Datasets:
File size: 11,311 Bytes
8609a1c 5fdc3e4 db07d14 5fdc3e4 db07d14 6494470 fa2353e d34b942 58f88b8 0aa8b2d 58f88b8 8609a1c 5fdc3e4 b779f3c 94ddb82 5fdc3e4 b779f3c 5fdc3e4 7487d10 726e5cb 4063a64 7487d10 4063a64 7487d10 4063a64 7487d10 4063a64 7487d10 4063a64 726e5cb 101ed64 67a23ab 101ed64 726e5cb 285af37 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 |
---
pretty_name: ExtraGLUE
language:
- pt
source_datasets:
- glue
- superglue
license: mit
viewer: true
task_categories:
- text-classification
- sentence-similarity
- question-answering
task_ids:
- language-modeling
- multi-class-classification
- natural-language-inference
- sentiment-classification
- semantic-similarity-scoring
- semantic-similarity-classification
configs:
- config_name: axb_pt-BR
data_files:
- split: test
path:
- "data/axb_pt-BR/test.jsonl"
- config_name: axb_pt-PT
data_files:
- split: test
path:
- "data/axb_pt-PT/test.jsonl"
- config_name: axg_pt-BR
data_files:
- split: test
path:
- "data/axg_pt-BR/test.jsonl"
- config_name: axg_pt-PT
data_files:
- split: test
path:
- "data/axg_pt-PT/test.jsonl"
- config_name: boolq_pt-BR
data_files:
- split: train
path:
- "data/boolq_pt-BR/train.jsonl"
- split: validation
path:
- "data/boolq_pt-BR/validation.jsonl"
- split: test
path:
- "data/boolq_pt-BR/test.jsonl"
- config_name: boolq_pt-PT
data_files:
- split: train
path:
- "data/boolq_pt-PT/train.jsonl"
- split: validation
path:
- "data/boolq_pt-PT/validation.jsonl"
- split: test
path:
- "data/boolq_pt-PT/test.jsonl"
- config_name: cb_pt-BR
data_files:
- split: train
path:
- "data/cb_pt-BR/train.jsonl"
- split: validation
path:
- "data/cb_pt-BR/validation.jsonl"
- split: test
path:
- "data/cb_pt-BR/test.jsonl"
- config_name: cb_pt-PT
data_files:
- split: train
path:
- "data/cb_pt-PT/train.jsonl"
- split: validation
path:
- "data/cb_pt-PT/validation.jsonl"
- split: test
path:
- "data/cb_pt-PT/test.jsonl"
- config_name: copa_pt-BR
data_files:
- split: train
path:
- "data/copa_pt-BR/train.jsonl"
- split: validation
path:
- "data/copa_pt-BR/validation.jsonl"
- split: test
path:
- "data/copa_pt-BR/test.jsonl"
- config_name: copa_pt-PT
data_files:
- split: train
path:
- "data/copa_pt-PT/train.jsonl"
- split: validation
path:
- "data/copa_pt-PT/validation.jsonl"
- split: test
path:
- "data/copa_pt-PT/test.jsonl"
- config_name: mnli_matched_pt-BR
data_files:
- split: train
path:
- "data/mnli_matched_pt-BR/train.jsonl"
- split: validation
path:
- "data/mnli_matched_pt-BR/validation.jsonl"
- split: test
path:
- "data/mnli_matched_pt-BR/test.jsonl"
- config_name: mnli_matched_pt-PT
data_files:
- split: train
path:
- "data/mnli_matched_pt-PT/train.jsonl"
- split: validation
path:
- "data/mnli_matched_pt-PT/validation.jsonl"
- split: test
path:
- "data/mnli_matched_pt-PT/test.jsonl"
- config_name: mnli_mismatched_pt-BR
data_files:
- split: train
path:
- "data/mnli_mismatched_pt-BR/train.jsonl"
- split: validation
path:
- "data/mnli_mismatched_pt-BR/validation.jsonl"
- split: test
path:
- "data/mnli_mismatched_pt-BR/test.jsonl"
- config_name: mnli_mismatched_pt-PT
data_files:
- split: train
path:
- "data/mnli_mismatched_pt-PT/train.jsonl"
- split: validation
path:
- "data/mnli_mismatched_pt-PT/validation.jsonl"
- split: test
path:
- "data/mnli_mismatched_pt-PT/test.jsonl"
- config_name: mrpc_pt-BR
data_files:
- split: train
path:
- "data/mrpc_pt-BR/train.jsonl"
- split: validation
path:
- "data/mrpc_pt-BR/validation.jsonl"
- split: test
path:
- "data/mrpc_pt-BR/test.jsonl"
- config_name: mrpc_pt-PT
data_files:
- split: train
path:
- "data/mrpc_pt-PT/train.jsonl"
- split: validation
path:
- "data/mrpc_pt-PT/validation.jsonl"
- split: test
path:
- "data/mrpc_pt-PT/test.jsonl"
- config_name: multirc_pt-BR
data_files:
- split: train
path:
- "data/multirc_pt-BR/train.jsonl"
- split: validation
path:
- "data/multirc_pt-BR/validation.jsonl"
- split: test
path:
- "data/multirc_pt-BR/test.jsonl"
- config_name: multirc_pt-PT
data_files:
- split: train
path:
- "data/multirc_pt-PT/train.jsonl"
- split: validation
path:
- "data/multirc_pt-PT/validation.jsonl"
- split: test
path:
- "data/multirc_pt-PT/test.jsonl"
- config_name: qnli_pt-BR
data_files:
- split: train
path:
- "data/qnli_pt-BR/train.jsonl"
- split: validation
path:
- "data/qnli_pt-BR/validation.jsonl"
- split: test
path:
- "data/qnli_pt-BR/test.jsonl"
- config_name: qnli_pt-PT
data_files:
- split: train
path:
- "data/qnli_pt-PT/train.jsonl"
- split: validation
path:
- "data/qnli_pt-PT/validation.jsonl"
- split: test
path:
- "data/qnli_pt-PT/test.jsonl"
- config_name: rte_pt-BR
data_files:
- split: train
path:
- "data/rte_pt-BR/train.jsonl"
- split: validation
path:
- "data/rte_pt-BR/validation.jsonl"
- split: test
path:
- "data/rte_pt-BR/test.jsonl"
- config_name: rte_pt-PT
data_files:
- split: train
path:
- "data/rte_pt-PT/train.jsonl"
- split: validation
path:
- "data/rte_pt-PT/validation.jsonl"
- split: test
path:
- "data/rte_pt-PT/test.jsonl"
- config_name: sst2_pt-BR
data_files:
- split: train
path:
- "data/sst2_pt-BR/train.jsonl"
- split: validation
path:
- "data/sst2_pt-BR/validation.jsonl"
- split: test
path:
- "data/sst2_pt-BR/test.jsonl"
- config_name: sst2_pt-PT
data_files:
- split: train
path:
- "data/sst2_pt-PT/train.jsonl"
- split: validation
path:
- "data/sst2_pt-PT/validation.jsonl"
- split: test
path:
- "data/sst2_pt-PT/test.jsonl"
- config_name: stsb_pt-BR
data_files:
- split: train
path:
- "data/stsb_pt-BR/train.jsonl"
- split: validation
path:
- "data/stsb_pt-BR/validation.jsonl"
- split: test
path:
- "data/stsb_pt-BR/test.jsonl"
- config_name: stsb_pt-PT
data_files:
- split: train
path:
- "data/stsb_pt-PT/train.jsonl"
- split: validation
path:
- "data/stsb_pt-PT/validation.jsonl"
- split: test
path:
- "data/stsb_pt-PT/test.jsonl"
- config_name: wnli_pt-BR
data_files:
- split: train
path:
- "data/wnli_pt-BR/train.jsonl"
- split: validation
path:
- "data/wnli_pt-BR/validation.jsonl"
- split: test
path:
- "data/wnli_pt-BR/test.jsonl"
- config_name: wnli_pt-PT
data_files:
- split: train
path:
- "data/wnli_pt-PT/train.jsonl"
- split: validation
path:
- "data/wnli_pt-PT/validation.jsonl"
- split: test
path:
- "data/wnli_pt-PT/test.jsonl"
---
</br>
</br>
<img align="left" width="40" height="40" src="https://github.githubassets.com/images/icons/emoji/unicode/1f917.png">
<p style="text-align: center;"> This is the dataset card for extraGLUE.
You may be interested in some of the other <a href="https://huggingface.co/PORTULAN">datasets for Portuguese</a> and in the models trained with them,
namely <a href="https://huggingface.co/PORTULAN">Albertina (encoders) and Gervásio (decoders) families</a>.
</p>
</br>
</br>
ExtraGLUE
===
</br>
ExtraGLUE is a Portuguese dataset obtained by the automatic translation of some of the tasks in the GLUE and SuperGLUE benchmarks.
Two variants of Portuguese are considered, namely European Portuguese and American Portuguese.
The dataset is distributed for free under an open license.
The 14 tasks in extraGLUE cover different aspects of language understanding:
*Single sentence*
- **SST-2** is a task for predicting the sentiment polarity of movie reviews.
*Semantic similarity*
- **MRPC** is a task for determining whether a pair of sentences are mutual paraphrases.
- **STS-B** is a task for predicting a similarity score (from 1 to 5) for each sentence pair.
*Inference*
- **MNLI** is a task to determine if a given premise sentence entails, contradicts, or is neutral to a hypothesis sentence; this task includes **matched** (in-domain) and **mismatched** (cross-domain) validation and test sets.
- **QNLI** is a question-answering task converted to determine whether the context sentence contains the answer to the question.
- **RTE** is a task for determining whether a premise sentence entails a hypothesis sentence.
- **WNLI** is a pronoun resolution task formulated as sentence pair entailment classification where, in the second sentence, the pronoun is replaced by a possible referent.
- **CB** comprises short texts with embedded clauses; one such clause is extracted as a hypothesis and should be classified as neutral, entailment or contradiction.
- **AX_b** is designed to test models across a wide spectrum of linguistic, commonsense, and world knowledge; each instance contains a sentence pair labeled with entailment or not entailment.
- **AX_g** is designed to measure gender bias, where each premise sentence includes a male or female pronoun and a hypothesis includes a possible referent for the pronoun.
*Question answering*
- **BoolQ** is a question-answering task where yes/no questions are given for short text passages.
- **MultiRC** is a task where, given a context paragraph, a question, and an answer, the goal is to determine whether the answer is true; for the same context and question, more than one answer may be correct.
*Reasoning*
- **CoPA** is a casual reasoning task: given a premise, two choices, and a cause/effect prompt, the system must choose one of the choices.
If you use this dataset please cite:
@inproceedings{osorio-etal-2024-portulan,
title = "{PORTULAN} {E}xtra{GLUE} Datasets and Models: Kick-starting a Benchmark for the Neural Processing of {P}ortuguese",
author = "Os{\'o}rio, Tom{\'a}s Freitas and
Leite, Bernardo and
Lopes Cardoso, Henrique and
Gomes, Lu{\'\i}s and
Rodrigues, Jo{\~a}o and
Santos, Rodrigo and
Branco, Ant{\'o}nio",
editor = "Zweigenbaum, Pierre and
Rapp, Reinhard and
Sharoff, Serge",
booktitle = "Proceedings of the 17th Workshop on Building and Using Comparable Corpora (BUCC) @ LREC-COLING 2024",
month = may,
year = "2024",
address = "Torino, Italia",
publisher = "ELRA and ICCL",
url = "https://aclanthology.org/2024.bucc-1.3",
pages = "24--34",
}
# Acknowledgments
The research reported here was partially supported by:
PORTULAN CLARIN—Research Infrastructure for the Science and Technology of Language, funded by Lisboa 2020, Alentejo 2020 and FCT—Fundação para a Ciência e Tecnologia under the
grant PINFRA/22117/2016;
research project GPT-PT - Transformer-based Decoder for the Portuguese Language, funded by FCT—Fundação para a Ciência e Tecnologia under the
grant CPCA-IAC/AV/478395/2022;
innovation project ACCELERAT.AI - Multilingual Intelligent Contact Centers, funded by IAPMEI, I.P. - Agência para a Competitividade e Inovação
under the grant C625734525-00462629, of Plano de Recuperação e Resiliência, call RE-C05-i01.01 – Agendas/Alianças Mobilizadoras para a Reindustrialização;
and Base Funding (UIDB/00027/2020) and Programmatic Funding (UIDP/00027/2020) of the Artificial Intelligence and Computer Science Laboratory (LIACC) funded by national funds through FCT/MCTES (PIDDAC). |