|
import os |
|
import tarfile |
|
import pandas as pd |
|
import datasets |
|
from datasets import Audio, Value, Features |
|
import logging |
|
from typing import Dict, Generator, Tuple |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
_DESCRIPTION = """ |
|
This dataset consists of various Youtube videos in Persian language. |
|
|
|
Note: This dataset contains raw, unvalidated transcriptions. Users are advised to: |
|
1. Perform their own quality assessment |
|
2. Create their own train/validation/test splits based on their specific needs |
|
3. Validate a subset of the data if needed for their use case |
|
""" |
|
|
|
_CITATION = """ |
|
Use this repo info/link for citation. |
|
""" |
|
|
|
_LICENSE = "MIT" |
|
|
|
_DATA_URL = [ |
|
"clips/clips_001.tar", |
|
"clips/clips_002.tar", |
|
"clips/clips_003.tar", |
|
"clips/clips_004.tar", |
|
"clips/clips_005.tar", |
|
"clips/clips_006.tar", |
|
"clips/clips_007.tar", |
|
"clips/clips_008.tar", |
|
"clips/clips_009.tar", |
|
"clips/clips_010.tar", |
|
"clips/clips_011.tar", |
|
"clips/clips_012.tar", |
|
"clips/clips_013.tar", |
|
"clips/clips_014.tar", |
|
"clips/clips_015.tar", |
|
"clips/clips_016.tar", |
|
"clips/clips_017.tar", |
|
"clips/clips_018.tar", |
|
"clips/clips_019.tar", |
|
"clips/clips_020.tar", |
|
"clips/clips_021.tar", |
|
] |
|
|
|
|
|
_PROMPTS_URLS = { |
|
|
|
"train": "clips/metadata.csv" |
|
} |
|
|
|
class ASRDataset(datasets.GeneratorBasedBuilder): |
|
"""ASR dataset with audio files stored in tar archives.""" |
|
|
|
VERSION = datasets.Version("1.0.0") |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features({ |
|
"file_name": datasets.Value("string"), |
|
"audio": datasets.Audio(sampling_rate=16000), |
|
"sentence": datasets.Value("string"), |
|
|
|
}), |
|
supervised_keys=None, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators with added error handling.""" |
|
|
|
prompts_paths = dl_manager.download_and_extract(_PROMPTS_URLS) |
|
archive = dl_manager.download(_DATA_URL) |
|
train_dir = "clips" |
|
|
|
try: |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
|
|
|
|
"prompts_path": prompts_paths["train"], |
|
"path_to_clips": train_dir, |
|
"audio_files": dl_manager.iter_archive(archive) |
|
}, |
|
), |
|
] |
|
except Exception as e: |
|
logger.error(f"Error in _split_generators: {e}") |
|
logger.error(traceback.format_exc()) |
|
raise |
|
|
|
def _generate_examples(self, prompts_path, path_to_clips, audio_files): |
|
"""Yields examples as (key, example) tuples.""" |
|
logger.info('hey there!') |
|
examples = {} |
|
with open(prompts_path, encoding="utf-8") as f: |
|
for row in f: |
|
data = row.strip().split("\t", 1) |
|
file_name = data[0].strip() |
|
audio_path = "/".join([path_to_clips, file_name]) |
|
examples[audio_path] = { |
|
"path": audio_path, |
|
"sentence": data[1], |
|
} |
|
inside_clips_dir = False |
|
id_ = 0 |
|
|
|
tar_files = [ |
|
"clips/clips_001.tar", |
|
"clips/clips_002.tar", |
|
"clips/clips_003.tar", |
|
"clips/clips_004.tar", |
|
"clips/clips_005.tar", |
|
"clips/clips_006.tar", |
|
"clips/clips_007.tar", |
|
"clips/clips_008.tar", |
|
"clips/clips_009.tar", |
|
"clips/clips_010.tar", |
|
"clips/clips_011.tar", |
|
"clips/clips_012.tar", |
|
"clips/clips_013.tar", |
|
"clips/clips_014.tar", |
|
"clips/clips_015.tar", |
|
"clips/clips_016.tar", |
|
"clips/clips_017.tar", |
|
"clips/clips_018.tar", |
|
"clips/clips_019.tar", |
|
"clips/clips_020.tar", |
|
"clips/clips_021.tar", |
|
] |
|
for tar_file in tar_files: |
|
with tarfile.open(tar_file, 'r') as tar: |
|
for member in tar.getmembers(): |
|
path = "/".join([path_to_clips, member.name]) |
|
audio_file =tar.extractfile(member) |
|
audio = {"path": path, "bytes": audio_file.read()} |
|
yield id_, {**examples[path], "audio": audio} |