Datasets:
Tasks:
Token Classification
Modalities:
Text
Sub-tasks:
named-entity-recognition
Languages:
Spanish
Size:
10K - 100K
License:
# Loading script for the Cantemist NER dataset. | |
import datasets | |
logger = datasets.logging.get_logger(__name__) | |
_CITATION = """\ | |
@inproceedings{miranda2020named, | |
title={Named entity recognition, concept normalization and clinical coding: Overview of the cantemist track for cancer text mining in spanish, corpus, guidelines, methods and results}, | |
author={Miranda-Escalada, A and Farr{\'e}, E and Krallinger, M}, | |
booktitle={Proceedings of the Iberian Languages Evaluation Forum (IberLEF 2020), CEUR Workshop Proceedings}, | |
year={2020} | |
}""" | |
_DESCRIPTION = """\ | |
https://temu.bsc.es/cantemist/ | |
""" | |
_URL = "https://huggingface.co/datasets/PlanTL-GOB-ES/cantemist-ner/resolve/main/" | |
# _URL = "./" | |
_TRAINING_FILE = "train.conll" | |
_DEV_FILE = "dev.conll" | |
_TEST_FILE = "test.conll" | |
class CantemistNerConfig(datasets.BuilderConfig): | |
"""BuilderConfig for Cantemist Ner dataset""" | |
def __init__(self, **kwargs): | |
"""BuilderConfig for CantemistNer. | |
Args: | |
**kwargs: keyword arguments forwarded to super. | |
""" | |
super(CantemistNerConfig, self).__init__(**kwargs) | |
class CantemistNer(datasets.GeneratorBasedBuilder): | |
"""Cantemist Ner dataset.""" | |
BUILDER_CONFIGS = [ | |
CantemistNerConfig( | |
name="CantemistNer", | |
version=datasets.Version("1.0.0"), | |
description="CantemistNer dataset"), | |
] | |
def _info(self): | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=datasets.Features( | |
{ | |
"id": datasets.Value("string"), | |
"tokens": datasets.Sequence(datasets.Value("string")), | |
"ner_tags": datasets.Sequence( | |
datasets.features.ClassLabel( | |
names=[ | |
"O", | |
"B-MORFOLOGIA_NEOPLASIA", | |
"I-MORFOLOGIA_NEOPLASIA", | |
] | |
) | |
), | |
} | |
), | |
supervised_keys=None, | |
homepage="https://temu.bsc.es/cantemist/", | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
"""Returns SplitGenerators.""" | |
urls_to_download = { | |
"train": f"{_URL}{_TRAINING_FILE}", | |
"dev": f"{_URL}{_DEV_FILE}", | |
"test": f"{_URL}{_TEST_FILE}", | |
} | |
downloaded_files = dl_manager.download_and_extract(urls_to_download) | |
return [ | |
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}), | |
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}), | |
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}), | |
] | |
def _generate_examples(self, filepath): | |
logger.info("⏳ Generating examples from = %s", filepath) | |
with open(filepath, encoding="utf-8") as f: | |
guid = 0 | |
tokens = [] | |
pos_tags = [] | |
ner_tags = [] | |
for line in f: | |
if line.startswith("-DOCSTART-") or line == "" or line == "\n": | |
if tokens: | |
yield guid, { | |
"id": str(guid), | |
"tokens": tokens, | |
"ner_tags": ner_tags, | |
} | |
guid += 1 | |
tokens = [] | |
ner_tags = [] | |
else: | |
# Cantemist tokens are tab separated | |
splits = line.split("\t") | |
tokens.append(splits[0]) | |
ner_tags.append(splits[-1].rstrip()) | |
# last example | |
yield guid, { | |
"id": str(guid), | |
"tokens": tokens, | |
"ner_tags": ner_tags, | |
} | |