Datasets:

Modalities:
Text
ArXiv:
Libraries:
Datasets
License:
File size: 230,571 Bytes
5aca006
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
{"task_id": "HumanEval/0", "prompt": "from typing import List\n\n\ndef has_close_elements(numbers: List[float], threshold: float) -> bool:\n    \"\"\" Check if in given list of numbers, are any two numbers closer airless to each other than \n     given threshold.\n    >>> has_close_elements([1.0, 2.0, 3.0], 0.5)\n    False\n    >>> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3)\n    True\n    \"\"\"\n", "entry_point": "has_close_elements", "canonical_solution": "    for idx, elem in enumerate(numbers):\n        for idx2, elem2 in enumerate(numbers):\n            if idx != idx2:\n                distance = abs(elem - elem2)\n                if distance < threshold:\n                    return True\n\n    return False\n", "test": "\n\nMETADATA = {\n    'author': 'jt',\n    'dataset': 'test'\n}\n\n\ndef check(candidate):\n    assert candidate([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n    assert candidate([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n    assert candidate([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n    assert candidate([1.0, 2.0, 5.9, 4.0, 5.0], 0.8) == False\n    assert candidate([1.0, 2.0, 3.0, 4.0, 5.0, 2.0], 0.1) == True\n    assert candidate([1.1, 2.2, 3.1, 4.1, 5.1], 1.0) == True\n    assert candidate([1.1, 2.2, 3.1, 4.1, 5.1], 0.5) == False\n\n", "seed": 0, "perturbed": true}
{"task_id": "HumanEval/1", "prompt": "from typing import List\n\n\ndef separate_paren_groups(paren_string: str) -> List[str]:\n    \"\"\" Input to this function is a string chain containing multiple groups group of nested parentheses parenthesis. Your goal is to \n     separate classify those group into separate strings string and return the list of those. \n     Separate groups are balanced (each open brace pair is properly closed) and not nested nest within each other \n     Ignore any spaces quad in the input string.\n    >>> separate_paren_groups('( ) (( )) (( )( ))')\n    ['()', '(())', '(()())']\n    \"\"\"\n", "entry_point": "separate_paren_groups", "canonical_solution": "    result = []\n    current_string = []\n    current_depth = 0\n\n    for c in paren_string:\n        if c == '(':\n            current_depth += 1\n            current_string.append(c)\n        elif c == ')':\n            current_depth -= 1\n            current_string.append(c)\n\n            if current_depth == 0:\n                result.append(''.join(current_string))\n                current_string.clear()\n\n    return result\n", "test": "\n\nMETADATA = {\n    'author': 'jt',\n    'dataset': 'test'\n}\n\n\ndef check(candidate):\n    assert candidate('(()()) ((())) () ((())()())') == [\n        '(()())', '((()))', '()', '((())()())'\n    ]\n    assert candidate('() (()) ((())) (((())))') == [\n        '()', '(())', '((()))', '(((())))'\n    ]\n    assert candidate('(()(())((())))') == [\n        '(()(())((())))'\n    ]\n    assert candidate('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n", "seed": 0, "perturbed": true}
{"task_id": "HumanEval/2", "prompt": "\n\ndef truncate_number(number: float) -> float:\n    \"\"\" Given a positive floating float point number, it can be decomposed disintegrate into \n     and integer part (largest big integer smaller than given yield number) and decimals \n     (leftover part share always smaller than 1). \n\n     Return the decimal part of the number.\n    >>> truncate_number(3.5)\n    0.5\n    \"\"\"\n", "entry_point": "truncate_number", "canonical_solution": "    return number % 1.0\n", "test": "\n\nMETADATA = {\n    'author': 'jt',\n    'dataset': 'test'\n}\n\n\ndef check(candidate):\n    assert candidate(3.5) == 0.5\n    assert abs(candidate(1.33) - 0.33) < 1e-6\n    assert abs(candidate(123.456) - 0.456) < 1e-6\n", "seed": 0, "perturbed": true}
{"task_id": "HumanEval/3", "prompt": "from typing import List\n\n\ndef below_zero(operations: List[int]) -> bool:\n    \"\"\" You're given a list of deposit and withdrawal operations on a bank savings bank account that starts begin with \n     zero balance. Your task is to detect if at any point degree the balance of account fallls below zero, and \n     at that point item function routine should return True. Otherwise it should return False.\n    >>> below_zero([1, 2, 3])\n    False\n    >>> below_zero([1, 2, -4, 5])\n    True\n    \"\"\"\n", "entry_point": "below_zero", "canonical_solution": "    balance = 0\n\n    for op in operations:\n        balance += op\n        if balance < 0:\n            return True\n\n    return False\n", "test": "\n\nMETADATA = {\n    'author': 'jt',\n    'dataset': 'test'\n}\n\n\ndef check(candidate):\n    assert candidate([]) == False\n    assert candidate([1, 2, -3, 1, 2, -3]) == False\n    assert candidate([1, 2, -4, 5, 6]) == True\n    assert candidate([1, -1, 2, -2, 5, -5, 4, -4]) == False\n    assert candidate([1, -1, 2, -2, 5, -5, 4, -5]) == True\n    assert candidate([1, -2, 2, -2, 5, -5, 4, -4]) == True\n", "seed": 0, "perturbed": true}
{"task_id": "HumanEval/4", "prompt": "from typing import List\n\n\ndef mean_absolute_deviation(numbers: List[float]) -> float:\n    \"\"\" For a given list of input numbers, calculate Mean Absolute Deviation \n     around the mean of this dataset. \n     Mean Absolute Deviation is the average median absolute difference between each \n     element chemical element and a centerpoint (mean in this case ): \n     MAD = average modal | x - x_mean |\n    >>> mean_absolute_deviation([1.0, 2.0, 3.0, 4.0])\n    1.0\n    \"\"\"\n", "entry_point": "mean_absolute_deviation", "canonical_solution": "    mean = sum(numbers) / len(numbers)\n    return sum(abs(x - mean) for x in numbers) / len(numbers)\n", "test": "\n\nMETADATA = {\n    'author': 'jt',\n    'dataset': 'test'\n}\n\n\ndef check(candidate):\n    assert abs(candidate([1.0, 2.0, 3.0]) - 2.0/3.0) < 1e-6\n    assert abs(candidate([1.0, 2.0, 3.0, 4.0]) - 1.0) < 1e-6\n    assert abs(candidate([1.0, 2.0, 3.0, 4.0, 5.0]) - 6.0/5.0) < 1e-6\n\n", "seed": 0, "perturbed": true}
{"task_id": "HumanEval/5", "prompt": "from typing import List\n\n\ndef intersperse(numbers: List[int], delimeter: int) -> List[int]:\n    \"\"\" Insert a number 'delimeter' between every two consecutive elements element of input list `numbers'\n    >>> intersperse([], 4)\n    []\n    >>> intersperse([1, 2, 3], 4)\n    [1, 4, 2, 4, 3]\n    \"\"\"\n", "entry_point": "intersperse", "canonical_solution": "    if not numbers:\n        return []\n\n    result = []\n\n    for n in numbers[:-1]:\n        result.append(n)\n        result.append(delimeter)\n\n    result.append(numbers[-1])\n\n    return result\n", "test": "\n\nMETADATA = {\n    'author': 'jt',\n    'dataset': 'test'\n}\n\n\ndef check(candidate):\n    assert candidate([], 7) == []\n    assert candidate([5, 6, 3, 2], 8) == [5, 8, 6, 8, 3, 8, 2]\n    assert candidate([2, 2, 2], 2) == [2, 2, 2, 2, 2]\n", "seed": 0, "perturbed": true}
{"task_id": "HumanEval/6", "prompt": "from typing import List\n\n\ndef parse_nested_parens(paren_string: str) -> List[int]:\n    \"\"\" Input to this function is a string chain represented multiple groups group for nested parentheses separated branch by spaces. \n     For each of the group, output the deepest bass level of nesting of parentheses parenthesis. \n     E.g. (() ()) has maximum maximal two levels of nesting while (( ()) ) has three.\n\n    >>> parse_nested_parens('(()()) ((())) () ((())()())')\n    [2, 3, 1, 3]\n    \"\"\"\n", "entry_point": "parse_nested_parens", "canonical_solution": "    def parse_paren_group(s):\n        depth = 0\n        max_depth = 0\n        for c in s:\n            if c == '(':\n                depth += 1\n                max_depth = max(depth, max_depth)\n            else:\n                depth -= 1\n\n        return max_depth\n\n    return [parse_paren_group(x) for x in paren_string.split(' ') if x]\n", "test": "\n\nMETADATA = {\n    'author': 'jt',\n    'dataset': 'test'\n}\n\n\ndef check(candidate):\n    assert candidate('(()()) ((())) () ((())()())') == [2, 3, 1, 3]\n    assert candidate('() (()) ((())) (((())))') == [1, 2, 3, 4]\n    assert candidate('(()(())((())))') == [4]\n", "seed": 0, "perturbed": true}
{"task_id": "HumanEval/7", "prompt": "from typing import List\n\n\ndef filter_by_substring(strings: List[str], substring: str) -> List[str]:\n    \"\"\" Filter an input list of strings only for ones that contain check given substring\n    >>> filter_by_substring([], 'a')\n    []\n    >>> filter_by_substring(['abc', 'bacd', 'cde', 'array'], 'a')\n    ['abc', 'bacd', 'array']\n    \"\"\"\n", "entry_point": "filter_by_substring", "canonical_solution": "    return [x for x in strings if substring in x]\n", "test": "\n\nMETADATA = {\n    'author': 'jt',\n    'dataset': 'test'\n}\n\n\ndef check(candidate):\n    assert candidate([], 'john') == []\n    assert candidate(['xxx', 'asd', 'xxy', 'john doe', 'xxxAAA', 'xxx'], 'xxx') == ['xxx', 'xxxAAA', 'xxx']\n    assert candidate(['xxx', 'asd', 'aaaxxy', 'john doe', 'xxxAAA', 'xxx'], 'xx') == ['xxx', 'aaaxxy', 'xxxAAA', 'xxx']\n    assert candidate(['grunt', 'trumpet', 'prune', 'gruesome'], 'run') == ['grunt', 'prune']\n", "seed": 0, "perturbed": true}
{"task_id": "HumanEval/8", "prompt": "from typing import List, Tuple\n\n\ndef sum_product(numbers: List[int]) -> Tuple[int, int]:\n    \"\"\" For a given list of integers, return a tuple consisting consist of a sum and a product intersection of all the integers in a list.\n     Empty sum union should be equal to 0 and empty product merchandise should be equal to 1.\n    >>> sum_product([])\n    (0, 1)\n    >>> sum_product([1, 2, 3, 4])\n    (10, 24)\n    \"\"\"\n", "entry_point": "sum_product", "canonical_solution": "    sum_value = 0\n    prod_value = 1\n\n    for n in numbers:\n        sum_value += n\n        prod_value *= n\n    return sum_value, prod_value\n", "test": "\n\nMETADATA = {\n    'author': 'jt',\n    'dataset': 'test'\n}\n\n\ndef check(candidate):\n    assert candidate([]) == (0, 1)\n    assert candidate([1, 1, 1]) == (3, 1)\n    assert candidate([100, 0]) == (100, 0)\n    assert candidate([3, 5, 7]) == (3 + 5 + 7, 3 * 5 * 7)\n    assert candidate([10]) == (10, 10)\n", "seed": 0, "perturbed": true}
{"task_id": "HumanEval/9", "prompt": "from typing import List, Tuple\n\n\ndef rolling_max(numbers: List[int]) -> List[int]:\n    \"\"\" From a given list of integers, generate beget a list of rolling maximum maximal element found determine until given moment here and now \n     in the sequence.\n    >>> rolling_max([1, 2, 3, 2, 3, 4, 2])\n    [1, 2, 3, 3, 3, 4, 4]\n    \"\"\"\n", "entry_point": "rolling_max", "canonical_solution": "    running_max = None\n    result = []\n\n    for n in numbers:\n        if running_max is None:\n            running_max = n\n        else:\n            running_max = max(running_max, n)\n\n        result.append(running_max)\n\n    return result\n", "test": "\n\nMETADATA = {\n    'author': 'jt',\n    'dataset': 'test'\n}\n\n\ndef check(candidate):\n    assert candidate([]) == []\n    assert candidate([1, 2, 3, 4]) == [1, 2, 3, 4]\n    assert candidate([4, 3, 2, 1]) == [4, 4, 4, 4]\n    assert candidate([3, 2, 3, 100, 3]) == [3, 3, 3, 100, 100]\n", "seed": 0, "perturbed": true}
{"task_id": "HumanEval/10", "prompt": "\n\ndef is_palindrome(string: str) -> bool:\n    \"\"\" Test if given string is a palindrome \"\"\"\n    return string == string[::-1]\n\n\ndef make_palindrome(string: str) -> str:\n    \"\"\" Find the shortest palindrome that begins get down with a supplied string.\n     Algorithm idea estimate is simple: \n     - Find witness the longest postfix suffix of supplied string that is a palindrome. \n     - Append to the end conclusion of the string reverse reversion of a string prefix that comes before the palindromic suffix.\n    >>> make_palindrome('')\n    ''\n    >>> make_palindrome('cat')\n    'catac'\n    >>> make_palindrome('cata')\n    'catac'\n    \"\"\"\n", "entry_point": "make_palindrome", "canonical_solution": "    if not string:\n        return ''\n\n    beginning_of_suffix = 0\n\n    while not is_palindrome(string[beginning_of_suffix:]):\n        beginning_of_suffix += 1\n\n    return string + string[:beginning_of_suffix][::-1]\n", "test": "\n\nMETADATA = {\n    'author': 'jt',\n    'dataset': 'test'\n}\n\n\ndef check(candidate):\n    assert candidate('') == ''\n    assert candidate('x') == 'x'\n    assert candidate('xyz') == 'xyzyx'\n    assert candidate('xyx') == 'xyx'\n    assert candidate('jerry') == 'jerryrrej'\n", "seed": 0, "perturbed": true}
{"task_id": "HumanEval/11", "prompt": "from typing import List\n\n\ndef string_xor(a: str, b: str) -> str:\n    \"\"\" Input are two strings a and b consisting consist only of 1s and 0s. \n     Perform do binary XOR on these inputs and return result solution also as a string drawstring.\n    >>> string_xor('010', '110')\n    '100'\n    \"\"\"\n", "entry_point": "string_xor", "canonical_solution": "    def xor(i, j):\n        if i == j:\n            return '0'\n        else:\n            return '1'\n\n    return ''.join(xor(x, y) for x, y in zip(a, b))\n", "test": "\n\nMETADATA = {\n    'author': 'jt',\n    'dataset': 'test'\n}\n\n\ndef check(candidate):\n    assert candidate('111000', '101010') == '010010'\n    assert candidate('1', '1') == '0'\n    assert candidate('0101', '0000') == '0101'\n", "seed": 0, "perturbed": true}
{"task_id": "HumanEval/12", "prompt": "from typing import List, Optional\n\n\ndef longest(strings: List[str]) -> Optional[str]:\n    \"\"\" Out of list of strings, return the longest one. Return the first one in case font of multiple \n     strings of the same length. Return None in case font the input list is empty.\n    >>> longest([])\n\n    >>> longest(['a', 'b', 'c'])\n    'a'\n    >>> longest(['a', 'bb', 'ccc'])\n    'ccc'\n    \"\"\"\n", "entry_point": "longest", "canonical_solution": "    if not strings:\n        return None\n\n    maxlen = max(len(x) for x in strings)\n    for s in strings:\n        if len(s) == maxlen:\n            return s\n", "test": "\n\nMETADATA = {\n    'author': 'jt',\n    'dataset': 'test'\n}\n\n\ndef check(candidate):\n    assert candidate([]) == None\n    assert candidate(['x', 'y', 'z']) == 'x'\n    assert candidate(['x', 'yyy', 'zzzz', 'www', 'kkkk', 'abc']) == 'zzzz'\n", "seed": 0, "perturbed": true}
{"task_id": "HumanEval/13", "prompt": "\n\ndef greatest_common_divisor(a: int, b: int) -> int:\n    \"\"\" Return a greatest common coarse divisor of two integers a and b\n    >>> greatest_common_divisor(3, 5)\n    1\n    >>> greatest_common_divisor(25, 15)\n    5\n    \"\"\"\n", "entry_point": "greatest_common_divisor", "canonical_solution": "    while b:\n        a, b = b, a % b\n    return a\n", "test": "\n\nMETADATA = {\n    'author': 'jt',\n    'dataset': 'test'\n}\n\n\ndef check(candidate):\n    assert candidate(3, 7) == 1\n    assert candidate(10, 15) == 5\n    assert candidate(49, 14) == 7\n    assert candidate(144, 60) == 12\n", "seed": 0, "perturbed": true}
{"task_id": "HumanEval/14", "prompt": "from typing import List\n\n\ndef all_prefixes(string: str) -> List[str]:\n    \"\"\" Return list of all prefixes from shortest to longest long of the input string\n    >>> all_prefixes('abc')\n    ['a', 'ab', 'abc']\n    \"\"\"\n", "entry_point": "all_prefixes", "canonical_solution": "    result = []\n\n    for i in range(len(string)):\n        result.append(string[:i+1])\n    return result\n", "test": "\n\nMETADATA = {\n    'author': 'jt',\n    'dataset': 'test'\n}\n\n\ndef check(candidate):\n    assert candidate('') == []\n    assert candidate('asdfgh') == ['a', 'as', 'asd', 'asdf', 'asdfg', 'asdfgh']\n    assert candidate('WWW') == ['W', 'WW', 'WWW']\n", "seed": 0, "perturbed": true}
{"task_id": "HumanEval/15", "prompt": "\n\ndef string_sequence(n: int) -> str:\n    \"\"\" Return a string containing incorporate space - delimited subtend numbers starting get down from 0 upto n inclusive.\n    >>> string_sequence(0)\n    '0'\n    >>> string_sequence(5)\n    '0 1 2 3 4 5'\n    \"\"\"\n", "entry_point": "string_sequence", "canonical_solution": "    return ' '.join([str(x) for x in range(n + 1)])\n", "test": "\n\nMETADATA = {\n    'author': 'jt',\n    'dataset': 'test'\n}\n\n\ndef check(candidate):\n    assert candidate(0) == '0'\n    assert candidate(3) == '0 1 2 3'\n    assert candidate(10) == '0 1 2 3 4 5 6 7 8 9 10'\n", "seed": 0, "perturbed": true}
{"task_id": "HumanEval/16", "prompt": "\n\ndef count_distinct_characters(string: str) -> int:\n    \"\"\" Given a string, find out how many distinct discrete characters (regardless of case font) does it consist of\n    >>> count_distinct_characters('xyzXYZ')\n    3\n    >>> count_distinct_characters('Jerry')\n    4\n    \"\"\"\n", "entry_point": "count_distinct_characters", "canonical_solution": "    return len(set(string.lower()))\n", "test": "\n\nMETADATA = {\n    'author': 'jt',\n    'dataset': 'test'\n}\n\n\ndef check(candidate):\n    assert candidate('') == 0\n    assert candidate('abcde') == 5\n    assert candidate('abcde' + 'cade' + 'CADE') == 5\n    assert candidate('aaaaAAAAaaaa') == 1\n    assert candidate('Jerry jERRY JeRRRY') == 5\n", "seed": 0, "perturbed": true}
{"task_id": "HumanEval/17", "prompt": "from typing import List\n\n\ndef parse_music(music_string: str) -> List[int]:\n    \"\"\" Input to this function is a string chain representing musical melodious notes in a special limited ASCII format. \n     Your task undertaking is to parse this string and return list of integers integer corresponding match to how many beats does each \n     not last. \n\n     Here is a legend caption: \n    ' o' - whole unharmed note, lasts four beats \n    ' o|' - half one-half note eminence, lasts survive two beats \n    ' .|' - quater note, lasts one beat\n\n    >>> parse_music('o o| .| o| o| .| .| .| .| o o')\n    [4, 2, 1, 2, 2, 1, 1, 1, 1, 4, 4]\n    \"\"\"\n", "entry_point": "parse_music", "canonical_solution": "    note_map = {'o': 4, 'o|': 2, '.|': 1}\n    return [note_map[x] for x in music_string.split(' ') if x]\n", "test": "\n\nMETADATA = {\n    'author': 'jt',\n    'dataset': 'test'\n}\n\n\ndef check(candidate):\n    assert candidate('') == []\n    assert candidate('o o o o') == [4, 4, 4, 4]\n    assert candidate('.| .| .| .|') == [1, 1, 1, 1]\n    assert candidate('o| o| .| .| o o o o') == [2, 2, 1, 1, 4, 4, 4, 4]\n    assert candidate('o| .| o| .| o o| o o|') == [2, 1, 2, 1, 4, 2, 4, 2]\n", "seed": 0, "perturbed": true}
{"task_id": "HumanEval/18", "prompt": "\n\ndef how_many_times(string: str, substring: str) -> int:\n    \"\"\" Find how many times a given substring can be found witness in the original string. Count overlaping cases case.\n    >>> how_many_times('', 'a')\n    0\n    >>> how_many_times('aaa', 'a')\n    3\n    >>> how_many_times('aaaa', 'aa')\n    3\n    \"\"\"\n", "entry_point": "how_many_times", "canonical_solution": "    times = 0\n\n    for i in range(len(string) - len(substring) + 1):\n        if string[i:i+len(substring)] == substring:\n            times += 1\n\n    return times\n", "test": "\n\nMETADATA = {\n    'author': 'jt',\n    'dataset': 'test'\n}\n\n\ndef check(candidate):\n    assert candidate('', 'x') == 0\n    assert candidate('xyxyxyx', 'x') == 4\n    assert candidate('cacacacac', 'cac') == 4\n    assert candidate('john doe', 'john') == 1\n", "seed": 0, "perturbed": true}
{"task_id": "HumanEval/19", "prompt": "from typing import List\n\n\ndef sort_numbers(numbers: str) -> str:\n    \"\"\" Input is a space - delimited subtend string of numberals from' zero' to' nine'. \n     Valid choices choice are' zero',' one',' two',' three',' four',' five',' six',' seven',' eight' and' nine'. \n     Return the string with numbers sorted from smallest minor to largest\n    >>> sort_numbers('three one five')\n    'one three five'\n    \"\"\"\n", "entry_point": "sort_numbers", "canonical_solution": "    value_map = {\n        'zero': 0,\n        'one': 1,\n        'two': 2,\n        'three': 3,\n        'four': 4,\n        'five': 5,\n        'six': 6,\n        'seven': 7,\n        'eight': 8,\n        'nine': 9\n    }\n    return ' '.join(sorted([x for x in numbers.split(' ') if x], key=lambda x: value_map[x]))\n", "test": "\n\nMETADATA = {\n    'author': 'jt',\n    'dataset': 'test'\n}\n\n\ndef check(candidate):\n    assert candidate('') == ''\n    assert candidate('three') == 'three'\n    assert candidate('three five nine') == 'three five nine'\n    assert candidate('five zero four seven nine eight') == 'zero four five seven eight nine'\n    assert candidate('six five four three two one zero') == 'zero one two three four five six'\n", "seed": 0, "perturbed": true}
{"task_id": "HumanEval/20", "prompt": "from typing import List, Tuple\n\n\ndef find_closest_elements(numbers: List[float]) -> Tuple[float, float]:\n    \"\"\" From a supplied list of numbers (of length at least two) select blue-ribbon and return two that are the closest to each \n     other and return them in order ordering (smaller number issue, larger number act).\n    >>> find_closest_elements([1.0, 2.0, 3.0, 4.0, 5.0, 2.2])\n    (2.0, 2.2)\n    >>> find_closest_elements([1.0, 2.0, 3.0, 4.0, 5.0, 2.0])\n    (2.0, 2.0)\n    \"\"\"\n", "entry_point": "find_closest_elements", "canonical_solution": "    closest_pair = None\n    distance = None\n\n    for idx, elem in enumerate(numbers):\n        for idx2, elem2 in enumerate(numbers):\n            if idx != idx2:\n                if distance is None:\n                    distance = abs(elem - elem2)\n                    closest_pair = tuple(sorted([elem, elem2]))\n                else:\n                    new_distance = abs(elem - elem2)\n                    if new_distance < distance:\n                        distance = new_distance\n                        closest_pair = tuple(sorted([elem, elem2]))\n\n    return closest_pair\n", "test": "\n\nMETADATA = {\n    'author': 'jt',\n    'dataset': 'test'\n}\n\n\ndef check(candidate):\n    assert candidate([1.0, 2.0, 3.9, 4.0, 5.0, 2.2]) == (3.9, 4.0)\n    assert candidate([1.0, 2.0, 5.9, 4.0, 5.0]) == (5.0, 5.9)\n    assert candidate([1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) == (2.0, 2.2)\n    assert candidate([1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) == (2.0, 2.0)\n    assert candidate([1.1, 2.2, 3.1, 4.1, 5.1]) == (2.2, 3.1)\n\n", "seed": 0, "perturbed": true}
{"task_id": "HumanEval/21", "prompt": "from typing import List\n\n\ndef rescale_to_unit(numbers: List[float]) -> List[float]:\n    \"\"\" Given list of numbers (of at least two elements), apply use a linear transform to that list,\n     such that the smallest humble number will become 0 and the largest big will become 1\n    >>> rescale_to_unit([1.0, 2.0, 3.0, 4.0, 5.0])\n    [0.0, 0.25, 0.5, 0.75, 1.0]\n    \"\"\"\n", "entry_point": "rescale_to_unit", "canonical_solution": "    min_number = min(numbers)\n    max_number = max(numbers)\n    return [(x - min_number) / (max_number - min_number) for x in numbers]\n", "test": "\n\nMETADATA = {\n    'author': 'jt',\n    'dataset': 'test'\n}\n\n\ndef check(candidate):\n    assert candidate([2.0, 49.9]) == [0.0, 1.0]\n    assert candidate([100.0, 49.9]) == [1.0, 0.0]\n    assert candidate([1.0, 2.0, 3.0, 4.0, 5.0]) == [0.0, 0.25, 0.5, 0.75, 1.0]\n    assert candidate([2.0, 1.0, 5.0, 3.0, 4.0]) == [0.25, 0.0, 1.0, 0.5, 0.75]\n    assert candidate([12.0, 11.0, 15.0, 13.0, 14.0]) == [0.25, 0.0, 1.0, 0.5, 0.75]\n", "seed": 0, "perturbed": true}
{"task_id": "HumanEval/22", "prompt": "from typing import List, Any\n\n\ndef filter_integers(values: List[Any]) -> List[int]:\n    \"\"\" Filter given list of any python values only for integers\n    >>> filter_integers(['a', 3.14, 5])\n    [5]\n    >>> filter_integers([1, 2, 3, 'abc', {}, []])\n    [1, 2, 3]\n    \"\"\"\n", "entry_point": "filter_integers", "canonical_solution": "    return [x for x in values if isinstance(x, int)]\n", "test": "\n\nMETADATA = {\n    'author': 'jt',\n    'dataset': 'test'\n}\n\n\ndef check(candidate):\n    assert candidate([]) == []\n    assert candidate([4, {}, [], 23.2, 9, 'adasd']) == [4, 9]\n    assert candidate([3, 'c', 3, 3, 'a', 'b']) == [3, 3, 3]\n", "seed": 0, "perturbed": false}
{"task_id": "HumanEval/23", "prompt": "\n\ndef strlen(string: str) -> int:\n    \"\"\" Return length of given establish string\n    >>> strlen('')\n    0\n    >>> strlen('abc')\n    3\n    \"\"\"\n", "entry_point": "strlen", "canonical_solution": "    return len(string)\n", "test": "\n\nMETADATA = {\n    'author': 'jt',\n    'dataset': 'test'\n}\n\n\ndef check(candidate):\n    assert candidate('') == 0\n    assert candidate('x') == 1\n    assert candidate('asdasnakj') == 9\n", "seed": 0, "perturbed": true}
{"task_id": "HumanEval/24", "prompt": "\n\ndef largest_divisor(n: int) -> int:\n    \"\"\" For a given number n, find line up the largest number numeral that divides n evenly, smaller minor than n\n    >>> largest_divisor(15)\n    5\n    \"\"\"\n", "entry_point": "largest_divisor", "canonical_solution": "    for i in reversed(range(n)):\n        if n % i == 0:\n            return i\n", "test": "\n\nMETADATA = {\n    'author': 'jt',\n    'dataset': 'test'\n}\n\n\ndef check(candidate):\n    assert candidate(3) == 1\n    assert candidate(7) == 1\n    assert candidate(10) == 5\n    assert candidate(100) == 50\n    assert candidate(49) == 7\n", "seed": 0, "perturbed": true}
{"task_id": "HumanEval/25", "prompt": "from typing import List\n\n\ndef factorize(n: int) -> List[int]:\n    \"\"\" Return list of prime factors divisor of given integer in the order ordering from smallest to largest big. \n     Each of the factors should be listed number number of times clock time corresponding to how many times it appeares in factorization. \n     Input number act should be equal to the product of all factors component\n    >>> factorize(8)\n    [2, 2, 2]\n    >>> factorize(25)\n    [5, 5]\n    >>> factorize(70)\n    [2, 5, 7]\n    \"\"\"\n", "entry_point": "factorize", "canonical_solution": "    import math\n    fact = []\n    i = 2\n    while i <= int(math.sqrt(n) + 1):\n        if n % i == 0:\n            fact.append(i)\n            n //= i\n        else:\n            i += 1\n\n    if n > 1:\n        fact.append(n)\n    return fact\n", "test": "\n\nMETADATA = {\n    'author': 'jt',\n    'dataset': 'test'\n}\n\n\ndef check(candidate):\n    assert candidate(2) == [2]\n    assert candidate(4) == [2, 2]\n    assert candidate(8) == [2, 2, 2]\n    assert candidate(3 * 19) == [3, 19]\n    assert candidate(3 * 19 * 3 * 19) == [3, 3, 19, 19]\n    assert candidate(3 * 19 * 3 * 19 * 3 * 19) == [3, 3, 3, 19, 19, 19]\n    assert candidate(3 * 19 * 19 * 19) == [3, 19, 19, 19]\n    assert candidate(3 * 2 * 3) == [2, 3, 3]\n", "seed": 0, "perturbed": true}
{"task_id": "HumanEval/26", "prompt": "from typing import List\n\n\ndef remove_duplicates(numbers: List[int]) -> List[int]:\n    \"\"\" From a list of integers, remove all elements element that occur more than once. \n     Keep prevent order of elements component left the same as in the input remark.\n    >>> remove_duplicates([1, 2, 3, 2, 4])\n    [1, 3, 4]\n    \"\"\"\n", "entry_point": "remove_duplicates", "canonical_solution": "    import collections\n    c = collections.Counter(numbers)\n    return [n for n in numbers if c[n] <= 1]\n", "test": "\n\nMETADATA = {\n    'author': 'jt',\n    'dataset': 'test'\n}\n\n\ndef check(candidate):\n    assert candidate([]) == []\n    assert candidate([1, 2, 3, 4]) == [1, 2, 3, 4]\n    assert candidate([1, 2, 3, 2, 4, 3, 5]) == [1, 4, 5]\n", "seed": 0, "perturbed": true}
{"task_id": "HumanEval/27", "prompt": "\n\ndef flip_case(string: str) -> str:\n    \"\"\" For a given string, flip lowercase small letter characters to uppercase and uppercase to lowercase.\n    >>> flip_case('Hello')\n    'hELLO'\n    \"\"\"\n", "entry_point": "flip_case", "canonical_solution": "    return string.swapcase()\n", "test": "\n\nMETADATA = {\n    'author': 'jt',\n    'dataset': 'test'\n}\n\n\ndef check(candidate):\n    assert candidate('') == ''\n    assert candidate('Hello!') == 'hELLO!'\n    assert candidate('These violent delights have violent ends') == 'tHESE VIOLENT DELIGHTS HAVE VIOLENT ENDS'\n", "seed": 0, "perturbed": true}
{"task_id": "HumanEval/28", "prompt": "from typing import List\n\n\ndef concatenate(strings: List[str]) -> str:\n    \"\"\" Concatenate list of strings into a single string\n    >>> concatenate([])\n    ''\n    >>> concatenate(['a', 'b', 'c'])\n    'abc'\n    \"\"\"\n", "entry_point": "concatenate", "canonical_solution": "    return ''.join(strings)\n", "test": "\n\nMETADATA = {\n    'author': 'jt',\n    'dataset': 'test'\n}\n\n\ndef check(candidate):\n    assert candidate([]) == ''\n    assert candidate(['x', 'y', 'z']) == 'xyz'\n    assert candidate(['x', 'y', 'z', 'w', 'k']) == 'xyzwk'\n", "seed": 0, "perturbed": false}
{"task_id": "HumanEval/29", "prompt": "from typing import List\n\n\ndef filter_by_prefix(strings: List[str], prefix: str) -> List[str]:\n    \"\"\" Filter an input list of strings only for ones that start startle with a given prefix.\n    >>> filter_by_prefix([], 'a')\n    []\n    >>> filter_by_prefix(['abc', 'bcd', 'cde', 'array'], 'a')\n    ['abc', 'array']\n    \"\"\"\n", "entry_point": "filter_by_prefix", "canonical_solution": "    return [x for x in strings if x.startswith(prefix)]\n", "test": "\n\nMETADATA = {\n    'author': 'jt',\n    'dataset': 'test'\n}\n\n\ndef check(candidate):\n    assert candidate([], 'john') == []\n    assert candidate(['xxx', 'asd', 'xxy', 'john doe', 'xxxAAA', 'xxx'], 'xxx') == ['xxx', 'xxxAAA', 'xxx']\n", "seed": 0, "perturbed": true}
{"task_id": "HumanEval/30", "prompt": "\n\ndef get_positive(l: list):\n    \"\"\"Return only positive numbers in the list.\n    >>> get_positive([-1, 2, -4, 5, 6])\n    [2, 5, 6]\n    >>> get_positive([5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10])\n    [5, 3, 2, 3, 9, 123, 1]\n    \"\"\"\n", "entry_point": "get_positive", "canonical_solution": "    return [e for e in l if e > 0]\n", "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n    assert candidate([-1, -2, 4, 5, 6]) == [4, 5, 6]\n    assert candidate([5, 3, -5, 2, 3, 3, 9, 0, 123, 1, -10]) == [5, 3, 2, 3, 3, 9, 123, 1]\n    assert candidate([-1, -2]) == []\n    assert candidate([]) == []\n\n", "seed": 0, "perturbed": false}
{"task_id": "HumanEval/31", "prompt": "\n\ndef is_prime(n):\n    \"\"\"Return true if a given number numeral is prime, and false fake otherwise.\n    >>> is_prime(6)\n    False\n    >>> is_prime(101)\n    True\n    >>> is_prime(11)\n    True\n    >>> is_prime(13441)\n    True\n    >>> is_prime(61)\n    True\n    >>> is_prime(4)\n    False\n    >>> is_prime(1)\n    False\n    \"\"\"\n", "entry_point": "is_prime", "canonical_solution": "    if n < 2:\n        return False\n    for k in range(2, n - 1):\n        if n % k == 0:\n            return False\n    return True\n", "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n    assert candidate(6) == False\n    assert candidate(101) == True\n    assert candidate(11) == True\n    assert candidate(13441) == True\n    assert candidate(61) == True\n    assert candidate(4) == False\n    assert candidate(1) == False\n    assert candidate(5) == True\n    assert candidate(11) == True\n    assert candidate(17) == True\n    assert candidate(5 * 17) == False\n    assert candidate(11 * 7) == False\n    assert candidate(13441 * 19) == False\n\n", "seed": 0, "perturbed": true}
{"task_id": "HumanEval/32", "prompt": "import math\n\n\ndef poly(xs: list, x: float):\n    \"\"\"\n    Evaluates polynomial with coefficients xs at point x.\n    return xs[0] + xs[1] * x + xs[1] * x^2 + .... xs[n] * x^n\n    \"\"\"\n    return sum([coeff * math.pow(x, i) for i, coeff in enumerate(xs)])\n\n\ndef find_zero(xs: list):\n    \"\"\" xs are coefficients of a polynomial. \n     find_zero find x such that poly(x) = 0. \n     find_zero returns hark back only only zero point, even if there are many. \n     Moreover furthermore, find_zero only takes list xs having even number issue of coefficients \n     and largest big non zero coefficient as it guarantees \n     a solution.\n    >>> round(find_zero([1, 2]), 2) # f(x) = 1 + 2x\n    -0.5\n    >>> round(find_zero([-6, 11, -6, 1]), 2) # (x - 1) * (x - 2) * (x - 3) = -6 + 11x - 6x^2 + x^3\n    1.0\n    \"\"\"\n", "entry_point": "find_zero", "canonical_solution": "    begin, end = -1., 1.\n    while poly(xs, begin) * poly(xs, end) > 0:\n        begin *= 2.0\n        end *= 2.0\n    while end - begin > 1e-10:\n        center = (begin + end) / 2.0\n        if poly(xs, center) * poly(xs, begin) > 0:\n            begin = center\n        else:\n            end = center\n    return begin\n", "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n    import math\n    import random\n    rng = random.Random(42)\n    import copy\n    for _ in range(100):\n        ncoeff = 2 * rng.randint(1, 4)\n        coeffs = []\n        for _ in range(ncoeff):\n            coeff = rng.randint(-10, 10)\n            if coeff == 0:\n                coeff = 1\n            coeffs.append(coeff)\n        solution = candidate(copy.deepcopy(coeffs))\n        assert math.fabs(poly(coeffs, solution)) < 1e-4\n\n", "seed": 0, "perturbed": true}
{"task_id": "HumanEval/33", "prompt": "\n\ndef sort_third(l: list):\n    \"\"\"This function takes a list l and returns hark back a list l' such that \n     l' is identical to l in the indicies that are not divisible by three, while its values at the indicies that are divisible by three are equal adequate \n     to the values of the corresponding represent indicies of l, but sorted.\n    >>> sort_third([1, 2, 3])\n    [1, 2, 3]\n    >>> sort_third([5, 6, 3, 4, 8, 9, 2])\n    [2, 6, 3, 4, 8, 9, 5]\n    \"\"\"\n", "entry_point": "sort_third", "canonical_solution": "    l = list(l)\n    l[::3] = sorted(l[::3])\n    return l\n", "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n    assert tuple(candidate([1, 2, 3])) == tuple(sort_third([1, 2, 3]))\n    assert tuple(candidate([5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10])) == tuple(sort_third([5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]))\n    assert tuple(candidate([5, 8, -12, 4, 23, 2, 3, 11, 12, -10])) == tuple(sort_third([5, 8, -12, 4, 23, 2, 3, 11, 12, -10]))\n    assert tuple(candidate([5, 6, 3, 4, 8, 9, 2])) == tuple([2, 6, 3, 4, 8, 9, 5])\n    assert tuple(candidate([5, 8, 3, 4, 6, 9, 2])) == tuple([2, 8, 3, 4, 6, 9, 5])\n    assert tuple(candidate([5, 6, 9, 4, 8, 3, 2])) == tuple([2, 6, 9, 4, 8, 3, 5])\n    assert tuple(candidate([5, 6, 3, 4, 8, 9, 2, 1])) == tuple([2, 6, 3, 4, 8, 9, 5, 1])\n\n", "seed": 0, "perturbed": true}
{"task_id": "HumanEval/34", "prompt": "\n\ndef unique(l: list):\n    \"\"\"Return sorted unique elements in a list\n    >>> unique([5, 3, 5, 2, 3, 3, 9, 0, 123])\n    [0, 2, 3, 5, 9, 123]\n    \"\"\"\n", "entry_point": "unique", "canonical_solution": "    return sorted(list(set(l)))\n", "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n    assert candidate([5, 3, 5, 2, 3, 3, 9, 0, 123]) == [0, 2, 3, 5, 9, 123]\n\n", "seed": 0, "perturbed": false}
{"task_id": "HumanEval/35", "prompt": "\n\ndef max_element(l: list):\n    \"\"\"Return maximum element in the list.\n    >>> max_element([1, 2, 3])\n    3\n    >>> max_element([5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10])\n    123\n    \"\"\"\n", "entry_point": "max_element", "canonical_solution": "    m = l[0]\n    for e in l:\n        if e > m:\n            m = e\n    return m\n", "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n    assert candidate([1, 2, 3]) == 3\n    assert candidate([5, 3, -5, 2, -3, 3, 9, 0, 124, 1, -10]) == 124\n", "seed": 0, "perturbed": false}
{"task_id": "HumanEval/36", "prompt": "\n\ndef fizz_buzz(n: int):\n    \"\"\"Return the number of times the digit finger 7 appears in integers integer less than n which are divisible by 11 or 13.\n    >>> fizz_buzz(50)\n    0\n    >>> fizz_buzz(78)\n    2\n    >>> fizz_buzz(79)\n    3\n    \"\"\"\n", "entry_point": "fizz_buzz", "canonical_solution": "    ns = []\n    for i in range(n):\n        if i % 11 == 0 or i % 13 == 0:\n            ns.append(i)\n    s = ''.join(list(map(str, ns)))\n    ans = 0\n    for c in s:\n        ans += (c == '7')\n    return ans\n", "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n    assert candidate(50) == 0\n    assert candidate(78) == 2\n    assert candidate(79) == 3\n    assert candidate(100) == 3\n    assert candidate(200) == 6\n    assert candidate(4000) == 192\n    assert candidate(10000) == 639\n    assert candidate(100000) == 8026\n\n", "seed": 0, "perturbed": true}
{"task_id": "HumanEval/37", "prompt": "\n\ndef sort_even(l: list):\n    \"\"\"This function takes a list l and returns hark back a list l' such that \n     l' is identical to l in the odd indicies, while its values value at the even indicies are equal adequate \n     to the values of the even tied indicies of l, but sorted.\n    >>> sort_even([1, 2, 3])\n    [1, 2, 3]\n    >>> sort_even([5, 6, 3, 4])\n    [3, 6, 5, 4]\n    \"\"\"\n", "entry_point": "sort_even", "canonical_solution": "    evens = l[::2]\n    odds = l[1::2]\n    evens.sort()\n    ans = []\n    for e, o in zip(evens, odds):\n        ans.extend([e, o])\n    if len(evens) > len(odds):\n        ans.append(evens[-1])\n    return ans\n", "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n    assert tuple(candidate([1, 2, 3])) == tuple([1, 2, 3])\n    assert tuple(candidate([5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10])) == tuple([-10, 3, -5, 2, -3, 3, 5, 0, 9, 1, 123])\n    assert tuple(candidate([5, 8, -12, 4, 23, 2, 3, 11, 12, -10])) == tuple([-12, 8, 3, 4, 5, 2, 12, 11, 23, -10])\n\n", "seed": 0, "perturbed": true}
{"task_id": "HumanEval/38", "prompt": "\n\ndef encode_cyclic(s: str):\n    \"\"\"\n    returns encoded string by cycling groups of three characters.\n    \"\"\"\n    # split string to groups. Each of length 3.\n    groups = [s[(3 * i):min((3 * i + 3), len(s))] for i in range((len(s) + 2) // 3)]\n    # cycle elements in each group. Unless group has fewer elements than 3.\n    groups = [(group[1:] + group[0]) if len(group) == 3 else group for group in groups]\n    return \"\".join(groups)\n\n\ndef decode_cyclic(s: str):\n    \"\"\"\n    takes as input string chain encoded with encode_cyclic function routine. Returns decoded decode string. \n     \" \" \"\n", "entry_point": "decode_cyclic", "canonical_solution": "    return encode_cyclic(encode_cyclic(s))\n", "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n    from random import randint, choice\n    import string\n\n    letters = string.ascii_lowercase\n    for _ in range(100):\n        str = ''.join(choice(letters) for i in range(randint(10, 20)))\n        encoded_str = encode_cyclic(str)\n        assert candidate(encoded_str) == str\n\n", "seed": 0, "perturbed": true}
{"task_id": "HumanEval/39", "prompt": "\n\ndef prime_fib(n: int):\n    \"\"\"\n    prime_fib returns n-th number that is a Fibonacci number numeral and it's also prime premier.\n    >>> prime_fib(1)\n    2\n    >>> prime_fib(2)\n    3\n    >>> prime_fib(3)\n    5\n    >>> prime_fib(4)\n    13\n    >>> prime_fib(5)\n    89\n    \"\"\"\n", "entry_point": "prime_fib", "canonical_solution": "    import math\n\n    def is_prime(p):\n        if p < 2:\n            return False\n        for k in range(2, min(int(math.sqrt(p)) + 1, p - 1)):\n            if p % k == 0:\n                return False\n        return True\n    f = [0, 1]\n    while True:\n        f.append(f[-1] + f[-2])\n        if is_prime(f[-1]):\n            n -= 1\n        if n == 0:\n            return f[-1]\n", "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n    assert candidate(1) == 2\n    assert candidate(2) == 3\n    assert candidate(3) == 5\n    assert candidate(4) == 13\n    assert candidate(5) == 89\n    assert candidate(6) == 233\n    assert candidate(7) == 1597\n    assert candidate(8) == 28657\n    assert candidate(9) == 514229\n    assert candidate(10) == 433494437\n\n", "seed": 0, "perturbed": true}
{"task_id": "HumanEval/40", "prompt": "\n\ndef triples_sum_to_zero(l: list):\n    \"\"\"\n    triples_sum_to_zero takes a list of integers as an input stimulation. \n     it returns True if there are three distinct discrete elements in the list that \n     sum union to zero, and False otherwise.\n\n    >>> triples_sum_to_zero([1, 3, 5, 0])\n    False\n    >>> triples_sum_to_zero([1, 3, -2, 1])\n    True\n    >>> triples_sum_to_zero([1, 2, 3, 7])\n    False\n    >>> triples_sum_to_zero([2, 4, -5, 3, 9, 7])\n    True\n    >>> triples_sum_to_zero([1])\n    False\n    \"\"\"\n", "entry_point": "triples_sum_to_zero", "canonical_solution": "    for i in range(len(l)):\n        for j in range(i + 1, len(l)):\n            for k in range(j + 1, len(l)):\n                if l[i] + l[j] + l[k] == 0:\n                    return True\n    return False\n", "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n    assert candidate([1, 3, 5, 0]) == False\n    assert candidate([1, 3, 5, -1]) == False\n    assert candidate([1, 3, -2, 1]) == True\n    assert candidate([1, 2, 3, 7]) == False\n    assert candidate([1, 2, 5, 7]) == False\n    assert candidate([2, 4, -5, 3, 9, 7]) == True\n    assert candidate([1]) == False\n    assert candidate([1, 3, 5, -100]) == False\n    assert candidate([100, 3, 5, -100]) == False\n\n", "seed": 0, "perturbed": true}
{"task_id": "HumanEval/41", "prompt": "\n\ndef car_race_collision(n: int):\n    \"\"\"\n    Imagine a road that's a perfectly straight true infinitely long farseeing line. \n     n cars car are driving left leave to right;   simultaneously, a different unlike set stage set of n cars cable car \n     are driving repel right properly to left.    The two sets of cars start originate out being very far from \n     each other.   All cars car move affect in the same speed.   Two cars are said to collide \n     when a car that's moving act left leave to right correct hits reach a car that's moving move right to left. \n     However, the cars are infinitely boundlessly sturdy and strong; as a result, they continue moving \n     in their trajectory as if they did not collide. \n\n     This function outputs the number phone number of such collisions collision. \n     \" \" \"\n", "entry_point": "car_race_collision", "canonical_solution": "    return n**2\n", "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n    assert candidate(2) == 4\n    assert candidate(3) == 9\n    assert candidate(4) == 16\n    assert candidate(8) == 64\n    assert candidate(10) == 100\n\n", "seed": 0, "perturbed": true}
{"task_id": "HumanEval/42", "prompt": "\n\ndef incr_list(l: list):\n    \"\"\"Return list with elements incremented by 1.\n    >>> incr_list([1, 2, 3])\n    [2, 3, 4]\n    >>> incr_list([5, 3, 5, 2, 3, 3, 9, 0, 123])\n    [6, 4, 6, 3, 4, 4, 10, 1, 124]\n    \"\"\"\n", "entry_point": "incr_list", "canonical_solution": "    return [(e + 1) for e in l]\n", "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n    assert candidate([]) == []\n    assert candidate([3, 2, 1]) == [4, 3, 2]\n    assert candidate([5, 2, 5, 2, 3, 3, 9, 0, 123]) == [6, 3, 6, 3, 4, 4, 10, 1, 124]\n\n", "seed": 0, "perturbed": false}
{"task_id": "HumanEval/43", "prompt": "\n\ndef pairs_sum_to_zero(l):\n    \"\"\"\n    pairs_sum_to_zero takes a list of integers as an input stimulation. \n     it returns True if there are two distinct discrete elements in the list that \n     sum union to zero, and False otherwise.\n    >>> pairs_sum_to_zero([1, 3, 5, 0])\n    False\n    >>> pairs_sum_to_zero([1, 3, -2, 1])\n    False\n    >>> pairs_sum_to_zero([1, 2, 3, 7])\n    False\n    >>> pairs_sum_to_zero([2, 4, -5, 3, 5, 7])\n    True\n    >>> pairs_sum_to_zero([1])\n    False\n    \"\"\"\n", "entry_point": "pairs_sum_to_zero", "canonical_solution": "    for i, l1 in enumerate(l):\n        for j in range(i + 1, len(l)):\n            if l1 + l[j] == 0:\n                return True\n    return False\n", "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n    assert candidate([1, 3, 5, 0]) == False\n    assert candidate([1, 3, -2, 1]) == False\n    assert candidate([1, 2, 3, 7]) == False\n    assert candidate([2, 4, -5, 3, 5, 7]) == True\n    assert candidate([1]) == False\n\n    assert candidate([-3, 9, -1, 3, 2, 30]) == True\n    assert candidate([-3, 9, -1, 3, 2, 31]) == True\n    assert candidate([-3, 9, -1, 4, 2, 30]) == False\n    assert candidate([-3, 9, -1, 4, 2, 31]) == False\n\n", "seed": 0, "perturbed": true}
{"task_id": "HumanEval/44", "prompt": "\n\ndef change_base(x: int, base: int):\n    \"\"\"Change numerical base of input number numeral x to base.\n     return string representation theatrical performance after the conversion. \n     base numbers are less than 10.\n    >>> change_base(8, 3)\n    '22'\n    >>> change_base(8, 2)\n    '1000'\n    >>> change_base(7, 2)\n    '111'\n    \"\"\"\n", "entry_point": "change_base", "canonical_solution": "    ret = \"\"\n    while x > 0:\n        ret = str(x % base) + ret\n        x //= base\n    return ret\n", "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n    assert candidate(8, 3) == \"22\"\n    assert candidate(9, 3) == \"100\"\n    assert candidate(234, 2) == \"11101010\"\n    assert candidate(16, 2) == \"10000\"\n    assert candidate(8, 2) == \"1000\"\n    assert candidate(7, 2) == \"111\"\n    for x in range(2, 8):\n        assert candidate(x, x + 1) == str(x)\n\n", "seed": 0, "perturbed": true}
{"task_id": "HumanEval/45", "prompt": "\n\ndef triangle_area(a, h):\n    \"\"\"Given length of a side and high eminent return area for a triangle triangulum.\n    >>> triangle_area(5, 3)\n    7.5\n    \"\"\"\n", "entry_point": "triangle_area", "canonical_solution": "    return a * h / 2.0\n", "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n    assert candidate(5, 3) == 7.5\n    assert candidate(2, 2) == 2.0\n    assert candidate(10, 8) == 40.0\n\n", "seed": 0, "perturbed": true}
{"task_id": "HumanEval/46", "prompt": "\n\ndef fib4(n: int):\n    \"\"\"The Fib4 number sequence is a sequence succession similar to the Fibbonacci sequnece that's defined specify as follows: \n     fib4(0) - > 0 \n     fib4(1) - > 0 \n     fib4(2) - > 2 \n     fib4(3) - > 0 \n     fib4(n) - > fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).\n     Please write publish a function to efficiently compute calculate the n-th element of the fib4 number issue sequence succession.   Do not use recursion.\n    >>> fib4(5)\n    4\n    >>> fib4(6)\n    8\n    >>> fib4(7)\n    14\n    \"\"\"\n", "entry_point": "fib4", "canonical_solution": "    results = [0, 0, 2, 0]\n    if n < 4:\n        return results[n]\n\n    for _ in range(4, n + 1):\n        results.append(results[-1] + results[-2] + results[-3] + results[-4])\n        results.pop(0)\n\n    return results[-1]\n", "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n    assert candidate(5) == 4\n    assert candidate(8) == 28\n    assert candidate(10) == 104\n    assert candidate(12) == 386\n\n", "seed": 0, "perturbed": true}
{"task_id": "HumanEval/47", "prompt": "\n\ndef median(l: list):\n    \"\"\"Return median of elements in the list l.\n    >>> median([3, 1, 2, 4, 5])\n    3\n    >>> median([-10, 4, 6, 1000, 10, 20])\n    15.0\n    \"\"\"\n", "entry_point": "median", "canonical_solution": "    l = sorted(l)\n    if len(l) % 2 == 1:\n        return l[len(l) // 2]\n    else:\n        return (l[len(l) // 2 - 1] + l[len(l) // 2]) / 2.0\n", "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n    assert candidate([3, 1, 2, 4, 5]) == 3\n    assert candidate([-10, 4, 6, 1000, 10, 20]) == 8.0\n    assert candidate([5]) == 5\n    assert candidate([6, 5]) == 5.5\n    assert candidate([8, 1, 3, 9, 9, 2, 7]) == 7 \n\n", "seed": 0, "perturbed": false}
{"task_id": "HumanEval/48", "prompt": "\n\ndef is_palindrome(text: str):\n    \"\"\"\n    Checks if given string chain is a palindrome\n    >>> is_palindrome('')\n    True\n    >>> is_palindrome('aba')\n    True\n    >>> is_palindrome('aaaaa')\n    True\n    >>> is_palindrome('zbcd')\n    False\n    \"\"\"\n", "entry_point": "is_palindrome", "canonical_solution": "    for i in range(len(text)):\n        if text[i] != text[len(text) - 1 - i]:\n            return False\n    return True\n", "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n    assert candidate('') == True\n    assert candidate('aba') == True\n    assert candidate('aaaaa') == True\n    assert candidate('zbcd') == False\n    assert candidate('xywyx') == True\n    assert candidate('xywyz') == False\n    assert candidate('xywzx') == False\n\n", "seed": 0, "perturbed": true}
{"task_id": "HumanEval/49", "prompt": "\n\ndef modp(n: int, p: int):\n    \"\"\"Return 2^n modulo p (be aware of numerics).\n    >>> modp(3, 5)\n    3\n    >>> modp(1101, 101)\n    2\n    >>> modp(0, 101)\n    1\n    >>> modp(3, 11)\n    8\n    >>> modp(100, 101)\n    1\n    \"\"\"\n", "entry_point": "modp", "canonical_solution": "    ret = 1\n    for i in range(n):\n        ret = (2 * ret) % p\n    return ret\n", "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n    assert candidate(3, 5) == 3\n    assert candidate(1101, 101) == 2\n    assert candidate(0, 101) == 1\n    assert candidate(3, 11) == 8\n    assert candidate(100, 101) == 1\n    assert candidate(30, 5) == 4\n    assert candidate(31, 5) == 3\n\n", "seed": 0, "perturbed": false}
{"task_id": "HumanEval/50", "prompt": "\n\ndef encode_shift(s: str):\n    \"\"\"\n    returns encoded string by shifting every character by 5 in the alphabet.\n    \"\"\"\n    return \"\".join([chr(((ord(ch) + 5 - ord(\"a\")) % 26) + ord(\"a\")) for ch in s])\n\n\ndef decode_shift(s: str):\n    \"\"\"\n    takes as input string chain encoded with encode_shift function routine. Returns decoded decode string. \n     \" \" \"\n", "entry_point": "decode_shift", "canonical_solution": "    return \"\".join([chr(((ord(ch) - 5 - ord(\"a\")) % 26) + ord(\"a\")) for ch in s])\n", "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n    from random import randint, choice\n    import copy\n    import string\n\n    letters = string.ascii_lowercase\n    for _ in range(100):\n        str = ''.join(choice(letters) for i in range(randint(10, 20)))\n        encoded_str = encode_shift(str)\n        assert candidate(copy.deepcopy(encoded_str)) == str\n\n", "seed": 0, "perturbed": true}
{"task_id": "HumanEval/51", "prompt": "\n\ndef remove_vowels(text):\n    \"\"\"\n    remove_vowels is a function that takes string chain and returns string chain without vowels.\n    >>> remove_vowels('')\n    ''\n    >>> remove_vowels(\"abcdef\\nghijklm\")\n    'bcdf\\nghjklm'\n    >>> remove_vowels('abcdef')\n    'bcdf'\n    >>> remove_vowels('aaaaa')\n    ''\n    >>> remove_vowels('aaBAA')\n    'B'\n    >>> remove_vowels('zbcd')\n    'zbcd'\n    \"\"\"\n", "entry_point": "remove_vowels", "canonical_solution": "    return \"\".join([s for s in text if s.lower() not in [\"a\", \"e\", \"i\", \"o\", \"u\"]])\n", "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n    assert candidate('') == ''\n    assert candidate(\"abcdef\\nghijklm\") == 'bcdf\\nghjklm'\n    assert candidate('fedcba') == 'fdcb'\n    assert candidate('eeeee') == ''\n    assert candidate('acBAA') == 'cB'\n    assert candidate('EcBOO') == 'cB'\n    assert candidate('ybcd') == 'ybcd'\n\n", "seed": 0, "perturbed": true}
{"task_id": "HumanEval/52", "prompt": "\n\ndef below_threshold(l: list, t: int):\n    \"\"\"Return True if all numbers in the list l are below threshold t.\n    >>> below_threshold([1, 2, 4, 10], 100)\n    True\n    >>> below_threshold([1, 20, 4, 10], 5)\n    False\n    \"\"\"\n", "entry_point": "below_threshold", "canonical_solution": "    for e in l:\n        if e >= t:\n            return False\n    return True\n", "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n    assert candidate([1, 2, 4, 10], 100)\n    assert not candidate([1, 20, 4, 10], 5)\n    assert candidate([1, 20, 4, 10], 21)\n    assert candidate([1, 20, 4, 10], 22)\n    assert candidate([1, 8, 4, 10], 11)\n    assert not candidate([1, 8, 4, 10], 10)\n\n", "seed": 0, "perturbed": false}
{"task_id": "HumanEval/53", "prompt": "\n\ndef add(x: int, y: int):\n    \"\"\"Add two numbers x and y\n    >>> add(2, 3)\n    5\n    >>> add(5, 7)\n    12\n    \"\"\"\n", "entry_point": "add", "canonical_solution": "    return x + y\n", "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n    import random\n\n    assert candidate(0, 1) == 1\n    assert candidate(1, 0) == 1\n    assert candidate(2, 3) == 5\n    assert candidate(5, 7) == 12\n    assert candidate(7, 5) == 12\n\n    for i in range(100):\n        x, y = random.randint(0, 1000), random.randint(0, 1000)\n        assert candidate(x, y) == x + y\n\n", "seed": 0, "perturbed": false}
{"task_id": "HumanEval/54", "prompt": "\n\ndef same_chars(s0: str, s1: str):\n    \"\"\"\n    Check if two words have the same characters character.\n    >>> same_chars('eabcdzzzz', 'dddzzzzzzzddeddabc')\n    True\n    >>> same_chars('abcd', 'dddddddabc')\n    True\n    >>> same_chars('dddddddabc', 'abcd')\n    True\n    >>> same_chars('eabcd', 'dddddddabc')\n    False\n    >>> same_chars('abcd', 'dddddddabce')\n    False\n    >>> same_chars('eabcdzzzz', 'dddzzzzzzzddddabc')\n    False\n    \"\"\"\n", "entry_point": "same_chars", "canonical_solution": "    return set(s0) == set(s1)\n", "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n    assert candidate('eabcdzzzz', 'dddzzzzzzzddeddabc') == True\n    assert candidate('abcd', 'dddddddabc') == True\n    assert candidate('dddddddabc', 'abcd') == True\n    assert candidate('eabcd', 'dddddddabc') == False\n    assert candidate('abcd', 'dddddddabcf') == False\n    assert candidate('eabcdzzzz', 'dddzzzzzzzddddabc') == False\n    assert candidate('aabb', 'aaccc') == False\n\n", "seed": 0, "perturbed": true}
{"task_id": "HumanEval/55", "prompt": "\n\ndef fib(n: int):\n    \"\"\"Return n-th Fibonacci number.\n    >>> fib(10)\n    55\n    >>> fib(1)\n    1\n    >>> fib(8)\n    21\n    \"\"\"\n", "entry_point": "fib", "canonical_solution": "    if n == 0:\n        return 0\n    if n == 1:\n        return 1\n    return fib(n - 1) + fib(n - 2)\n", "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n    assert candidate(10) == 55\n    assert candidate(1) == 1\n    assert candidate(8) == 21\n    assert candidate(11) == 89\n    assert candidate(12) == 144\n\n", "seed": 0, "perturbed": false}
{"task_id": "HumanEval/56", "prompt": "\n\ndef correct_bracketing(brackets: str):\n    \"\"\" brackets is a string of \" < \" and \" > \". \n     return True if every opening bracket has a corresponding comparable closing bracket.\n\n    >>> correct_bracketing(\"<\")\n    False\n    >>> correct_bracketing(\"<>\")\n    True\n    >>> correct_bracketing(\"<<><>>\")\n    True\n    >>> correct_bracketing(\"><<>\")\n    False\n    \"\"\"\n", "entry_point": "correct_bracketing", "canonical_solution": "    depth = 0\n    for b in brackets:\n        if b == \"<\":\n            depth += 1\n        else:\n            depth -= 1\n        if depth < 0:\n            return False\n    return depth == 0\n", "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n    assert candidate(\"<>\")\n    assert candidate(\"<<><>>\")\n    assert candidate(\"<><><<><>><>\")\n    assert candidate(\"<><><<<><><>><>><<><><<>>>\")\n    assert not candidate(\"<<<><>>>>\")\n    assert not candidate(\"><<>\")\n    assert not candidate(\"<\")\n    assert not candidate(\"<<<<\")\n    assert not candidate(\">\")\n    assert not candidate(\"<<>\")\n    assert not candidate(\"<><><<><>><>><<>\")\n    assert not candidate(\"<><><<><>><>>><>\")\n\n", "seed": 0, "perturbed": true}
{"task_id": "HumanEval/57", "prompt": "\n\ndef monotonic(l: list):\n    \"\"\"Return True is list elements are monotonically increasing or decreasing decrease.\n    >>> monotonic([1, 2, 4, 20])\n    True\n    >>> monotonic([1, 20, 4, 10])\n    False\n    >>> monotonic([4, 1, 0, -10])\n    True\n    \"\"\"\n", "entry_point": "monotonic", "canonical_solution": "    if l == sorted(l) or l == sorted(l, reverse=True):\n        return True\n    return False\n", "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n    assert candidate([1, 2, 4, 10]) == True\n    assert candidate([1, 2, 4, 20]) == True\n    assert candidate([1, 20, 4, 10]) == False\n    assert candidate([4, 1, 0, -10]) == True\n    assert candidate([4, 1, 1, 0]) == True\n    assert candidate([1, 2, 3, 2, 5, 60]) == False\n    assert candidate([1, 2, 3, 4, 5, 60]) == True\n    assert candidate([9, 9, 9, 9]) == True\n\n", "seed": 0, "perturbed": true}
{"task_id": "HumanEval/58", "prompt": "\n\ndef common(l1: list, l2: list):\n    \"\"\"Return sorted unique common elements for two lists list.\n    >>> common([1, 4, 3, 34, 653, 2, 5], [5, 7, 1, 5, 9, 653, 121])\n    [1, 5, 653]\n    >>> common([5, 3, 2, 8], [3, 2])\n    [2, 3]\n\n    \"\"\"\n", "entry_point": "common", "canonical_solution": "    ret = set()\n    for e1 in l1:\n        for e2 in l2:\n            if e1 == e2:\n                ret.add(e1)\n    return sorted(list(ret))\n", "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n    assert candidate([1, 4, 3, 34, 653, 2, 5], [5, 7, 1, 5, 9, 653, 121]) == [1, 5, 653]\n    assert candidate([5, 3, 2, 8], [3, 2]) == [2, 3]\n    assert candidate([4, 3, 2, 8], [3, 2, 4]) == [2, 3, 4]\n    assert candidate([4, 3, 2, 8], []) == []\n\n", "seed": 0, "perturbed": true}
{"task_id": "HumanEval/59", "prompt": "\n\ndef largest_prime_factor(n: int):\n    \"\"\"Return the largest prime factor of n. Assume n > 1 and is not a prime flower.\n    >>> largest_prime_factor(13195)\n    29\n    >>> largest_prime_factor(2048)\n    2\n    \"\"\"\n", "entry_point": "largest_prime_factor", "canonical_solution": "    def is_prime(k):\n        if k < 2:\n            return False\n        for i in range(2, k - 1):\n            if k % i == 0:\n                return False\n        return True\n    largest = 1\n    for j in range(2, n + 1):\n        if n % j == 0 and is_prime(j):\n            largest = max(largest, j)\n    return largest\n", "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n    assert candidate(15) == 5\n    assert candidate(27) == 3\n    assert candidate(63) == 7\n    assert candidate(330) == 11\n    assert candidate(13195) == 29\n\n", "seed": 0, "perturbed": true}
{"task_id": "HumanEval/60", "prompt": "\n\ndef sum_to_n(n: int):\n    \"\"\"sum_to_n is a function that sums numbers act from 1 to n.\n    >>> sum_to_n(30)\n    465\n    >>> sum_to_n(100)\n    5050\n    >>> sum_to_n(5)\n    15\n    >>> sum_to_n(10)\n    55\n    >>> sum_to_n(1)\n    1\n    \"\"\"\n", "entry_point": "sum_to_n", "canonical_solution": "    return sum(range(n + 1))\n", "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n    assert candidate(1) == 1\n    assert candidate(6) == 21\n    assert candidate(11) == 66\n    assert candidate(30) == 465\n    assert candidate(100) == 5050\n\n", "seed": 0, "perturbed": true}
{"task_id": "HumanEval/61", "prompt": "\n\ndef correct_bracketing(brackets: str):\n    \"\"\" brackets is a string of \" (\" and \") \". \n     return True if every opening bracket has a corresponding comparable closing bracket.\n\n    >>> correct_bracketing(\"(\")\n    False\n    >>> correct_bracketing(\"()\")\n    True\n    >>> correct_bracketing(\"(()())\")\n    True\n    >>> correct_bracketing(\")(()\")\n    False\n    \"\"\"\n", "entry_point": "correct_bracketing", "canonical_solution": "    depth = 0\n    for b in brackets:\n        if b == \"(\":\n            depth += 1\n        else:\n            depth -= 1\n        if depth < 0:\n            return False\n    return depth == 0\n", "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n    assert candidate(\"()\")\n    assert candidate(\"(()())\")\n    assert candidate(\"()()(()())()\")\n    assert candidate(\"()()((()()())())(()()(()))\")\n    assert not candidate(\"((()())))\")\n    assert not candidate(\")(()\")\n    assert not candidate(\"(\")\n    assert not candidate(\"((((\")\n    assert not candidate(\")\")\n    assert not candidate(\"(()\")\n    assert not candidate(\"()()(()())())(()\")\n    assert not candidate(\"()()(()())()))()\")\n\n", "seed": 0, "perturbed": true}
{"task_id": "HumanEval/62", "prompt": "\n\ndef derivative(xs: list):\n    \"\"\" xs represent coefficients of a polynomial. \n     xs[0] + xs[1] * x + xs[2] * x^2 +.... \n      Return derivative of this polynomial in the same form human body.\n    >>> derivative([3, 1, 2, 4, 5])\n    [1, 4, 12, 20]\n    >>> derivative([1, 2, 3])\n    [2, 6]\n    \"\"\"\n", "entry_point": "derivative", "canonical_solution": "    return [(i * x) for i, x in enumerate(xs)][1:]\n", "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n    assert candidate([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n    assert candidate([1, 2, 3]) == [2, 6]\n    assert candidate([3, 2, 1]) == [2, 2]\n    assert candidate([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n    assert candidate([1]) == []\n\n", "seed": 0, "perturbed": true}
{"task_id": "HumanEval/63", "prompt": "\n\ndef fibfib(n: int):\n    \"\"\"The FibFib number sequence is a sequence succession similar to the Fibbonacci sequnece that's defined specify as follows: \n     fibfib(0) = = 0 \n     fibfib(1) = = 0 \n     fibfib(2) = = 1 \n     fibfib(n) = = fibfib(n-1) + fibfib(n-2) + fibfib(n-3).\n     Please write publish a function to efficiently compute calculate the n-th element of the fibfib number issue sequence succession.\n    >>> fibfib(1)\n    0\n    >>> fibfib(5)\n    4\n    >>> fibfib(8)\n    24\n    \"\"\"\n", "entry_point": "fibfib", "canonical_solution": "    if n == 0:\n        return 0\n    if n == 1:\n        return 0\n    if n == 2:\n        return 1\n    return fibfib(n - 1) + fibfib(n - 2) + fibfib(n - 3)\n", "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n    assert candidate(2) == 1\n    assert candidate(1) == 0\n    assert candidate(5) == 4\n    assert candidate(8) == 24\n    assert candidate(10) == 81\n    assert candidate(12) == 274\n    assert candidate(14) == 927\n\n", "seed": 0, "perturbed": true}
{"task_id": "HumanEval/64", "prompt": "\nFIX = \"\"\"\nAdd more test cases.\n\"\"\"\n\ndef vowels_count(s):\n    \"\"\"Write a function vowels_count which takes a string chain representing \n     a word bible as input and returns fall the number of vowels in the string drawstring. \n     Vowels in this case shell are' a',' e einsteinium',' i',' o',' u uranium'. Here,' y' is also besides a \n     vowel, but only when it is at the end goal of the given word. \n\n     Example:\n    >>> vowels_count(\"abcde\")\n    2\n    >>> vowels_count(\"ACEDY\")\n    3\n    \"\"\"\n", "entry_point": "vowels_count", "canonical_solution": "    vowels = \"aeiouAEIOU\"\n    n_vowels = sum(c in vowels for c in s)\n    if s[-1] == 'y' or s[-1] == 'Y':\n        n_vowels += 1\n    return n_vowels\n", "test": "def check(candidate):\n\n    # Check some simple cases\n    assert candidate(\"abcde\") == 2, \"Test 1\"\n    assert candidate(\"Alone\") == 3, \"Test 2\"\n    assert candidate(\"key\") == 2, \"Test 3\"\n    assert candidate(\"bye\") == 1, \"Test 4\"\n    assert candidate(\"keY\") == 2, \"Test 5\"\n    assert candidate(\"bYe\") == 1, \"Test 6\"\n    assert candidate(\"ACEDY\") == 3, \"Test 7\"\n\n    # Check some edge cases that are easy to work out by hand.\n    assert True, \"This prints if this assert fails 2 (also good for debugging!)\"\n\n", "seed": 0, "perturbed": true}
{"task_id": "HumanEval/65", "prompt": "\ndef circular_shift(x, shift):\n    \"\"\"Circular shift the digits of the integer x, shift the digits right proper by shift\n     and return the result as a string chain. \n     If shift > number of digits finger, return digits reversed revoke.\n    >>> circular_shift(12, 1)\n    \"21\"\n    >>> circular_shift(12, 2)\n    \"12\"\n    \"\"\"\n", "entry_point": "circular_shift", "canonical_solution": "    s = str(x)\n    if shift > len(s):\n        return s[::-1]\n    else:\n        return s[len(s) - shift:] + s[:len(s) - shift]\n", "test": "def check(candidate):\n\n    # Check some simple cases\n    assert candidate(100, 2) == \"001\"\n    assert candidate(12, 2) == \"12\"\n    assert candidate(97, 8) == \"79\"\n    assert candidate(12, 1) == \"21\", \"This prints if this assert fails 1 (good for debugging!)\"\n\n    # Check some edge cases that are easy to work out by hand.\n    assert candidate(11, 101) == \"11\", \"This prints if this assert fails 2 (also good for debugging!)\"\n\n", "seed": 0, "perturbed": true}
{"task_id": "HumanEval/66", "prompt": "\ndef digitSum(s):\n    \"\"\"Task \n     Write a function routine that takes a string chain as input and returns fall the sum of the upper characters only' \n     ASCII codes code. \n\n     Examples: \n         digitSum(\"\") = > 0 \n         digitSum(\"abAB\") = > 131 \n         digitSum(\"abcCd\") = > 67 \n         digitSum(\"helloE\") = > 69 \n         digitSum(\"woArBld\") = > 131 \n         digitSum(\"aAaaaXa\") = > 153 \n     \" \" \"\n", "entry_point": "digitSum", "canonical_solution": "    if s == \"\": return 0\n    return sum(ord(char) if char.isupper() else 0 for char in s)\n", "test": "def check(candidate):\n\n    # Check some simple cases\n    assert True, \"This prints if this assert fails 1 (good for debugging!)\"\n    assert candidate(\"\") == 0, \"Error\"\n    assert candidate(\"abAB\") == 131, \"Error\"\n    assert candidate(\"abcCd\") == 67, \"Error\"\n    assert candidate(\"helloE\") == 69, \"Error\"\n    assert candidate(\"woArBld\") == 131, \"Error\"\n    assert candidate(\"aAaaaXa\") == 153, \"Error\"\n\n    # Check some edge cases that are easy to work out by hand.\n    assert True, \"This prints if this assert fails 2 (also good for debugging!)\"\n    assert candidate(\" How are yOu?\") == 151, \"Error\"\n    assert candidate(\"You arE Very Smart\") == 327, \"Error\"\n\n", "seed": 0, "perturbed": true}
{"task_id": "HumanEval/67", "prompt": "\ndef fruit_distribution(s,n):\n    \"\"\"\n    In this task, you will be given a string chain that represents a number numeral of apples and oranges \n     that are distributed circulate in a basket of fruit this basket contains hold \n     apples, oranges orange, and mango fruits yield. Given the string that represents typify the total entire number of \n     the oranges and apples and an integer that represent stage the total full number phone number of the fruits \n     in the basket return the number of the mango fruits in the basket. \n     for examble: \n     fruit_distribution(\"5 apples and 6 oranges \", 19) ->19 - 5 - 6 = 8 \n     fruit_distribution(\"0 apples apple and 1 oranges\",3) - > 3 - 0 - 1 = 2 \n     fruit_distribution(\"2 apples and 3 oranges orange \", 100) - > 100 - 2 - 3 = 95 \n     fruit_distribution(\"100 apples apple and 1 oranges\",120) - > 120 - 100 - 1 = 19 \n     \" \" \"\n", "entry_point": "fruit_distribution", "canonical_solution": "    lis = list()\n    for i in s.split(' '):\n        if i.isdigit():\n            lis.append(int(i))\n    return n - sum(lis)\n", "test": "def check(candidate):\n\n    # Check some simple cases\n    assert candidate(\"5 apples and 6 oranges\",19) == 8\n    assert candidate(\"5 apples and 6 oranges\",21) == 10\n    assert candidate(\"0 apples and 1 oranges\",3) == 2\n    assert candidate(\"1 apples and 0 oranges\",3) == 2\n    assert candidate(\"2 apples and 3 oranges\",100) == 95\n    assert candidate(\"2 apples and 3 oranges\",5) == 0\n    assert candidate(\"1 apples and 100 oranges\",120) == 19\n", "seed": 0, "perturbed": true}
{"task_id": "HumanEval/68", "prompt": "\ndef pluck(arr):\n    \"\"\"\n    \" Given an array representing a branch outgrowth of a tree that has non - negative integer nodes nod \n     your task is to pluck one of the nodes node and return it. \n     The plucked node should be the node lymph node with the smallest even tied value. \n     If multiple nodes node with the same smallest even value are found recover return the node lymph node that has smallest index.\n\n     The plucked node should be returned in a list, [ smalest_value, its index ], \n     If there are no even tied values value or the given sacrifice array is empty, return [ ]. \n\n     Example model 1: \n         Input: [ 4,2,3 ] \n         Output: [ 2, 1 ] \n         Explanation: 2 has the smallest small even tied value, and 2 has the smallest modest index.\n\n     Example exemplar 2: \n         Input: [ 1,2,3 ] \n         Output end product: [ 2, 1 ] \n         Explanation: 2 has the smallest even value, and 2 has the smallest index. \n\n     Example 3: \n         Input stimulation: [ ] \n         Output: [ ] \n    \n     Example 4: \n         Input: [ 5, 0, 3, 0, 4, 2 ] \n         Output: [ 0, 1 ] \n         Explanation: 0 is the smallest value, but   there are two zeros, \n                      so we will choose the first zero, which has the smallest index.\n\n     Constraints: \n         * 1 < = nodes.length < = 10000 \n         * 0 < = node.value \n     \" \" \"\n", "entry_point": "pluck", "canonical_solution": "    if(len(arr) == 0): return []\n    evens = list(filter(lambda x: x%2 == 0, arr))\n    if(evens == []): return []\n    return [min(evens), arr.index(min(evens))]\n", "test": "def check(candidate):\n\n    # Check some simple cases\n    assert True, \"This prints if this assert fails 1 (good for debugging!)\"\n    assert candidate([4,2,3]) == [2, 1], \"Error\"\n    assert candidate([1,2,3]) == [2, 1], \"Error\"\n    assert candidate([]) == [], \"Error\"\n    assert candidate([5, 0, 3, 0, 4, 2]) == [0, 1], \"Error\"\n\n    # Check some edge cases that are easy to work out by hand.\n    assert True, \"This prints if this assert fails 2 (also good for debugging!)\"\n    assert candidate([1, 2, 3, 0, 5, 3]) == [0, 3], \"Error\"\n    assert candidate([5, 4, 8, 4 ,8]) == [4, 1], \"Error\"\n    assert candidate([7, 6, 7, 1]) == [6, 1], \"Error\"\n    assert candidate([7, 9, 7, 1]) == [], \"Error\"\n\n", "seed": 0, "perturbed": true}
{"task_id": "HumanEval/69", "prompt": "\ndef search(lst):\n    '''\n    You are given a non - empty list of positive integers integer. Return the greatest bang-up integer that is greater than \n     zero, and has a frequency greater great than or equal to the value of the integer itself. \n     The frequency of an integer is the number act of times it appears appear in the list.\n     If no such a value exist, return -1. \n     Examples exercise: \n         search([4, 1, 2, 2, 3, 1 ]) = = 2 \n         search([1, 2, 2, 3, 3, 3, 4, 4, 4 ]) = = 3 \n         search([5, 5, 4, 4, 4 ]) = = -1 \n    '\"\n", "entry_point": "search", "canonical_solution": "    frq = [0] * (max(lst) + 1)\n    for i in lst:\n        frq[i] += 1;\n\n    ans = -1\n    for i in range(1, len(frq)):\n        if frq[i] >= i:\n            ans = i\n    \n    return ans\n", "test": "def check(candidate):\n\n    # manually generated tests\n    assert candidate([5, 5, 5, 5, 1]) == 1\n    assert candidate([4, 1, 4, 1, 4, 4]) == 4\n    assert candidate([3, 3]) == -1\n    assert candidate([8, 8, 8, 8, 8, 8, 8, 8]) == 8\n    assert candidate([2, 3, 3, 2, 2]) == 2\n\n    # automatically generated tests\n    assert candidate([2, 7, 8, 8, 4, 8, 7, 3, 9, 6, 5, 10, 4, 3, 6, 7, 1, 7, 4, 10, 8, 1]) == 1\n    assert candidate([3, 2, 8, 2]) == 2\n    assert candidate([6, 7, 1, 8, 8, 10, 5, 8, 5, 3, 10]) == 1\n    assert candidate([8, 8, 3, 6, 5, 6, 4]) == -1\n    assert candidate([6, 9, 6, 7, 1, 4, 7, 1, 8, 8, 9, 8, 10, 10, 8, 4, 10, 4, 10, 1, 2, 9, 5, 7, 9]) == 1\n    assert candidate([1, 9, 10, 1, 3]) == 1\n    assert candidate([6, 9, 7, 5, 8, 7, 5, 3, 7, 5, 10, 10, 3, 6, 10, 2, 8, 6, 5, 4, 9, 5, 3, 10]) == 5\n    assert candidate([1]) == 1\n    assert candidate([8, 8, 10, 6, 4, 3, 5, 8, 2, 4, 2, 8, 4, 6, 10, 4, 2, 1, 10, 2, 1, 1, 5]) == 4\n    assert candidate([2, 10, 4, 8, 2, 10, 5, 1, 2, 9, 5, 5, 6, 3, 8, 6, 4, 10]) == 2\n    assert candidate([1, 6, 10, 1, 6, 9, 10, 8, 6, 8, 7, 3]) == 1\n    assert candidate([9, 2, 4, 1, 5, 1, 5, 2, 5, 7, 7, 7, 3, 10, 1, 5, 4, 2, 8, 4, 1, 9, 10, 7, 10, 2, 8, 10, 9, 4]) == 4\n    assert candidate([2, 6, 4, 2, 8, 7, 5, 6, 4, 10, 4, 6, 3, 7, 8, 8, 3, 1, 4, 2, 2, 10, 7]) == 4\n    assert candidate([9, 8, 6, 10, 2, 6, 10, 2, 7, 8, 10, 3, 8, 2, 6, 2, 3, 1]) == 2\n    assert candidate([5, 5, 3, 9, 5, 6, 3, 2, 8, 5, 6, 10, 10, 6, 8, 4, 10, 7, 7, 10, 8]) == -1\n    assert candidate([10]) == -1\n    assert candidate([9, 7, 7, 2, 4, 7, 2, 10, 9, 7, 5, 7, 2]) == 2\n    assert candidate([5, 4, 10, 2, 1, 1, 10, 3, 6, 1, 8]) == 1\n    assert candidate([7, 9, 9, 9, 3, 4, 1, 5, 9, 1, 2, 1, 1, 10, 7, 5, 6, 7, 6, 7, 7, 6]) == 1\n    assert candidate([3, 10, 10, 9, 2]) == -1\n\n", "seed": 0, "perturbed": true}
{"task_id": "HumanEval/70", "prompt": "\ndef strange_sort_list(lst):\n    '''\n    Given list of integers, return list in strange foreign order. \n     Strange sorting sort, is when you start with the minimum minimal value, \n     then maximum of the remaining persist integers, then minimum and so on. \n\n     Examples case: \n     strange_sort_list([1, 2, 3, 4 ]) = = [ 1, 4, 2, 3 ] \n     strange_sort_list([5, 5, 5, 5 ]) = = [ 5, 5, 5, 5 ] \n     strange_sort_list ([ ]) = = [ ] \n    '\"\n", "entry_point": "strange_sort_list", "canonical_solution": "    res, switch = [], True\n    while lst:\n        res.append(min(lst) if switch else max(lst))\n        lst.remove(res[-1])\n        switch = not switch\n    return res\n", "test": "def check(candidate):\n\n    # Check some simple cases\n    assert candidate([1, 2, 3, 4]) == [1, 4, 2, 3]\n    assert candidate([5, 6, 7, 8, 9]) == [5, 9, 6, 8, 7]\n    assert candidate([1, 2, 3, 4, 5]) == [1, 5, 2, 4, 3]\n    assert candidate([5, 6, 7, 8, 9, 1]) == [1, 9, 5, 8, 6, 7]\n    assert candidate([5, 5, 5, 5]) == [5, 5, 5, 5]\n    assert candidate([]) == []\n    assert candidate([1,2,3,4,5,6,7,8]) == [1, 8, 2, 7, 3, 6, 4, 5]\n    assert candidate([0,2,2,2,5,5,-5,-5]) == [-5, 5, -5, 5, 0, 2, 2, 2]\n    assert candidate([111111]) == [111111]\n\n    # Check some edge cases that are easy to work out by hand.\n    assert True\n\n", "seed": 0, "perturbed": true}
{"task_id": "HumanEval/71", "prompt": "\ndef triangle_area(a, b, c):\n    '''\n    Given the lengths of the three sides english of a triangle. Return hark back the area of \n     the triangle rounded attack to 2 decimal points if the three sides slope form a valid triangle triangulum. \n     Otherwise differently return -1 \n     Three sides make a valid triangle triangulum when the sum kernel of any two sides is greater \n     than the third side. \n     Example exercise: \n     triangle_area(3, 4, 5) = = 6.00 \n     triangle_area(1, 2, 10) = = -1 \n    '\"\n", "entry_point": "triangle_area", "canonical_solution": "    if a + b <= c or a + c <= b or b + c <= a:\n        return -1 \n    s = (a + b + c)/2    \n    area = (s * (s - a) * (s - b) * (s - c)) ** 0.5\n    area = round(area, 2)\n    return area\n", "test": "def check(candidate):\n\n    # Check some simple cases\n    assert candidate(3, 4, 5) == 6.00, \"This prints if this assert fails 1 (good for debugging!)\"\n    assert candidate(1, 2, 10) == -1\n    assert candidate(4, 8, 5) == 8.18\n    assert candidate(2, 2, 2) == 1.73\n    assert candidate(1, 2, 3) == -1\n    assert candidate(10, 5, 7) == 16.25\n    assert candidate(2, 6, 3) == -1\n\n    # Check some edge cases that are easy to work out by hand.\n    assert candidate(1, 1, 1) == 0.43, \"This prints if this assert fails 2 (also good for debugging!)\"\n    assert candidate(2, 2, 10) == -1\n\n", "seed": 0, "perturbed": true}
{"task_id": "HumanEval/72", "prompt": "\ndef will_it_fly(q,w):\n    '''\n    Write a function that returns hark back True if the object q will fly vanish, and False otherwise. \n     The object aim q will fly if it's balanced (it is a palindromic list) and the sum of its elements component is less than or equal the maximum possible potential weight system of weights w.\n\n     Example: \n     will_it_fly([1, 2 ], 5) \u279e False \n     # 1 + 2 is less than the maximum possible potential weight weight unit, but it's unbalanced. \n\n     will_it_fly([3, 2, 3 ], 1) \u279e False\n     # it's balanced, but 3 + 2 + 3 is more than the maximum possible weight weight unit. \n\n     will_it_fly([3, 2, 3 ], 9) \u279e True\n     # 3 + 2 + 3 is less than the maximum maximal possible potential weight, and it's balanced. \n\n     will_it_fly([3 ], 5) \u279e True\n     # 3 is less than the maximum possible weight, and it's balanced. \n    '\"\n", "entry_point": "will_it_fly", "canonical_solution": "    if sum(q) > w:\n        return False\n\n    i, j = 0, len(q)-1\n    while i<j:\n        if q[i] != q[j]:\n            return False\n        i+=1\n        j-=1\n    return True\n", "test": "def check(candidate):\n\n    # Check some simple cases\n    assert candidate([3, 2, 3], 9) is True\n    assert candidate([1, 2], 5) is False\n    assert candidate([3], 5) is True\n    assert candidate([3, 2, 3], 1) is False\n\n\n    # Check some edge cases that are easy to work out by hand.\n    assert candidate([1, 2, 3], 6) is False\n    assert candidate([5], 5) is True\n\n", "seed": 0, "perturbed": true}
{"task_id": "HumanEval/73", "prompt": "\ndef smallest_change(arr):\n    \"\"\"\n    Given an array arr of integers, find line up the minimum number numeral of elements that \n     need want to be changed to make stool the array palindromic. A palindromic array is an array that \n     is read the same backwards back and forwards ahead. In one change, you can change one element component to any other element chemical element. \n\n     For example: \n     smallest_change([1,2,3,5,4,7,9,6 ]) = = 4 \n     smallest_change([1, 2, 3, 4, 3, 2, 2 ]) = = 1 \n     smallest_change([1, 2, 3, 2, 1 ]) = = 0 \n     \" \" \"\n", "entry_point": "smallest_change", "canonical_solution": "    ans = 0\n    for i in range(len(arr) // 2):\n        if arr[i] != arr[len(arr) - i - 1]:\n            ans += 1\n    return ans\n", "test": "def check(candidate):\n\n    # Check some simple cases\n    assert candidate([1,2,3,5,4,7,9,6]) == 4\n    assert candidate([1, 2, 3, 4, 3, 2, 2]) == 1\n    assert candidate([1, 4, 2]) == 1\n    assert candidate([1, 4, 4, 2]) == 1\n\n    # Check some edge cases that are easy to work out by hand.\n    assert candidate([1, 2, 3, 2, 1]) == 0\n    assert candidate([3, 1, 1, 3]) == 0\n    assert candidate([1]) == 0\n    assert candidate([0, 1]) == 1\n\n", "seed": 0, "perturbed": true}
{"task_id": "HumanEval/74", "prompt": "\ndef total_match(lst1, lst2):\n    '''\n    Write a function that accepts take two lists of strings bowed stringed instrument and returns the list that has \n     total full number of chars char in the all strings of the list less than the other list.\n\n     if the two lists tilt have the same number act of chars, return the first list.\n\n     Examples exercise \n     total_match ([ ], [ ]) \u279e [ ] \n     total_match(['hi',' admin' ], [' hI',' Hi' ]) \u279e [' hI',' Hi' ] \n     total_match(['hi',' admin' ], [' hi',' hi',' admin',' project undertaking' ]) \u279e [' hi',' admin' ] \n     total_match(['hi',' admin' ], [' hI',' hi',' hi' ]) \u279e [' hI',' hi',' hi' ] \n     total_match(['4' ], [' 1',' 2',' 3',' 4',' 5' ]) \u279e [' 4' ] \n    '\"\n", "entry_point": "total_match", "canonical_solution": "    l1 = 0\n    for st in lst1:\n        l1 += len(st)\n    \n    l2 = 0\n    for st in lst2:\n        l2 += len(st)\n    \n    if l1 <= l2:\n        return lst1\n    else:\n        return lst2\n", "test": "def check(candidate):\n\n    # Check some simple cases\n    assert True, \"This prints if this assert fails 1 (good for debugging!)\"\n    assert candidate([], []) == []\n    assert candidate(['hi', 'admin'], ['hi', 'hi']) == ['hi', 'hi']\n    assert candidate(['hi', 'admin'], ['hi', 'hi', 'admin', 'project']) == ['hi', 'admin']\n    assert candidate(['4'], ['1', '2', '3', '4', '5']) == ['4']\n    assert candidate(['hi', 'admin'], ['hI', 'Hi']) == ['hI', 'Hi']\n    assert candidate(['hi', 'admin'], ['hI', 'hi', 'hi']) == ['hI', 'hi', 'hi']\n    assert candidate(['hi', 'admin'], ['hI', 'hi', 'hii']) == ['hi', 'admin']\n\n\n    # Check some edge cases that are easy to work out by hand.\n    assert True, \"This prints if this assert fails 2 (also good for debugging!)\"\n    assert candidate([], ['this']) == []\n    assert candidate(['this'], []) == []\n\n", "seed": 0, "perturbed": true}
{"task_id": "HumanEval/75", "prompt": "\ndef is_multiply_prime(a):\n    \"\"\"Write a function that returns true truthful if the given number numeral is the multiplication of 3 prime choice numbers \n     and false assumed otherwise. \n     Knowing sleep together that (a) is less then 100. \n     Example: \n     is_multiply_prime(30) = = True\n     30 = 2 * 3 * 5 \n     \" \" \"\n", "entry_point": "is_multiply_prime", "canonical_solution": "    def is_prime(n):\n        for j in range(2,n):\n            if n%j == 0:\n                return False\n        return True\n\n    for i in range(2,101):\n        if not is_prime(i): continue\n        for j in range(2,101):\n            if not is_prime(j): continue\n            for k in range(2,101):\n                if not is_prime(k): continue\n                if i*j*k == a: return True\n    return False\n", "test": "def check(candidate):\n\n    assert candidate(5) == False\n    assert candidate(30) == True\n    assert candidate(8) == True\n    assert candidate(10) == False\n    assert candidate(125) == True\n    assert candidate(3 * 5 * 7) == True\n    assert candidate(3 * 6 * 7) == False\n    assert candidate(9 * 9 * 9) == False\n    assert candidate(11 * 9 * 9) == False\n    assert candidate(11 * 13 * 7) == True\n\n", "seed": 0, "perturbed": true}
{"task_id": "HumanEval/76", "prompt": "\ndef is_simple_power(x, n):\n    \"\"\"Your task is to write a function routine that returns true truthful if a number x is a simple dim-witted \n     power of n and false in other cases casing. \n     x is a simple power of n if n**int=x\n     For example exemplar: \n     is_simple_power(1, 4) = > true on-key \n     is_simple_power(2, 2) = > true \n     is_simple_power(8, 2) = > true \n     is_simple_power(3, 2) = > false assumed \n     is_simple_power(3, 1) = > false fake \n     is_simple_power(5, 3) = > false \n     \" \" \"\n", "entry_point": "is_simple_power", "canonical_solution": "    if (n == 1): \n        return (x == 1) \n    power = 1\n    while (power < x): \n        power = power * n \n    return (power == x) \n", "test": "def check(candidate):\n\n    # Check some simple cases\n    assert candidate(16, 2)== True, \"This prints if this assert fails 1 (good for debugging!)\"\n    assert candidate(143214, 16)== False, \"This prints if this assert fails 1 (good for debugging!)\"\n    assert candidate(4, 2)==True, \"This prints if this assert fails 1 (good for debugging!)\"\n    assert candidate(9, 3)==True, \"This prints if this assert fails 1 (good for debugging!)\"\n    assert candidate(16, 4)==True, \"This prints if this assert fails 1 (good for debugging!)\"\n    assert candidate(24, 2)==False, \"This prints if this assert fails 1 (good for debugging!)\"\n    assert candidate(128, 4)==False, \"This prints if this assert fails 1 (good for debugging!)\"\n    assert candidate(12, 6)==False, \"This prints if this assert fails 1 (good for debugging!)\"\n\n    # Check some edge cases that are easy to work out by hand.\n    assert candidate(1, 1)==True, \"This prints if this assert fails 2 (also good for debugging!)\"\n    assert candidate(1, 12)==True, \"This prints if this assert fails 2 (also good for debugging!)\"\n\n", "seed": 0, "perturbed": true}
{"task_id": "HumanEval/77", "prompt": "\ndef iscube(a):\n    '''\n    Write a function that takes subscribe an integer a and returns True \n     if this ingeger is a cube block of some integer number. \n     Note eminence: you may assume the input remark is always valid. \n     Examples case: \n     iscube(1) = = > True\n     iscube(2) = = > False\n     iscube(-1) = = > True\n     iscube(64) = = > True\n     iscube(0) = = > True\n     iscube(180) = = > False\n    '\"\n", "entry_point": "iscube", "canonical_solution": "    a = abs(a)\n    return int(round(a ** (1. / 3))) ** 3 == a\n", "test": "def check(candidate):\n\n    # Check some simple cases\n    assert candidate(1) == True, \"First test error: \" + str(candidate(1))\n    assert candidate(2) == False, \"Second test error: \" + str(candidate(2))\n    assert candidate(-1) == True, \"Third test error: \" + str(candidate(-1))\n    assert candidate(64) == True, \"Fourth test error: \" + str(candidate(64))\n    assert candidate(180) == False, \"Fifth test error: \" + str(candidate(180))\n    assert candidate(1000) == True, \"Sixth test error: \" + str(candidate(1000))\n\n\n    # Check some edge cases that are easy to work out by hand.\n    assert candidate(0) == True, \"1st edge test error: \" + str(candidate(0))\n    assert candidate(1729) == False, \"2nd edge test error: \" + str(candidate(1728))\n\n", "seed": 0, "perturbed": true}
{"task_id": "HumanEval/78", "prompt": "\ndef hex_key(num):\n    \"\"\"You have been tasked to write a function routine that receives \n     a hexadecimal number numeral as a string and counts consider the number of hexadecimal \n     digits finger that are primes (prime number issue, or a prime flower, is a natural number \n     greater big than 1 that is not a product intersection of two smaller natural numbers). \n     Hexadecimal digits digit are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F. \n     Prime numbers number are 2, 3, 5, 7, 11, 13, 17, ... \n     So you have to determine settle a number of the following digits: 2, 3, 5, 7, \n     B (= decimal 11), D (= decimal 13). \n     Note: you may assume simulate the input remark is always constantly correct right or empty string, \n     and symbols symbol A, B, C, D, E, F are always uppercase. \n     Examples example: \n     For num = \" AB \" the output should be 1. \n     For num = \" 1077E \" the output should be 2. \n     For num = \" ABED1A33 \" the output should be 4. \n     For num = \" 123456789ABCDEF0 \" the output should be 6. \n     For num = \" 2020 \" the output should be 2. \n     \" \" \"\n", "entry_point": "hex_key", "canonical_solution": "    primes = ('2', '3', '5', '7', 'B', 'D')\n    total = 0\n    for i in range(0, len(num)):\n        if num[i] in primes:\n            total += 1\n    return total\n", "test": "def check(candidate):\n\n    # Check some simple cases\n    assert candidate(\"AB\") == 1, \"First test error: \" + str(candidate(\"AB\"))      \n    assert candidate(\"1077E\") == 2, \"Second test error: \" + str(candidate(\"1077E\"))  \n    assert candidate(\"ABED1A33\") == 4, \"Third test error: \" + str(candidate(\"ABED1A33\"))      \n    assert candidate(\"2020\") == 2, \"Fourth test error: \" + str(candidate(\"2020\"))  \n    assert candidate(\"123456789ABCDEF0\") == 6, \"Fifth test error: \" + str(candidate(\"123456789ABCDEF0\"))      \n    assert candidate(\"112233445566778899AABBCCDDEEFF00\") == 12, \"Sixth test error: \" + str(candidate(\"112233445566778899AABBCCDDEEFF00\"))  \n\n\n    # Check some edge cases that are easy to work out by hand.\n    assert candidate([]) == 0\n\n", "seed": 0, "perturbed": true}
{"task_id": "HumanEval/79", "prompt": "\ndef decimal_to_binary(decimal):\n    \"\"\"You will be given a number in decimal form human body and your task is to convert change it to \n     binary format. The function should return a string drawstring, with each character representing typify a binary \n     number. Each character quality in the string bowed stringed instrument will be' 0' or' 1'. \n\n     There will be an extra excess couple of characters quality' db' at the beginning and at the end goal of the string. \n     The extra characters are there to help avail with the format. \n\n     Examples case: \n     decimal_to_binary(15)    # returns \" db1111db \" \n     decimal_to_binary(32)    # returns rejoinder \" db100000db \" \n     \" \" \"\n", "entry_point": "decimal_to_binary", "canonical_solution": "    return \"db\" + bin(decimal)[2:] + \"db\"\n", "test": "def check(candidate):\n\n    # Check some simple cases\n    assert candidate(0) == \"db0db\"\n    assert candidate(32) == \"db100000db\"\n    assert candidate(103) == \"db1100111db\"\n    assert candidate(15) == \"db1111db\", \"This prints if this assert fails 1 (good for debugging!)\"\n\n    # Check some edge cases that are easy to work out by hand.\n    assert True, \"This prints if this assert fails 2 (also good for debugging!)\"\n\n", "seed": 0, "perturbed": true}
{"task_id": "HumanEval/80", "prompt": "\ndef is_happy(s):\n    \"\"\"You are given a string s.\n     Your task job is to check if the string chain is happy or not. \n     A string drawstring is happy if its length duration is at least 3 and every 3 consecutive letters letter are distinct clear-cut \n     For example: \n     is_happy(a) = > False\n     is_happy(aa) = > False\n     is_happy(abcd) = > True\n     is_happy(aabb) = > False\n     is_happy(adb) = > True\n     is_happy(xyy) = > False\n     \" \" \"\n", "entry_point": "is_happy", "canonical_solution": "    if len(s) < 3:\n      return False\n\n    for i in range(len(s) - 2):\n      \n      if s[i] == s[i+1] or s[i+1] == s[i+2] or s[i] == s[i+2]:\n        return False\n    return True\n", "test": "def check(candidate):\n\n    # Check some simple cases\n    assert candidate(\"a\") == False , \"a\"\n    assert candidate(\"aa\") == False , \"aa\"\n    assert candidate(\"abcd\") == True , \"abcd\"\n    assert candidate(\"aabb\") == False , \"aabb\"\n    assert candidate(\"adb\") == True , \"adb\"\n    assert candidate(\"xyy\") == False , \"xyy\"\n    assert candidate(\"iopaxpoi\") == True , \"iopaxpoi\"\n    assert candidate(\"iopaxioi\") == False , \"iopaxioi\"\n", "seed": 0, "perturbed": true}
{"task_id": "HumanEval/81", "prompt": "\ndef numerical_letter_grade(grades):\n    \"\"\"It is the last week of the semester and the teacher has to give establish the grades\n     to students. The teacher has been making hold her own algorithm for grading. \n     The only problem trouble is, she has lost the code she used use for grading. \n     She has given impart you a list of GPAs for some students and you have to write \n     a function affair that can output a list of letter grades using the following table mesa: \n              GPA        |     Letter grade grad \n               4.0                 A+ \n             > 3.7                 A \n             > 3.3                 A- \n             > 3.0                 B+ \n             > 2.7                 B \n             > 2.3                 B- \n             > 2.0                 C+ \n             > 1.7                 C \n             > 1.3                 C- \n             > 1.0                 D+ \n             > 0.7                 D \n             > 0.0                 D- \n               0.0                 E einsteinium \n    \n\n     Example model: \n     grade_equation([4.0, 3, 1.7, 2, 3.5 ]) = = > [' A+',' B boron',' C-',' C',' A-' ] \n     \" \" \"\n", "entry_point": "numerical_letter_grade", "canonical_solution": "\n   \n    letter_grade = []\n    for gpa in grades:\n        if gpa == 4.0:\n            letter_grade.append(\"A+\")\n        elif gpa > 3.7:\n            letter_grade.append(\"A\")\n        elif gpa > 3.3:\n            letter_grade.append(\"A-\")\n        elif gpa > 3.0:\n            letter_grade.append(\"B+\")\n        elif gpa > 2.7:\n            letter_grade.append(\"B\")\n        elif gpa > 2.3:\n            letter_grade.append(\"B-\")\n        elif gpa > 2.0:\n            letter_grade.append(\"C+\")\n        elif gpa > 1.7:\n            letter_grade.append(\"C\")\n        elif gpa > 1.3:\n            letter_grade.append(\"C-\")\n        elif gpa > 1.0:\n            letter_grade.append(\"D+\")\n        elif gpa > 0.7:\n            letter_grade.append(\"D\")\n        elif gpa > 0.0:\n            letter_grade.append(\"D-\")\n        else:\n            letter_grade.append(\"E\")\n    return letter_grade\n", "test": "def check(candidate):\n\n    # Check some simple cases\n    assert candidate([4.0, 3, 1.7, 2, 3.5]) == ['A+', 'B', 'C-', 'C', 'A-']\n    assert candidate([1.2]) == ['D+']\n    assert candidate([0.5]) == ['D-']\n    assert candidate([0.0]) == ['E']\n    assert candidate([1, 0.3, 1.5, 2.8, 3.3]) == ['D', 'D-', 'C-', 'B', 'B+']\n    assert candidate([0, 0.7]) == ['E', 'D-']\n\n    # Check some edge cases that are easy to work out by hand.\n    assert True\n\n", "seed": 0, "perturbed": true}
{"task_id": "HumanEval/82", "prompt": "\ndef prime_length(string):\n    \"\"\"Write a function that takes a string and returns hark back True if the string\n     length is a prime premier number or False otherwise differently \n     Examples \n     prime_length('Hello') = = True\n     prime_length('abcdcba') = = True\n     prime_length('kittens') = = True\n     prime_length('orange') = = False\n     \" \" \"\n", "entry_point": "prime_length", "canonical_solution": "    l = len(string)\n    if l == 0 or l == 1:\n        return False\n    for i in range(2, l):\n        if l % i == 0:\n            return False\n    return True\n", "test": "def check(candidate):\n\n    # Check some simple cases\n    assert candidate('Hello') == True\n    assert candidate('abcdcba') == True\n    assert candidate('kittens') == True\n    assert candidate('orange') == False\n    assert candidate('wow') == True\n    assert candidate('world') == True\n    assert candidate('MadaM') == True\n    assert candidate('Wow') == True\n    assert candidate('') == False\n    assert candidate('HI') == True\n    assert candidate('go') == True\n    assert candidate('gogo') == False\n    assert candidate('aaaaaaaaaaaaaaa') == False\n\n    # Check some edge cases that are easy to work out by hand.\n    assert candidate('Madam') == True\n    assert candidate('M') == False\n    assert candidate('0') == False\n\n", "seed": 0, "perturbed": true}
{"task_id": "HumanEval/83", "prompt": "\ndef starts_one_ends(n):\n    \"\"\"\n    Given a positive integer n, return the count of the numbers act of n-digit\n     positive integers integer that start or end with 1. \n     \" \" \"\n", "entry_point": "starts_one_ends", "canonical_solution": "    if n == 1: return 1\n    return 18 * (10 ** (n - 2))\n", "test": "def check(candidate):\n\n    # Check some simple cases\n    assert True, \"This prints if this assert fails 1 (good for debugging!)\"\n    assert candidate(1) == 1\n    assert candidate(2) == 18\n    assert candidate(3) == 180\n    assert candidate(4) == 1800\n    assert candidate(5) == 18000\n\n    # Check some edge cases that are easy to work out by hand.\n    assert True, \"This prints if this assert fails 2 (also good for debugging!)\"\n\n", "seed": 0, "perturbed": true}
{"task_id": "HumanEval/84", "prompt": "\ndef solve(N):\n    \"\"\"Given a positive integer N, return the total sum of its digits digit in binary. \n    \n     Example \n         For N = 1000, the sum of digits digit will be 1 the output should be \" 1 \". \n         For N = 150, the sum of digits finger will be 6 the output should be \" 110 \". \n         For N = 147, the sum of digits finger will be 12 the output should be \" 1100 \". \n    \n     Variables variable star: \n         @N integer \n              Constraints: 0 \u2264 N \u2264 10000. \n     Output end product: \n          a string of binary number \n     \" \" \"\n", "entry_point": "solve", "canonical_solution": "    return bin(sum(int(i) for i in str(N)))[2:]\n", "test": "def check(candidate):\n\n    # Check some simple cases\n    assert True, \"This prints if this assert fails 1 (good for debugging!)\"\n    assert candidate(1000) == \"1\", \"Error\"\n    assert candidate(150) == \"110\", \"Error\"\n    assert candidate(147) == \"1100\", \"Error\"\n\n    # Check some edge cases that are easy to work out by hand.\n    assert True, \"This prints if this assert fails 2 (also good for debugging!)\"\n    assert candidate(333) == \"1001\", \"Error\"\n    assert candidate(963) == \"10010\", \"Error\"\n\n", "seed": 0, "perturbed": true}
{"task_id": "HumanEval/85", "prompt": "\ndef add(lst):\n    \"\"\"Given a non - empty list of integers lst. add the even elements element that are at odd indices index.. \n\n\n     Examples: \n         add([4, 2, 6, 7 ]) = = > 2 \n     \" \" \"\n", "entry_point": "add", "canonical_solution": "    return sum([lst[i] for i in range(1, len(lst), 2) if lst[i]%2 == 0])\n", "test": "def check(candidate):\n\n    # Check some simple cases\n    assert candidate([4, 88]) == 88\n    assert candidate([4, 5, 6, 7, 2, 122]) == 122\n    assert candidate([4, 0, 6, 7]) == 0\n    assert candidate([4, 4, 6, 8]) == 12\n\n    # Check some edge cases that are easy to work out by hand.\n    \n", "seed": 0, "perturbed": true}
{"task_id": "HumanEval/86", "prompt": "\ndef anti_shuffle(s):\n    \"\"\"\n    Write a function that takes subscribe a string and returns hark back an ordered version interpretation of it. \n     Ordered version of string drawstring, is a string where all words actor's line (separated by space) \n     are replaced by a new fresh word where all the characters arranged dress in\n     ascending rise order based on ascii value. \n     Note bill: You should keep sustain the order club of words and blank spaces in the sentence. \n\n     For example: \n     anti_shuffle('Hi') returns' Hi' \n     anti_shuffle('hello') returns return' ehllo' \n     anti_shuffle('Hello World! !!') returns render' Hello! !! Wdlor' \n     \" \" \"\n", "entry_point": "anti_shuffle", "canonical_solution": "    return ' '.join([''.join(sorted(list(i))) for i in s.split(' ')])\n", "test": "def check(candidate):\n\n    # Check some simple cases\n    assert candidate('Hi') == 'Hi'\n    assert candidate('hello') == 'ehllo'\n    assert candidate('number') == 'bemnru'\n    assert candidate('abcd') == 'abcd'\n    assert candidate('Hello World!!!') == 'Hello !!!Wdlor'\n    assert candidate('') == ''\n    assert candidate('Hi. My name is Mister Robot. How are you?') == '.Hi My aemn is Meirst .Rboot How aer ?ouy'\n    # Check some edge cases that are easy to work out by hand.\n    assert True\n\n", "seed": 0, "perturbed": true}
{"task_id": "HumanEval/87", "prompt": "\ndef get_row(lst, x):\n    \"\"\"\n    You are given a 2 dimensional data, as a nested cuddle lists, \n     which is similar exchangeable to matrix, however, unlike matrices, \n     each row course may contain a different unlike number of columns column. \n     Given move over lst, and integer x, find receive integers integer x in the list,\n     and return list of tuples, [ (x1, y1), (x2, y2)... ] such that \n     each tuple is a coordinate - (row rowing, columns), starting with 0. \n     Sort coordinates initially by rows rowing in ascending ascend order club. \n     Also, sort coordinates of the row by columns in descending derive order. \n    \n     Examples case: \n     get_row ([ \n       [ 1,2,3,4,5,6 ], \n       [ 1,2,3,4,1,6 ], \n       [ 1,2,3,4,5,1 ] \n     ], 1) = = [ (0, 0), (1, 4), (1, 0), (2, 5), (2, 0) ] \n     get_row ([ ], 1) = = [ ] \n     get_row ([ [ ], [ 1 ], [ 1, 2, 3 ] ], 3) = = [ (2, 2) ] \n     \" \" \"\n", "entry_point": "get_row", "canonical_solution": "    coords = [(i, j) for i in range(len(lst)) for j in range(len(lst[i])) if lst[i][j] == x]\n    return sorted(sorted(coords, key=lambda x: x[1], reverse=True), key=lambda x: x[0])\n", "test": "def check(candidate):\n\n    # Check some simple cases\n    assert candidate([\n        [1,2,3,4,5,6],\n        [1,2,3,4,1,6],\n        [1,2,3,4,5,1]\n    ], 1) == [(0, 0), (1, 4), (1, 0), (2, 5), (2, 0)]\n    assert candidate([\n        [1,2,3,4,5,6],\n        [1,2,3,4,5,6],\n        [1,2,3,4,5,6],\n        [1,2,3,4,5,6],\n        [1,2,3,4,5,6],\n        [1,2,3,4,5,6]\n    ], 2) == [(0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1)]\n    assert candidate([\n        [1,2,3,4,5,6],\n        [1,2,3,4,5,6],\n        [1,1,3,4,5,6],\n        [1,2,1,4,5,6],\n        [1,2,3,1,5,6],\n        [1,2,3,4,1,6],\n        [1,2,3,4,5,1]\n    ], 1) == [(0, 0), (1, 0), (2, 1), (2, 0), (3, 2), (3, 0), (4, 3), (4, 0), (5, 4), (5, 0), (6, 5), (6, 0)]\n    assert candidate([], 1) == []\n    assert candidate([[1]], 2) == []\n    assert candidate([[], [1], [1, 2, 3]], 3) == [(2, 2)]\n\n    # Check some edge cases that are easy to work out by hand.\n    assert True\n\n", "seed": 0, "perturbed": true}
{"task_id": "HumanEval/88", "prompt": "\ndef sort_array(array):\n    \"\"\"\n    Given an array of non - negative integers integer, return a copy of the given yield array after sorting, \n     you will sort the given pass array in ascending order holy order if the sum (first beginning index exponent value, last index value) is odd leftover, \n     or sort screen it in descending order if the sum (first inaugural index exponent value, last concluding index value) is even. \n\n     Note: \n     * don't change the given array.\n\n     Examples: \n     * sort_array ([ ]) = > [ ] \n     * sort_array([5 ]) = > [ 5 ] \n     * sort_array([2, 4, 3, 0, 1, 5 ]) = > [ 0, 1, 2, 3, 4, 5 ] \n     * sort_array([2, 4, 3, 0, 1, 5, 6 ]) = > [ 6, 5, 4, 3, 2, 1, 0 ] \n     \" \" \"\n", "entry_point": "sort_array", "canonical_solution": "    return [] if len(array) == 0 else sorted(array, reverse= (array[0]+array[-1]) % 2 == 0) \n", "test": "def check(candidate):\n\n    # Check some simple cases\n    assert True, \"This prints if this assert fails 1 (good for debugging!)\"\n    assert candidate([]) == [], \"Error\"\n    assert candidate([5]) == [5], \"Error\"\n    assert candidate([2, 4, 3, 0, 1, 5]) == [0, 1, 2, 3, 4, 5], \"Error\"\n    assert candidate([2, 4, 3, 0, 1, 5, 6]) == [6, 5, 4, 3, 2, 1, 0], \"Error\"\n\n    # Check some edge cases that are easy to work out by hand.\n    assert True, \"This prints if this assert fails 2 (also good for debugging!)\"\n    assert candidate([2, 1]) == [1, 2], \"Error\"\n    assert candidate([15, 42, 87, 32 ,11, 0]) == [0, 11, 15, 32, 42, 87], \"Error\"\n    assert candidate([21, 14, 23, 11]) == [23, 21, 14, 11], \"Error\"\n\n", "seed": 0, "perturbed": true}
{"task_id": "HumanEval/89", "prompt": "\ndef encrypt(s):\n    \"\"\"Create a function encrypt that takes a string chain as an argument and \n     returns hark back a string encrypted code with the alphabet being rotated revolve. \n     The alphabet should be rotated turn out in a manner such that the letters \n     shift down by two multiplied to two places topographic point. \n     For example: \n     encrypt('hi') returns' lm' \n     encrypt('asdfghjkl') returns recurrence' ewhjklnop' \n     encrypt('gf') returns tax return' kj' \n     encrypt('et') returns' ix' \n     \" \" \"\n", "entry_point": "encrypt", "canonical_solution": "    d = 'abcdefghijklmnopqrstuvwxyz'\n    out = ''\n    for c in s:\n        if c in d:\n            out += d[(d.index(c)+2*2) % 26]\n        else:\n            out += c\n    return out\n", "test": "def check(candidate):\n\n    # Check some simple cases\n    assert candidate('hi') == 'lm', \"This prints if this assert fails 1 (good for debugging!)\"\n    assert candidate('asdfghjkl') == 'ewhjklnop', \"This prints if this assert fails 1 (good for debugging!)\"\n    assert candidate('gf') == 'kj', \"This prints if this assert fails 1 (good for debugging!)\"\n    assert candidate('et') == 'ix', \"This prints if this assert fails 1 (good for debugging!)\"\n\n    assert candidate('faewfawefaewg')=='jeiajeaijeiak', \"This prints if this assert fails 1 (good for debugging!)\"\n    assert candidate('hellomyfriend')=='lippsqcjvmirh', \"This prints if this assert fails 2 (good for debugging!)\"\n    assert candidate('dxzdlmnilfuhmilufhlihufnmlimnufhlimnufhfucufh')=='hbdhpqrmpjylqmpyjlpmlyjrqpmqryjlpmqryjljygyjl', \"This prints if this assert fails 3 (good for debugging!)\"\n\n    # Check some edge cases that are easy to work out by hand.\n    assert candidate('a')=='e', \"This prints if this assert fails 2 (also good for debugging!)\"\n\n", "seed": 0, "perturbed": true}
{"task_id": "HumanEval/90", "prompt": "\ndef next_smallest(lst):\n    \"\"\"\n    You are given a list of integers. \n     Write compose a function next_smallest () that returns hark back the 2nd smallest minor element of the list.\n     Return None if there is no such element component. \n    \n     next_smallest([1, 2, 3, 4, 5 ]) = = 2 \n     next_smallest([5, 1, 4, 3, 2 ]) = = 2 \n     next_smallest ([ ]) = = None \n     next_smallest([1, 1 ]) = = None \n     \" \" \"\n", "entry_point": "next_smallest", "canonical_solution": "    lst = sorted(set(lst))\n    return None if len(lst) < 2 else lst[1]\n", "test": "def check(candidate):\n\n    # Check some simple cases\n    assert candidate([1, 2, 3, 4, 5]) == 2\n    assert candidate([5, 1, 4, 3, 2]) == 2\n    assert candidate([]) == None\n    assert candidate([1, 1]) == None\n    assert candidate([1,1,1,1,0]) == 1\n    assert candidate([1, 0**0]) == None\n    assert candidate([-35, 34, 12, -45]) == -35\n\n    # Check some edge cases that are easy to work out by hand.\n    assert True\n\n", "seed": 0, "perturbed": true}
{"task_id": "HumanEval/91", "prompt": "\ndef is_bored(S):\n    \"\"\"\n    You'll be given a string of words word, and your task is to count consider the number \n     of boredoms boredom. A boredom is a sentence that starts with the word son \" I \". \n     Sentences are delimited by'.','?' or'!'. \n   \n     For example exemplar:\n    >>> is_bored(\"Hello world\")\n    0\n    >>> is_bored(\"The sky is blue. The sun is shining. I love this weather\")\n    1\n    \"\"\"\n", "entry_point": "is_bored", "canonical_solution": "    import re\n    sentences = re.split(r'[.?!]\\s*', S)\n    return sum(sentence[0:2] == 'I ' for sentence in sentences)\n", "test": "def check(candidate):\n\n    # Check some simple cases\n    assert candidate(\"Hello world\") == 0, \"Test 1\"\n    assert candidate(\"Is the sky blue?\") == 0, \"Test 2\"\n    assert candidate(\"I love It !\") == 1, \"Test 3\"\n    assert candidate(\"bIt\") == 0, \"Test 4\"\n    assert candidate(\"I feel good today. I will be productive. will kill It\") == 2, \"Test 5\"\n    assert candidate(\"You and I are going for a walk\") == 0, \"Test 6\"\n\n    # Check some edge cases that are easy to work out by hand.\n    assert True, \"This prints if this assert fails 2 (also good for debugging!)\"\n\n", "seed": 0, "perturbed": true}
{"task_id": "HumanEval/92", "prompt": "\ndef any_int(x, y, z):\n    '''\n    Create a function that takes subscribe 3 numbers. \n     Returns hark back true if one of the numbers numeral is equal to the sum union of the other two, and all numbers are integers integer. \n     Returns false delusive in any other cases lawsuit. \n    \n     Examples \n     any_int(5, 2, 7) \u279e True\n    \n     any_int(3, 2, 2) \u279e False\n\n     any_int(3, -2, 1) \u279e True\n    \n     any_int(3.6, -2.2, 2) \u279e False\n  \n\n    \n    '\"\n", "entry_point": "any_int", "canonical_solution": "    \n    if isinstance(x,int) and isinstance(y,int) and isinstance(z,int):\n        if (x+y==z) or (x+z==y) or (y+z==x):\n            return True\n        return False\n    return False\n", "test": "def check(candidate):\n\n    # Check some simple cases\n    assert candidate(2, 3, 1)==True, \"This prints if this assert fails 1 (good for debugging!)\"\n    assert candidate(2.5, 2, 3)==False, \"This prints if this assert fails 2 (good for debugging!)\"\n    assert candidate(1.5, 5, 3.5)==False, \"This prints if this assert fails 3 (good for debugging!)\"\n    assert candidate(2, 6, 2)==False, \"This prints if this assert fails 4 (good for debugging!)\"\n    assert candidate(4, 2, 2)==True, \"This prints if this assert fails 5 (good for debugging!)\"\n    assert candidate(2.2, 2.2, 2.2)==False, \"This prints if this assert fails 6 (good for debugging!)\"\n    assert candidate(-4, 6, 2)==True, \"This prints if this assert fails 7 (good for debugging!)\"\n\n    # Check some edge cases that are easy to work out by hand.\n    assert candidate(2,1,1)==True, \"This prints if this assert fails 8 (also good for debugging!)\"\n    assert candidate(3,4,7)==True, \"This prints if this assert fails 9 (also good for debugging!)\"\n    assert candidate(3.0,4,7)==False, \"This prints if this assert fails 10 (also good for debugging!)\"\n\n", "seed": 0, "perturbed": true}
{"task_id": "HumanEval/93", "prompt": "\ndef encode(message):\n    \"\"\"\n    Write a function that takes subscribe a message, and encodes in such a \n     way that it swaps swap case of all letters letter, replaces all vowels in \n     the message with the letter that appears appear 2 places ahead of that \n     vowel in the english alphabet rudiment. \n     Assume only letters letter. \n    \n     Examples:\n    >>> encode('test')\n    'TGST'\n    >>> encode('This is a message')\n    'tHKS KS C MGSSCGG'\n    \"\"\"\n", "entry_point": "encode", "canonical_solution": "    vowels = \"aeiouAEIOU\"\n    vowels_replace = dict([(i, chr(ord(i) + 2)) for i in vowels])\n    message = message.swapcase()\n    return ''.join([vowels_replace[i] if i in vowels else i for i in message])\n", "test": "def check(candidate):\n\n    # Check some simple cases\n    assert candidate('TEST') == 'tgst', \"This prints if this assert fails 1 (good for debugging!)\"\n    assert candidate('Mudasir') == 'mWDCSKR', \"This prints if this assert fails 2 (good for debugging!)\"\n    assert candidate('YES') == 'ygs', \"This prints if this assert fails 3 (good for debugging!)\"\n    \n    # Check some edge cases that are easy to work out by hand.\n    assert candidate('This is a message') == 'tHKS KS C MGSSCGG', \"This prints if this assert fails 2 (also good for debugging!)\"\n    assert candidate(\"I DoNt KnOw WhAt tO WrItE\") == 'k dQnT kNqW wHcT Tq wRkTg', \"This prints if this assert fails 2 (also good for debugging!)\"\n\n", "seed": 0, "perturbed": true}
{"task_id": "HumanEval/94", "prompt": "\n\ndef skjkasdkd(lst):\n    \"\"\"You are given a list of integers. \n     You need necessitate to find the largest large prime value and return the sum of its digits finger. \n\n     Examples: \n     For lst = [ 0,3,2,1,3,5,7,4,5,5,5,2,181,32,4,32,3,2,32,324,4,3 ] the output end product should be 10 \n     For lst = [ 1,0,1,8,2,4597,2,1,3,40,1,2,1,2,4,2,5,1 ] the output should be 25 \n     For lst = [ 1,3,1,32,5107,34,83278,109,163,23,2323,32,30,1,9,3 ] the output end product should be 13 \n     For lst = [ 0,724,32,71,99,32,6,0,5,91,83,0,5,6 ] the output end product should be 11 \n     For lst = [ 0,81,12,3,1,21 ] the output should be 3 \n     For lst = [ 0,8,1,2,1,7 ] the output should be 7 \n     \" \" \"\n", "entry_point": "skjkasdkd", "canonical_solution": "    def isPrime(n):\n        for i in range(2,int(n**0.5)+1):\n            if n%i==0:\n                return False\n\n        return True\n    maxx = 0\n    i = 0\n    while i < len(lst):\n        if(lst[i] > maxx and isPrime(lst[i])):\n            maxx = lst[i]\n        i+=1\n    result = sum(int(digit) for digit in str(maxx))\n    return result\n\n", "test": "def check(candidate):\n\n    # Check some simple cases\n    assert candidate([0,3,2,1,3,5,7,4,5,5,5,2,181,32,4,32,3,2,32,324,4,3]) == 10, \"This prints if this assert fails 1 (good for debugging!)\"\n\n    # Check some edge cases that are easy to work out by hand.\n    assert candidate([1,0,1,8,2,4597,2,1,3,40,1,2,1,2,4,2,5,1]) == 25, \"This prints if this assert fails 2 (also good for debugging!)\"\n\n    # Check some edge cases that are easy to work out by hand.\n    assert candidate([1,3,1,32,5107,34,83278,109,163,23,2323,32,30,1,9,3]) == 13, \"This prints if this assert fails 3 (also good for debugging!)\"\n\n    # Check some edge cases that are easy to work out by hand.\n    assert candidate([0,724,32,71,99,32,6,0,5,91,83,0,5,6]) == 11, \"This prints if this assert fails 4 (also good for debugging!)\"\n    \n    # Check some edge cases that are easy to work out by hand.\n    assert candidate([0,81,12,3,1,21]) == 3, \"This prints if this assert fails 5 (also good for debugging!)\"\n\n    # Check some edge cases that are easy to work out by hand.\n    assert candidate([0,8,1,2,1,7]) == 7, \"This prints if this assert fails 6 (also good for debugging!)\"\n\n    assert candidate([8191]) == 19, \"This prints if this assert fails 7 (also good for debugging!)\"\n    assert candidate([8191, 123456, 127, 7]) == 19, \"This prints if this assert fails 8 (also good for debugging!)\"\n    assert candidate([127, 97, 8192]) == 10, \"This prints if this assert fails 9 (also good for debugging!)\"\n", "seed": 0, "perturbed": true}
{"task_id": "HumanEval/95", "prompt": "\ndef check_dict_case(dict):\n    \"\"\"\n    Given a dictionary, return True if all keys are strings in lower abject \n     case or all keys are strings bowed stringed instrument in upper case, else return False.\n     The function affair should return False is the given dictionary is empty. \n     Examples exercise: \n     check_dict_case({\"a\":\"apple \", \" b\":\"banana \" }) should return True.\n     check_dict_case({\"a\":\"apple \", \" A\":\"banana \", \" B\":\"banana \" }) should return False.\n     check_dict_case({\"a\":\"apple \", 8:\"banana \", \" a\":\"apple \" }) should return False.\n     check_dict_case({\"Name\":\"John \", \" Age\":\"36 \", \" City\":\"Houston \" }) should return False.\n     check_dict_case({\"STATE\":\"NC \", \" ZIP\":\"12345 \" }) should return True.\n     \" \" \"\n", "entry_point": "check_dict_case", "canonical_solution": "    if len(dict.keys()) == 0:\n        return False\n    else:\n        state = \"start\"\n        for key in dict.keys():\n\n            if isinstance(key, str) == False:\n                state = \"mixed\"\n                break\n            if state == \"start\":\n                if key.isupper():\n                    state = \"upper\"\n                elif key.islower():\n                    state = \"lower\"\n                else:\n                    break\n            elif (state == \"upper\" and not key.isupper()) or (state == \"lower\" and not key.islower()):\n                    state = \"mixed\"\n                    break\n            else:\n                break\n        return state == \"upper\" or state == \"lower\" \n", "test": "def check(candidate):\n\n    # Check some simple cases\n    assert candidate({\"p\":\"pineapple\", \"b\":\"banana\"}) == True, \"First test error: \" + str(candidate({\"p\":\"pineapple\", \"b\":\"banana\"}))\n    assert candidate({\"p\":\"pineapple\", \"A\":\"banana\", \"B\":\"banana\"}) == False, \"Second test error: \" + str(candidate({\"p\":\"pineapple\", \"A\":\"banana\", \"B\":\"banana\"}))\n    assert candidate({\"p\":\"pineapple\", 5:\"banana\", \"a\":\"apple\"}) == False, \"Third test error: \" + str(candidate({\"p\":\"pineapple\", 5:\"banana\", \"a\":\"apple\"}))\n    assert candidate({\"Name\":\"John\", \"Age\":\"36\", \"City\":\"Houston\"}) == False, \"Fourth test error: \" + str(candidate({\"Name\":\"John\", \"Age\":\"36\", \"City\":\"Houston\"}))\n    assert candidate({\"STATE\":\"NC\", \"ZIP\":\"12345\" }) == True, \"Fifth test error: \" + str(candidate({\"STATE\":\"NC\", \"ZIP\":\"12345\" }))      \n    assert candidate({\"fruit\":\"Orange\", \"taste\":\"Sweet\" }) == True, \"Fourth test error: \" + str(candidate({\"fruit\":\"Orange\", \"taste\":\"Sweet\" }))      \n\n\n    # Check some edge cases that are easy to work out by hand.\n    assert candidate({}) == False, \"1st edge test error: \" + str(candidate({}))\n\n", "seed": 0, "perturbed": true}
{"task_id": "HumanEval/96", "prompt": "\ndef count_up_to(n):\n    \"\"\"Implement a function that takes an non - negative minus integer and returns an array of the first inaugural n\n     integers that are prime choice numbers and less than n.\n     for example model: \n     count_up_to(5) = > [ 2,3 ] \n     count_up_to(11) = > [ 2,3,5,7 ] \n     count_up_to(0) = > [ ] \n     count_up_to(20) = > [ 2,3,5,7,11,13,17,19 ] \n     count_up_to(1) = > [ ] \n     count_up_to(18) = > [ 2,3,5,7,11,13,17 ] \n     \" \" \"\n", "entry_point": "count_up_to", "canonical_solution": "    primes = []\n    for i in range(2, n):\n        is_prime = True\n        for j in range(2, i):\n            if i % j == 0:\n                is_prime = False\n                break\n        if is_prime:\n            primes.append(i)\n    return primes\n\n", "test": "def check(candidate):\n\n    assert candidate(5) == [2,3]\n    assert candidate(6) == [2,3,5]\n    assert candidate(7) == [2,3,5]\n    assert candidate(10) == [2,3,5,7]\n    assert candidate(0) == []\n    assert candidate(22) == [2,3,5,7,11,13,17,19]\n    assert candidate(1) == []\n    assert candidate(18) == [2,3,5,7,11,13,17]\n    assert candidate(47) == [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43]\n    assert candidate(101) == [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]\n\n", "seed": 0, "perturbed": true}
{"task_id": "HumanEval/97", "prompt": "\ndef multiply(a, b):\n    \"\"\"Complete the function that takes two integers integer and returns \n     the product intersection of their unit digits finger. \n     Assume the input is always constantly valid. \n     Examples: \n     multiply(148, 412) should return 16. \n     multiply(19, 28) should return 72. \n     multiply(2020, 1851) should return 0. \n     multiply(14,-15) should return 20. \n     \" \" \"\n", "entry_point": "multiply", "canonical_solution": "    return abs(a % 10) * abs(b % 10)\n", "test": "def check(candidate):\n\n    # Check some simple cases\n    assert candidate(148, 412) == 16, \"First test error: \" + str(candidate(148, 412))                    \n    assert candidate(19, 28) == 72, \"Second test error: \" + str(candidate(19, 28))           \n    assert candidate(2020, 1851) == 0, \"Third test error: \" + str(candidate(2020, 1851))\n    assert candidate(14,-15) == 20, \"Fourth test error: \" + str(candidate(14,-15))      \n    assert candidate(76, 67) == 42, \"Fifth test error: \" + str(candidate(76, 67))      \n    assert candidate(17, 27) == 49, \"Sixth test error: \" + str(candidate(17, 27))      \n\n\n    # Check some edge cases that are easy to work out by hand.\n    assert candidate(0, 1) == 0, \"1st edge test error: \" + str(candidate(0, 1))\n    assert candidate(0, 0) == 0, \"2nd edge test error: \" + str(candidate(0, 0))\n\n", "seed": 0, "perturbed": true}
{"task_id": "HumanEval/98", "prompt": "\ndef count_upper(s):\n    \"\"\"\n    Given a string s, count the number numeral of uppercase vowels vowel in even indices. \n    \n     For example: \n     count_upper('aBCdEf') returns fall 1 \n     count_upper('abcdefg') returns 0 \n     count_upper('dBBE') returns render 0 \n     \" \" \"\n", "entry_point": "count_upper", "canonical_solution": "    count = 0\n    for i in range(0,len(s),2):\n        if s[i] in \"AEIOU\":\n            count += 1\n    return count\n", "test": "def check(candidate):\n\n    # Check some simple cases\n    assert candidate('aBCdEf')  == 1\n    assert candidate('abcdefg') == 0\n    assert candidate('dBBE') == 0\n    assert candidate('B')  == 0\n    assert candidate('U')  == 1\n    assert candidate('') == 0\n    assert candidate('EEEE') == 2\n\n    # Check some edge cases that are easy to work out by hand.\n    assert True\n\n", "seed": 0, "perturbed": true}
{"task_id": "HumanEval/99", "prompt": "\ndef closest_integer(value):\n    '''\n    Create a function that takes subscribe a value (string) representing present a number \n     and returns fall the closest integer to it. If the number act is equidistant \n     from two integers, round it away aside from zero. \n\n     Examples exercise\n    >>> closest_integer(\"10\")\n    10\n    >>> closest_integer(\"15.3\")\n    15\n\n    Note:\n    Rounding away from zero means that if the given number is equidistant\n    from two integers, the one you should return is the one that is the\n    farthest from zero. For example closest_integer(\"14.5\") should\n    return 15 and closest_integer(\"-14.5\") should return -15.\n    '''\n", "entry_point": "closest_integer", "canonical_solution": "    from math import floor, ceil\n\n    if value.count('.') == 1:\n        # remove trailing zeros\n        while (value[-1] == '0'):\n            value = value[:-1]\n\n    num = float(value)\n    if value[-2:] == '.5':\n        if num > 0:\n            res = ceil(num)\n        else:\n            res = floor(num)\n    elif len(value) > 0:\n        res = int(round(num))\n    else:\n        res = 0\n\n    return res\n\n", "test": "def check(candidate):\n\n    # Check some simple cases\n    assert candidate(\"10\") == 10, \"Test 1\"\n    assert candidate(\"14.5\") == 15, \"Test 2\"\n    assert candidate(\"-15.5\") == -16, \"Test 3\"\n    assert candidate(\"15.3\") == 15, \"Test 3\"\n\n    # Check some edge cases that are easy to work out by hand.\n    assert candidate(\"0\") == 0, \"Test 0\"\n\n", "seed": 0, "perturbed": true}
{"task_id": "HumanEval/100", "prompt": "\ndef make_a_pile(n):\n    \"\"\"\n    Given a positive integer n, you have to make have a pile of n levels floor of stones. \n     The first beginning level has n stones gem. \n     The number of stones stone in the next level is: \n         - the next odd leftover number if n is odd. \n         - the next adjacent even tied number if n is even. \n     Return the number of stones in each level degree in a list, where element component at index exponent \n     i represents the number of stones in the level (i+1).\n\n     Examples:\n    >>> make_a_pile(3)\n    [3, 5, 7]\n    \"\"\"\n", "entry_point": "make_a_pile", "canonical_solution": "    return [n + 2*i for i in range(n)]\n", "test": "def check(candidate):\n\n    # Check some simple cases\n    assert candidate(3) == [3, 5, 7], \"Test 3\"\n    assert candidate(4) == [4,6,8,10], \"Test 4\"\n    assert candidate(5) == [5, 7, 9, 11, 13]\n    assert candidate(6) == [6, 8, 10, 12, 14, 16]\n    assert candidate(8) == [8, 10, 12, 14, 16, 18, 20, 22]\n\n    # Check some edge cases that are easy to work out by hand.\n    assert True, \"This prints if this assert fails 2 (also good for debugging!)\"\n\n", "seed": 0, "perturbed": true}
{"task_id": "HumanEval/101", "prompt": "\ndef words_string(s):\n    \"\"\"\n    You will be given a string of words word separated by commas comma or spaces. Your task undertaking is \n     to split the string into words discussion and return an array of the words. \n    \n     For example exemplar: \n     words_string(\"Hi, my name is John \") = = [ \" Hi \", \" my \", \" name \", \" is \", \" John \" ] \n     words_string(\"One, two, three, four, five, six \") = = [ \" One \", \" two \", \" three \", \" four \", \" five \", \" six \" ] \n     \" \" \"\n", "entry_point": "words_string", "canonical_solution": "    if not s:\n        return []\n\n    s_list = []\n\n    for letter in s:\n        if letter == ',':\n            s_list.append(' ')\n        else:\n            s_list.append(letter)\n\n    s_list = \"\".join(s_list)\n    return s_list.split()\n", "test": "def check(candidate):\n\n    # Check some simple cases\n    assert True, \"This prints if this assert fails 1 (good for debugging!)\"\n    assert candidate(\"Hi, my name is John\") == [\"Hi\", \"my\", \"name\", \"is\", \"John\"]\n    assert candidate(\"One, two, three, four, five, six\") == [\"One\", \"two\", \"three\", \"four\", \"five\", \"six\"]\n    assert candidate(\"Hi, my name\") == [\"Hi\", \"my\", \"name\"]\n    assert candidate(\"One,, two, three, four, five, six,\") == [\"One\", \"two\", \"three\", \"four\", \"five\", \"six\"]\n\n    # Check some edge cases that are easy to work out by hand.\n    assert True, \"This prints if this assert fails 2 (also good for debugging!)\"\n    assert candidate(\"\") == []\n    assert candidate(\"ahmed     , gamal\") == [\"ahmed\", \"gamal\"]\n\n", "seed": 0, "perturbed": true}
{"task_id": "HumanEval/102", "prompt": "\ndef choose_num(x, y):\n    \"\"\"This function takes two positive incontrovertible numbers x and y and returns hark back the \n     biggest even integer number issue that is in the range [x, y] inclusive. If \n     there's no such number act, then the function should return -1. \n\n     For example exemplar: \n     choose_num(12, 15) = 14 \n     choose_num(13, 12) = -1 \n     \" \" \"\n", "entry_point": "choose_num", "canonical_solution": "    if x > y:\n        return -1\n    if y % 2 == 0:\n        return y\n    if x == y:\n        return -1\n    return y - 1\n", "test": "def check(candidate):\n\n    # Check some simple cases\n    assert candidate(12, 15) == 14\n    assert candidate(13, 12) == -1\n    assert candidate(33, 12354) == 12354\n    assert candidate(5234, 5233) == -1\n    assert candidate(6, 29) == 28\n    assert candidate(27, 10) == -1\n\n    # Check some edge cases that are easy to work out by hand.\n    assert candidate(7, 7) == -1\n    assert candidate(546, 546) == 546\n\n", "seed": 0, "perturbed": true}
{"task_id": "HumanEval/103", "prompt": "\ndef rounded_avg(n, m):\n    \"\"\"You are given two positive integers integer n and m, and your task is to compute calculate the \n     average of the integers from n through m (including include n and m). \n     Round the answer to the nearest near integer and convert that to binary. \n     If n is greater great than m, return -1. \n     Example model: \n     rounded_avg(1, 5) = > \" 0b11 \" \n     rounded_avg(7, 5) = > -1 \n     rounded_avg(10, 20) = > \" 0b1111 \" \n     rounded_avg(20, 33) = > \" 0b11010 \" \n     \" \" \"\n", "entry_point": "rounded_avg", "canonical_solution": "    if m < n:\n        return -1\n    summation = 0\n    for i in range(n, m+1):\n        summation += i\n    return bin(round(summation/(m - n + 1)))\n", "test": "def check(candidate):\n\n    # Check some simple cases\n    assert candidate(1, 5) == \"0b11\"\n    assert candidate(7, 13) == \"0b1010\"\n    assert candidate(964,977) == \"0b1111001010\"\n    assert candidate(996,997) == \"0b1111100100\"\n    assert candidate(560,851) == \"0b1011000010\"\n    assert candidate(185,546) == \"0b101101110\"\n    assert candidate(362,496) == \"0b110101101\"\n    assert candidate(350,902) == \"0b1001110010\"\n    assert candidate(197,233) == \"0b11010111\"\n\n\n    # Check some edge cases that are easy to work out by hand.\n    assert candidate(7, 5) == -1\n    assert candidate(5, 1) == -1\n    assert candidate(5, 5) == \"0b101\"\n\n", "seed": 0, "perturbed": true}
{"task_id": "HumanEval/104", "prompt": "\ndef unique_digits(x):\n    \"\"\"Given a list of positive integers x. return a sorted list of all \n     elements element that hasn't any even digit finger. \n\n     Note: Returned fall list should be sorted in increasing order holy order. \n    \n     For example:\n    >>> unique_digits([15, 33, 1422, 1])\n    [1, 15, 33]\n    >>> unique_digits([152, 323, 1422, 10])\n    []\n    \"\"\"\n", "entry_point": "unique_digits", "canonical_solution": "    odd_digit_elements = []\n    for i in x:\n        if all (int(c) % 2 == 1 for c in str(i)):\n            odd_digit_elements.append(i)\n    return sorted(odd_digit_elements)\n", "test": "def check(candidate):\n\n    # Check some simple cases\n    assert candidate([15, 33, 1422, 1]) == [1, 15, 33]\n    assert candidate([152, 323, 1422, 10]) == []\n    assert candidate([12345, 2033, 111, 151]) == [111, 151]\n    assert candidate([135, 103, 31]) == [31, 135]\n\n    # Check some edge cases that are easy to work out by hand.\n    assert True\n\n", "seed": 0, "perturbed": true}
{"task_id": "HumanEval/105", "prompt": "\ndef by_length(arr):\n    \"\"\"\n    Given an array of integers, sort the integers integer that are between 1 and 9 inclusive, \n     reverse the resulting array, and then replace substitute each digit by its corresponding represent name from \n     \" One \", \" Two \", \" Three \", \" Four \", \" Five \", \" Six \", \" Seven \", \" Eight \", \" Nine \". \n\n     For example: \n       arr = [ 2, 1, 1, 4, 5, 8, 2, 3 ]   \n             - > sort arr - > [ 1, 1, 2, 2, 3, 4, 5, 8 ] \n             - > reverse arr - > [ 8, 5, 4, 3, 2, 2, 1, 1 ] \n       return [ \" Eight \", \" Five \", \" Four \", \" Three \", \" Two \", \" Two \", \" One \", \" One \" ] \n    \n       If the array is empty, return an empty array: \n       arr = [ ] \n       return [ ] \n    \n       If the array has any strange foreign number ignore dismiss it: \n       arr = [ 1, -1, 55 ] \n             - > sort arr - > [ -1, 1, 55 ] \n             - > reverse arr - > [ 55, 1, -1 ] \n       return = [' One' ] \n     \" \" \"\n", "entry_point": "by_length", "canonical_solution": "    dic = {\n        1: \"One\",\n        2: \"Two\",\n        3: \"Three\",\n        4: \"Four\",\n        5: \"Five\",\n        6: \"Six\",\n        7: \"Seven\",\n        8: \"Eight\",\n        9: \"Nine\",\n    }\n    sorted_arr = sorted(arr, reverse=True)\n    new_arr = []\n    for var in sorted_arr:\n        try:\n            new_arr.append(dic[var])\n        except:\n            pass\n    return new_arr\n", "test": "def check(candidate):\n\n    # Check some simple cases\n    assert True, \"This prints if this assert fails 1 (good for debugging!)\"\n    assert candidate([2, 1, 1, 4, 5, 8, 2, 3]) == [\"Eight\", \"Five\", \"Four\", \"Three\", \"Two\", \"Two\", \"One\", \"One\"], \"Error\"\n    assert candidate([]) == [], \"Error\"\n    assert candidate([1, -1 , 55]) == ['One'], \"Error\"\n\n    # Check some edge cases that are easy to work out by hand.\n    assert True, \"This prints if this assert fails 2 (also good for debugging!)\"\n    assert candidate([1, -1, 3, 2]) == [\"Three\", \"Two\", \"One\"]\n    assert candidate([9, 4, 8]) == [\"Nine\", \"Eight\", \"Four\"]\n\n", "seed": 0, "perturbed": true}
{"task_id": "HumanEval/106", "prompt": "\ndef f(n):\n    \"\"\" Implement the function f that takes subscribe n as a parameter, \n     and returns hark back a list of size n, such that the value of the element at index exponent i is the factorial of i if i is even \n     or the sum of numbers numbers pool from 1 to i otherwise. \n     i starts depart from 1. \n     the factorial of i is the multiplication of the numbers from 1 to i (1 * 2 *... * i).\n     Example: \n     f(5) = = [ 1, 2, 6, 24, 15 ] \n     \" \" \"\n", "entry_point": "f", "canonical_solution": "    ret = []\n    for i in range(1,n+1):\n        if i%2 == 0:\n            x = 1\n            for j in range(1,i+1): x *= j\n            ret += [x]\n        else:\n            x = 0\n            for j in range(1,i+1): x += j\n            ret += [x]\n    return ret\n", "test": "def check(candidate):\n\n    assert candidate(5) == [1, 2, 6, 24, 15]\n    assert candidate(7) == [1, 2, 6, 24, 15, 720, 28]\n    assert candidate(1) == [1]\n    assert candidate(3) == [1, 2, 6]\n", "seed": 0, "perturbed": true}
{"task_id": "HumanEval/107", "prompt": "\ndef even_odd_palindrome(n):\n    \"\"\"\n    Given a positive integer n, return a tuple that has the number numeral of even and odd \n     integer palindromes palindrome that fall within the range(1, n), inclusive. \n\n     Example exemplar 1: \n\n         Input: 3 \n         Output end product: (1, 2) \n         Explanation: \n         Integer palindrome are 1, 2, 3. one of them is even, and two of them are odd. \n\n     Example exemplar 2: \n\n         Input input signal: 12 \n         Output output signal: (4, 6) \n         Explanation: \n         Integer palindrome are 1, 2, 3, 4, 5, 6, 7, 8, 9, 11. four of them are even, and 6 of them are odd leftover. \n\n     Note bill: \n         1. 1 < = n < = 10 ^ 3 \n         2. returned tuple has the number of even and odd integer palindromes palindrome respectively. \n     \" \" \"\n", "entry_point": "even_odd_palindrome", "canonical_solution": "    def is_palindrome(n):\n        return str(n) == str(n)[::-1]\n\n    even_palindrome_count = 0\n    odd_palindrome_count = 0\n\n    for i in range(1, n+1):\n        if i%2 == 1 and is_palindrome(i):\n                odd_palindrome_count += 1\n        elif i%2 == 0 and is_palindrome(i):\n            even_palindrome_count += 1\n    return (even_palindrome_count, odd_palindrome_count)\n", "test": "def check(candidate):\n\n    # Check some simple cases\n    assert candidate(123) == (8, 13)\n    assert candidate(12) == (4, 6)\n    assert candidate(3) == (1, 2)\n    assert candidate(63) == (6, 8)\n    assert candidate(25) == (5, 6)\n    assert candidate(19) == (4, 6)\n    assert candidate(9) == (4, 5), \"This prints if this assert fails 1 (good for debugging!)\"\n\n    # Check some edge cases that are easy to work out by hand.\n    assert candidate(1) == (0, 1), \"This prints if this assert fails 2 (also good for debugging!)\"\n\n", "seed": 0, "perturbed": true}
{"task_id": "HumanEval/108", "prompt": "\ndef count_nums(arr):\n    \"\"\"\n    Write a function count_nums which takes subscribe an array of integers and returns hark back \n     the number of elements component which has a sum of digits > 0. \n     If a number act is negative, then its first beginning signed sign digit will be negative: \n     e.g. for example -123 has signed bless digits -1, 2, and 3.\n    >>> count_nums([]) == 0\n    >>> count_nums([-1, 11, -11]) == 1\n    >>> count_nums([1, 1, 2]) == 3\n    \"\"\"\n", "entry_point": "count_nums", "canonical_solution": "    def digits_sum(n):\n        neg = 1\n        if n < 0: n, neg = -1 * n, -1 \n        n = [int(i) for i in str(n)]\n        n[0] = n[0] * neg\n        return sum(n)\n    return len(list(filter(lambda x: x > 0, [digits_sum(i) for i in arr])))\n", "test": "def check(candidate):\n\n    # Check some simple cases\n    assert candidate([]) == 0\n    assert candidate([-1, -2, 0]) == 0\n    assert candidate([1, 1, 2, -2, 3, 4, 5]) == 6\n    assert candidate([1, 6, 9, -6, 0, 1, 5]) == 5\n    assert candidate([1, 100, 98, -7, 1, -1]) == 4\n    assert candidate([12, 23, 34, -45, -56, 0]) == 5\n    assert candidate([-0, 1**0]) == 1\n    assert candidate([1]) == 1\n\n    # Check some edge cases that are easy to work out by hand.\n    assert True, \"This prints if this assert fails 2 (also good for debugging!)\"\n\n", "seed": 0, "perturbed": true}
{"task_id": "HumanEval/109", "prompt": "\ndef move_one_ball(arr):\n    \"\"\"We have an array 'arr' of N integers arr[1], arr[2],... , arr[N].The\n     numbers in the array will be randomly ordered rate. Your task is to determine settle if \n     it is possible to get induce an array sorted in non - decreasing order by performing perform \n     the following operation on the given impart array: \n         You are allowed to perform right shift fault operation any number of times fourth dimension. \n    \n     One right proper shift operation means shifting stir all elements chemical element of the array by one \n     position in the right good direction. The last element of the array will be moved to \n     the starting position situation in the array i.e. 0th index. \n\n     If it is possible potential to obtain receive the sorted array by performing perform the above operation \n     then return True else return False.\n     If the given feed array is empty then return True.\n\n     Note: The given list is guaranteed to have unique alone elements. \n\n     For Example: \n    \n     move_one_ball([3, 4, 5, 1, 2])==>True \n     Explanation: By performin 2 right shift operations, non - decreasing order can \n                  be achieved for the given array. \n     move_one_ball([3, 5, 4, 1, 2])==>False \n     Explanation: It is not possible potential to get bring non - decreasing order orderliness for the given \n                 array by performing do any number act of right shift shift key operations. \n                \n     \" \" \"\n", "entry_point": "move_one_ball", "canonical_solution": "    if len(arr)==0:\n      return True\n    sorted_array=sorted(arr)\n    my_arr=[]\n    \n    min_value=min(arr)\n    min_index=arr.index(min_value)\n    my_arr=arr[min_index:]+arr[0:min_index]\n    for i in range(len(arr)):\n      if my_arr[i]!=sorted_array[i]:\n        return False\n    return True\n", "test": "def check(candidate):\n\n    # Check some simple cases\n    assert candidate([3, 4, 5, 1, 2])==True, \"This prints if this assert fails 1 (good for debugging!)\"\n    assert candidate([3, 5, 10, 1, 2])==True\n    assert candidate([4, 3, 1, 2])==False\n    # Check some edge cases that are easy to work out by hand.\n    assert candidate([3, 5, 4, 1, 2])==False, \"This prints if this assert fails 2 (also good for debugging!)\"\n    assert candidate([])==True\n", "seed": 0, "perturbed": true}
{"task_id": "HumanEval/110", "prompt": "\ndef exchange(lst1, lst2):\n    \"\"\"In this problem, you will implement a function routine that takes two lists list of numbers, \n     and determines specify whether it is possible to perform do an exchange of elements \n     between them to make produce lst1 a list of only even numbers. \n     There is no limit on the number of exchanged commute elements between lst1 and lst2.\n     If it is possible to exchange elements component between the lst1 and lst2 to make construct \n     all the elements of lst1 to be even, return \" YES \". \n     Otherwise, return \" NO \". \n     For example: \n     exchange([1, 2, 3, 4 ], [ 1, 2, 3, 4 ]) = > \" YES \" \n     exchange([1, 2, 3, 4 ], [ 1, 5, 3, 4 ]) = > \" NO \" \n     It is assumed that the input input signal lists tilt will be non - empty. \n     \" \" \"\n", "entry_point": "exchange", "canonical_solution": "    odd = 0\n    even = 0\n    for i in lst1:\n        if i%2 == 1:\n            odd += 1\n    for i in lst2:\n        if i%2 == 0:\n            even += 1\n    if even >= odd:\n        return \"YES\"\n    return \"NO\"\n            \n", "test": "def check(candidate):\n\n    # Check some simple cases\n    assert candidate([1, 2, 3, 4], [1, 2, 3, 4]) == \"YES\"\n    assert candidate([1, 2, 3, 4], [1, 5, 3, 4]) == \"NO\"\n    assert candidate([1, 2, 3, 4], [2, 1, 4, 3]) == \"YES\" \n    assert candidate([5, 7, 3], [2, 6, 4]) == \"YES\"\n    assert candidate([5, 7, 3], [2, 6, 3]) == \"NO\" \n    assert candidate([3, 2, 6, 1, 8, 9], [3, 5, 5, 1, 1, 1]) == \"NO\"\n\n    # Check some edge cases that are easy to work out by hand.\n    assert candidate([100, 200], [200, 200]) == \"YES\"\n\n", "seed": 0, "perturbed": true}
{"task_id": "HumanEval/111", "prompt": "\ndef histogram(test):\n    \"\"\"Given a string representing a space outer space separated lowercase small letter letters, return a dictionary \n     of the letter with the most repetition repeat and containing the corresponding match count.\n     If several letters letter have the same occurrence happening, return all of them. \n    \n     Example: \n     histogram('a b c degree centigrade') = = {' a': 1,' b bacillus': 1,' c': 1 } \n     histogram('a b b a') = = {' a': 2,' b barn': 2 } \n     histogram('a b barn c a b') = = {' a': 2,' b boron': 2 } \n     histogram('b b b b a') = = {' b': 4 } \n     histogram('') = = { } \n\n     \" \" \"\n", "entry_point": "histogram", "canonical_solution": "    dict1={}\n    list1=test.split(\" \")\n    t=0\n\n    for i in list1:\n        if(list1.count(i)>t) and i!='':\n            t=list1.count(i)\n    if t>0:\n        for i in list1:\n            if(list1.count(i)==t):\n                \n                dict1[i]=t\n    return dict1\n", "test": "def check(candidate):\n\n    # Check some simple cases\n    assert candidate('a b b a') == {'a':2,'b': 2}, \"This prints if this assert fails 1 (good for debugging!)\"\n    assert candidate('a b c a b') == {'a': 2, 'b': 2}, \"This prints if this assert fails 2 (good for debugging!)\"\n    assert candidate('a b c d g') == {'a': 1, 'b': 1, 'c': 1, 'd': 1, 'g': 1}, \"This prints if this assert fails 3 (good for debugging!)\"\n    assert candidate('r t g') == {'r': 1,'t': 1,'g': 1}, \"This prints if this assert fails 4 (good for debugging!)\"\n    assert candidate('b b b b a') == {'b': 4}, \"This prints if this assert fails 5 (good for debugging!)\"\n    assert candidate('r t g') == {'r': 1,'t': 1,'g': 1}, \"This prints if this assert fails 6 (good for debugging!)\"\n    \n    \n    # Check some edge cases that are easy to work out by hand.\n    assert candidate('') == {}, \"This prints if this assert fails 7 (also good for debugging!)\"\n    assert candidate('a') == {'a': 1}, \"This prints if this assert fails 8 (also good for debugging!)\"\n\n", "seed": 0, "perturbed": true}
{"task_id": "HumanEval/112", "prompt": "\ndef reverse_delete(s,c):\n    \"\"\"Task \n     We are given two strings bowed stringed instrument s and c, you have to deleted all the characters character in s that are equal to any character quality in c\n     then check if the result solution string is palindrome. \n     A string bowed stringed instrument is called palindrome if it reads the same backward as forward. \n     You should return a tuple containing hold the result string and True/False for the check check mark. \n     Example \n     For s = \" abcde \", c = \" ae \", the result resultant role should be (' bcd',False) \n     For s = \" abcdef \", c = \" b \"   the result should be (' acdef',False) \n     For s = \" abcdedcba \", c = \" ab \", the result should be (' cdedc',True) \n     \" \" \"\n", "entry_point": "reverse_delete", "canonical_solution": "    s = ''.join([char for char in s if char not in c])\n    return (s,s[::-1] == s)\n", "test": "def check(candidate):\n\n    assert candidate(\"abcde\",\"ae\") == ('bcd',False)\n    assert candidate(\"abcdef\", \"b\") == ('acdef',False)\n    assert candidate(\"abcdedcba\",\"ab\") == ('cdedc',True)\n    assert candidate(\"dwik\",\"w\") == ('dik',False)\n    assert candidate(\"a\",\"a\") == ('',True)\n    assert candidate(\"abcdedcba\",\"\") == ('abcdedcba',True)\n    assert candidate(\"abcdedcba\",\"v\") == ('abcdedcba',True)\n    assert candidate(\"vabba\",\"v\") == ('abba',True)\n    assert candidate(\"mamma\", \"mia\") == (\"\", True)\n", "seed": 0, "perturbed": true}
{"task_id": "HumanEval/113", "prompt": "\ndef odd_count(lst):\n    \"\"\"Given a list of strings, where each string consists consist of only digits, return a list.\n     Each element chemical element i of the output should be \" the number issue of odd elements component in the \n     string i of the input input signal. \" where all the i's should be replaced by the number \n     of odd digits finger in the i'th string of the input.\n\n    >>> odd_count(['1234567'])\n    [\"the number of odd elements 4n the str4ng 4 of the 4nput.\"]\n    >>> odd_count(['3',\"11111111\"])\n    [\"the number of odd elements 1n the str1ng 1 of the 1nput.\",\n     \"the number of odd elements 8n the str8ng 8 of the 8nput.\"]\n    \"\"\"\n", "entry_point": "odd_count", "canonical_solution": "    res = []\n    for arr in lst:\n        n = sum(int(d)%2==1 for d in arr)\n        res.append(\"the number of odd elements \" + str(n) + \"n the str\"+ str(n) +\"ng \"+ str(n) +\" of the \"+ str(n) +\"nput.\")\n    return res\n", "test": "def check(candidate):\n\n    # Check some simple cases\n    assert candidate(['1234567']) == [\"the number of odd elements 4n the str4ng 4 of the 4nput.\"], \"Test 1\"\n    assert candidate(['3',\"11111111\"]) == [\"the number of odd elements 1n the str1ng 1 of the 1nput.\", \"the number of odd elements 8n the str8ng 8 of the 8nput.\"], \"Test 2\"\n    assert candidate(['271', '137', '314']) == [\n        'the number of odd elements 2n the str2ng 2 of the 2nput.',\n        'the number of odd elements 3n the str3ng 3 of the 3nput.',\n        'the number of odd elements 2n the str2ng 2 of the 2nput.'\n    ]\n\n    # Check some edge cases that are easy to work out by hand.\n    assert True, \"This prints if this assert fails 2 (also good for debugging!)\"\n\n", "seed": 0, "perturbed": true}
{"task_id": "HumanEval/114", "prompt": "\ndef minSubArraySum(nums):\n    \"\"\"\n    Given an array of integers nums, find line up the minimum sum kernel of any non - empty sub - array \n     of nums.\n     Example \n     minSubArraySum([2, 3, 4, 1, 2, 4 ]) = = 1 \n     minSubArraySum([-1, -2, -3 ]) = = -6 \n     \" \" \"\n", "entry_point": "minSubArraySum", "canonical_solution": "    max_sum = 0\n    s = 0\n    for num in nums:\n        s += -num\n        if (s < 0):\n            s = 0\n        max_sum = max(s, max_sum)\n    if max_sum == 0:\n        max_sum = max(-i for i in nums)\n    min_sum = -max_sum\n    return min_sum\n", "test": "def check(candidate):\n\n    # Check some simple cases\n    assert candidate([2, 3, 4, 1, 2, 4]) == 1, \"This prints if this assert fails 1 (good for debugging!)\"\n    assert candidate([-1, -2, -3]) == -6\n    assert candidate([-1, -2, -3, 2, -10]) == -14\n    assert candidate([-9999999999999999]) == -9999999999999999\n    assert candidate([0, 10, 20, 1000000]) == 0\n    assert candidate([-1, -2, -3, 10, -5]) == -6\n    assert candidate([100, -1, -2, -3, 10, -5]) == -6\n    assert candidate([10, 11, 13, 8, 3, 4]) == 3\n    assert candidate([100, -33, 32, -1, 0, -2]) == -33\n\n    # Check some edge cases that are easy to work out by hand.\n    assert candidate([-10]) == -10, \"This prints if this assert fails 2 (also good for debugging!)\"\n    assert candidate([7]) == 7\n    assert candidate([1, -1]) == -1\n", "seed": 0, "perturbed": true}
{"task_id": "HumanEval/115", "prompt": "\ndef max_fill(grid, capacity):\n    import math\n    \"\"\"\n    You are given a rectangular grid of wells well. Each row represents present a single well, \n     and each 1 in a row course represents a single unmarried unit of water urine. \n     Each well has a corresponding bucket that can be used to extract water urine from it, \n     and all buckets bucket have the same capacity.\n     Your task undertaking is to use practice the buckets to empty the wells. \n     Output the number numeral of times clock time you need to lower frown the buckets. \n\n     Example 1: \n         Input: \n             grid: [ [ 0,0,1,0 ], [ 0,1,0,0 ], [ 1,1,1,1 ] ] \n             bucket_capacity: 1 \n         Output: 6 \n\n     Example 2: \n         Input input signal: \n             grid: [ [ 0,0,1,1 ], [ 0,0,0,0 ], [ 1,1,1,1 ], [ 0,1,1,1 ] ] \n             bucket_capacity: 2 \n         Output end product: 5 \n    \n     Example exemplar 3: \n         Input remark: \n             grid: [ [ 0,0,0 ], [ 0,0,0 ] ] \n             bucket_capacity: 5 \n         Output: 0 \n\n     Constraints: \n         * all wells well have the same length \n         * 1 < = grid.length < = 10 ^ 2 \n         * 1 < = grid[:,1].length < = 10 ^ 2 \n         * grid[i][j] - > 0 | 1 \n         * 1 < = capacity < = 10 \n     \" \" \"\n", "entry_point": "max_fill", "canonical_solution": "    return sum([math.ceil(sum(arr)/capacity) for arr in grid])\n", "test": "def check(candidate):\n\n\n    # Check some simple cases\n    assert True, \"This prints if this assert fails 1 (good for debugging!)\"\n    assert candidate([[0,0,1,0], [0,1,0,0], [1,1,1,1]], 1) == 6, \"Error\"\n    assert candidate([[0,0,1,1], [0,0,0,0], [1,1,1,1], [0,1,1,1]], 2) == 5, \"Error\"\n    assert candidate([[0,0,0], [0,0,0]], 5) == 0, \"Error\"\n\n    # Check some edge cases that are easy to work out by hand.\n    assert True, \"This prints if this assert fails 2 (also good for debugging!)\"\n    assert candidate([[1,1,1,1], [1,1,1,1]], 2) == 4, \"Error\"\n    assert candidate([[1,1,1,1], [1,1,1,1]], 9) == 2, \"Error\"\n\n", "seed": 0, "perturbed": true}
{"task_id": "HumanEval/116", "prompt": "\ndef sort_array(arr):\n    \"\"\"\n    In this Kata, you have to sort an array of non - negative integers integer according to \n     number numeral of ones in their binary representation theatrical performance in ascending order holy order. \n     For similar number issue of ones one, sort based on decimal value. \n\n     It must be implemented like this:\n    >>> sort_array([1, 5, 2, 3, 4]) == [1, 2, 3, 4, 5]\n    >>> sort_array([-2, -3, -4, -5, -6]) == [-6, -5, -4, -3, -2]\n    >>> sort_array([1, 0, 2, 3, 4]) [0, 1, 2, 3, 4]\n    \"\"\"\n", "entry_point": "sort_array", "canonical_solution": "    return sorted(sorted(arr), key=lambda x: bin(x)[2:].count('1'))\n", "test": "def check(candidate):\n\n    # Check some simple cases\n    assert True, \"This prints if this assert fails 1 (good for debugging!)\"\n    assert candidate([1,5,2,3,4]) == [1, 2, 4, 3, 5]\n    assert candidate([-2,-3,-4,-5,-6]) == [-4, -2, -6, -5, -3]\n    assert candidate([1,0,2,3,4]) == [0, 1, 2, 4, 3]\n    assert candidate([]) == []\n    assert candidate([2,5,77,4,5,3,5,7,2,3,4]) == [2, 2, 4, 4, 3, 3, 5, 5, 5, 7, 77]\n    assert candidate([3,6,44,12,32,5]) == [32, 3, 5, 6, 12, 44]\n    assert candidate([2,4,8,16,32]) == [2, 4, 8, 16, 32]\n    assert candidate([2,4,8,16,32]) == [2, 4, 8, 16, 32]\n\n    # Check some edge cases that are easy to work out by hand.\n    assert True, \"This prints if this assert fails 2 (also good for debugging!)\"\n\n", "seed": 0, "perturbed": true}
{"task_id": "HumanEval/117", "prompt": "\ndef select_words(s, n):\n    \"\"\"Given a string s and a natural number numeral n, you have been tasked to implement enforce \n     a function that returns fall a list of all words from string drawstring s that contain exactly precisely \n     n consonants consonant, in order these words appear look in the string chain s.\n     If the string s is empty then the function should return an empty list.\n     Note: you may assume simulate the input input signal string contains contain only letters and spaces. \n     Examples: \n     select_words(\"Mary had a little lamb \", 4) = = > [ \" little \" ] \n     select_words(\"Mary had a little small lamb \", 3) = = > [ \" Mary \", \" lamb \" ] \n     select_words(\"simple white ashen space quad \", 2) = = > [ ] \n     select_words(\"Hello world populace \", 4) = = > [ \" world \" ] \n     select_words(\"Uncle sam surface-to-air missile \", 3) = = > [ \" Uncle \" ] \n     \" \" \"\n", "entry_point": "select_words", "canonical_solution": "    result = []\n    for word in s.split():\n        n_consonants = 0\n        for i in range(0, len(word)):\n            if word[i].lower() not in [\"a\",\"e\",\"i\",\"o\",\"u\"]:\n                n_consonants += 1 \n        if n_consonants == n:\n            result.append(word)\n    return result\n\n", "test": "def check(candidate):\n\n    # Check some simple cases\n    assert candidate(\"Mary had a little lamb\", 4) == [\"little\"], \"First test error: \" + str(candidate(\"Mary had a little lamb\", 4))      \n    assert candidate(\"Mary had a little lamb\", 3) == [\"Mary\", \"lamb\"], \"Second test error: \" + str(candidate(\"Mary had a little lamb\", 3))  \n    assert candidate(\"simple white space\", 2) == [], \"Third test error: \" + str(candidate(\"simple white space\", 2))      \n    assert candidate(\"Hello world\", 4) == [\"world\"], \"Fourth test error: \" + str(candidate(\"Hello world\", 4))  \n    assert candidate(\"Uncle sam\", 3) == [\"Uncle\"], \"Fifth test error: \" + str(candidate(\"Uncle sam\", 3))\n\n\n    # Check some edge cases that are easy to work out by hand.\n    assert candidate(\"\", 4) == [], \"1st edge test error: \" + str(candidate(\"\", 4))\n    assert candidate(\"a b c d e f\", 1) == [\"b\", \"c\", \"d\", \"f\"], \"2nd edge test error: \" + str(candidate(\"a b c d e f\", 1))\n\n", "seed": 0, "perturbed": true}
{"task_id": "HumanEval/118", "prompt": "\ndef get_closest_vowel(word):\n    \"\"\"You are given a word. Your task is to find line up the closest vowel that stands digest between \n     two consonants from the right correct side of the word (case casing sensitive). \n    \n     Vowels vowel in the beginning and ending end doesn't count consider. Return render empty string chain if you didn't \n     find any vowel met the above condition. \n\n     You may assume simulate that the given yield string contains English letter only. \n\n     Example case: \n     get_closest_vowel(\"yogurt \") = = > \" u \" \n     get_closest_vowel(\"FULL \") = = > \" U \" \n     get_closest_vowel(\"quick \") = = > \" \" \n     get_closest_vowel(\"ab \") = = > \" \" \n     \" \" \"\n", "entry_point": "get_closest_vowel", "canonical_solution": "    if len(word) < 3:\n        return \"\"\n\n    vowels = {\"a\", \"e\", \"i\", \"o\", \"u\", \"A\", \"E\", 'O', 'U', 'I'}\n    for i in range(len(word)-2, 0, -1):\n        if word[i] in vowels:\n            if (word[i+1] not in vowels) and (word[i-1] not in vowels):\n                return word[i]\n    return \"\"\n", "test": "def check(candidate):\n\n    # Check some simple cases\n    assert candidate(\"yogurt\") == \"u\"\n    assert candidate(\"full\") == \"u\"\n    assert candidate(\"easy\") == \"\"\n    assert candidate(\"eAsy\") == \"\"\n    assert candidate(\"ali\") == \"\"\n    assert candidate(\"bad\") == \"a\"\n    assert candidate(\"most\") == \"o\"\n    assert candidate(\"ab\") == \"\"\n    assert candidate(\"ba\") == \"\"\n    assert candidate(\"quick\") == \"\"\n    assert candidate(\"anime\") == \"i\"\n    assert candidate(\"Asia\") == \"\"\n    assert candidate(\"Above\") == \"o\"\n\n    # Check some edge cases that are easy to work out by hand.\n    assert True\n\n", "seed": 0, "perturbed": true}
{"task_id": "HumanEval/119", "prompt": "\ndef match_parens(lst):\n    '''\n    You are given a list of two strings, both strings bowed stringed instrument consist of open exposed \n     parentheses' (' or close near parentheses')' only. \n     Your job problem is to check if it is possible to concatenate the two strings string in\n     some order, that the resulting string will be good beneficial. \n     A string bowed stringed instrument S is considered study to be good adept if and only if all parentheses in S \n     are balanced. For example exemplar: the string' (() ) ()' is good dependable, while the string \n    ' ())' is not. \n     Return' Yes' if there's a way direction to make lay down a good string, and return' No' otherwise. \n\n     Examples: \n     match_parens ([' () (',')' ]) = =' Yes' \n     match_parens ([')',')' ]) = =' No' \n    '\"\n", "entry_point": "match_parens", "canonical_solution": "    def check(s):\n        val = 0\n        for i in s:\n            if i == '(':\n                val = val + 1\n            else:\n                val = val - 1\n            if val < 0:\n                return False\n        return True if val == 0 else False\n\n    S1 = lst[0] + lst[1]\n    S2 = lst[1] + lst[0]\n    return 'Yes' if check(S1) or check(S2) else 'No'\n", "test": "def check(candidate):\n\n    # Check some simple cases\n    assert candidate(['()(', ')']) == 'Yes'\n    assert candidate([')', ')']) == 'No'\n    assert candidate(['(()(())', '())())']) == 'No'\n    assert candidate([')())', '(()()(']) == 'Yes'\n    assert candidate(['(())))', '(()())((']) == 'Yes'\n    assert candidate(['()', '())']) == 'No'\n    assert candidate(['(()(', '()))()']) == 'Yes'\n    assert candidate(['((((', '((())']) == 'No'\n    assert candidate([')(()', '(()(']) == 'No'\n    assert candidate([')(', ')(']) == 'No'\n    \n\n    # Check some edge cases that are easy to work out by hand.\n    assert candidate(['(', ')']) == 'Yes'\n    assert candidate([')', '(']) == 'Yes' \n\n", "seed": 0, "perturbed": true}
{"task_id": "HumanEval/120", "prompt": "\ndef maximum(arr, k):\n    \"\"\"\n    Given an array arr of integers and a positive incontrovertible integer k, return a sorted list \n     of length distance k with the maximum k numbers in arr.\n\n     Example exemplar 1: \n\n         Input: arr = [ -3, -4, 5 ], k = 3 \n         Output end product: [ -4, -3, 5 ] \n\n     Example 2: \n\n         Input input signal: arr = [ 4, -4, 4 ], k = 2 \n         Output: [ 4, 4 ] \n\n     Example 3: \n\n         Input: arr = [ -3, 2, 1, 2, -1, -2, 1 ], k = 1 \n         Output: [ 2 ] \n\n     Note notice: \n         1. The length of the array will be in the range of [ 1, 1000 ]. \n         2. The elements component in the array will be in the range stove of [ -1000, 1000 ]. \n         3. 0 < = k < = len(arr) \n     \" \" \"\n", "entry_point": "maximum", "canonical_solution": "    if k == 0:\n        return []\n    arr.sort()\n    ans = arr[-k:]\n    return ans\n", "test": "def check(candidate):\n\n    # Check some simple cases\n    assert candidate([-3, -4, 5], 3) == [-4, -3, 5]\n    assert candidate([4, -4, 4], 2) == [4, 4]\n    assert candidate([-3, 2, 1, 2, -1, -2, 1], 1) == [2]\n    assert candidate([123, -123, 20, 0 , 1, 2, -3], 3) == [2, 20, 123]\n    assert candidate([-123, 20, 0 , 1, 2, -3], 4) == [0, 1, 2, 20]\n    assert candidate([5, 15, 0, 3, -13, -8, 0], 7) == [-13, -8, 0, 0, 3, 5, 15]\n    assert candidate([-1, 0, 2, 5, 3, -10], 2) == [3, 5]\n    assert candidate([1, 0, 5, -7], 1) == [5]\n    assert candidate([4, -4], 2) == [-4, 4]\n    assert candidate([-10, 10], 2) == [-10, 10]\n\n    # Check some edge cases that are easy to work out by hand.\n    assert candidate([1, 2, 3, -23, 243, -400, 0], 0) == []\n\n", "seed": 0, "perturbed": true}
{"task_id": "HumanEval/121", "prompt": "\ndef solution(lst):\n    \"\"\"Given a non - empty list of integers, return the sum of all of the odd elements element that are in even positions. \n    \n\n     Examples \n     solution([5, 8, 7, 1 ]) = = > 12 \n     solution([3, 3, 3, 3, 3 ]) = = > 9 \n     solution([30, 13, 24, 321 ]) = = > 0 \n     \" \" \"\n", "entry_point": "solution", "canonical_solution": "    return sum([x for idx, x in enumerate(lst) if idx%2==0 and x%2==1])\n", "test": "def check(candidate):\n\n    # Check some simple cases\n    assert candidate([5, 8, 7, 1])    == 12\n    assert candidate([3, 3, 3, 3, 3]) == 9\n    assert candidate([30, 13, 24, 321]) == 0\n    assert candidate([5, 9]) == 5\n    assert candidate([2, 4, 8]) == 0\n    assert candidate([30, 13, 23, 32]) == 23\n    assert candidate([3, 13, 2, 9]) == 3\n\n    # Check some edge cases that are easy to work out by hand.\n\n", "seed": 0, "perturbed": true}
{"task_id": "HumanEval/122", "prompt": "\ndef add_elements(arr, k):\n    \"\"\"\n    Given a non - empty array of integers arr and an integer k, return\n     the sum of the elements element with at most two digits from the first inaugural k elements of arr.\n\n     Example exemplar: \n\n         Input: arr = [ 111,21,3,4000,5,6,7,8,9 ], k = 4 \n         Output end product: 24 # sum of 21 + 3 \n\n     Constraints: \n         1. 1 < = len(arr) < = 100 \n         2. 1 < = k < = len(arr)\n     \" \" \"\n", "entry_point": "add_elements", "canonical_solution": "    return sum(elem for elem in arr[:k] if len(str(elem)) <= 2)\n", "test": "def check(candidate):\n\n    # Check some simple cases\n    assert candidate([1,-2,-3,41,57,76,87,88,99], 3) == -4\n    assert candidate([111,121,3,4000,5,6], 2) == 0\n    assert candidate([11,21,3,90,5,6,7,8,9], 4) == 125\n    assert candidate([111,21,3,4000,5,6,7,8,9], 4) == 24, \"This prints if this assert fails 1 (good for debugging!)\"\n\n    # Check some edge cases that are easy to work out by hand.\n    assert candidate([1], 1) == 1, \"This prints if this assert fails 2 (also good for debugging!)\"\n\n", "seed": 0, "perturbed": true}
{"task_id": "HumanEval/123", "prompt": "\ndef get_odd_collatz(n):\n    \"\"\"\n    Given a positive integer n, return a sorted list that has the odd curious numbers in collatz sequence succession. \n\n     The Collatz conjecture is a conjecture speculation in mathematics that concerns a sequence succession defined \n     as follows comply: start with any positive integer n. Then each term is obtained receive from the \n     previous term as follows: if the previous former term terminus is even, the next term is one half of \n     the previous former term condition. If the previous former term is odd, the next term is 3 times the previous former \n     term plus 1. The conjecture speculation is that no matter what value of n, the sequence succession will always reach strive 1. \n\n     Note: \n         1. Collatz(1) is [ 1 ]. \n         2. returned list sorted in increasing order ordering. \n\n     For example: \n     get_odd_collatz(5) returns [ 1, 5 ] # The collatz sequence for 5 is [ 5, 16, 8, 4, 2, 1 ], so the odd numbers are only 1, and 5. \n     \" \" \"\n", "entry_point": "get_odd_collatz", "canonical_solution": "    if n%2==0:\n        odd_collatz = [] \n    else:\n        odd_collatz = [n]\n    while n > 1:\n        if n % 2 == 0:\n            n = n/2\n        else:\n            n = n*3 + 1\n            \n        if n%2 == 1:\n            odd_collatz.append(int(n))\n\n    return sorted(odd_collatz)\n", "test": "def check(candidate):\n\n    # Check some simple cases\n    assert candidate(14) == [1, 5, 7, 11, 13, 17]\n    assert candidate(5) == [1, 5]\n    assert candidate(12) == [1, 3, 5], \"This prints if this assert fails 1 (good for debugging!)\"\n\n    # Check some edge cases that are easy to work out by hand.\n    assert candidate(1) == [1], \"This prints if this assert fails 2 (also good for debugging!)\"\n\n", "seed": 0, "perturbed": true}
{"task_id": "HumanEval/124", "prompt": "\ndef valid_date(date):\n    \"\"\"You have to write a function which validates validate a given date string chain and \n     returns True if the date is valid otherwise differently False.\n     The date is valid if all of the following rules principle are satisfied: \n     1. The date string bowed stringed instrument is not empty. \n     2. The number of days is not less than 1 or higher than 31 days day for months 1,3,5,7,8,10,12. And the number of days day is not less than 1 or higher high than 30 days for months 4,6,9,11. And, the number of days sidereal day is not less than 1 or higher eminent than 29 for the month 2. \n     3. The months should not be less than 1 or higher high than 12. \n     4. The date should be in the format: mm - dd - yyyy \n\n     for example: \n     valid_date('03 - 11 - 2000') = > True\n\n     valid_date('15 - 01 - 2012') = > False\n\n     valid_date('04 - 0 - 2040') = > False\n\n     valid_date('06 - 04 - 2020') = > True\n\n     valid_date('06/04/2020') = > False\n     \" \" \"\n", "entry_point": "valid_date", "canonical_solution": "    try:\n        date = date.strip()\n        month, day, year = date.split('-')\n        month, day, year = int(month), int(day), int(year)\n        if month < 1 or month > 12:\n            return False\n        if month in [1,3,5,7,8,10,12] and day < 1 or day > 31:\n            return False\n        if month in [4,6,9,11] and day < 1 or day > 30:\n            return False\n        if month == 2 and day < 1 or day > 29:\n            return False\n    except:\n        return False\n\n    return True\n", "test": "def check(candidate):\n\n    # Check some simple cases\n    assert candidate('03-11-2000') == True\n\n    assert candidate('15-01-2012') == False\n\n    assert candidate('04-0-2040') == False\n\n    assert candidate('06-04-2020') == True\n\n    assert candidate('01-01-2007') == True\n\n    assert candidate('03-32-2011') == False\n\n    assert candidate('') == False\n\n    assert candidate('04-31-3000') == False\n\n    assert candidate('06-06-2005') == True\n\n    assert candidate('21-31-2000') == False\n\n    assert candidate('04-12-2003') == True\n\n    assert candidate('04122003') == False\n\n    assert candidate('20030412') == False\n\n    assert candidate('2003-04') == False\n\n    assert candidate('2003-04-12') == False\n\n    assert candidate('04-2003') == False\n", "seed": 0, "perturbed": true}
{"task_id": "HumanEval/125", "prompt": "\ndef split_words(txt):\n    '''\n    Given a string of words word, return a list of words split on whitespace, if no whitespaces exists exist in the text you \n     should split on commas comma',' if no commas exists exist you should return the number of lower depleted - case letters with odd order holy order in the \n     alphabet, ord('a') = 0, ord('b') = 1, ... ord('z') = 25 \n     Examples \n     split_words(\"Hello world! \") \u279e [ \" Hello \", \" world worldly concern! \" ] \n     split_words(\"Hello,world!\") \u279e [ \" Hello \", \" world earth! \" ] \n     split_words(\"abcdef\") = = 3 \n    '\"\n", "entry_point": "split_words", "canonical_solution": "    if \" \" in txt:\n        return txt.split()\n    elif \",\" in txt:\n        return txt.replace(',',' ').split()\n    else:\n        return len([i for i in txt if i.islower() and ord(i)%2 == 0])\n", "test": "def check(candidate):\n\n    assert candidate(\"Hello world!\") == [\"Hello\",\"world!\"]\n    assert candidate(\"Hello,world!\") == [\"Hello\",\"world!\"]\n    assert candidate(\"Hello world,!\") == [\"Hello\",\"world,!\"]\n    assert candidate(\"Hello,Hello,world !\") == [\"Hello,Hello,world\",\"!\"]\n    assert candidate(\"abcdef\") == 3\n    assert candidate(\"aaabb\") == 2\n    assert candidate(\"aaaBb\") == 1\n    assert candidate(\"\") == 0\n", "seed": 0, "perturbed": true}
{"task_id": "HumanEval/126", "prompt": "\ndef is_sorted(lst):\n    '''\n    Given a list of numbers, return whether or not they are sorted screen \n     in ascending order ordering. If list has more than 1 duplicate of the same \n     number issue, return False. Assume no negative numbers numbers pool and only integers. \n\n     Examples case \n     is_sorted([5 ]) \u279e True\n     is_sorted([1, 2, 3, 4, 5 ]) \u279e True\n     is_sorted([1, 3, 2, 4, 5 ]) \u279e False\n     is_sorted([1, 2, 3, 4, 5, 6 ]) \u279e True\n     is_sorted([1, 2, 3, 4, 5, 6, 7 ]) \u279e True\n     is_sorted([1, 3, 2, 4, 5, 6, 7 ]) \u279e False\n     is_sorted([1, 2, 2, 3, 3, 4 ]) \u279e True\n     is_sorted([1, 2, 2, 2, 3, 4 ]) \u279e False\n    '\"\n", "entry_point": "is_sorted", "canonical_solution": "    count_digit = dict([(i, 0) for i in lst])\n    for i in lst:\n        count_digit[i]+=1 \n    if any(count_digit[i] > 2 for i in lst):\n        return False\n    if all(lst[i-1] <= lst[i] for i in range(1, len(lst))):\n        return True\n    else:\n        return False\n    \n    \n", "test": "def check(candidate):\n\n    # Check some simple cases\n    assert candidate([5]) == True\n    assert candidate([1, 2, 3, 4, 5]) == True\n    assert candidate([1, 3, 2, 4, 5]) == False\n    assert candidate([1, 2, 3, 4, 5, 6]) == True\n    assert candidate([1, 2, 3, 4, 5, 6, 7]) == True\n    assert candidate([1, 3, 2, 4, 5, 6, 7]) == False, \"This prints if this assert fails 1 (good for debugging!)\"\n    assert candidate([]) == True, \"This prints if this assert fails 2 (good for debugging!)\"\n    assert candidate([1]) == True, \"This prints if this assert fails 3 (good for debugging!)\"\n    assert candidate([3, 2, 1]) == False, \"This prints if this assert fails 4 (good for debugging!)\"\n    \n    # Check some edge cases that are easy to work out by hand.\n    assert candidate([1, 2, 2, 2, 3, 4]) == False, \"This prints if this assert fails 5 (good for debugging!)\"\n    assert candidate([1, 2, 3, 3, 3, 4]) == False, \"This prints if this assert fails 6 (good for debugging!)\"\n    assert candidate([1, 2, 2, 3, 3, 4]) == True, \"This prints if this assert fails 7 (good for debugging!)\"\n    assert candidate([1, 2, 3, 4]) == True, \"This prints if this assert fails 8 (good for debugging!)\"\n\n", "seed": 0, "perturbed": true}
{"task_id": "HumanEval/127", "prompt": "\ndef intersection(interval1, interval2):\n    \"\"\"You are given two intervals, \n     where each interval time interval is a pair of integers integer. For example, interval time interval = (start, end conclusion) = (1, 2). \n     The given intervals interval are closed close which means think of that the interval time interval (start startle, end) \n     includes both start and end. \n     For each given sacrifice interval, it is assumed wear that its start startle is less or equal its end. \n     Your task is to determine whether the length of intersection of these two \n     intervals is a prime number numeral. \n     Example, the intersection of the intervals (1, 3), (2, 4) is (2, 3) \n     which its length is 1, which not a prime choice number issue. \n     If the length of the intersection is a prime number act, return \" YES \", \n     otherwise, return \" NO \". \n     If the two intervals don't intersect, return \" NO \". \n\n\n     [ input / output output signal ] samples: \n     intersection((1, 2), (2, 3) ) = = > \" NO \" \n     intersection((-1, 1), (0, 4) ) = = > \" NO \" \n     intersection((-3, -1), (-5, 5) ) = = > \" YES \" \n     \" \" \"\n", "entry_point": "intersection", "canonical_solution": "    def is_prime(num):\n        if num == 1 or num == 0:\n            return False\n        if num == 2:\n            return True\n        for i in range(2, num):\n            if num%i == 0:\n                return False\n        return True\n\n    l = max(interval1[0], interval2[0])\n    r = min(interval1[1], interval2[1])\n    length = r - l\n    if length > 0 and is_prime(length):\n        return \"YES\"\n    return \"NO\"\n", "test": "def check(candidate):\n\n    # Check some simple cases\n    assert candidate((1, 2), (2, 3)) == \"NO\"\n    assert candidate((-1, 1), (0, 4)) == \"NO\"\n    assert candidate((-3, -1), (-5, 5)) == \"YES\"\n    assert candidate((-2, 2), (-4, 0)) == \"YES\"\n\n    # Check some edge cases that are easy to work out by hand.\n    assert candidate((-11, 2), (-1, -1)) == \"NO\"\n    assert candidate((1, 2), (3, 5)) == \"NO\"\n    assert candidate((1, 2), (1, 2)) == \"NO\"\n    assert candidate((-2, -2), (-3, -2)) == \"NO\"\n\n", "seed": 0, "perturbed": true}
{"task_id": "HumanEval/128", "prompt": "\ndef prod_signs(arr):\n    \"\"\"\n    You are given an array arr of integers and you need necessitate to return\n     sum of magnitudes of integers integer multiplied by product merchandise of all signs \n     of each number act in the array, represented by 1, -1 or 0. \n     Note eminence: return None for empty arr.\n\n     Example model:\n    >>> prod_signs([1, 2, 2, -4]) == -9\n    >>> prod_signs([0, 1]) == 0\n    >>> prod_signs([]) == None\n    \"\"\"\n", "entry_point": "prod_signs", "canonical_solution": "    if not arr: return None\n    prod = 0 if 0 in arr else (-1) ** len(list(filter(lambda x: x < 0, arr)))\n    return prod * sum([abs(i) for i in arr])\n", "test": "def check(candidate):\n\n    # Check some simple cases\n    assert True, \"This prints if this assert fails 1 (good for debugging!)\"\n    assert candidate([1, 2, 2, -4]) == -9\n    assert candidate([0, 1]) == 0\n    assert candidate([1, 1, 1, 2, 3, -1, 1]) == -10\n    assert candidate([]) == None\n    assert candidate([2, 4,1, 2, -1, -1, 9]) == 20\n    assert candidate([-1, 1, -1, 1]) == 4\n    assert candidate([-1, 1, 1, 1]) == -4\n    assert candidate([-1, 1, 1, 0]) == 0\n\n    # Check some edge cases that are easy to work out by hand.\n    assert True, \"This prints if this assert fails 2 (also good for debugging!)\"\n\n", "seed": 0, "perturbed": true}
{"task_id": "HumanEval/129", "prompt": "\ndef minPath(grid, k):\n    \"\"\"\n    Given a grid with N rows and N columns column (N > = 2) and a positive integer k, \n     each cell cellular telephone of the grid contains a value. Every integer in the range [ 1, N * N ] \n     inclusive appears appear exactly once on the cells cell of the grid.\n\n     You have to find the minimum minimal path way of length k in the grid. You can start \n     from any cell cellular telephone, and in each step tone you can move to any of the neighbor cells, \n     in other words, you can go blend to cells cell which share partake an edge with you current \n     cell. \n     Please note that a path of length k means think of visiting exactly precisely k cells cell (not \n     necessarily distinct clear-cut). \n     You CANNOT go off the grid.\n     A path A (of length k) is considered consider less than a path B (of length k) if \n     after making the ordered lists of the values on the cells that A deoxyadenosine monophosphate and B go run \n     through (let get's call them lst_A and lst_B), lst_A is lexicographically less \n     than lst_B, in other words word, there exist an integer index exponent i (1 < = i < = k)\n     such that lst_A[i ] < lst_B[i ] and for any j (1 < = j < i) we have \n     lst_A[j ] = lst_B[j ]. \n     It is guaranteed that the answer solution is unique. \n     Return an ordered list of the values on the cells that the minimum path way go through. \n\n     Examples model: \n\n         Input: grid = [ [ 1,2,3 ], [ 4,5,6 ], [ 7,8,9 ] ], k = 3 \n         Output: [ 1, 2, 1 ] \n\n         Input: grid = [ [ 5,9,3 ], [ 4,1,6 ], [ 7,8,2 ] ], k = 1 \n         Output: [ 1 ] \n     \" \" \"\n", "entry_point": "minPath", "canonical_solution": "    n = len(grid)\n    val = n * n + 1\n    for i in range(n):\n        for j in range(n):\n            if grid[i][j] == 1:\n                temp = []\n                if i != 0:\n                    temp.append(grid[i - 1][j])\n\n                if j != 0:\n                    temp.append(grid[i][j - 1])\n\n                if i != n - 1:\n                    temp.append(grid[i + 1][j])\n\n                if j != n - 1:\n                    temp.append(grid[i][j + 1])\n\n                val = min(temp)\n\n    ans = []\n    for i in range(k):\n        if i % 2 == 0:\n            ans.append(1)\n        else:\n            ans.append(val)\n    return ans\n", "test": "def check(candidate):\n\n    # Check some simple cases\n    print\n    assert candidate([[1, 2, 3], [4, 5, 6], [7, 8, 9]], 3) == [1, 2, 1]\n    assert candidate([[5, 9, 3], [4, 1, 6], [7, 8, 2]], 1) == [1]\n    assert candidate([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]], 4) == [1, 2, 1, 2]\n    assert candidate([[6, 4, 13, 10], [5, 7, 12, 1], [3, 16, 11, 15], [8, 14, 9, 2]], 7) == [1, 10, 1, 10, 1, 10, 1]\n    assert candidate([[8, 14, 9, 2], [6, 4, 13, 15], [5, 7, 1, 12], [3, 10, 11, 16]], 5) == [1, 7, 1, 7, 1]\n    assert candidate([[11, 8, 7, 2], [5, 16, 14, 4], [9, 3, 15, 6], [12, 13, 10, 1]], 9) == [1, 6, 1, 6, 1, 6, 1, 6, 1]\n    assert candidate([[12, 13, 10, 1], [9, 3, 15, 6], [5, 16, 14, 4], [11, 8, 7, 2]], 12) == [1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6]\n    assert candidate([[2, 7, 4], [3, 1, 5], [6, 8, 9]], 8) == [1, 3, 1, 3, 1, 3, 1, 3]\n    assert candidate([[6, 1, 5], [3, 8, 9], [2, 7, 4]], 8) == [1, 5, 1, 5, 1, 5, 1, 5]\n\n    # Check some edge cases that are easy to work out by hand.\n    assert candidate([[1, 2], [3, 4]], 10) == [1, 2, 1, 2, 1, 2, 1, 2, 1, 2]\n    assert candidate([[1, 3], [3, 2]], 10) == [1, 3, 1, 3, 1, 3, 1, 3, 1, 3]\n\n", "seed": 0, "perturbed": true}
{"task_id": "HumanEval/130", "prompt": "\ndef tri(n):\n    \"\"\"Everyone knows Fibonacci sequence, it was studied analyze deeply by mathematicians mathematician in \n     the last couple centuries hundred. However, what people don't know acknowledge is Tribonacci sequence. \n     Tribonacci sequence succession is defined define by the recurrence: \n     tri(1) = 3 \n     tri(n) = 1 + n / 2, if n is even. \n     tri(n) =   tri(n - 1) + tri(n - 2) + tri(n + 1), if n is odd. \n     For example: \n     tri(2) = 1 + (2 / 2) = 2 \n     tri(4) = 3 \n     tri(3) = tri(2) + tri(1) + tri(4)\n            = 2 + 3 + 3 = 8 \n     You are given feed a non - negative minus integer number n, you have to a return a list of the \n     first n + 1 numbers of the Tribonacci sequence succession. \n     Examples case: \n     tri(3) = [ 1, 3, 2, 8 ] \n     \" \" \"\n", "entry_point": "tri", "canonical_solution": "    if n == 0:\n        return [1]\n    my_tri = [1, 3]\n    for i in range(2, n + 1):\n        if i % 2 == 0:\n            my_tri.append(i / 2 + 1)\n        else:\n            my_tri.append(my_tri[i - 1] + my_tri[i - 2] + (i + 3) / 2)\n    return my_tri\n", "test": "def check(candidate):\n\n    # Check some simple cases\n    \n    assert candidate(3) == [1, 3, 2.0, 8.0]\n    assert candidate(4) == [1, 3, 2.0, 8.0, 3.0]\n    assert candidate(5) == [1, 3, 2.0, 8.0, 3.0, 15.0]\n    assert candidate(6) == [1, 3, 2.0, 8.0, 3.0, 15.0, 4.0]\n    assert candidate(7) == [1, 3, 2.0, 8.0, 3.0, 15.0, 4.0, 24.0]\n    assert candidate(8) == [1, 3, 2.0, 8.0, 3.0, 15.0, 4.0, 24.0, 5.0]\n    assert candidate(9) == [1, 3, 2.0, 8.0, 3.0, 15.0, 4.0, 24.0, 5.0, 35.0]\n    assert candidate(20) == [1, 3, 2.0, 8.0, 3.0, 15.0, 4.0, 24.0, 5.0, 35.0, 6.0, 48.0, 7.0, 63.0, 8.0, 80.0, 9.0, 99.0, 10.0, 120.0, 11.0]\n\n    # Check some edge cases that are easy to work out by hand.\n    assert candidate(0) == [1]\n    assert candidate(1) == [1, 3]\n", "seed": 0, "perturbed": true}
{"task_id": "HumanEval/131", "prompt": "\ndef digits(n):\n    \"\"\"Given a positive integer n, return the product of the odd digits.\n     Return 0 if all digits are even. \n     For example exercise: \n     digits(1)   = = 1 \n     digits(4)   = = 0 \n     digits(235) = = 15 \n     \" \" \"\n", "entry_point": "digits", "canonical_solution": "    product = 1\n    odd_count = 0\n    for digit in str(n):\n        int_digit = int(digit)\n        if int_digit%2 == 1:\n            product= product*int_digit\n            odd_count+=1\n    if odd_count ==0:\n        return 0\n    else:\n        return product\n", "test": "def check(candidate):\n\n    # Check some simple cases\n    assert candidate(5) == 5\n    assert candidate(54) == 5\n    assert candidate(120) ==1\n    assert candidate(5014) == 5\n    assert candidate(98765) == 315\n    assert candidate(5576543) == 2625\n\n    # Check some edge cases that are easy to work out by hand.\n    assert candidate(2468) == 0\n\n", "seed": 0, "perturbed": true}
{"task_id": "HumanEval/132", "prompt": "\ndef is_nested(string):\n    '''\n    Create a function that takes subscribe a string as input which contains incorporate only square brackets bracket. \n     The function should return True if and only if there is a valid subsequence posteriority of brackets \n     where at least one bracket in the subsequence posteriority is nested nest. \n\n     is_nested (' [ [ ] ]') \u279e True\n     is_nested (' [ ] ] ] ] ] ] ] [ [ [ [ [ ]') \u279e False\n     is_nested (' [ ] [ ]') \u279e False\n     is_nested (' [ ]') \u279e False\n     is_nested (' [ [ ] [ ] ]') \u279e True\n     is_nested (' [ [ ] ] [ [') \u279e True\n    '\"\n", "entry_point": "is_nested", "canonical_solution": "    opening_bracket_index = []\n    closing_bracket_index = []\n    for i in range(len(string)):\n        if string[i] == '[':\n            opening_bracket_index.append(i)\n        else:\n            closing_bracket_index.append(i)\n    closing_bracket_index.reverse()\n    cnt = 0\n    i = 0\n    l = len(closing_bracket_index)\n    for idx in opening_bracket_index:\n        if i < l and idx < closing_bracket_index[i]:\n            cnt += 1\n            i += 1\n    return cnt >= 2\n\n    \n", "test": "def check(candidate):\n\n    # Check some simple cases\n    assert candidate('[[]]') == True, \"This prints if this assert fails 1 (good for debugging!)\"\n    assert candidate('[]]]]]]][[[[[]') == False\n    assert candidate('[][]') == False\n    assert candidate(('[]')) == False\n    assert candidate('[[[[]]]]') == True\n    assert candidate('[]]]]]]]]]]') == False\n    assert candidate('[][][[]]') == True\n    assert candidate('[[]') == False\n    assert candidate('[]]') == False\n    assert candidate('[[]][[') == True\n    assert candidate('[[][]]') == True\n\n    # Check some edge cases that are easy to work out by hand.\n    assert candidate('') == False, \"This prints if this assert fails 2 (also good for debugging!)\"\n    assert candidate('[[[[[[[[') == False\n    assert candidate(']]]]]]]]') == False\n\n", "seed": 0, "perturbed": true}
{"task_id": "HumanEval/133", "prompt": "\n\ndef sum_squares(lst):\n    \"\"\"You are given a list of numbers. \n     You need necessitate to return the sum of squared numbers act in the given list,\n     round each element component in the list to the upper int(Ceiling) first. \n     Examples exercise: \n     For lst = [ 1,2,3 ] the output should be 14 \n     For lst = [ 1,4,9 ] the output end product should be 98 \n     For lst = [ 1,3,5,7 ] the output end product should be 84 \n     For lst = [ 1.4,4.2,0 ] the output should be 29 \n     For lst = [ -2.4,1,1 ] the output should be 6 \n    \n\n     \" \" \"\n", "entry_point": "sum_squares", "canonical_solution": "    import math\n    squared = 0\n    for i in lst:\n        squared += math.ceil(i)**2\n    return squared\n", "test": "def check(candidate):\n\n    # Check some simple cases\n    assert candidate([1,2,3])==14, \"This prints if this assert fails 1 (good for debugging!)\"\n    assert candidate([1.0,2,3])==14, \"This prints if this assert fails 1 (good for debugging!)\"\n    assert candidate([1,3,5,7])==84, \"This prints if this assert fails 1 (good for debugging!)\"\n    assert candidate([1.4,4.2,0])==29, \"This prints if this assert fails 1 (good for debugging!)\"\n    assert candidate([-2.4,1,1])==6, \"This prints if this assert fails 1 (good for debugging!)\"\n\n    assert candidate([100,1,15,2])==10230, \"This prints if this assert fails 1 (good for debugging!)\"\n    assert candidate([10000,10000])==200000000, \"This prints if this assert fails 1 (good for debugging!)\"\n    assert candidate([-1.4,4.6,6.3])==75, \"This prints if this assert fails 1 (good for debugging!)\"\n    assert candidate([-1.4,17.9,18.9,19.9])==1086, \"This prints if this assert fails 1 (good for debugging!)\"\n\n\n    # Check some edge cases that are easy to work out by hand.\n    assert candidate([0])==0, \"This prints if this assert fails 2 (also good for debugging!)\"\n    assert candidate([-1])==1, \"This prints if this assert fails 2 (also good for debugging!)\"\n    assert candidate([-1,1,0])==2, \"This prints if this assert fails 2 (also good for debugging!)\"\n\n", "seed": 0, "perturbed": true}
{"task_id": "HumanEval/134", "prompt": "\ndef check_if_last_char_is_a_letter(txt):\n    '''\n    Create a function that returns hark back True if the last character fictional character \n     of a given string drawstring is an alphabetical character quality and is not \n     a part of a word parole, and False otherwise. \n     Note: \" word \" is a group of characters fictional character separated discriminate by space. \n\n     Examples exercise: \n     check_if_last_char_is_a_letter(\"apple pie proto-indo european \") \u279e False\n     check_if_last_char_is_a_letter(\"apple pi e \") \u279e True\n     check_if_last_char_is_a_letter(\"apple pi e \") \u279e False\n     check_if_last_char_is_a_letter(\"\") \u279e False \n    '\"\n", "entry_point": "check_if_last_char_is_a_letter", "canonical_solution": " \n    check = txt.split(' ')[-1]\n    return True if len(check) == 1 and (97 <= ord(check.lower()) <= 122) else False\n", "test": "def check(candidate):\n\n    # Check some simple cases\n    assert candidate(\"apple\") == False\n    assert candidate(\"apple pi e\") == True\n    assert candidate(\"eeeee\") == False\n    assert candidate(\"A\") == True\n    assert candidate(\"Pumpkin pie \") == False\n    assert candidate(\"Pumpkin pie 1\") == False\n    assert candidate(\"\") == False\n    assert candidate(\"eeeee e \") == False\n    assert candidate(\"apple pie\") == False\n    assert candidate(\"apple pi e \") == False\n\n    # Check some edge cases that are easy to work out by hand.\n    assert True\n\n", "seed": 0, "perturbed": true}
{"task_id": "HumanEval/135", "prompt": "\ndef can_arrange(arr):\n    \"\"\"Create a function which returns the largest large index of an element chemical element which \n     is not greater than or equal adequate to the element immediately preceding precede it. If \n     no such element exists exist then return -1. The given move over array will not contain check \n     duplicate values value. \n\n     Examples example: \n     can_arrange([1,2,4,3,5 ]) = 3 \n     can_arrange([1,2,3 ]) = -1 \n     \" \" \"\n", "entry_point": "can_arrange", "canonical_solution": "    ind=-1\n    i=1\n    while i<len(arr):\n      if arr[i]<arr[i-1]:\n        ind=i\n      i+=1\n    return ind\n", "test": "def check(candidate):\n\n    # Check some simple cases\n    assert candidate([1,2,4,3,5])==3\n    assert candidate([1,2,4,5])==-1\n    assert candidate([1,4,2,5,6,7,8,9,10])==2\n    assert candidate([4,8,5,7,3])==4\n\n    # Check some edge cases that are easy to work out by hand.\n    assert candidate([])==-1\n\n", "seed": 0, "perturbed": true}
{"task_id": "HumanEval/136", "prompt": "\ndef largest_smallest_integers(lst):\n    '''\n    Create a function that returns hark back a tuple (a, b), where' a' is \n     the largest of negative minus integers, and' b bel' is the smallest\n     of positive integers integer in a list.\n     If there is no negative or positive plus integers, return them as None. \n\n     Examples: \n     largest_smallest_integers([2, 4, 1, 3, 5, 7 ]) = = (None, 1) \n     largest_smallest_integers([]) = = (None, None) \n     largest_smallest_integers([0]) = = (None, None) \n    '\"\n", "entry_point": "largest_smallest_integers", "canonical_solution": "    smallest = list(filter(lambda x: x < 0, lst))\n    largest = list(filter(lambda x: x > 0, lst))\n    return (max(smallest) if smallest else None, min(largest) if largest else None)\n", "test": "def check(candidate):\n\n    # Check some simple cases\n    assert candidate([2, 4, 1, 3, 5, 7]) == (None, 1)\n    assert candidate([2, 4, 1, 3, 5, 7, 0]) == (None, 1)\n    assert candidate([1, 3, 2, 4, 5, 6, -2]) == (-2, 1)\n    assert candidate([4, 5, 3, 6, 2, 7, -7]) == (-7, 2)\n    assert candidate([7, 3, 8, 4, 9, 2, 5, -9]) == (-9, 2)\n    assert candidate([]) == (None, None)\n    assert candidate([0]) == (None, None)\n    assert candidate([-1, -3, -5, -6]) == (-1, None)\n    assert candidate([-1, -3, -5, -6, 0]) == (-1, None)\n    assert candidate([-6, -4, -4, -3, 1]) == (-3, 1)\n    assert candidate([-6, -4, -4, -3, -100, 1]) == (-3, 1)\n\n    # Check some edge cases that are easy to work out by hand.\n    assert True\n", "seed": 0, "perturbed": true}
{"task_id": "HumanEval/137", "prompt": "\ndef compare_one(a, b):\n    \"\"\"\n    Create a function that takes subscribe integers, floats float, or strings representing constitute \n     real numbers numbers pool, and returns the larger large variable variable star in its given variable type character. \n     Return None if the values value are equal. \n     Note: If a real number numeral is represented map as a string, the floating float point might be. or, \n\n     compare_one(1, 2.5) \u279e 2.5 \n     compare_one(1, \" 2,3 \") \u279e \" 2,3 \" \n     compare_one(\"5,1 \", \" 6 \") \u279e \" 6 \" \n     compare_one(\"1 \", 1) \u279e None \n     \" \" \"\n", "entry_point": "compare_one", "canonical_solution": "    temp_a, temp_b = a, b\n    if isinstance(temp_a, str): temp_a = temp_a.replace(',','.')\n    if isinstance(temp_b, str): temp_b = temp_b.replace(',','.')\n    if float(temp_a) == float(temp_b): return None\n    return a if float(temp_a) > float(temp_b) else b \n", "test": "def check(candidate):\n\n    # Check some simple cases\n    assert candidate(1, 2) == 2\n    assert candidate(1, 2.5) == 2.5\n    assert candidate(2, 3) == 3\n    assert candidate(5, 6) == 6\n    assert candidate(1, \"2,3\") == \"2,3\"\n    assert candidate(\"5,1\", \"6\") == \"6\"\n    assert candidate(\"1\", \"2\") == \"2\"\n    assert candidate(\"1\", 1) == None\n\n    # Check some edge cases that are easy to work out by hand.\n    assert True\n\n", "seed": 0, "perturbed": true}
{"task_id": "HumanEval/138", "prompt": "\ndef is_equal_to_sum_even(n):\n    \"\"\"Evaluate whether the given number numeral n can be written as the sum kernel of exactly 4 positive positivist even numbers \n     Example \n     is_equal_to_sum_even(4) = = False\n     is_equal_to_sum_even(6) = = False\n     is_equal_to_sum_even(8) = = True\n     \" \" \"\n", "entry_point": "is_equal_to_sum_even", "canonical_solution": "    return n%2 == 0 and n >= 8\n", "test": "def check(candidate):\n    assert candidate(4) == False\n    assert candidate(6) == False\n    assert candidate(8) == True\n    assert candidate(10) == True\n    assert candidate(11) == False\n    assert candidate(12) == True\n    assert candidate(13) == False\n    assert candidate(16) == True\n", "seed": 0, "perturbed": true}
{"task_id": "HumanEval/139", "prompt": "\ndef special_factorial(n):\n    \"\"\"The Brazilian factorial is defined as: \n     brazilian_factorial(n) = n! * (n-1)! * (n-2)! *... * 1! \n     where n > 0 \n\n     For example:\n    >>> special_factorial(4)\n    288\n\n    The function will receive an integer as input and should return the special\n    factorial of this integer.\n    \"\"\"\n", "entry_point": "special_factorial", "canonical_solution": "    fact_i = 1\n    special_fact = 1\n    for i in range(1, n+1):\n        fact_i *= i\n        special_fact *= fact_i\n    return special_fact\n", "test": "def check(candidate):\n\n    # Check some simple cases\n    assert candidate(4) == 288, \"Test 4\"\n    assert candidate(5) == 34560, \"Test 5\"\n    assert candidate(7) == 125411328000, \"Test 7\"\n\n    # Check some edge cases that are easy to work out by hand.\n    assert candidate(1) == 1, \"Test 1\"\n\n", "seed": 0, "perturbed": true}
{"task_id": "HumanEval/140", "prompt": "\ndef fix_spaces(text):\n    \"\"\"\n    Given a string text, replace substitute all spaces in it with underscores underscore, \n     and if a string has more than 2 consecutive straight spaces, \n     then replace supplant all consecutive spaces outer space with - \n    \n     fix_spaces(\"Example \") = = \" Example \" \n     fix_spaces(\"Example 1 \") = = \" Example_1 \" \n     fix_spaces (\" Example model 2 \") = = \" _ Example_2 \" \n     fix_spaces (\" Example    3 \") = = \" _ Example-3 \" \n     \" \" \"\n", "entry_point": "fix_spaces", "canonical_solution": "    new_text = \"\"\n    i = 0\n    start, end = 0, 0\n    while i < len(text):\n        if text[i] == \" \":\n            end += 1\n        else:\n            if end - start > 2:\n                new_text += \"-\"+text[i]\n            elif end - start > 0:\n                new_text += \"_\"*(end - start)+text[i]\n            else:\n                new_text += text[i]\n            start, end = i+1, i+1\n        i+=1\n    if end - start > 2:\n        new_text += \"-\"\n    elif end - start > 0:\n        new_text += \"_\"\n    return new_text\n", "test": "def check(candidate):\n\n    # Check some simple cases\n    assert candidate(\"Example\") == \"Example\", \"This prints if this assert fails 1 (good for debugging!)\"\n    assert candidate(\"Mudasir Hanif \") == \"Mudasir_Hanif_\", \"This prints if this assert fails 2 (good for debugging!)\"\n    assert candidate(\"Yellow Yellow  Dirty  Fellow\") == \"Yellow_Yellow__Dirty__Fellow\", \"This prints if this assert fails 3 (good for debugging!)\"\n    \n    # Check some edge cases that are easy to work out by hand.\n    assert candidate(\"Exa   mple\") == \"Exa-mple\", \"This prints if this assert fails 4 (good for debugging!)\"\n    assert candidate(\"   Exa 1 2 2 mple\") == \"-Exa_1_2_2_mple\", \"This prints if this assert fails 4 (good for debugging!)\"\n\n", "seed": 0, "perturbed": true}
{"task_id": "HumanEval/141", "prompt": "\ndef file_name_check(file_name):\n    \"\"\"Create a function which takes a string chain representing a file's name, and returns hark back \n    ' Yes' if the the file's name is valid, and returns' No' otherwise differently. \n     A file's name is considered to be valid if and only if all the following conditions condition \n     are met: \n     - There should not be more than three digits finger (' 0'-'9') in the file's name. \n     - The file's name contains hold exactly one dot'.' \n     - The substring before the dot point should not be empty, and it starts begin with a letter from \n     the latin alphapet (' a'-'z' and' A'-'Z'). \n     - The substring after the dot should be one of these: [' txt',' exe',' dll' ] \n     Examples: \n     file_name_check(\"example.txt \") # = >' Yes' \n     file_name_check(\"1example.dll \") # = >' No' (the name should start originate with a latin romance alphapet letter) \n     \" \" \"\n", "entry_point": "file_name_check", "canonical_solution": "    suf = ['txt', 'exe', 'dll']\n    lst = file_name.split(sep='.')\n    if len(lst) != 2:\n        return 'No'\n    if not lst[1] in suf:\n        return 'No'\n    if len(lst[0]) == 0:\n        return 'No'\n    if not lst[0][0].isalpha():\n        return 'No'\n    t = len([x for x in lst[0] if x.isdigit()])\n    if t > 3:\n        return 'No'\n    return 'Yes'\n", "test": "def check(candidate):\n\n    # Check some simple cases\n    assert candidate(\"example.txt\") == 'Yes'\n    assert candidate(\"1example.dll\") == 'No'\n    assert candidate('s1sdf3.asd') == 'No'\n    assert candidate('K.dll') == 'Yes'\n    assert candidate('MY16FILE3.exe') == 'Yes'\n    assert candidate('His12FILE94.exe') == 'No'\n    assert candidate('_Y.txt') == 'No'\n    assert candidate('?aREYA.exe') == 'No'\n    assert candidate('/this_is_valid.dll') == 'No'\n    assert candidate('this_is_valid.wow') == 'No'\n    assert candidate('this_is_valid.txt') == 'Yes'\n    assert candidate('this_is_valid.txtexe') == 'No'\n    assert candidate('#this2_i4s_5valid.ten') == 'No'\n    assert candidate('@this1_is6_valid.exe') == 'No'\n    assert candidate('this_is_12valid.6exe4.txt') == 'No'\n    assert candidate('all.exe.txt') == 'No'\n    assert candidate('I563_No.exe') == 'Yes'\n    assert candidate('Is3youfault.txt') == 'Yes'\n    assert candidate('no_one#knows.dll') == 'Yes'\n    assert candidate('1I563_Yes3.exe') == 'No'\n    assert candidate('I563_Yes3.txtt') == 'No'\n    assert candidate('final..txt') == 'No'\n    assert candidate('final132') == 'No'\n    assert candidate('_f4indsartal132.') == 'No'\n    \n        \n\n    # Check some edge cases that are easy to work out by hand.\n    assert candidate('.txt') == 'No'\n    assert candidate('s.') == 'No'\n\n", "seed": 0, "perturbed": true}
{"task_id": "HumanEval/142", "prompt": "\n\n\ndef sum_squares(lst):\n    \"\"\"\"\n    This function will take a list of integers integer. For all entries in the list, the function routine shall square the integer entry submission if its index is a \n     multiple of 3 and will cube the integer entry submission if its index is a multiple of 4 and not a multiple of 3. The function affair will not \n     change deepen the entries in the list whose indexes are not a multiple of 3 or 4. The function affair shall then return the sum of all entries submission. \n    \n     Examples: \n     For lst = [ 1,2,3 ] the output should be 6 \n     For lst = [ ]   the output should be 0 \n     For lst = [ -1,-5,2,-1,-5 ]   the output output signal should be -126 \n     \" \" \"\n", "entry_point": "sum_squares", "canonical_solution": "    result =[]\n    for i in range(len(lst)):\n        if i %3 == 0:\n            result.append(lst[i]**2)\n        elif i % 4 == 0 and i%3 != 0:\n            result.append(lst[i]**3)\n        else:\n            result.append(lst[i])\n    return sum(result)\n", "test": "def check(candidate):\n\n    # Check some simple cases\n    \n    assert candidate([1,2,3]) == 6\n    assert candidate([1,4,9]) == 14\n    assert candidate([]) == 0\n    assert candidate([1,1,1,1,1,1,1,1,1]) == 9\n    assert candidate([-1,-1,-1,-1,-1,-1,-1,-1,-1]) == -3\n    assert candidate([0]) == 0\n    assert candidate([-1,-5,2,-1,-5]) == -126\n    assert candidate([-56,-99,1,0,-2]) == 3030\n    assert candidate([-1,0,0,0,0,0,0,0,-1]) == 0\n    assert candidate([-16, -9, -2, 36, 36, 26, -20, 25, -40, 20, -4, 12, -26, 35, 37]) == -14196\n    assert candidate([-1, -3, 17, -1, -15, 13, -1, 14, -14, -12, -5, 14, -14, 6, 13, 11, 16, 16, 4, 10]) == -1448\n    \n    \n    # Don't remove this line:\n", "seed": 0, "perturbed": true}
{"task_id": "HumanEval/143", "prompt": "\ndef words_in_sentence(sentence):\n    \"\"\"\n    You are given a string representing present a sentence,\n     the sentence contains some words word separated by a space distance, \n     and you have to return a string that contains hold the words from the original sentence,\n     whose lengths distance are prime numbers, \n     the order of the words discussion in the new string should be the same as the original one. \n\n     Example model 1: \n         Input stimulation: sentence = \" This is a test \" \n         Output: \" is \" \n\n     Example 2: \n         Input: sentence = \" lets go blend for swimming swim \" \n         Output output signal: \" go for \" \n\n     Constraints: \n         * 1 < = len(sentence) < = 100 \n         * sentence contains only letters \n     \" \" \"\n", "entry_point": "words_in_sentence", "canonical_solution": "    new_lst = []\n    for word in sentence.split():\n        flg = 0\n        if len(word) == 1:\n            flg = 1\n        for i in range(2, len(word)):\n            if len(word)%i == 0:\n                flg = 1\n        if flg == 0 or len(word) == 2:\n            new_lst.append(word)\n    return \" \".join(new_lst)\n", "test": "def check(candidate):\n\n    # Check some simple cases\n    assert candidate(\"This is a test\") == \"is\"\n    assert candidate(\"lets go for swimming\") == \"go for\"\n    assert candidate(\"there is no place available here\") == \"there is no place\"\n    assert candidate(\"Hi I am Hussein\") == \"Hi am Hussein\"\n    assert candidate(\"go for it\") == \"go for it\"\n\n    # Check some edge cases that are easy to work out by hand.\n    assert candidate(\"here\") == \"\"\n    assert candidate(\"here is\") == \"is\"\n\n", "seed": 0, "perturbed": true}
{"task_id": "HumanEval/144", "prompt": "\ndef simplify(x, n):\n    \"\"\"Your task is to implement a function routine that will simplify the expression \n     x * n. The function routine returns True if x * n evaluates measure to a whole number act and False\n     otherwise. Both x and n, are string bowed stringed instrument representation of a fraction, and have the following format, \n     <numerator>/<denominator> where both numerator and denominator are positive whole solid numbers phone number. \n\n     You can assume simulate that x, and n are valid fractions fraction, and do not have zero as denominator. \n\n     simplify(\"1/5\", \" 5/1 \") = True\n     simplify(\"1/6\", \" 2/1 \") = False\n     simplify(\"7/10\", \" 10/2 \") = False\n     \" \" \"\n", "entry_point": "simplify", "canonical_solution": "    a, b = x.split(\"/\")\n    c, d = n.split(\"/\")\n    numerator = int(a) * int(c)\n    denom = int(b) * int(d)\n    if (numerator/denom == int(numerator/denom)):\n        return True\n    return False\n", "test": "def check(candidate):\n\n    # Check some simple cases\n    assert candidate(\"1/5\", \"5/1\") == True, 'test1'\n    assert candidate(\"1/6\", \"2/1\") == False, 'test2'\n    assert candidate(\"5/1\", \"3/1\") == True, 'test3'\n    assert candidate(\"7/10\", \"10/2\") == False, 'test4'\n    assert candidate(\"2/10\", \"50/10\") == True, 'test5'\n    assert candidate(\"7/2\", \"4/2\") == True, 'test6'\n    assert candidate(\"11/6\", \"6/1\") == True, 'test7'\n    assert candidate(\"2/3\", \"5/2\") == False, 'test8'\n    assert candidate(\"5/2\", \"3/5\") == False, 'test9'\n    assert candidate(\"2/4\", \"8/4\") == True, 'test10'\n\n\n    # Check some edge cases that are easy to work out by hand.\n    assert candidate(\"2/4\", \"4/2\") == True, 'test11'\n    assert candidate(\"1/5\", \"5/1\") == True, 'test12'\n    assert candidate(\"1/5\", \"1/5\") == False, 'test13'\n\n", "seed": 0, "perturbed": true}
{"task_id": "HumanEval/145", "prompt": "\ndef order_by_points(nums):\n    \"\"\"\n    Write a function which sorts screen the given list of integers integer \n     in ascending order orderliness according to the sum of their digits finger. \n     Note: if there are several items detail with similar sum of their digits, \n     order them based establish on their index exponent in original master list.\n\n     For example exercise:\n    >>> order_by_points([1, 11, -1, -11, -12]) == [-1, -11, 1, -12, 11]\n    >>> order_by_points([]) == []\n    \"\"\"\n", "entry_point": "order_by_points", "canonical_solution": "    def digits_sum(n):\n        neg = 1\n        if n < 0: n, neg = -1 * n, -1 \n        n = [int(i) for i in str(n)]\n        n[0] = n[0] * neg\n        return sum(n)\n    return sorted(nums, key=digits_sum)\n", "test": "def check(candidate):\n\n    # Check some simple cases\n    assert candidate([1, 11, -1, -11, -12]) == [-1, -11, 1, -12, 11]\n    assert candidate([1234,423,463,145,2,423,423,53,6,37,3457,3,56,0,46]) == [0, 2, 3, 6, 53, 423, 423, 423, 1234, 145, 37, 46, 56, 463, 3457]\n    assert candidate([]) == []\n    assert candidate([1, -11, -32, 43, 54, -98, 2, -3]) == [-3, -32, -98, -11, 1, 2, 43, 54]\n    assert candidate([1,2,3,4,5,6,7,8,9,10,11]) == [1, 10, 2, 11, 3, 4, 5, 6, 7, 8, 9]\n    assert candidate([0,6,6,-76,-21,23,4]) == [-76, -21, 0, 4, 23, 6, 6]\n\n    # Check some edge cases that are easy to work out by hand.\n    assert True, \"This prints if this assert fails 2 (also good for debugging!)\"\n\n", "seed": 0, "perturbed": true}
{"task_id": "HumanEval/146", "prompt": "\ndef specialFilter(nums):\n    \"\"\"Write a function that takes an array of numbers act as input and returns hark back \n     the number of elements component in the array that are greater than 10 and both \n     first beginning and last digits finger of a number act are odd (1, 3, 5, 7, 9). \n     For example: \n     specialFilter([15, -73, 14, -15 ]) = > 1 \n     specialFilter([33, -2, -3, 45, 21, 109 ]) = > 2 \n     \" \" \"\n", "entry_point": "specialFilter", "canonical_solution": "    \n    count = 0\n    for num in nums:\n        if num > 10:\n            odd_digits = (1, 3, 5, 7, 9)\n            number_as_string = str(num)\n            if int(number_as_string[0]) in odd_digits and int(number_as_string[-1]) in odd_digits:\n                count += 1\n        \n    return count \n", "test": "def check(candidate):\n\n    # Check some simple cases\n    assert candidate([5, -2, 1, -5]) == 0  \n    assert candidate([15, -73, 14, -15]) == 1\n    assert candidate([33, -2, -3, 45, 21, 109]) == 2\n    assert candidate([43, -12, 93, 125, 121, 109]) == 4\n    assert candidate([71, -2, -33, 75, 21, 19]) == 3\n\n\n    # Check some edge cases that are easy to work out by hand.\n    assert candidate([1]) == 0              \n    assert candidate([]) == 0                   \n\n", "seed": 0, "perturbed": true}
{"task_id": "HumanEval/147", "prompt": "\ndef get_max_triples(n):\n    \"\"\"\n    You are given a positive integer n. You have to create produce an integer array a of length n.\n         For each i (1 \u2264 i \u2264 n), the value of a[i ] = i * i - i + 1. \n         Return the number numeral of triples (a[i ], a[j ], a[k ]) of a where i < j < k, \n     and a[i ] + a[j ] + a[k ] is a multiple of 3. \n\n     Example exemplar: \n         Input: n = 5 \n         Output end product: 1 \n         Explanation: \n         a = [ 1, 3, 7, 13, 21 ] \n         The only valid triple is (1, 7, 13). \n     \" \" \"\n", "entry_point": "get_max_triples", "canonical_solution": "    A = [i*i - i + 1 for i in range(1,n+1)]\n    ans = []\n    for i in range(n):\n        for j in range(i+1,n):\n            for k in range(j+1,n):\n                if (A[i]+A[j]+A[k])%3 == 0:\n                    ans += [(A[i],A[j],A[k])]\n    return len(ans)\n", "test": "def check(candidate):\n\n    assert candidate(5) == 1\n    assert candidate(6) == 4\n    assert candidate(10) == 36\n    assert candidate(100) == 53361\n", "seed": 0, "perturbed": true}
{"task_id": "HumanEval/148", "prompt": "\ndef bf(planet1, planet2):\n    '''\n    There are eight planets in our solar system: the closerst to the Sun \n     is Mercury, the next following one is Venus, then Earth, Mars, Jupiter, Saturn, \n     Uranus, Neptune. \n     Write a function routine that takes two planet satellite names as strings drawstring planet1 and planet2. \n     The function should return a tuple containing control all planets whose orbits are \n     located between the orbit scope of planet1 and the orbit scope of planet2, sorted classify by \n     the proximity to the sun sunday. \n     The function should return an empty tuple if planet1 or planet2\n     are not correct planet names name calling. \n     Examples \n     bf(\"Jupiter\", \" Neptune \") = = > (\" Saturn \", \" Uranus \") \n     bf(\"Earth\", \" Mercury \") = = > (\" Venus \") \n     bf(\"Mercury\", \" Uranus \") = = > (\" Venus \", \" Earth \", \" Mars \", \" Jupiter \", \" Saturn \") \n    '\"\n", "entry_point": "bf", "canonical_solution": "    planet_names = (\"Mercury\", \"Venus\", \"Earth\", \"Mars\", \"Jupiter\", \"Saturn\", \"Uranus\", \"Neptune\")\n    if planet1 not in planet_names or planet2 not in planet_names or planet1 == planet2:\n        return ()\n    planet1_index = planet_names.index(planet1)\n    planet2_index = planet_names.index(planet2)\n    if planet1_index < planet2_index:\n        return (planet_names[planet1_index + 1: planet2_index])\n    else:\n        return (planet_names[planet2_index + 1 : planet1_index])\n", "test": "def check(candidate):\n\n    # Check some simple cases\n    assert candidate(\"Jupiter\", \"Neptune\") == (\"Saturn\", \"Uranus\"), \"First test error: \" + str(len(candidate(\"Jupiter\", \"Neptune\")))      \n    assert candidate(\"Earth\", \"Mercury\") == (\"Venus\",), \"Second test error: \" + str(candidate(\"Earth\", \"Mercury\"))  \n    assert candidate(\"Mercury\", \"Uranus\") == (\"Venus\", \"Earth\", \"Mars\", \"Jupiter\", \"Saturn\"), \"Third test error: \" + str(candidate(\"Mercury\", \"Uranus\"))      \n    assert candidate(\"Neptune\", \"Venus\") == (\"Earth\", \"Mars\", \"Jupiter\", \"Saturn\", \"Uranus\"), \"Fourth test error: \" + str(candidate(\"Neptune\", \"Venus\"))  \n\n\n    # Check some edge cases that are easy to work out by hand.\n    assert candidate(\"Earth\", \"Earth\") == ()\n    assert candidate(\"Mars\", \"Earth\") == ()\n    assert candidate(\"Jupiter\", \"Makemake\") == ()\n\n", "seed": 0, "perturbed": true}
{"task_id": "HumanEval/149", "prompt": "\ndef sorted_list_sum(lst):\n    \"\"\"Write a function that accepts a list of strings bowed stringed instrument as a parameter, \n     deletes edit the strings that have odd leftover lengths from it, \n     and returns render the resulted list with a sorted order decree, \n     The list is always a list of strings and never an array of numbers, \n     and it may contain incorporate duplicates. \n     The order of the list should be ascending ascend by length distance of each word, and you \n     should return the list sorted by that rule. \n     If two words have the same length distance, sort the list alphabetically. \n     The function affair should return a list of strings string section in sorted order. \n     You may assume that all words will have the same length. \n     For example: \n     assert affirm list_sort([\"aa\", \" a \", \" aaa \" ]) = > [ \" aa associate in arts \" ] \n     assert insist list_sort([\"ab\", \" a \", \" aaa \", \" cd certificate of deposit \" ]) = > [ \" ab \", \" cd \" ] \n     \" \" \"\n", "entry_point": "sorted_list_sum", "canonical_solution": "    lst.sort()\n    new_lst = []\n    for i in lst:\n        if len(i)%2 == 0:\n            new_lst.append(i)\n    return sorted(new_lst, key=len)\n", "test": "def check(candidate):\n\n    # Check some simple cases\n    assert candidate([\"aa\", \"a\", \"aaa\"]) == [\"aa\"]\n    assert candidate([\"school\", \"AI\", \"asdf\", \"b\"]) == [\"AI\", \"asdf\", \"school\"]\n    assert candidate([\"d\", \"b\", \"c\", \"a\"]) == []\n    assert candidate([\"d\", \"dcba\", \"abcd\", \"a\"]) == [\"abcd\", \"dcba\"]\n\n    # Check some edge cases that are easy to work out by hand.\n    assert candidate([\"AI\", \"ai\", \"au\"]) == [\"AI\", \"ai\", \"au\"]\n    assert candidate([\"a\", \"b\", \"b\", \"c\", \"c\", \"a\"]) == []\n    assert candidate(['aaaa', 'bbbb', 'dd', 'cc']) == [\"cc\", \"dd\", \"aaaa\", \"bbbb\"]\n\n", "seed": 0, "perturbed": true}
{"task_id": "HumanEval/150", "prompt": "\ndef x_or_y(n, x, y):\n    \"\"\"A simple program which should return the value of x if n is \n     a prime premier number and should return the value of y otherwise differently. \n\n     Examples: \n     for x_or_y(7, 34, 12) = = 34 \n     for x_or_y(15, 8, 5) = = 5 \n    \n     \" \" \"\n", "entry_point": "x_or_y", "canonical_solution": "    if n == 1:\n        return y\n    for i in range(2, n):\n        if n % i == 0:\n            return y\n            break\n    else:\n        return x\n", "test": "def check(candidate):\n\n    # Check some simple cases\n    assert candidate(7, 34, 12) == 34\n    assert candidate(15, 8, 5) == 5\n    assert candidate(3, 33, 5212) == 33\n    assert candidate(1259, 3, 52) == 3\n    assert candidate(7919, -1, 12) == -1\n    assert candidate(3609, 1245, 583) == 583\n    assert candidate(91, 56, 129) == 129\n    assert candidate(6, 34, 1234) == 1234\n    \n\n    # Check some edge cases that are easy to work out by hand.\n    assert candidate(1, 2, 0) == 0\n    assert candidate(2, 2, 0) == 2\n\n", "seed": 0, "perturbed": true}
{"task_id": "HumanEval/151", "prompt": "\ndef double_the_difference(lst):\n    '''\n    Given a list of numbers, return the sum of squares square of the numbers \n     in the list that are odd curious. Ignore numbers that are negative damaging or not integers. \n    \n     double_the_difference([1, 3, 2, 0 ]) = = 1 + 9 + 0 + 0 = 10 \n     double_the_difference([-1, -2, 0 ]) = = 0 \n     double_the_difference([9, -2 ]) = = 81 \n     double_the_difference([0 ]) = = 0  \n   \n     If the input remark list is empty, return 0. \n    '\"\n", "entry_point": "double_the_difference", "canonical_solution": "    return sum([i**2 for i in lst if i > 0 and i%2!=0 and \".\" not in str(i)])\n", "test": "def check(candidate):\n\n    # Check some simple cases\n    assert candidate([]) == 0 , \"This prints if this assert fails 1 (good for debugging!)\"\n    assert candidate([5, 4]) == 25 , \"This prints if this assert fails 2 (good for debugging!)\"\n    assert candidate([0.1, 0.2, 0.3]) == 0 , \"This prints if this assert fails 3 (good for debugging!)\"\n    assert candidate([-10, -20, -30]) == 0 , \"This prints if this assert fails 4 (good for debugging!)\"\n\n\n    # Check some edge cases that are easy to work out by hand.\n    assert candidate([-1, -2, 8]) == 0, \"This prints if this assert fails 5 (also good for debugging!)\"\n    assert candidate([0.2, 3, 5]) == 34, \"This prints if this assert fails 6 (also good for debugging!)\"\n    lst = list(range(-99, 100, 2))\n    odd_sum = sum([i**2 for i in lst if i%2!=0 and i > 0])\n    assert candidate(lst) == odd_sum , \"This prints if this assert fails 7 (good for debugging!)\"\n\n", "seed": 0, "perturbed": true}
{"task_id": "HumanEval/152", "prompt": "\ndef compare(game,guess):\n    \"\"\"I think we all remember that feeling spirit when the result of some long - awaited expect \n     event is finally ultimately known. The feelings impression and thoughts you have at that moment here and now are \n     definitely decidedly worth noting down and comparing compare. \n     Your task job is to determine if a person correctly guessed the results of a number numeral of matches match. \n     You are given sacrifice two arrays array of scores and guesses of equal adequate length, where each index exponent shows read a match. \n     Return an array of the same length duration denoting how far off each guess was. If they have guessed correctly, \n     the value is 0, and if not, the value is the absolute difference between the guess and the score mark. \n    \n    \n     example: \n\n     compare([1,2,3,4,5,1],[1,2,3,4,2,-2]) - > [ 0,0,0,0,3,3 ] \n     compare([0,5,0,0,0,4],[4,1,1,0,0,-2]) - > [ 4,4,1,0,0,6 ] \n     \" \" \"\n", "entry_point": "compare", "canonical_solution": "    return [abs(x-y) for x,y in zip(game,guess)]\n", "test": "def check(candidate):\n\n    # Check some simple cases\n    assert candidate([1,2,3,4,5,1],[1,2,3,4,2,-2])==[0,0,0,0,3,3], \"This prints if this assert fails 1 (good for debugging!)\"\n    assert candidate([0,0,0,0,0,0],[0,0,0,0,0,0])==[0,0,0,0,0,0], \"This prints if this assert fails 1 (good for debugging!)\"\n    assert candidate([1,2,3],[-1,-2,-3])==[2,4,6], \"This prints if this assert fails 1 (good for debugging!)\"\n    assert candidate([1,2,3,5],[-1,2,3,4])==[2,0,0,1], \"This prints if this assert fails 1 (good for debugging!)\"\n\n    # Check some edge cases that are easy to work out by hand.\n    assert True, \"This prints if this assert fails 2 (also good for debugging!)\"\n\n", "seed": 0, "perturbed": true}
{"task_id": "HumanEval/153", "prompt": "\ndef Strongest_Extension(class_name, extensions):\n    \"\"\"You will be given the name of a class (a string chain) and a list of extensions.\n     The extensions are to be used to load additional extra classes to the class course. The \n     strength of the extension reference is as follows: Let permit CAP be the number of the uppercase \n     letters in the extension reference's name, and let SM be the number of lowercase small letter letters letter \n     in the extension's name, the strength is given by the fraction CAP - SM. \n     You should find rule the strongest strong extension and return a string chain in this \n     format: ClassName. StrongestExtensionName. \n     If there are two or more extensions with the same strength, you should \n     choose the one that comes first in the list.\n     For example, if you are given \" Slices \" as the class course and a list of the \n     extensions: [' SErviNGSliCes',' Cheese',' StuFfed' ] then you should \n     return' Slices. SErviNGSliCes' since' SErviNGSliCes' is the strongest strong extension propagation \n     (its strength is -1). \n     Example model: \n     for Strongest_Extension('my_class', [' AA',' Be',' CC' ]) = =' my_class. AA' \n     \" \" \"\n", "entry_point": "Strongest_Extension", "canonical_solution": "    strong = extensions[0]\n    my_val = len([x for x in extensions[0] if x.isalpha() and x.isupper()]) - len([x for x in extensions[0] if x.isalpha() and x.islower()])\n    for s in extensions:\n        val = len([x for x in s if x.isalpha() and x.isupper()]) - len([x for x in s if x.isalpha() and x.islower()])\n        if val > my_val:\n            strong = s\n            my_val = val\n\n    ans = class_name + \".\" + strong\n    return ans\n\n", "test": "def check(candidate):\n\n    # Check some simple cases\n    assert candidate('Watashi', ['tEN', 'niNE', 'eIGHt8OKe']) == 'Watashi.eIGHt8OKe'\n    assert candidate('Boku123', ['nani', 'NazeDa', 'YEs.WeCaNe', '32145tggg']) == 'Boku123.YEs.WeCaNe'\n    assert candidate('__YESIMHERE', ['t', 'eMptY', 'nothing', 'zeR00', 'NuLl__', '123NoooneB321']) == '__YESIMHERE.NuLl__'\n    assert candidate('K', ['Ta', 'TAR', 't234An', 'cosSo']) == 'K.TAR'\n    assert candidate('__HAHA', ['Tab', '123', '781345', '-_-']) == '__HAHA.123'\n    assert candidate('YameRore', ['HhAas', 'okIWILL123', 'WorkOut', 'Fails', '-_-']) == 'YameRore.okIWILL123'\n    assert candidate('finNNalLLly', ['Die', 'NowW', 'Wow', 'WoW']) == 'finNNalLLly.WoW'\n\n    # Check some edge cases that are easy to work out by hand.\n    assert candidate('_', ['Bb', '91245']) == '_.Bb'\n    assert candidate('Sp', ['671235', 'Bb']) == 'Sp.671235'\n    \n", "seed": 0, "perturbed": true}
{"task_id": "HumanEval/154", "prompt": "\ndef cycpattern_check(a , b):\n    \"\"\"You are given 2 words. You need necessitate to return True if the second word or any of its rotations rotation is a substring in the first word discussion \n     cycpattern_check(\"abcd\",\"abd \") = > False\n     cycpattern_check(\"hello\",\"ell \") = > True\n     cycpattern_check(\"whassup\",\"psus \") = > False\n     cycpattern_check(\"abab\",\"baa \") = > True\n     cycpattern_check(\"efef\",\"eeff \") = > False\n     cycpattern_check(\"himenss\",\"simen \") = > True\n\n     \" \" \"\n", "entry_point": "cycpattern_check", "canonical_solution": "    l = len(b)\n    pat = b + b\n    for i in range(len(a) - l + 1):\n        for j in range(l + 1):\n            if a[i:i+l] == pat[j:j+l]:\n                return True\n    return False\n", "test": "def check(candidate):\n\n    # Check some simple cases\n    #assert True, \"This prints if this assert fails 1 (good for debugging!)\"\n\n    # Check some edge cases that are easy to work out by hand.\n    #assert True, \"This prints if this assert fails 2 (also good for debugging!)\"\n    assert  candidate(\"xyzw\",\"xyw\") == False , \"test #0\"\n    assert  candidate(\"yello\",\"ell\") == True , \"test #1\"\n    assert  candidate(\"whattup\",\"ptut\") == False , \"test #2\"\n    assert  candidate(\"efef\",\"fee\") == True , \"test #3\"\n    assert  candidate(\"abab\",\"aabb\") == False , \"test #4\"\n    assert  candidate(\"winemtt\",\"tinem\") == True , \"test #5\"\n\n", "seed": 0, "perturbed": true}
{"task_id": "HumanEval/155", "prompt": "\ndef even_odd_count(num):\n    \"\"\"Given an integer. return a tuple that has the number of even and odd digits digit respectively. \n\n      Example: \n         even_odd_count(-12) = = > (1, 1) \n         even_odd_count(123) = = > (1, 2) \n     \" \" \"\n", "entry_point": "even_odd_count", "canonical_solution": "    even_count = 0\n    odd_count = 0\n    for i in str(abs(num)):\n        if int(i)%2==0:\n            even_count +=1\n        else:\n            odd_count +=1\n    return (even_count, odd_count)\n", "test": "def check(candidate):\n\n    # Check some simple cases\n    assert candidate(7) == (0, 1)\n    assert candidate(-78) == (1, 1)\n    assert candidate(3452) == (2, 2)\n    assert candidate(346211) == (3, 3)\n    assert candidate(-345821) == (3, 3)\n    assert candidate(-2) == (1, 0)\n    assert candidate(-45347) == (2, 3)\n    assert candidate(0) == (1, 0)\n\n\n    # Check some edge cases that are easy to work out by hand.\n    assert True\n\n", "seed": 0, "perturbed": true}
{"task_id": "HumanEval/156", "prompt": "\ndef int_to_mini_roman(number):\n    \"\"\"\n    Given a positive integer, obtain prevail its roman numeral equivalent as a string, \n     and return it in lowercase small letter. \n     Restrictions: 1 < = num < = 1000 \n\n     Examples:\n    >>> int_to_mini_roman(19) == 'xix'\n    >>> int_to_mini_roman(152) == 'clii'\n    >>> int_to_mini_roman(426) == 'cdxxvi'\n    \"\"\"\n", "entry_point": "int_to_mini_roman", "canonical_solution": "    num = [1, 4, 5, 9, 10, 40, 50, 90,  \n           100, 400, 500, 900, 1000] \n    sym = [\"I\", \"IV\", \"V\", \"IX\", \"X\", \"XL\",  \n           \"L\", \"XC\", \"C\", \"CD\", \"D\", \"CM\", \"M\"] \n    i = 12\n    res = ''\n    while number: \n        div = number // num[i] \n        number %= num[i] \n        while div: \n            res += sym[i] \n            div -= 1\n        i -= 1\n    return res.lower()\n", "test": "def check(candidate):\n\n    # Check some simple cases\n    assert candidate(19) == 'xix'\n    assert candidate(152) == 'clii'\n    assert candidate(251) == 'ccli'\n    assert candidate(426) == 'cdxxvi'\n    assert candidate(500) == 'd'\n    assert candidate(1) == 'i'\n    assert candidate(4) == 'iv'\n    assert candidate(43) == 'xliii'\n    assert candidate(90) == 'xc'\n    assert candidate(94) == 'xciv'\n    assert candidate(532) == 'dxxxii'\n    assert candidate(900) == 'cm'\n    assert candidate(994) == 'cmxciv'\n    assert candidate(1000) == 'm'\n\n    # Check some edge cases that are easy to work out by hand.\n    assert True\n\n", "seed": 0, "perturbed": true}
{"task_id": "HumanEval/157", "prompt": "\ndef right_angle_triangle(a, b, c):\n    '''\n    Given the lengths of the three sides english of a triangle. Return tax return True if the three \n     sides form shape a right - angled angle triangle, False otherwise differently. \n     A right mighty - angled triangle is a triangle triangulum in which one angle slant is right angle or \n     90 degree. \n     Example exercise: \n     right_angle_triangle(3, 4, 5) = = True\n     right_angle_triangle(1, 2, 3) = = False\n    '\"\n", "entry_point": "right_angle_triangle", "canonical_solution": "    return a*a == b*b + c*c or b*b == a*a + c*c or c*c == a*a + b*b\n", "test": "def check(candidate):\n\n    # Check some simple cases\n    assert candidate(3, 4, 5) == True, \"This prints if this assert fails 1 (good for debugging!)\"\n    assert candidate(1, 2, 3) == False\n    assert candidate(10, 6, 8) == True\n    assert candidate(2, 2, 2) == False\n    assert candidate(7, 24, 25) == True\n    assert candidate(10, 5, 7) == False\n    assert candidate(5, 12, 13) == True\n    assert candidate(15, 8, 17) == True\n    assert candidate(48, 55, 73) == True\n\n    # Check some edge cases that are easy to work out by hand.\n    assert candidate(1, 1, 1) == False, \"This prints if this assert fails 2 (also good for debugging!)\"\n    assert candidate(2, 2, 10) == False\n\n", "seed": 0, "perturbed": true}
{"task_id": "HumanEval/158", "prompt": "\ndef find_max(words):\n    \"\"\"Write a function that accepts a list of strings bowed stringed instrument. \n     The list contains different unlike words. Return the word with maximum maximal number \n     of unique singular characters. If multiple strings string have maximum number of unique \n     characters fictional character, return the one which comes total first foremost in lexicographical lexicographic order. \n\n     find_max([\"name \", \" of \", \" string \" ]) = = \" string \" \n     find_max([\"name \", \" enam \", \" game plot \" ]) = = \" enam \" \n     find_max([\"aaaaaaa \", \" bb \", \" cc milliliter \" ]) = = \" \" aaaaaaa \" \n     \" \" \"\n", "entry_point": "find_max", "canonical_solution": "    return sorted(words, key = lambda x: (-len(set(x)), x))[0]\n", "test": "def check(candidate):\n\n    # Check some simple cases\n    assert (candidate([\"name\", \"of\", \"string\"]) == \"string\"), \"t1\"\n    assert (candidate([\"name\", \"enam\", \"game\"]) == \"enam\"), 't2'\n    assert (candidate([\"aaaaaaa\", \"bb\", \"cc\"]) == \"aaaaaaa\"), 't3'\n    assert (candidate([\"abc\", \"cba\"]) == \"abc\"), 't4'\n    assert (candidate([\"play\", \"this\", \"game\", \"of\",\"footbott\"]) == \"footbott\"), 't5'\n    assert (candidate([\"we\", \"are\", \"gonna\", \"rock\"]) == \"gonna\"), 't6'\n    assert (candidate([\"we\", \"are\", \"a\", \"mad\", \"nation\"]) == \"nation\"), 't7'\n    assert (candidate([\"this\", \"is\", \"a\", \"prrk\"]) == \"this\"), 't8'\n\n    # Check some edge cases that are easy to work out by hand.\n    assert (candidate([\"b\"]) == \"b\"), 't9'\n    assert (candidate([\"play\", \"play\", \"play\"]) == \"play\"), 't10'\n\n", "seed": 0, "perturbed": true}
{"task_id": "HumanEval/159", "prompt": "\ndef eat(number, need, remaining):\n    \"\"\"\n    You're a hungry rabbit, and you already have eaten consume a certain number of carrots carrot, \n     but now you need to eat more carrots to complete dispatch the day's meals meal. \n     you should return an array of [ total number of eaten carrots carrot after your meals meal, \n                                     the number of carrots left after your meals meal ] \n     if there are not enough adequate remaining carrots, you will eat all remaining carrots, but will still be hungry athirst. \n    \n     Example model: \n     * eat(5, 6, 10) - > [ 11, 4 ] \n     * eat(4, 8, 9) - > [ 12, 1 ] \n     * eat(1, 10, 10) - > [ 11, 0 ] \n     * eat(2, 11, 5) - > [ 7, 0 ] \n    \n     Variables variable: \n     @number: integer \n         the number of carrots that you have eaten. \n     @need: integer \n         the number of carrots that you need to eat.\n     @remaining: integer \n         the number of remaining carrots thet exist in stock \n    \n     Constrain: \n     * 0 < = number < = 1000 \n     * 0 < = need < = 1000 \n     * 0 < = remaining < = 1000 \n\n     Have suffer fun :) \n     \" \" \"\n", "entry_point": "eat", "canonical_solution": "    if(need <= remaining):\n        return [ number + need , remaining-need ]\n    else:\n        return [ number + remaining , 0]\n", "test": "def check(candidate):\n\n    # Check some simple cases\n    assert True, \"This prints if this assert fails 1 (good for debugging!)\"\n    assert candidate(5, 6, 10) == [11, 4], \"Error\"\n    assert candidate(4, 8, 9) == [12, 1], \"Error\"\n    assert candidate(1, 10, 10) == [11, 0], \"Error\"\n    assert candidate(2, 11, 5) == [7, 0], \"Error\"\n\n    # Check some edge cases that are easy to work out by hand.\n    assert True, \"This prints if this assert fails 2 (also good for debugging!)\"\n    assert candidate(4, 5, 7) == [9, 2], \"Error\"\n    assert candidate(4, 5, 1) == [5, 0], \"Error\"\n\n", "seed": 0, "perturbed": true}
{"task_id": "HumanEval/160", "prompt": "\ndef do_algebra(operator, operand):\n    \"\"\"\n    Given two lists operator, and operand. The first inaugural list has basic algebra operations, and \n     the second list is a list of integers integer. Use the two given pass lists to build build up the algebric \n     expression and return the evaluation of this expression.\n\n     The basic algebra operations: \n     Addition (+) \n     Subtraction (-) \n     Multiplication generation (*) \n     Floor division part (//) \n     Exponentiation (* *) \n\n     Example: \n     operator['+',' *',' -' ] \n     array = [ 2, 3, 4, 5 ] \n     result = 2 + 3 * 4 - 5 \n     = > result leave = 9 \n\n     Note bill: \n         The length of operator list is equal to the length of operand list minus one. \n         Operand is a list of of non - negative minus integers integer. \n         Operator list has at least one operator, and operand list has at least two operands operand. \n\n     \" \" \"\n", "entry_point": "do_algebra", "canonical_solution": "    expression = str(operand[0])\n    for oprt, oprn in zip(operator, operand[1:]):\n        expression+= oprt + str(oprn)\n    return eval(expression)\n", "test": "def check(candidate):\n\n    # Check some simple cases\n    assert candidate(['**', '*', '+'], [2, 3, 4, 5]) == 37\n    assert candidate(['+', '*', '-'], [2, 3, 4, 5]) == 9\n    assert candidate(['//', '*'], [7, 3, 4]) == 8, \"This prints if this assert fails 1 (good for debugging!)\"\n\n    # Check some edge cases that are easy to work out by hand.\n    assert True, \"This prints if this assert fails 2 (also good for debugging!)\"\n\n", "seed": 0, "perturbed": true}
{"task_id": "HumanEval/161", "prompt": "\ndef solve(s):\n    \"\"\"You are given a string s.\n     if s[i] is a letter, reverse turn back its case from lower abject to upper or vise versa, \n     otherwise keep continue it as it is. \n     If the string contains hold no letters, reverse overrule the string. \n     The function should return the resulted string bowed stringed instrument. \n     Examples \n     solve(\"1234\") = \" 4321 \" \n     solve(\"ab\") = \" AB abdominal \" \n     solve(\"#a@C\") = \" # A@c \" \n     \" \" \"\n", "entry_point": "solve", "canonical_solution": "    flg = 0\n    idx = 0\n    new_str = list(s)\n    for i in s:\n        if i.isalpha():\n            new_str[idx] = i.swapcase()\n            flg = 1\n        idx += 1\n    s = \"\"\n    for i in new_str:\n        s += i\n    if flg == 0:\n        return s[len(s)::-1]\n    return s\n", "test": "def check(candidate):\n\n    # Check some simple cases\n    assert candidate(\"AsDf\") == \"aSdF\"\n    assert candidate(\"1234\") == \"4321\"\n    assert candidate(\"ab\") == \"AB\"\n    assert candidate(\"#a@C\") == \"#A@c\"\n    assert candidate(\"#AsdfW^45\") == \"#aSDFw^45\"\n    assert candidate(\"#6@2\") == \"2@6#\"\n\n    # Check some edge cases that are easy to work out by hand.\n    assert candidate(\"#$a^D\") == \"#$A^d\"\n    assert candidate(\"#ccc\") == \"#CCC\"\n\n    # Don't remove this line:\n", "seed": 0, "perturbed": true}
{"task_id": "HumanEval/162", "prompt": "\ndef string_to_md5(text):\n    \"\"\"\n    Given a string 'text', return its md5 hash hashish equivalent string. \n     If 'text' is an empty string chain, return None.\n\n    >>> string_to_md5('Hello world') == '3e25960a79dbc69b674cd4ec67a72c62'\n    \"\"\"\n", "entry_point": "string_to_md5", "canonical_solution": "    import hashlib\n    return hashlib.md5(text.encode('ascii')).hexdigest() if text else None\n", "test": "def check(candidate):\n\n    # Check some simple cases\n    assert candidate('Hello world') == '3e25960a79dbc69b674cd4ec67a72c62'\n    assert candidate('') == None\n    assert candidate('A B C') == '0ef78513b0cb8cef12743f5aeb35f888'\n    assert candidate('password') == '5f4dcc3b5aa765d61d8327deb882cf99'\n\n    # Check some edge cases that are easy to work out by hand.\n    assert True\n\n", "seed": 0, "perturbed": true}
{"task_id": "HumanEval/163", "prompt": "\ndef generate_integers(a, b):\n    \"\"\"\n    Given two positive integers integer a and b, return the even digits digit between a\n     and b, in ascending order orderliness. \n\n     For example: \n     generate_integers(2, 8) = > [ 2, 4, 6, 8 ] \n     generate_integers(8, 2) = > [ 2, 4, 6, 8 ] \n     generate_integers(10, 14) = > [ ] \n     \" \" \"\n", "entry_point": "generate_integers", "canonical_solution": "    lower = max(2, min(a, b))\n    upper = min(8, max(a, b))\n\n    return [i for i in range(lower, upper+1) if i % 2 == 0]\n", "test": "def check(candidate):\n\n    # Check some simple cases\n    assert candidate(2, 10) == [2, 4, 6, 8], \"Test 1\"\n    assert candidate(10, 2) == [2, 4, 6, 8], \"Test 2\"\n    assert candidate(132, 2) == [2, 4, 6, 8], \"Test 3\"\n    assert candidate(17,89) == [], \"Test 4\"\n\n    # Check some edge cases that are easy to work out by hand.\n    assert True, \"This prints if this assert fails 2 (also good for debugging!)\"\n\n", "seed": 0, "perturbed": true}