Commit
·
ea8a129
0
Parent(s):
Update files from the datasets library (from 1.2.0)
Browse filesRelease notes: https://github.com/huggingface/datasets/releases/tag/1.2.0
- .gitattributes +27 -0
- README.md +155 -0
- dataset_infos.json +1 -0
- dummy/de/1.0.0/dummy_data.zip +3 -0
- dummy/de_en/1.0.0/dummy_data.zip +3 -0
- dummy/en/1.0.0/dummy_data.zip +3 -0
- dummy/it/1.0.0/dummy_data.zip +3 -0
- dummy/it_en/1.0.0/dummy_data.zip +3 -0
- woz_dialogue.py +135 -0
.gitattributes
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bin.* filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
20 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
+
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,155 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
annotations_creators:
|
3 |
+
- crowdsourced
|
4 |
+
language_creators:
|
5 |
+
- crowdsourced
|
6 |
+
languages:
|
7 |
+
en:
|
8 |
+
- en
|
9 |
+
de:
|
10 |
+
- de
|
11 |
+
it:
|
12 |
+
- it
|
13 |
+
de_en:
|
14 |
+
- en
|
15 |
+
- de
|
16 |
+
it_en:
|
17 |
+
- en
|
18 |
+
- it
|
19 |
+
licenses:
|
20 |
+
- unknown
|
21 |
+
multilinguality:
|
22 |
+
- monolingual
|
23 |
+
size_categories:
|
24 |
+
- 1K<n<10K
|
25 |
+
source_datasets:
|
26 |
+
- original
|
27 |
+
task_categories:
|
28 |
+
- sequence-modeling
|
29 |
+
- structure-prediction
|
30 |
+
- text-classification
|
31 |
+
task_ids:
|
32 |
+
- dialogue-modeling
|
33 |
+
- multi-class-classification
|
34 |
+
- parsing
|
35 |
+
---
|
36 |
+
|
37 |
+
# Dataset Card Creation Guide
|
38 |
+
|
39 |
+
## Table of Contents
|
40 |
+
- [Dataset Description](#dataset-description)
|
41 |
+
- [Dataset Summary](#dataset-summary)
|
42 |
+
- [Supported Tasks](#supported-tasks-and-leaderboards)
|
43 |
+
- [Languages](#languages)
|
44 |
+
- [Dataset Structure](#dataset-structure)
|
45 |
+
- [Data Instances](#data-instances)
|
46 |
+
- [Data Fields](#data-instances)
|
47 |
+
- [Data Splits](#data-instances)
|
48 |
+
- [Dataset Creation](#dataset-creation)
|
49 |
+
- [Curation Rationale](#curation-rationale)
|
50 |
+
- [Source Data](#source-data)
|
51 |
+
- [Annotations](#annotations)
|
52 |
+
- [Personal and Sensitive Information](#personal-and-sensitive-information)
|
53 |
+
- [Considerations for Using the Data](#considerations-for-using-the-data)
|
54 |
+
- [Social Impact of Dataset](#social-impact-of-dataset)
|
55 |
+
- [Discussion of Biases](#discussion-of-biases)
|
56 |
+
- [Other Known Limitations](#other-known-limitations)
|
57 |
+
- [Additional Information](#additional-information)
|
58 |
+
- [Dataset Curators](#dataset-curators)
|
59 |
+
- [Licensing Information](#licensing-information)
|
60 |
+
- [Citation Information](#citation-information)
|
61 |
+
|
62 |
+
## Dataset Description
|
63 |
+
|
64 |
+
- **Homepage:** [More info needed]
|
65 |
+
- **Repository:** [GitHub](https://github.com/nmrksic/neural-belief-tracker/tree/master/data/woz)
|
66 |
+
- **Paper:** [A Network-based End-to-End Trainable Task-oriented Dialogue System](https://arxiv.org/abs/1604.04562)
|
67 |
+
- **Leaderboard:** [More info needed]
|
68 |
+
- **Point of Contact:** [More info needed]
|
69 |
+
|
70 |
+
### Dataset Summary
|
71 |
+
|
72 |
+
[More Information Needed]
|
73 |
+
|
74 |
+
### Supported Tasks and Leaderboards
|
75 |
+
|
76 |
+
[More Information Needed]
|
77 |
+
|
78 |
+
### Languages
|
79 |
+
|
80 |
+
[More Information Needed]
|
81 |
+
|
82 |
+
## Dataset Structure
|
83 |
+
|
84 |
+
### Data Instances
|
85 |
+
|
86 |
+
[More Information Needed]
|
87 |
+
|
88 |
+
### Data Fields
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
### Data Splits
|
93 |
+
|
94 |
+
[More Information Needed]
|
95 |
+
## Dataset Creation
|
96 |
+
|
97 |
+
### Curation Rationale
|
98 |
+
|
99 |
+
[More Information Needed]
|
100 |
+
|
101 |
+
### Source Data
|
102 |
+
|
103 |
+
[More Information Needed]
|
104 |
+
|
105 |
+
#### Initial Data Collection and Normalization
|
106 |
+
|
107 |
+
[More Information Needed]
|
108 |
+
|
109 |
+
#### Who are the source language producers?
|
110 |
+
|
111 |
+
[More Information Needed]
|
112 |
+
|
113 |
+
### Annotations
|
114 |
+
|
115 |
+
[More Information Needed]
|
116 |
+
|
117 |
+
#### Annotation process
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Who are the annotators?
|
122 |
+
|
123 |
+
[More Information Needed]
|
124 |
+
|
125 |
+
### Personal and Sensitive Information
|
126 |
+
|
127 |
+
[More Information Needed]
|
128 |
+
|
129 |
+
## Considerations for Using the Data
|
130 |
+
|
131 |
+
### Social Impact of Dataset
|
132 |
+
|
133 |
+
[More Information Needed]
|
134 |
+
|
135 |
+
### Discussion of Biases
|
136 |
+
|
137 |
+
[More Information Needed]
|
138 |
+
|
139 |
+
### Other Known Limitations
|
140 |
+
|
141 |
+
[More Information Needed]
|
142 |
+
|
143 |
+
## Additional Information
|
144 |
+
|
145 |
+
### Dataset Curators
|
146 |
+
|
147 |
+
[More Information Needed]
|
148 |
+
|
149 |
+
### Licensing Information
|
150 |
+
|
151 |
+
[More Information Needed]
|
152 |
+
|
153 |
+
### Citation Information
|
154 |
+
|
155 |
+
[More Information Needed]
|
dataset_infos.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"en": {"description": "Wizard-of-Oz (WOZ) is a dataset for training task-oriented dialogue systems. The dataset is designed around the task of finding a restaurant in the Cambridge, UK area. There are three informable slots (food, pricerange,area) that users can use to constrain the search and six requestable slots (address, phone, postcode plus the three informable slots) that the user can ask a value for once a restaurant has been offered.\n", "citation": "@misc{wen2017networkbased,\n title={A Network-based End-to-End Trainable Task-oriented Dialogue System},\n author={Tsung-Hsien Wen and David Vandyke and Nikola Mrksic and Milica Gasic and Lina M. Rojas-Barahona and Pei-Hao Su and Stefan Ultes and Steve Young},\n year={2017},\n eprint={1604.04562},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n", "homepage": "https://github.com/nmrksic/neural-belief-tracker/tree/master/data/woz", "license": "", "features": {"dialogue_idx": {"dtype": "int32", "id": null, "_type": "Value"}, "dialogue": [{"turn_label": {"feature": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "length": -1, "id": null, "_type": "Sequence"}, "asr": {"feature": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "length": -1, "id": null, "_type": "Sequence"}, "system_transcript": {"dtype": "string", "id": null, "_type": "Value"}, "turn_idx": {"dtype": "int32", "id": null, "_type": "Value"}, "belief_state": [{"slots": {"feature": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "length": -1, "id": null, "_type": "Sequence"}, "act": {"dtype": "string", "id": null, "_type": "Value"}}], "transcript": {"dtype": "string", "id": null, "_type": "Value"}, "system_acts": {"feature": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "length": -1, "id": null, "_type": "Sequence"}}]}, "post_processed": null, "supervised_keys": null, "builder_name": "woz_dialogue", "config_name": "en", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 827189, "num_examples": 600, "dataset_name": "woz_dialogue"}, "validation": {"name": "validation", "num_bytes": 265684, "num_examples": 200, "dataset_name": "woz_dialogue"}, "test": {"name": "test", "num_bytes": 537557, "num_examples": 400, "dataset_name": "woz_dialogue"}}, "download_checksums": {"https://raw.githubusercontent.com/nmrksic/neural-belief-tracker/master/data/woz/woz_train_en.json": {"num_bytes": 3825261, "checksum": "7cd9e971553e5f3e80bb0c93164bf4c619c7f49f45d636a0512474cdeb074485"}, "https://raw.githubusercontent.com/nmrksic/neural-belief-tracker/master/data/woz/woz_validate_en.json": {"num_bytes": 1222746, "checksum": "ae1ea9067fd05c0179d349f140b38de1b2db587d5bfcb4f99ef0d77474ab00ad"}, "https://raw.githubusercontent.com/nmrksic/neural-belief-tracker/master/data/woz/woz_test_en.json": {"num_bytes": 2481214, "checksum": "3673e433b21a6b0d74e9144bd059e64b29bc3e1c5dc0e18654a98ec597c0d72c"}}, "download_size": 7529221, "post_processing_size": null, "dataset_size": 1630430, "size_in_bytes": 9159651}, "de": {"description": "Wizard-of-Oz (WOZ) is a dataset for training task-oriented dialogue systems. The dataset is designed around the task of finding a restaurant in the Cambridge, UK area. There are three informable slots (food, pricerange,area) that users can use to constrain the search and six requestable slots (address, phone, postcode plus the three informable slots) that the user can ask a value for once a restaurant has been offered.\n", "citation": "@misc{wen2017networkbased,\n title={A Network-based End-to-End Trainable Task-oriented Dialogue System},\n author={Tsung-Hsien Wen and David Vandyke and Nikola Mrksic and Milica Gasic and Lina M. Rojas-Barahona and Pei-Hao Su and Stefan Ultes and Steve Young},\n year={2017},\n eprint={1604.04562},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n", "homepage": "https://github.com/nmrksic/neural-belief-tracker/tree/master/data/woz", "license": "", "features": {"dialogue_idx": {"dtype": "int32", "id": null, "_type": "Value"}, "dialogue": [{"turn_label": {"feature": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "length": -1, "id": null, "_type": "Sequence"}, "asr": {"feature": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "length": -1, "id": null, "_type": "Sequence"}, "system_transcript": {"dtype": "string", "id": null, "_type": "Value"}, "turn_idx": {"dtype": "int32", "id": null, "_type": "Value"}, "belief_state": [{"slots": {"feature": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "length": -1, "id": null, "_type": "Sequence"}, "act": {"dtype": "string", "id": null, "_type": "Value"}}], "transcript": {"dtype": "string", "id": null, "_type": "Value"}, "system_acts": {"feature": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "length": -1, "id": null, "_type": "Sequence"}}]}, "post_processed": null, "supervised_keys": null, "builder_name": "woz_dialogue", "config_name": "de", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 881478, "num_examples": 600, "dataset_name": "woz_dialogue"}, "validation": {"name": "validation", "num_bytes": 276758, "num_examples": 200, "dataset_name": "woz_dialogue"}, "test": {"name": "test", "num_bytes": 569703, "num_examples": 400, "dataset_name": "woz_dialogue"}}, "download_checksums": {"https://raw.githubusercontent.com/nmrksic/neural-belief-tracker/master/data/woz/woz_train_de.json": {"num_bytes": 3879554, "checksum": "5a45bf0aefd258dbd05fd178b0be04ea7bbd4594b245e381f4ffeaabe3fa3c8a"}, "https://raw.githubusercontent.com/nmrksic/neural-belief-tracker/master/data/woz/woz_validate_de.json": {"num_bytes": 1233820, "checksum": "d2c0086b86430b61eab7f816c6f34d52e79a403a46e9b45d5867b0fa912cfb48"}, "https://raw.githubusercontent.com/nmrksic/neural-belief-tracker/master/data/woz/woz_test_de.json": {"num_bytes": 2513360, "checksum": "e40219302733703ae5beadccd7cc4079befdc720903b9ccf22b4a952c83bdbe6"}}, "download_size": 7626734, "post_processing_size": null, "dataset_size": 1727939, "size_in_bytes": 9354673}, "de_en": {"description": "Wizard-of-Oz (WOZ) is a dataset for training task-oriented dialogue systems. The dataset is designed around the task of finding a restaurant in the Cambridge, UK area. There are three informable slots (food, pricerange,area) that users can use to constrain the search and six requestable slots (address, phone, postcode plus the three informable slots) that the user can ask a value for once a restaurant has been offered.\n", "citation": "@misc{wen2017networkbased,\n title={A Network-based End-to-End Trainable Task-oriented Dialogue System},\n author={Tsung-Hsien Wen and David Vandyke and Nikola Mrksic and Milica Gasic and Lina M. Rojas-Barahona and Pei-Hao Su and Stefan Ultes and Steve Young},\n year={2017},\n eprint={1604.04562},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n", "homepage": "https://github.com/nmrksic/neural-belief-tracker/tree/master/data/woz", "license": "", "features": {"dialogue_idx": {"dtype": "int32", "id": null, "_type": "Value"}, "dialogue": [{"turn_label": {"feature": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "length": -1, "id": null, "_type": "Sequence"}, "asr": {"feature": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "length": -1, "id": null, "_type": "Sequence"}, "system_transcript": {"dtype": "string", "id": null, "_type": "Value"}, "turn_idx": {"dtype": "int32", "id": null, "_type": "Value"}, "belief_state": [{"slots": {"feature": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "length": -1, "id": null, "_type": "Sequence"}, "act": {"dtype": "string", "id": null, "_type": "Value"}}], "transcript": {"dtype": "string", "id": null, "_type": "Value"}, "system_acts": {"feature": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "length": -1, "id": null, "_type": "Sequence"}}]}, "post_processed": null, "supervised_keys": null, "builder_name": "woz_dialogue", "config_name": "de_en", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 860151, "num_examples": 600, "dataset_name": "woz_dialogue"}, "validation": {"name": "validation", "num_bytes": 269966, "num_examples": 200, "dataset_name": "woz_dialogue"}, "test": {"name": "test", "num_bytes": 555841, "num_examples": 400, "dataset_name": "woz_dialogue"}}, "download_checksums": {"https://raw.githubusercontent.com/nmrksic/neural-belief-tracker/master/data/woz/woz_train_de_en.json": {"num_bytes": 3858227, "checksum": "44354c8e09a060bc3bebd5900f735f0ce1789c2fca7dc4bcc7f014b13e43d797"}, "https://raw.githubusercontent.com/nmrksic/neural-belief-tracker/master/data/woz/woz_validate_de_en.json": {"num_bytes": 1227028, "checksum": "26a8d029456e82275d35adbc97e625dda481b79e50909b8bad0419f5be8f455a"}, "https://raw.githubusercontent.com/nmrksic/neural-belief-tracker/master/data/woz/woz_test_de_en.json": {"num_bytes": 2499498, "checksum": "e6ec0cec49b363d4fb78f175cc57d28739032f4be51fab8188cc3e3938fbf1df"}}, "download_size": 7584753, "post_processing_size": null, "dataset_size": 1685958, "size_in_bytes": 9270711}, "it": {"description": "Wizard-of-Oz (WOZ) is a dataset for training task-oriented dialogue systems. The dataset is designed around the task of finding a restaurant in the Cambridge, UK area. There are three informable slots (food, pricerange,area) that users can use to constrain the search and six requestable slots (address, phone, postcode plus the three informable slots) that the user can ask a value for once a restaurant has been offered.\n", "citation": "@misc{wen2017networkbased,\n title={A Network-based End-to-End Trainable Task-oriented Dialogue System},\n author={Tsung-Hsien Wen and David Vandyke and Nikola Mrksic and Milica Gasic and Lina M. Rojas-Barahona and Pei-Hao Su and Stefan Ultes and Steve Young},\n year={2017},\n eprint={1604.04562},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n", "homepage": "https://github.com/nmrksic/neural-belief-tracker/tree/master/data/woz", "license": "", "features": {"dialogue_idx": {"dtype": "int32", "id": null, "_type": "Value"}, "dialogue": [{"turn_label": {"feature": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "length": -1, "id": null, "_type": "Sequence"}, "asr": {"feature": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "length": -1, "id": null, "_type": "Sequence"}, "system_transcript": {"dtype": "string", "id": null, "_type": "Value"}, "turn_idx": {"dtype": "int32", "id": null, "_type": "Value"}, "belief_state": [{"slots": {"feature": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "length": -1, "id": null, "_type": "Sequence"}, "act": {"dtype": "string", "id": null, "_type": "Value"}}], "transcript": {"dtype": "string", "id": null, "_type": "Value"}, "system_acts": {"feature": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "length": -1, "id": null, "_type": "Sequence"}}]}, "post_processed": null, "supervised_keys": null, "builder_name": "woz_dialogue", "config_name": "it", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 842799, "num_examples": 600, "dataset_name": "woz_dialogue"}, "validation": {"name": "validation", "num_bytes": 270258, "num_examples": 200, "dataset_name": "woz_dialogue"}, "test": {"name": "test", "num_bytes": 547759, "num_examples": 400, "dataset_name": "woz_dialogue"}}, "download_checksums": {"https://raw.githubusercontent.com/nmrksic/neural-belief-tracker/master/data/woz/woz_train_it.json": {"num_bytes": 3840879, "checksum": "233b8b473f1a5d65e576cdbcb86e282388b5035f93394f136375654ff1753b05"}, "https://raw.githubusercontent.com/nmrksic/neural-belief-tracker/master/data/woz/woz_validate_it.json": {"num_bytes": 1227320, "checksum": "81daa64a2969d181702332597e291c298156c1b2a9ce525c52889327dafe91e0"}, "https://raw.githubusercontent.com/nmrksic/neural-belief-tracker/master/data/woz/woz_test_it.json": {"num_bytes": 2491416, "checksum": "5a86bd9fb3f86fde802dd5121f6b1e83e3f9b4925d5b7e0ee32fb574b3b2d28b"}}, "download_size": 7559615, "post_processing_size": null, "dataset_size": 1660816, "size_in_bytes": 9220431}, "it_en": {"description": "Wizard-of-Oz (WOZ) is a dataset for training task-oriented dialogue systems. The dataset is designed around the task of finding a restaurant in the Cambridge, UK area. There are three informable slots (food, pricerange,area) that users can use to constrain the search and six requestable slots (address, phone, postcode plus the three informable slots) that the user can ask a value for once a restaurant has been offered.\n", "citation": "@misc{wen2017networkbased,\n title={A Network-based End-to-End Trainable Task-oriented Dialogue System},\n author={Tsung-Hsien Wen and David Vandyke and Nikola Mrksic and Milica Gasic and Lina M. Rojas-Barahona and Pei-Hao Su and Stefan Ultes and Steve Young},\n year={2017},\n eprint={1604.04562},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n", "homepage": "https://github.com/nmrksic/neural-belief-tracker/tree/master/data/woz", "license": "", "features": {"dialogue_idx": {"dtype": "int32", "id": null, "_type": "Value"}, "dialogue": [{"turn_label": {"feature": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "length": -1, "id": null, "_type": "Sequence"}, "asr": {"feature": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "length": -1, "id": null, "_type": "Sequence"}, "system_transcript": {"dtype": "string", "id": null, "_type": "Value"}, "turn_idx": {"dtype": "int32", "id": null, "_type": "Value"}, "belief_state": [{"slots": {"feature": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "length": -1, "id": null, "_type": "Sequence"}, "act": {"dtype": "string", "id": null, "_type": "Value"}}], "transcript": {"dtype": "string", "id": null, "_type": "Value"}, "system_acts": {"feature": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "length": -1, "id": null, "_type": "Sequence"}}]}, "post_processed": null, "supervised_keys": null, "builder_name": "woz_dialogue", "config_name": "it_en", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 845095, "num_examples": 600, "dataset_name": "woz_dialogue"}, "validation": {"name": "validation", "num_bytes": 270942, "num_examples": 200, "dataset_name": "woz_dialogue"}, "test": {"name": "test", "num_bytes": 548979, "num_examples": 400, "dataset_name": "woz_dialogue"}}, "download_checksums": {"https://raw.githubusercontent.com/nmrksic/neural-belief-tracker/master/data/woz/woz_train_it_en.json": {"num_bytes": 3843175, "checksum": "f6e4ad713de33e1ede787ec3e548ca998e1abdfc538e4d2aa02f7edc7f5c8ac0"}, "https://raw.githubusercontent.com/nmrksic/neural-belief-tracker/master/data/woz/woz_validate_it_en.json": {"num_bytes": 1228004, "checksum": "6711a531638a40fb6e875d0874b22ea35bd502b089480ef888e73d5f16605cb7"}, "https://raw.githubusercontent.com/nmrksic/neural-belief-tracker/master/data/woz/woz_test_it_en.json": {"num_bytes": 2492636, "checksum": "e86ca0d906a6017026077b173a3d753cb9c3461f585e6f8f68b5aaee8a8b4a78"}}, "download_size": 7563815, "post_processing_size": null, "dataset_size": 1665016, "size_in_bytes": 9228831}}
|
dummy/de/1.0.0/dummy_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7f4988d280de3887faf0fae0438e86d0c82a6a7472a19cfa1435c06ce99878c4
|
3 |
+
size 5642
|
dummy/de_en/1.0.0/dummy_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c82e3dfcff14f4758b1ecc0c2a13c3a3aa9ace35ff66d4759cd328f11a929c3f
|
3 |
+
size 5635
|
dummy/en/1.0.0/dummy_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cdec4a1edb15de16eb3d3286e6fcf90aa98c4aff1a816ed2baebfdca45bd98a7
|
3 |
+
size 5212
|
dummy/it/1.0.0/dummy_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1858731915370dcb2a0afafc846ec18a1c34460f1698ca9ac0c19aeda0378f22
|
3 |
+
size 5582
|
dummy/it_en/1.0.0/dummy_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f71cb78de0688dfc34a6b7b0a1dacd03cf777349f2d1b00fcb00d926cfd7d821
|
3 |
+
size 5615
|
woz_dialogue.py
ADDED
@@ -0,0 +1,135 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The HuggingFace Datasets Authors.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""WozDialogue: a dataset for training task-oriented dialogue systems"""
|
16 |
+
|
17 |
+
from __future__ import absolute_import, division, print_function
|
18 |
+
|
19 |
+
import json
|
20 |
+
|
21 |
+
import datasets
|
22 |
+
|
23 |
+
|
24 |
+
_CITATION = """\
|
25 |
+
@misc{wen2017networkbased,
|
26 |
+
title={A Network-based End-to-End Trainable Task-oriented Dialogue System},
|
27 |
+
author={Tsung-Hsien Wen and David Vandyke and Nikola Mrksic and Milica Gasic and Lina M. Rojas-Barahona and Pei-Hao Su and Stefan Ultes and Steve Young},
|
28 |
+
year={2017},
|
29 |
+
eprint={1604.04562},
|
30 |
+
archivePrefix={arXiv},
|
31 |
+
primaryClass={cs.CL}
|
32 |
+
}
|
33 |
+
"""
|
34 |
+
|
35 |
+
_DESCRIPTION = """\
|
36 |
+
Wizard-of-Oz (WOZ) is a dataset for training task-oriented dialogue systems. The dataset is designed around the \
|
37 |
+
task of finding a restaurant in the Cambridge, UK area. There are three informable slots (food, pricerange,area) \
|
38 |
+
that users can use to constrain the search and six requestable slots (address, phone, postcode plus the three informable slots) \
|
39 |
+
that the user can ask a value for once a restaurant has been offered.
|
40 |
+
"""
|
41 |
+
|
42 |
+
_HOMEPAGE = "https://github.com/nmrksic/neural-belief-tracker/tree/master/data/woz"
|
43 |
+
|
44 |
+
_BASE_URL = "https://raw.githubusercontent.com/nmrksic/neural-belief-tracker/master/data/woz"
|
45 |
+
|
46 |
+
|
47 |
+
class WozDialogue(datasets.GeneratorBasedBuilder):
|
48 |
+
"""WozDialogue: a dataset for training task-oriented dialogue systems"""
|
49 |
+
|
50 |
+
VERSION = datasets.Version("1.0.0")
|
51 |
+
BUILDER_CONFIGS = [
|
52 |
+
datasets.BuilderConfig(
|
53 |
+
name="en",
|
54 |
+
version=datasets.Version("1.0.0"),
|
55 |
+
description="WOZ English dataset",
|
56 |
+
),
|
57 |
+
datasets.BuilderConfig(name="de", version=datasets.Version("1.0.0"), description="WOZ German dataset"),
|
58 |
+
datasets.BuilderConfig(
|
59 |
+
name="de_en",
|
60 |
+
version=datasets.Version("1.0.0"),
|
61 |
+
description="WOZ German-English dataset. For this config, the dialogues are in German and the labels in English ",
|
62 |
+
),
|
63 |
+
datasets.BuilderConfig(name="it", version=datasets.Version("1.0.0"), description="WOZ Italian dataset"),
|
64 |
+
datasets.BuilderConfig(
|
65 |
+
name="it_en",
|
66 |
+
version=datasets.Version("1.0.0"),
|
67 |
+
description="WOZ Italian-English dataset. For this config, the dialogues are in Italian and the labels in English ",
|
68 |
+
),
|
69 |
+
]
|
70 |
+
|
71 |
+
def _info(self):
|
72 |
+
return datasets.DatasetInfo(
|
73 |
+
description=_DESCRIPTION,
|
74 |
+
features=datasets.Features(
|
75 |
+
{
|
76 |
+
"dialogue_idx": datasets.Value("int32"),
|
77 |
+
"dialogue": [
|
78 |
+
{
|
79 |
+
"turn_label": datasets.Sequence(datasets.Sequence(datasets.Value("string"))),
|
80 |
+
"asr": datasets.Sequence(datasets.Sequence(datasets.Value("string"))),
|
81 |
+
"system_transcript": datasets.Value("string"),
|
82 |
+
"turn_idx": datasets.Value("int32"),
|
83 |
+
"belief_state": [
|
84 |
+
{
|
85 |
+
"slots": datasets.Sequence(datasets.Sequence(datasets.Value("string"))),
|
86 |
+
"act": datasets.Value("string"),
|
87 |
+
}
|
88 |
+
],
|
89 |
+
"transcript": datasets.Value("string"),
|
90 |
+
"system_acts": datasets.Sequence(datasets.Sequence(datasets.Value("string"))),
|
91 |
+
}
|
92 |
+
],
|
93 |
+
}
|
94 |
+
),
|
95 |
+
supervised_keys=None,
|
96 |
+
homepage=_HOMEPAGE,
|
97 |
+
citation=_CITATION,
|
98 |
+
)
|
99 |
+
|
100 |
+
def _split_generators(self, dl_manager):
|
101 |
+
urls = {
|
102 |
+
"train": f"{_BASE_URL}/woz_train_{self.config.name}.json",
|
103 |
+
"dev": f"{_BASE_URL}/woz_validate_{self.config.name}.json",
|
104 |
+
"test": f"{_BASE_URL}/woz_test_{self.config.name}.json",
|
105 |
+
}
|
106 |
+
downloaded_paths = dl_manager.download(urls)
|
107 |
+
return [
|
108 |
+
datasets.SplitGenerator(
|
109 |
+
name=datasets.Split.TRAIN,
|
110 |
+
gen_kwargs={"filepath": downloaded_paths["train"]},
|
111 |
+
),
|
112 |
+
datasets.SplitGenerator(
|
113 |
+
name=datasets.Split.VALIDATION,
|
114 |
+
gen_kwargs={"filepath": downloaded_paths["dev"]},
|
115 |
+
),
|
116 |
+
datasets.SplitGenerator(
|
117 |
+
name=datasets.Split.TEST,
|
118 |
+
gen_kwargs={"filepath": downloaded_paths["test"]},
|
119 |
+
),
|
120 |
+
]
|
121 |
+
|
122 |
+
def _generate_examples(self, filepath):
|
123 |
+
with open(filepath, encoding="utf-8") as f:
|
124 |
+
examples = json.load(f)
|
125 |
+
for i, example in enumerate(examples):
|
126 |
+
for dialogue in example["dialogue"]:
|
127 |
+
# exclude the second element which is same for every instance and is of type int
|
128 |
+
dialogue["asr"] = [asr[:1] for asr in dialogue["asr"]]
|
129 |
+
# some system_acts is either to string or list of strings,
|
130 |
+
# converting all to list of strings
|
131 |
+
dialogue["system_acts"] = [
|
132 |
+
[act] if isinstance(act, str) else act for act in dialogue["system_acts"]
|
133 |
+
]
|
134 |
+
|
135 |
+
yield example["dialogue_idx"], example
|