- | 🖼️ | VisualGLM | visualglm-6b | 31.1 | 12.8 |
41
- | 🖼️ | Chinese-LLaVA | Chinese-LLaVA-Cllama2 | 28.5 | 12.3 |
42
-
43
  ## ⏬ 下载
44
 
45
  您只需使用以下命令即可下载数据:
@@ -52,12 +34,15 @@ python download_data.py
52
  `./data` 的结构应该如下所示:
53
 
54
  ```
55
- ./data
56
  ├── images # 包含图片的文件夹
57
- ├── problem_v1.2.2_20240212_release.json # MULTI
58
  ├── knowledge_v1.2.2_20240212_release.json # MULTI-Extend
59
- ├── hard_list_v1.2.1_20240206.json # MULTI-Elite
60
- └── captions_v1.2.0_20231217.csv # 由BLIP-6.7b生成的图片描述
 
 
 
61
  ```
62
 
63
  ## 📝 如何评测
@@ -90,13 +75,13 @@ pip install tiktoken tqdm
90
 
91
  ```shell
92
  python eval.py \
93
- --problem_file ../data/problem_v1.2.2_20240212_release.json \
94
- --knowledge_file ../data/knowledge_v1.2.2_20240212_release.json \
95
  --questions_type 0,1,2,3 \
96
  --image_type 0,1,2 \
97
  --input_type 2 \
98
- --model gpt-4v \
99
- --model_version gpt-4-vision-preview \
100
  --api_key sk-************************************************
101
  ```
102
 
 
22
 
23
  在多模态大型语言模型(MLLMs)迅速进步的背景下,提出具有挑战性且符合现实场景的基准测试变得尤为重要,而现有的基准测试主要关注于理解简单的自然图像和短文本。在本文中,我们介绍了***MULTI***,作为一个前沿的基准测试,用于评测MLLMs在理解复杂的表格和图像、以及进行长文本推理的能力。**MULTI**提供多模态输入,并要求回答是精确的或开放式的,反映了现实生活中的考试风格。**MULTI**包括超过 18,000 个问题,挑战MLLMs进行多种任务,从公式推导到图像细节分析和跨模态推理。我们还引入了***MULTI-Elite***,一个精心挑选的包含500个问题的难题子集,以及***MULTI-Extend***,包含超过 4,500 个外部知识上下文。我们的评测显示了MLLMs进步的巨大潜力,GPT-4V在**MULTI**上的准确率达到了 **63.7%**,而其他MLLMs的得分介于 **28.5%** 和 **55.3%** 之间。**MULTI**不仅作为一个稳健的评测平台,也为专家级AI的发展指明了道路。
24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25
  ## ⏬ 下载
26
 
27
  您只需使用以下命令即可下载数据:
 
34
  `./data` 的结构应该如下所示:
35
 
36
  ```
37
+ ./data
38
  ├── images # 包含图片的文件夹
39
+ ├── problem_v1.3.1_20241210_release.json # MULTI
40
  ├── knowledge_v1.2.2_20240212_release.json # MULTI-Extend
41
+ ├── hard_list_v1.3.0_20241203.json # MULTI-Elite
42
+ ├── captions_v1.3.1_20241210_blip.csv # 由BLIP-6.7b生成的图片描述
43
+ ├── captions_v1.3.1_20241210_points.csv # 由POINTS-1-5生成的图片描述
44
+ ├── ocr_v1.3.1_20241210_easyocr.csv # 由EasyOCR生成的OCR数据
45
+ └── ocr_v1.3.1_20241210_points.csv # 由POINTS-1-5生成的OCR数据
46
  ```
47
 
48
  ## 📝 如何评测
 
75
 
76
  ```shell
77
  python eval.py \
78
+ --problem_file ../data/problem_{version}.json \
79
+ --knowledge_file ../data/knowledge_{version}.json \
80
  --questions_type 0,1,2,3 \
81
  --image_type 0,1,2 \
82
  --input_type 2 \
83
+ --model gpt-4o \
84
+ --model_version gpt-4o-latest \
85
  --api_key sk-************************************************
86
  ```
87