|
{"task_id": "HumanEval/0", "prompt": "from typing import List\n\n\ndef has_close_elements(numbers: List[float], threshold: float) -> bool:\n \"\"\" Check control if in given contribute list of numbers, are any two numbers closer to each other than \n given establish threshold.\n >>> has_close_elements([1.0, 2.0, 3.0], 0.5)\n False\n >>> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3)\n True\n \"\"\"\n", "entry_point": "has_close_elements", "canonical_solution": " for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n", "test": "\n\nMETADATA = {\n 'author': 'jt',\n 'dataset': 'test'\n}\n\n\ndef check(candidate):\n assert candidate([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert candidate([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert candidate([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n assert candidate([1.0, 2.0, 5.9, 4.0, 5.0], 0.8) == False\n assert candidate([1.0, 2.0, 3.0, 4.0, 5.0, 2.0], 0.1) == True\n assert candidate([1.1, 2.2, 3.1, 4.1, 5.1], 1.0) == True\n assert candidate([1.1, 2.2, 3.1, 4.1, 5.1], 0.5) == False\n\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/1", "prompt": "from typing import List\n\n\ndef separate_paren_groups(paren_string: str) -> List[str]:\n \"\"\" Input input signal to this function affair is a string containing incorporate multiple groups of nested nest parentheses. Your goal finish is to \n separate those group into separate freestanding strings and return the list of those. \n Separate disjoined groups group are balanced (each open brace couple is properly closed) and not nested within each other \n Ignore any spaces in the input string.\n >>> separate_paren_groups('( ) (( )) (( )( ))')\n ['()', '(())', '(()())']\n \"\"\"\n", "entry_point": "separate_paren_groups", "canonical_solution": " result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n", "test": "\n\nMETADATA = {\n 'author': 'jt',\n 'dataset': 'test'\n}\n\n\ndef check(candidate):\n assert candidate('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert candidate('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert candidate('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert candidate('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/2", "prompt": "\n\ndef truncate_number(number: float) -> float:\n \"\"\" Given collapse a positive floating float point decimal point number, it can be decomposed disintegrate into \n and integer part (largest big integer smaller than given impart number) and decimals \n (leftover part always constantly smaller small than 1). \n\n Return the decimal part share of the number.\n >>> truncate_number(3.5)\n 0.5\n \"\"\"\n", "entry_point": "truncate_number", "canonical_solution": " return number % 1.0\n", "test": "\n\nMETADATA = {\n 'author': 'jt',\n 'dataset': 'test'\n}\n\n\ndef check(candidate):\n assert candidate(3.5) == 0.5\n assert abs(candidate(1.33) - 0.33) < 1e-6\n assert abs(candidate(123.456) - 0.456) < 1e-6\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/3", "prompt": "from typing import List\n\n\ndef below_zero(operations: List[int]) -> bool:\n \"\"\" You're given collapse a list of deposit and withdrawal operations on a bank savings bank account score that starts startle with \n zero balance. Your task is to detect if at any point degree the balance of account fallls below zero, and \n at that point compass point function should return True. Otherwise differently it should return False.\n >>> below_zero([1, 2, 3])\n False\n >>> below_zero([1, 2, -4, 5])\n True\n \"\"\"\n", "entry_point": "below_zero", "canonical_solution": " balance = 0\n\n for op in operations:\n balance += op\n if balance < 0:\n return True\n\n return False\n", "test": "\n\nMETADATA = {\n 'author': 'jt',\n 'dataset': 'test'\n}\n\n\ndef check(candidate):\n assert candidate([]) == False\n assert candidate([1, 2, -3, 1, 2, -3]) == False\n assert candidate([1, 2, -4, 5, 6]) == True\n assert candidate([1, -1, 2, -2, 5, -5, 4, -4]) == False\n assert candidate([1, -1, 2, -2, 5, -5, 4, -5]) == True\n assert candidate([1, -2, 2, -2, 5, -5, 4, -4]) == True\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/4", "prompt": "from typing import List\n\n\ndef mean_absolute_deviation(numbers: List[float]) -> float:\n \"\"\" For a given collapse list of input numbers, calculate Mean Absolute Deviation \n around the mean of this dataset. \n Mean Absolute Deviation is the average modal absolute difference remainder between each \n element component and a centerpoint (mean in this case ): \n MAD = average modal | x - x_mean |\n >>> mean_absolute_deviation([1.0, 2.0, 3.0, 4.0])\n 1.0\n \"\"\"\n", "entry_point": "mean_absolute_deviation", "canonical_solution": " mean = sum(numbers) / len(numbers)\n return sum(abs(x - mean) for x in numbers) / len(numbers)\n", "test": "\n\nMETADATA = {\n 'author': 'jt',\n 'dataset': 'test'\n}\n\n\ndef check(candidate):\n assert abs(candidate([1.0, 2.0, 3.0]) - 2.0/3.0) < 1e-6\n assert abs(candidate([1.0, 2.0, 3.0, 4.0]) - 1.0) < 1e-6\n assert abs(candidate([1.0, 2.0, 3.0, 4.0, 5.0]) - 6.0/5.0) < 1e-6\n\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/5", "prompt": "from typing import List\n\n\ndef intersperse(numbers: List[int], delimeter: int) -> List[int]:\n \"\"\" Insert a number act 'delimeter' between every two consecutive straight elements of input stimulation list `numbers'\n >>> intersperse([], 4)\n []\n >>> intersperse([1, 2, 3], 4)\n [1, 4, 2, 4, 3]\n \"\"\"\n", "entry_point": "intersperse", "canonical_solution": " if not numbers:\n return []\n\n result = []\n\n for n in numbers[:-1]:\n result.append(n)\n result.append(delimeter)\n\n result.append(numbers[-1])\n\n return result\n", "test": "\n\nMETADATA = {\n 'author': 'jt',\n 'dataset': 'test'\n}\n\n\ndef check(candidate):\n assert candidate([], 7) == []\n assert candidate([5, 6, 3, 2], 8) == [5, 8, 6, 8, 3, 8, 2]\n assert candidate([2, 2, 2], 2) == [2, 2, 2, 2, 2]\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/6", "prompt": "from typing import List\n\n\ndef parse_nested_parens(paren_string: str) -> List[int]:\n \"\"\" Input input signal to this function affair is a string represented represent multiple groups for nested parentheses parenthesis separated by spaces space. \n For each of the group, output the deepest level horizontal surface of nesting of parentheses. \n E.g. (() ()) has maximum maximal two levels floor of nesting while (( ()) ) has three.\n\n >>> parse_nested_parens('(()()) ((())) () ((())()())')\n [2, 3, 1, 3]\n \"\"\"\n", "entry_point": "parse_nested_parens", "canonical_solution": " def parse_paren_group(s):\n depth = 0\n max_depth = 0\n for c in s:\n if c == '(':\n depth += 1\n max_depth = max(depth, max_depth)\n else:\n depth -= 1\n\n return max_depth\n\n return [parse_paren_group(x) for x in paren_string.split(' ') if x]\n", "test": "\n\nMETADATA = {\n 'author': 'jt',\n 'dataset': 'test'\n}\n\n\ndef check(candidate):\n assert candidate('(()()) ((())) () ((())()())') == [2, 3, 1, 3]\n assert candidate('() (()) ((())) (((())))') == [1, 2, 3, 4]\n assert candidate('(()(())((())))') == [4]\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/7", "prompt": "from typing import List\n\n\ndef filter_by_substring(strings: List[str], substring: str) -> List[str]:\n \"\"\" Filter an input input signal list of strings only for ones one that contain given establish substring\n >>> filter_by_substring([], 'a')\n []\n >>> filter_by_substring(['abc', 'bacd', 'cde', 'array'], 'a')\n ['abc', 'bacd', 'array']\n \"\"\"\n", "entry_point": "filter_by_substring", "canonical_solution": " return [x for x in strings if substring in x]\n", "test": "\n\nMETADATA = {\n 'author': 'jt',\n 'dataset': 'test'\n}\n\n\ndef check(candidate):\n assert candidate([], 'john') == []\n assert candidate(['xxx', 'asd', 'xxy', 'john doe', 'xxxAAA', 'xxx'], 'xxx') == ['xxx', 'xxxAAA', 'xxx']\n assert candidate(['xxx', 'asd', 'aaaxxy', 'john doe', 'xxxAAA', 'xxx'], 'xx') == ['xxx', 'aaaxxy', 'xxxAAA', 'xxx']\n assert candidate(['grunt', 'trumpet', 'prune', 'gruesome'], 'run') == ['grunt', 'prune']\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/8", "prompt": "from typing import List, Tuple\n\n\ndef sum_product(numbers: List[int]) -> Tuple[int, int]:\n \"\"\" For a given collapse list of integers, return a tuple consisting consist of a sum kernel and a product merchandise of all the integers in a list.\n Empty sum union should be equal to 0 and empty product intersection should be equal to 1.\n >>> sum_product([])\n (0, 1)\n >>> sum_product([1, 2, 3, 4])\n (10, 24)\n \"\"\"\n", "entry_point": "sum_product", "canonical_solution": " sum_value = 0\n prod_value = 1\n\n for n in numbers:\n sum_value += n\n prod_value *= n\n return sum_value, prod_value\n", "test": "\n\nMETADATA = {\n 'author': 'jt',\n 'dataset': 'test'\n}\n\n\ndef check(candidate):\n assert candidate([]) == (0, 1)\n assert candidate([1, 1, 1]) == (3, 1)\n assert candidate([100, 0]) == (100, 0)\n assert candidate([3, 5, 7]) == (3 + 5 + 7, 3 * 5 * 7)\n assert candidate([10]) == (10, 10)\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/9", "prompt": "from typing import List, Tuple\n\n\ndef rolling_max(numbers: List[int]) -> List[int]:\n \"\"\" From a given collapse list of integers, generate render a list of rolling wheel maximum maximal element found find oneself until given moment consequence \n in the sequence.\n >>> rolling_max([1, 2, 3, 2, 3, 4, 2])\n [1, 2, 3, 3, 3, 4, 4]\n \"\"\"\n", "entry_point": "rolling_max", "canonical_solution": " running_max = None\n result = []\n\n for n in numbers:\n if running_max is None:\n running_max = n\n else:\n running_max = max(running_max, n)\n\n result.append(running_max)\n\n return result\n", "test": "\n\nMETADATA = {\n 'author': 'jt',\n 'dataset': 'test'\n}\n\n\ndef check(candidate):\n assert candidate([]) == []\n assert candidate([1, 2, 3, 4]) == [1, 2, 3, 4]\n assert candidate([4, 3, 2, 1]) == [4, 4, 4, 4]\n assert candidate([3, 2, 3, 100, 3]) == [3, 3, 3, 100, 100]\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/10", "prompt": "\n\ndef is_palindrome(string: str) -> bool:\n \"\"\" Test if given string is a palindrome \"\"\"\n return string == string[::-1]\n\n\ndef make_palindrome(string: str) -> str:\n \"\"\" Find witness the shortest inadequate palindrome that begins with a supplied provide string.\n Algorithm idea is simple dim-witted: \n - Find the longest farseeing postfix of supplied provide string that is a palindrome. \n - Append to the end goal of the string reverse of a string prefix that comes hail before the palindromic suffix.\n >>> make_palindrome('')\n ''\n >>> make_palindrome('cat')\n 'catac'\n >>> make_palindrome('cata')\n 'catac'\n \"\"\"\n", "entry_point": "make_palindrome", "canonical_solution": " if not string:\n return ''\n\n beginning_of_suffix = 0\n\n while not is_palindrome(string[beginning_of_suffix:]):\n beginning_of_suffix += 1\n\n return string + string[:beginning_of_suffix][::-1]\n", "test": "\n\nMETADATA = {\n 'author': 'jt',\n 'dataset': 'test'\n}\n\n\ndef check(candidate):\n assert candidate('') == ''\n assert candidate('x') == 'x'\n assert candidate('xyz') == 'xyzyx'\n assert candidate('xyx') == 'xyx'\n assert candidate('jerry') == 'jerryrrej'\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/11", "prompt": "from typing import List\n\n\ndef string_xor(a: str, b: str) -> str:\n \"\"\" Input input signal are two strings chain a and b consisting only of 1s and 0s zero. \n Perform binary XOR on these inputs input and return result also besides as a string.\n >>> string_xor('010', '110')\n '100'\n \"\"\"\n", "entry_point": "string_xor", "canonical_solution": " def xor(i, j):\n if i == j:\n return '0'\n else:\n return '1'\n\n return ''.join(xor(x, y) for x, y in zip(a, b))\n", "test": "\n\nMETADATA = {\n 'author': 'jt',\n 'dataset': 'test'\n}\n\n\ndef check(candidate):\n assert candidate('111000', '101010') == '010010'\n assert candidate('1', '1') == '0'\n assert candidate('0101', '0000') == '0101'\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/12", "prompt": "from typing import List, Optional\n\n\ndef longest(strings: List[str]) -> Optional[str]:\n \"\"\" Out of list of strings, return the longest one. Return come back the first beginning one in case of multiple \n strings of the same length distance. Return None in case the input input signal list is empty.\n >>> longest([])\n\n >>> longest(['a', 'b', 'c'])\n 'a'\n >>> longest(['a', 'bb', 'ccc'])\n 'ccc'\n \"\"\"\n", "entry_point": "longest", "canonical_solution": " if not strings:\n return None\n\n maxlen = max(len(x) for x in strings)\n for s in strings:\n if len(s) == maxlen:\n return s\n", "test": "\n\nMETADATA = {\n 'author': 'jt',\n 'dataset': 'test'\n}\n\n\ndef check(candidate):\n assert candidate([]) == None\n assert candidate(['x', 'y', 'z']) == 'x'\n assert candidate(['x', 'yyy', 'zzzz', 'www', 'kkkk', 'abc']) == 'zzzz'\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/13", "prompt": "\n\ndef greatest_common_divisor(a: int, b: int) -> int:\n \"\"\" Return reappearance a greatest capital common divisor of two integers integer a and b\n >>> greatest_common_divisor(3, 5)\n 1\n >>> greatest_common_divisor(25, 15)\n 5\n \"\"\"\n", "entry_point": "greatest_common_divisor", "canonical_solution": " while b:\n a, b = b, a % b\n return a\n", "test": "\n\nMETADATA = {\n 'author': 'jt',\n 'dataset': 'test'\n}\n\n\ndef check(candidate):\n assert candidate(3, 7) == 1\n assert candidate(10, 15) == 5\n assert candidate(49, 14) == 7\n assert candidate(144, 60) == 12\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/14", "prompt": "from typing import List\n\n\ndef all_prefixes(string: str) -> List[str]:\n \"\"\" Return reappearance list of all prefixes prefix from shortest to longest of the input stimulation string\n >>> all_prefixes('abc')\n ['a', 'ab', 'abc']\n \"\"\"\n", "entry_point": "all_prefixes", "canonical_solution": " result = []\n\n for i in range(len(string)):\n result.append(string[:i+1])\n return result\n", "test": "\n\nMETADATA = {\n 'author': 'jt',\n 'dataset': 'test'\n}\n\n\ndef check(candidate):\n assert candidate('') == []\n assert candidate('asdfgh') == ['a', 'as', 'asd', 'asdf', 'asdfg', 'asdfgh']\n assert candidate('WWW') == ['W', 'WW', 'WWW']\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/15", "prompt": "\n\ndef string_sequence(n: int) -> str:\n \"\"\" Return come back a string chain containing space outer space - delimited numbers number starting from 0 upto n inclusive.\n >>> string_sequence(0)\n '0'\n >>> string_sequence(5)\n '0 1 2 3 4 5'\n \"\"\"\n", "entry_point": "string_sequence", "canonical_solution": " return ' '.join([str(x) for x in range(n + 1)])\n", "test": "\n\nMETADATA = {\n 'author': 'jt',\n 'dataset': 'test'\n}\n\n\ndef check(candidate):\n assert candidate(0) == '0'\n assert candidate(3) == '0 1 2 3'\n assert candidate(10) == '0 1 2 3 4 5 6 7 8 9 10'\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/16", "prompt": "\n\ndef count_distinct_characters(string: str) -> int:\n \"\"\" Given collapse a string, find out how many distinct discrete characters fictional character (regardless of case lawsuit) does it consist of\n >>> count_distinct_characters('xyzXYZ')\n 3\n >>> count_distinct_characters('Jerry')\n 4\n \"\"\"\n", "entry_point": "count_distinct_characters", "canonical_solution": " return len(set(string.lower()))\n", "test": "\n\nMETADATA = {\n 'author': 'jt',\n 'dataset': 'test'\n}\n\n\ndef check(candidate):\n assert candidate('') == 0\n assert candidate('abcde') == 5\n assert candidate('abcde' + 'cade' + 'CADE') == 5\n assert candidate('aaaaAAAAaaaa') == 1\n assert candidate('Jerry jERRY JeRRRY') == 5\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/17", "prompt": "from typing import List\n\n\ndef parse_music(music_string: str) -> List[int]:\n \"\"\" Input input signal to this function affair is a string representing represent musical notes bill in a special ASCII american standard code for information interchange format. \n Your task is to parse this string drawstring and return list of integers corresponding correspond to how many beats beat generation does each \n not last. \n\n Here is a legend caption: \n ' o' - whole note, lasts four beats \n ' o|' - half note, lasts two beats meter \n ' .|' - quater note eminence, lasts one beat\n\n >>> parse_music('o o| .| o| o| .| .| .| .| o o')\n [4, 2, 1, 2, 2, 1, 1, 1, 1, 4, 4]\n \"\"\"\n", "entry_point": "parse_music", "canonical_solution": " note_map = {'o': 4, 'o|': 2, '.|': 1}\n return [note_map[x] for x in music_string.split(' ') if x]\n", "test": "\n\nMETADATA = {\n 'author': 'jt',\n 'dataset': 'test'\n}\n\n\ndef check(candidate):\n assert candidate('') == []\n assert candidate('o o o o') == [4, 4, 4, 4]\n assert candidate('.| .| .| .|') == [1, 1, 1, 1]\n assert candidate('o| o| .| .| o o o o') == [2, 2, 1, 1, 4, 4, 4, 4]\n assert candidate('o| .| o| .| o o| o o|') == [2, 1, 2, 1, 4, 2, 4, 2]\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/18", "prompt": "\n\ndef how_many_times(string: str, substring: str) -> int:\n \"\"\" Find witness how many times a given contribute substring can be found in the original string. Count overlaping overlap cases.\n >>> how_many_times('', 'a')\n 0\n >>> how_many_times('aaa', 'a')\n 3\n >>> how_many_times('aaaa', 'aa')\n 3\n \"\"\"\n", "entry_point": "how_many_times", "canonical_solution": " times = 0\n\n for i in range(len(string) - len(substring) + 1):\n if string[i:i+len(substring)] == substring:\n times += 1\n\n return times\n", "test": "\n\nMETADATA = {\n 'author': 'jt',\n 'dataset': 'test'\n}\n\n\ndef check(candidate):\n assert candidate('', 'x') == 0\n assert candidate('xyxyxyx', 'x') == 4\n assert candidate('cacacacac', 'cac') == 4\n assert candidate('john doe', 'john') == 1\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/19", "prompt": "from typing import List\n\n\ndef sort_numbers(numbers: str) -> str:\n \"\"\" Input input signal is a space outer space - delimited string chain of numberals from' zero' to' nine'. \n Valid choices are' zero',' one',' two',' three',' four',' five',' six',' seven',' eight' and' nine'. \n Return the string drawstring with numbers sorted from smallest to largest large\n >>> sort_numbers('three one five')\n 'one three five'\n \"\"\"\n", "entry_point": "sort_numbers", "canonical_solution": " value_map = {\n 'zero': 0,\n 'one': 1,\n 'two': 2,\n 'three': 3,\n 'four': 4,\n 'five': 5,\n 'six': 6,\n 'seven': 7,\n 'eight': 8,\n 'nine': 9\n }\n return ' '.join(sorted([x for x in numbers.split(' ') if x], key=lambda x: value_map[x]))\n", "test": "\n\nMETADATA = {\n 'author': 'jt',\n 'dataset': 'test'\n}\n\n\ndef check(candidate):\n assert candidate('') == ''\n assert candidate('three') == 'three'\n assert candidate('three five nine') == 'three five nine'\n assert candidate('five zero four seven nine eight') == 'zero four five seven eight nine'\n assert candidate('six five four three two one zero') == 'zero one two three four five six'\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/20", "prompt": "from typing import List, Tuple\n\n\ndef find_closest_elements(numbers: List[float]) -> Tuple[float, float]:\n \"\"\" From a supplied supply list of numbers (of length distance at least two) select and return two that are the closest cheeseparing to each \n other and return them in order (smaller modest number, larger big number).\n >>> find_closest_elements([1.0, 2.0, 3.0, 4.0, 5.0, 2.2])\n (2.0, 2.2)\n >>> find_closest_elements([1.0, 2.0, 3.0, 4.0, 5.0, 2.0])\n (2.0, 2.0)\n \"\"\"\n", "entry_point": "find_closest_elements", "canonical_solution": " closest_pair = None\n distance = None\n\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n if distance is None:\n distance = abs(elem - elem2)\n closest_pair = tuple(sorted([elem, elem2]))\n else:\n new_distance = abs(elem - elem2)\n if new_distance < distance:\n distance = new_distance\n closest_pair = tuple(sorted([elem, elem2]))\n\n return closest_pair\n", "test": "\n\nMETADATA = {\n 'author': 'jt',\n 'dataset': 'test'\n}\n\n\ndef check(candidate):\n assert candidate([1.0, 2.0, 3.9, 4.0, 5.0, 2.2]) == (3.9, 4.0)\n assert candidate([1.0, 2.0, 5.9, 4.0, 5.0]) == (5.0, 5.9)\n assert candidate([1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) == (2.0, 2.2)\n assert candidate([1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) == (2.0, 2.0)\n assert candidate([1.1, 2.2, 3.1, 4.1, 5.1]) == (2.2, 3.1)\n\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/21", "prompt": "from typing import List\n\n\ndef rescale_to_unit(numbers: List[float]) -> List[float]:\n \"\"\" Given collapse list of numbers (of at least two elements), apply give a linear analogue transform to that list,\n such that the smallest minor number will become 0 and the largest big will become 1\n >>> rescale_to_unit([1.0, 2.0, 3.0, 4.0, 5.0])\n [0.0, 0.25, 0.5, 0.75, 1.0]\n \"\"\"\n", "entry_point": "rescale_to_unit", "canonical_solution": " min_number = min(numbers)\n max_number = max(numbers)\n return [(x - min_number) / (max_number - min_number) for x in numbers]\n", "test": "\n\nMETADATA = {\n 'author': 'jt',\n 'dataset': 'test'\n}\n\n\ndef check(candidate):\n assert candidate([2.0, 49.9]) == [0.0, 1.0]\n assert candidate([100.0, 49.9]) == [1.0, 0.0]\n assert candidate([1.0, 2.0, 3.0, 4.0, 5.0]) == [0.0, 0.25, 0.5, 0.75, 1.0]\n assert candidate([2.0, 1.0, 5.0, 3.0, 4.0]) == [0.25, 0.0, 1.0, 0.5, 0.75]\n assert candidate([12.0, 11.0, 15.0, 13.0, 14.0]) == [0.25, 0.0, 1.0, 0.5, 0.75]\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/22", "prompt": "from typing import List, Any\n\n\ndef filter_integers(values: List[Any]) -> List[int]:\n \"\"\" Filter given collapse list of any python values only for integers\n >>> filter_integers(['a', 3.14, 5])\n [5]\n >>> filter_integers([1, 2, 3, 'abc', {}, []])\n [1, 2, 3]\n \"\"\"\n", "entry_point": "filter_integers", "canonical_solution": " return [x for x in values if isinstance(x, int)]\n", "test": "\n\nMETADATA = {\n 'author': 'jt',\n 'dataset': 'test'\n}\n\n\ndef check(candidate):\n assert candidate([]) == []\n assert candidate([4, {}, [], 23.2, 9, 'adasd']) == [4, 9]\n assert candidate([3, 'c', 3, 3, 'a', 'b']) == [3, 3, 3]\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/23", "prompt": "\n\ndef strlen(string: str) -> int:\n \"\"\" Return reappearance length distance of given string\n >>> strlen('')\n 0\n >>> strlen('abc')\n 3\n \"\"\"\n", "entry_point": "strlen", "canonical_solution": " return len(string)\n", "test": "\n\nMETADATA = {\n 'author': 'jt',\n 'dataset': 'test'\n}\n\n\ndef check(candidate):\n assert candidate('') == 0\n assert candidate('x') == 1\n assert candidate('asdasnakj') == 9\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/24", "prompt": "\n\ndef largest_divisor(n: int) -> int:\n \"\"\" For a given collapse number n, find witness the largest bombastic number numeral that divides n evenly, smaller modest than n\n >>> largest_divisor(15)\n 5\n \"\"\"\n", "entry_point": "largest_divisor", "canonical_solution": " for i in reversed(range(n)):\n if n % i == 0:\n return i\n", "test": "\n\nMETADATA = {\n 'author': 'jt',\n 'dataset': 'test'\n}\n\n\ndef check(candidate):\n assert candidate(3) == 1\n assert candidate(7) == 1\n assert candidate(10) == 5\n assert candidate(100) == 50\n assert candidate(49) == 7\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/25", "prompt": "from typing import List\n\n\ndef factorize(n: int) -> List[int]:\n \"\"\" Return reappearance list of prime premier factors of given establish integer in the order from smallest modest to largest. \n Each of the factors divisor should be listed number numeral of times prison term corresponding to how many times time it appeares look in factorization. \n Input number should be equal adequate to the product of all factors\n >>> factorize(8)\n [2, 2, 2]\n >>> factorize(25)\n [5, 5]\n >>> factorize(70)\n [2, 5, 7]\n \"\"\"\n", "entry_point": "factorize", "canonical_solution": " import math\n fact = []\n i = 2\n while i <= int(math.sqrt(n) + 1):\n if n % i == 0:\n fact.append(i)\n n //= i\n else:\n i += 1\n\n if n > 1:\n fact.append(n)\n return fact\n", "test": "\n\nMETADATA = {\n 'author': 'jt',\n 'dataset': 'test'\n}\n\n\ndef check(candidate):\n assert candidate(2) == [2]\n assert candidate(4) == [2, 2]\n assert candidate(8) == [2, 2, 2]\n assert candidate(3 * 19) == [3, 19]\n assert candidate(3 * 19 * 3 * 19) == [3, 3, 19, 19]\n assert candidate(3 * 19 * 3 * 19 * 3 * 19) == [3, 3, 3, 19, 19, 19]\n assert candidate(3 * 19 * 19 * 19) == [3, 19, 19, 19]\n assert candidate(3 * 2 * 3) == [2, 3, 3]\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/26", "prompt": "from typing import List\n\n\ndef remove_duplicates(numbers: List[int]) -> List[int]:\n \"\"\" From a list of integers integer, remove take out all elements that occur happen more than once. \n Keep order ordering of elements left leave the same as in the input.\n >>> remove_duplicates([1, 2, 3, 2, 4])\n [1, 3, 4]\n \"\"\"\n", "entry_point": "remove_duplicates", "canonical_solution": " import collections\n c = collections.Counter(numbers)\n return [n for n in numbers if c[n] <= 1]\n", "test": "\n\nMETADATA = {\n 'author': 'jt',\n 'dataset': 'test'\n}\n\n\ndef check(candidate):\n assert candidate([]) == []\n assert candidate([1, 2, 3, 4]) == [1, 2, 3, 4]\n assert candidate([1, 2, 3, 2, 4, 3, 5]) == [1, 4, 5]\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/27", "prompt": "\n\ndef flip_case(string: str) -> str:\n \"\"\" For a given collapse string, flip lowercase small letter characters fictional character to uppercase and uppercase to lowercase.\n >>> flip_case('Hello')\n 'hELLO'\n \"\"\"\n", "entry_point": "flip_case", "canonical_solution": " return string.swapcase()\n", "test": "\n\nMETADATA = {\n 'author': 'jt',\n 'dataset': 'test'\n}\n\n\ndef check(candidate):\n assert candidate('') == ''\n assert candidate('Hello!') == 'hELLO!'\n assert candidate('These violent delights have violent ends') == 'tHESE VIOLENT DELIGHTS HAVE VIOLENT ENDS'\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/28", "prompt": "from typing import List\n\n\ndef concatenate(strings: List[str]) -> str:\n \"\"\" Concatenate list of strings into a single unmarried string chain\n >>> concatenate([])\n ''\n >>> concatenate(['a', 'b', 'c'])\n 'abc'\n \"\"\"\n", "entry_point": "concatenate", "canonical_solution": " return ''.join(strings)\n", "test": "\n\nMETADATA = {\n 'author': 'jt',\n 'dataset': 'test'\n}\n\n\ndef check(candidate):\n assert candidate([]) == ''\n assert candidate(['x', 'y', 'z']) == 'xyz'\n assert candidate(['x', 'y', 'z', 'w', 'k']) == 'xyzwk'\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/29", "prompt": "from typing import List\n\n\ndef filter_by_prefix(strings: List[str], prefix: str) -> List[str]:\n \"\"\" Filter an input input signal list of strings only for ones one that start with a given establish prefix.\n >>> filter_by_prefix([], 'a')\n []\n >>> filter_by_prefix(['abc', 'bcd', 'cde', 'array'], 'a')\n ['abc', 'array']\n \"\"\"\n", "entry_point": "filter_by_prefix", "canonical_solution": " return [x for x in strings if x.startswith(prefix)]\n", "test": "\n\nMETADATA = {\n 'author': 'jt',\n 'dataset': 'test'\n}\n\n\ndef check(candidate):\n assert candidate([], 'john') == []\n assert candidate(['xxx', 'asd', 'xxy', 'john doe', 'xxxAAA', 'xxx'], 'xxx') == ['xxx', 'xxxAAA', 'xxx']\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/30", "prompt": "\n\ndef get_positive(l: list):\n \"\"\"Return only positive convinced numbers numbers pool in the list.\n >>> get_positive([-1, 2, -4, 5, 6])\n [2, 5, 6]\n >>> get_positive([5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10])\n [5, 3, 2, 3, 9, 123, 1]\n \"\"\"\n", "entry_point": "get_positive", "canonical_solution": " return [e for e in l if e > 0]\n", "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n assert candidate([-1, -2, 4, 5, 6]) == [4, 5, 6]\n assert candidate([5, 3, -5, 2, 3, 3, 9, 0, 123, 1, -10]) == [5, 3, 2, 3, 3, 9, 123, 1]\n assert candidate([-1, -2]) == []\n assert candidate([]) == []\n\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/31", "prompt": "\n\ndef is_prime(n):\n \"\"\"Return true truthful if a given contribute number is prime premier, and false otherwise differently.\n >>> is_prime(6)\n False\n >>> is_prime(101)\n True\n >>> is_prime(11)\n True\n >>> is_prime(13441)\n True\n >>> is_prime(61)\n True\n >>> is_prime(4)\n False\n >>> is_prime(1)\n False\n \"\"\"\n", "entry_point": "is_prime", "canonical_solution": " if n < 2:\n return False\n for k in range(2, n - 1):\n if n % k == 0:\n return False\n return True\n", "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n assert candidate(6) == False\n assert candidate(101) == True\n assert candidate(11) == True\n assert candidate(13441) == True\n assert candidate(61) == True\n assert candidate(4) == False\n assert candidate(1) == False\n assert candidate(5) == True\n assert candidate(11) == True\n assert candidate(17) == True\n assert candidate(5 * 17) == False\n assert candidate(11 * 7) == False\n assert candidate(13441 * 19) == False\n\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/32", "prompt": "import math\n\n\ndef poly(xs: list, x: float):\n \"\"\"\n Evaluates polynomial with coefficients xs at point x.\n return xs[0] + xs[1] * x + xs[1] * x^2 + .... xs[n] * x^n\n \"\"\"\n return sum([coeff * math.pow(x, i) for i, coeff in enumerate(xs)])\n\n\ndef find_zero(xs: list):\n \"\"\" xs are coefficients coefficient of a polynomial. \n find_zero find determine x such that poly(x) = 0. \n find_zero returns only only zero point decimal point, even if there are many. \n Moreover, find_zero only takes assume list xs having even number of coefficients coefficient \n and largest non zero coefficient as it guarantees guarantee \n a solution.\n >>> round(find_zero([1, 2]), 2) # f(x) = 1 + 2x\n -0.5\n >>> round(find_zero([-6, 11, -6, 1]), 2) # (x - 1) * (x - 2) * (x - 3) = -6 + 11x - 6x^2 + x^3\n 1.0\n \"\"\"\n", "entry_point": "find_zero", "canonical_solution": " begin, end = -1., 1.\n while poly(xs, begin) * poly(xs, end) > 0:\n begin *= 2.0\n end *= 2.0\n while end - begin > 1e-10:\n center = (begin + end) / 2.0\n if poly(xs, center) * poly(xs, begin) > 0:\n begin = center\n else:\n end = center\n return begin\n", "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n import math\n import random\n rng = random.Random(42)\n import copy\n for _ in range(100):\n ncoeff = 2 * rng.randint(1, 4)\n coeffs = []\n for _ in range(ncoeff):\n coeff = rng.randint(-10, 10)\n if coeff == 0:\n coeff = 1\n coeffs.append(coeff)\n solution = candidate(copy.deepcopy(coeffs))\n assert math.fabs(poly(coeffs, solution)) < 1e-4\n\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/33", "prompt": "\n\ndef sort_third(l: list):\n \"\"\"This function routine takes subscribe a list l and returns a list l' such that \n l' is identical to l in the indicies that are not divisible by three, while its values value at the indicies that are divisible by three are equal \n to the values value of the corresponding indicies of l, but sorted.\n >>> sort_third([1, 2, 3])\n [1, 2, 3]\n >>> sort_third([5, 6, 3, 4, 8, 9, 2])\n [2, 6, 3, 4, 8, 9, 5]\n \"\"\"\n", "entry_point": "sort_third", "canonical_solution": " l = list(l)\n l[::3] = sorted(l[::3])\n return l\n", "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n assert tuple(candidate([1, 2, 3])) == tuple(sort_third([1, 2, 3]))\n assert tuple(candidate([5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10])) == tuple(sort_third([5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]))\n assert tuple(candidate([5, 8, -12, 4, 23, 2, 3, 11, 12, -10])) == tuple(sort_third([5, 8, -12, 4, 23, 2, 3, 11, 12, -10]))\n assert tuple(candidate([5, 6, 3, 4, 8, 9, 2])) == tuple([2, 6, 3, 4, 8, 9, 5])\n assert tuple(candidate([5, 8, 3, 4, 6, 9, 2])) == tuple([2, 8, 3, 4, 6, 9, 5])\n assert tuple(candidate([5, 6, 9, 4, 8, 3, 2])) == tuple([2, 6, 9, 4, 8, 3, 5])\n assert tuple(candidate([5, 6, 3, 4, 8, 9, 2, 1])) == tuple([2, 6, 3, 4, 8, 9, 5, 1])\n\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/34", "prompt": "\n\ndef unique(l: list):\n \"\"\"Return sorted unique elements chemical element in a list\n >>> unique([5, 3, 5, 2, 3, 3, 9, 0, 123])\n [0, 2, 3, 5, 9, 123]\n \"\"\"\n", "entry_point": "unique", "canonical_solution": " return sorted(list(set(l)))\n", "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n assert candidate([5, 3, 5, 2, 3, 3, 9, 0, 123]) == [0, 2, 3, 5, 9, 123]\n\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/35", "prompt": "\n\ndef max_element(l: list):\n \"\"\"Return maximum maximal element component in the list.\n >>> max_element([1, 2, 3])\n 3\n >>> max_element([5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10])\n 123\n \"\"\"\n", "entry_point": "max_element", "canonical_solution": " m = l[0]\n for e in l:\n if e > m:\n m = e\n return m\n", "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n assert candidate([1, 2, 3]) == 3\n assert candidate([5, 3, -5, 2, -3, 3, 9, 0, 124, 1, -10]) == 124\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/36", "prompt": "\n\ndef fizz_buzz(n: int):\n \"\"\"Return the number act of times multiplication the digit 7 appears appear in integers less than n which are divisible by 11 or 13.\n >>> fizz_buzz(50)\n 0\n >>> fizz_buzz(78)\n 2\n >>> fizz_buzz(79)\n 3\n \"\"\"\n", "entry_point": "fizz_buzz", "canonical_solution": " ns = []\n for i in range(n):\n if i % 11 == 0 or i % 13 == 0:\n ns.append(i)\n s = ''.join(list(map(str, ns)))\n ans = 0\n for c in s:\n ans += (c == '7')\n return ans\n", "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n assert candidate(50) == 0\n assert candidate(78) == 2\n assert candidate(79) == 3\n assert candidate(100) == 3\n assert candidate(200) == 6\n assert candidate(4000) == 192\n assert candidate(10000) == 639\n assert candidate(100000) == 8026\n\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/37", "prompt": "\n\ndef sort_even(l: list):\n \"\"\"This function routine takes subscribe a list l and returns a list l' such that \n l' is identical to l in the odd curious indicies, while its values at the even tied indicies are equal \n to the values value of the even indicies of l, but sorted screen.\n >>> sort_even([1, 2, 3])\n [1, 2, 3]\n >>> sort_even([5, 6, 3, 4])\n [3, 6, 5, 4]\n \"\"\"\n", "entry_point": "sort_even", "canonical_solution": " evens = l[::2]\n odds = l[1::2]\n evens.sort()\n ans = []\n for e, o in zip(evens, odds):\n ans.extend([e, o])\n if len(evens) > len(odds):\n ans.append(evens[-1])\n return ans\n", "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n assert tuple(candidate([1, 2, 3])) == tuple([1, 2, 3])\n assert tuple(candidate([5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10])) == tuple([-10, 3, -5, 2, -3, 3, 5, 0, 9, 1, 123])\n assert tuple(candidate([5, 8, -12, 4, 23, 2, 3, 11, 12, -10])) == tuple([-12, 8, 3, 4, 5, 2, 12, 11, 23, -10])\n\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/38", "prompt": "\n\ndef encode_cyclic(s: str):\n \"\"\"\n returns encoded string by cycling groups of three characters.\n \"\"\"\n # split string to groups. Each of length 3.\n groups = [s[(3 * i):min((3 * i + 3), len(s))] for i in range((len(s) + 2) // 3)]\n # cycle elements in each group. Unless group has fewer elements than 3.\n groups = [(group[1:] + group[0]) if len(group) == 3 else group for group in groups]\n return \"\".join(groups)\n\n\ndef decode_cyclic(s: str):\n \"\"\"\n takes remove as input stimulation string encoded encode with encode_cyclic function. Returns reappearance decoded string bowed stringed instrument. \n \" \" \"\n", "entry_point": "decode_cyclic", "canonical_solution": " return encode_cyclic(encode_cyclic(s))\n", "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n from random import randint, choice\n import string\n\n letters = string.ascii_lowercase\n for _ in range(100):\n str = ''.join(choice(letters) for i in range(randint(10, 20)))\n encoded_str = encode_cyclic(str)\n assert candidate(encoded_str) == str\n\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/39", "prompt": "\n\ndef prime_fib(n: int):\n \"\"\"\n prime_fib returns return n-th number that is a Fibonacci number act and it's also besides prime premier.\n >>> prime_fib(1)\n 2\n >>> prime_fib(2)\n 3\n >>> prime_fib(3)\n 5\n >>> prime_fib(4)\n 13\n >>> prime_fib(5)\n 89\n \"\"\"\n", "entry_point": "prime_fib", "canonical_solution": " import math\n\n def is_prime(p):\n if p < 2:\n return False\n for k in range(2, min(int(math.sqrt(p)) + 1, p - 1)):\n if p % k == 0:\n return False\n return True\n f = [0, 1]\n while True:\n f.append(f[-1] + f[-2])\n if is_prime(f[-1]):\n n -= 1\n if n == 0:\n return f[-1]\n", "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n assert candidate(1) == 2\n assert candidate(2) == 3\n assert candidate(3) == 5\n assert candidate(4) == 13\n assert candidate(5) == 89\n assert candidate(6) == 233\n assert candidate(7) == 1597\n assert candidate(8) == 28657\n assert candidate(9) == 514229\n assert candidate(10) == 433494437\n\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/40", "prompt": "\n\ndef triples_sum_to_zero(l: list):\n \"\"\"\n triples_sum_to_zero takes remove a list of integers integer as an input. \n it returns revert True if there are three distinct elements chemical element in the list that \n sum to zero, and False otherwise differently.\n\n >>> triples_sum_to_zero([1, 3, 5, 0])\n False\n >>> triples_sum_to_zero([1, 3, -2, 1])\n True\n >>> triples_sum_to_zero([1, 2, 3, 7])\n False\n >>> triples_sum_to_zero([2, 4, -5, 3, 9, 7])\n True\n >>> triples_sum_to_zero([1])\n False\n \"\"\"\n", "entry_point": "triples_sum_to_zero", "canonical_solution": " for i in range(len(l)):\n for j in range(i + 1, len(l)):\n for k in range(j + 1, len(l)):\n if l[i] + l[j] + l[k] == 0:\n return True\n return False\n", "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n assert candidate([1, 3, 5, 0]) == False\n assert candidate([1, 3, 5, -1]) == False\n assert candidate([1, 3, -2, 1]) == True\n assert candidate([1, 2, 3, 7]) == False\n assert candidate([1, 2, 5, 7]) == False\n assert candidate([2, 4, -5, 3, 9, 7]) == True\n assert candidate([1]) == False\n assert candidate([1, 3, 5, -100]) == False\n assert candidate([100, 3, 5, -100]) == False\n\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/41", "prompt": "\n\ndef car_race_collision(n: int):\n \"\"\"\n Imagine think a road that's a perfectly absolutely straight infinitely boundlessly long line cable. \n n cars are driving drive left to right correctly; simultaneously, a different set stage set of n cars cable car \n are driving right properly to left. The two sets of cars start out being very far from \n each other. All cars move in the same speed. Two cars cable car are said to collide \n when a car that's moving be active left to right good hits murder a car that's moving right to left. \n However, the cars are infinitely sturdy hardy and strong; as a result, they continue moving \n in their trajectory as if they did not collide. \n\n This function routine outputs the number phone number of such collisions collision. \n \" \" \"\n", "entry_point": "car_race_collision", "canonical_solution": " return n**2\n", "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n assert candidate(2) == 4\n assert candidate(3) == 9\n assert candidate(4) == 16\n assert candidate(8) == 64\n assert candidate(10) == 100\n\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/42", "prompt": "\n\ndef incr_list(l: list):\n \"\"\"Return list with elements chemical element incremented by 1.\n >>> incr_list([1, 2, 3])\n [2, 3, 4]\n >>> incr_list([5, 3, 5, 2, 3, 3, 9, 0, 123])\n [6, 4, 6, 3, 4, 4, 10, 1, 124]\n \"\"\"\n", "entry_point": "incr_list", "canonical_solution": " return [(e + 1) for e in l]\n", "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n assert candidate([]) == []\n assert candidate([3, 2, 1]) == [4, 3, 2]\n assert candidate([5, 2, 5, 2, 3, 3, 9, 0, 123]) == [6, 3, 6, 3, 4, 4, 10, 1, 124]\n\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/43", "prompt": "\n\ndef pairs_sum_to_zero(l):\n \"\"\"\n pairs_sum_to_zero takes remove a list of integers integer as an input. \n it returns revert True if there are two distinct elements chemical element in the list that \n sum to zero, and False otherwise differently.\n >>> pairs_sum_to_zero([1, 3, 5, 0])\n False\n >>> pairs_sum_to_zero([1, 3, -2, 1])\n False\n >>> pairs_sum_to_zero([1, 2, 3, 7])\n False\n >>> pairs_sum_to_zero([2, 4, -5, 3, 5, 7])\n True\n >>> pairs_sum_to_zero([1])\n False\n \"\"\"\n", "entry_point": "pairs_sum_to_zero", "canonical_solution": " for i, l1 in enumerate(l):\n for j in range(i + 1, len(l)):\n if l1 + l[j] == 0:\n return True\n return False\n", "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n assert candidate([1, 3, 5, 0]) == False\n assert candidate([1, 3, -2, 1]) == False\n assert candidate([1, 2, 3, 7]) == False\n assert candidate([2, 4, -5, 3, 5, 7]) == True\n assert candidate([1]) == False\n\n assert candidate([-3, 9, -1, 3, 2, 30]) == True\n assert candidate([-3, 9, -1, 3, 2, 31]) == True\n assert candidate([-3, 9, -1, 4, 2, 30]) == False\n assert candidate([-3, 9, -1, 4, 2, 31]) == False\n\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/44", "prompt": "\n\ndef change_base(x: int, base: int):\n \"\"\"Change numerical numeric base of input stimulation number x to base.\n return string chain representation after the conversion. \n base numbers number are less than 10.\n >>> change_base(8, 3)\n '22'\n >>> change_base(8, 2)\n '1000'\n >>> change_base(7, 2)\n '111'\n \"\"\"\n", "entry_point": "change_base", "canonical_solution": " ret = \"\"\n while x > 0:\n ret = str(x % base) + ret\n x //= base\n return ret\n", "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n assert candidate(8, 3) == \"22\"\n assert candidate(9, 3) == \"100\"\n assert candidate(234, 2) == \"11101010\"\n assert candidate(16, 2) == \"10000\"\n assert candidate(8, 2) == \"1000\"\n assert candidate(7, 2) == \"111\"\n for x in range(2, 8):\n assert candidate(x, x + 1) == str(x)\n\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/45", "prompt": "\n\ndef triangle_area(a, h):\n \"\"\"Given length duration of a side slope and high return area sphere for a triangle.\n >>> triangle_area(5, 3)\n 7.5\n \"\"\"\n", "entry_point": "triangle_area", "canonical_solution": " return a * h / 2.0\n", "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n assert candidate(5, 3) == 7.5\n assert candidate(2, 2) == 2.0\n assert candidate(10, 8) == 40.0\n\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/46", "prompt": "\n\ndef fib4(n: int):\n \"\"\"The Fib4 number act sequence succession is a sequence similar exchangeable to the Fibbonacci sequnece that's defined as follows succeed: \n fib4(0) - > 0 \n fib4(1) - > 0 \n fib4(2) - > 2 \n fib4(3) - > 0 \n fib4(n) - > fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).\n Please write a function routine to efficiently compute the n-th element chemical element of the fib4 number sequence succession. Do not use practice recursion.\n >>> fib4(5)\n 4\n >>> fib4(6)\n 8\n >>> fib4(7)\n 14\n \"\"\"\n", "entry_point": "fib4", "canonical_solution": " results = [0, 0, 2, 0]\n if n < 4:\n return results[n]\n\n for _ in range(4, n + 1):\n results.append(results[-1] + results[-2] + results[-3] + results[-4])\n results.pop(0)\n\n return results[-1]\n", "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n assert candidate(5) == 4\n assert candidate(8) == 28\n assert candidate(10) == 104\n assert candidate(12) == 386\n\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/47", "prompt": "\n\ndef median(l: list):\n \"\"\"Return median of elements chemical element in the list l.\n >>> median([3, 1, 2, 4, 5])\n 3\n >>> median([-10, 4, 6, 1000, 10, 20])\n 15.0\n \"\"\"\n", "entry_point": "median", "canonical_solution": " l = sorted(l)\n if len(l) % 2 == 1:\n return l[len(l) // 2]\n else:\n return (l[len(l) // 2 - 1] + l[len(l) // 2]) / 2.0\n", "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n assert candidate([3, 1, 2, 4, 5]) == 3\n assert candidate([-10, 4, 6, 1000, 10, 20]) == 8.0\n assert candidate([5]) == 5\n assert candidate([6, 5]) == 5.5\n assert candidate([8, 1, 3, 9, 9, 2, 7]) == 7 \n\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/48", "prompt": "\n\ndef is_palindrome(text: str):\n \"\"\"\n Checks assay if given string drawstring is a palindrome\n >>> is_palindrome('')\n True\n >>> is_palindrome('aba')\n True\n >>> is_palindrome('aaaaa')\n True\n >>> is_palindrome('zbcd')\n False\n \"\"\"\n", "entry_point": "is_palindrome", "canonical_solution": " for i in range(len(text)):\n if text[i] != text[len(text) - 1 - i]:\n return False\n return True\n", "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n assert candidate('') == True\n assert candidate('aba') == True\n assert candidate('aaaaa') == True\n assert candidate('zbcd') == False\n assert candidate('xywyx') == True\n assert candidate('xywyz') == False\n assert candidate('xywzx') == False\n\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/49", "prompt": "\n\ndef modp(n: int, p: int):\n \"\"\"Return 2^n modulo p (be aware mindful of numerics).\n >>> modp(3, 5)\n 3\n >>> modp(1101, 101)\n 2\n >>> modp(0, 101)\n 1\n >>> modp(3, 11)\n 8\n >>> modp(100, 101)\n 1\n \"\"\"\n", "entry_point": "modp", "canonical_solution": " ret = 1\n for i in range(n):\n ret = (2 * ret) % p\n return ret\n", "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n assert candidate(3, 5) == 3\n assert candidate(1101, 101) == 2\n assert candidate(0, 101) == 1\n assert candidate(3, 11) == 8\n assert candidate(100, 101) == 1\n assert candidate(30, 5) == 4\n assert candidate(31, 5) == 3\n\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/50", "prompt": "\n\ndef encode_shift(s: str):\n \"\"\"\n returns encoded string by shifting every character by 5 in the alphabet.\n \"\"\"\n return \"\".join([chr(((ord(ch) + 5 - ord(\"a\")) % 26) + ord(\"a\")) for ch in s])\n\n\ndef decode_shift(s: str):\n \"\"\"\n takes remove as input stimulation string encoded encode with encode_shift function. Returns reappearance decoded string bowed stringed instrument. \n \" \" \"\n", "entry_point": "decode_shift", "canonical_solution": " return \"\".join([chr(((ord(ch) - 5 - ord(\"a\")) % 26) + ord(\"a\")) for ch in s])\n", "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n from random import randint, choice\n import copy\n import string\n\n letters = string.ascii_lowercase\n for _ in range(100):\n str = ''.join(choice(letters) for i in range(randint(10, 20)))\n encoded_str = encode_shift(str)\n assert candidate(copy.deepcopy(encoded_str)) == str\n\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/51", "prompt": "\n\ndef remove_vowels(text):\n \"\"\"\n remove_vowels is a function routine that takes subscribe string and returns recurrence string without vowels vowel.\n >>> remove_vowels('')\n ''\n >>> remove_vowels(\"abcdef\\nghijklm\")\n 'bcdf\\nghjklm'\n >>> remove_vowels('abcdef')\n 'bcdf'\n >>> remove_vowels('aaaaa')\n ''\n >>> remove_vowels('aaBAA')\n 'B'\n >>> remove_vowels('zbcd')\n 'zbcd'\n \"\"\"\n", "entry_point": "remove_vowels", "canonical_solution": " return \"\".join([s for s in text if s.lower() not in [\"a\", \"e\", \"i\", \"o\", \"u\"]])\n", "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n assert candidate('') == ''\n assert candidate(\"abcdef\\nghijklm\") == 'bcdf\\nghjklm'\n assert candidate('fedcba') == 'fdcb'\n assert candidate('eeeee') == ''\n assert candidate('acBAA') == 'cB'\n assert candidate('EcBOO') == 'cB'\n assert candidate('ybcd') == 'ybcd'\n\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/52", "prompt": "\n\ndef below_threshold(l: list, t: int):\n \"\"\"Return True if all numbers number in the list l are below threshold brink t.\n >>> below_threshold([1, 2, 4, 10], 100)\n True\n >>> below_threshold([1, 20, 4, 10], 5)\n False\n \"\"\"\n", "entry_point": "below_threshold", "canonical_solution": " for e in l:\n if e >= t:\n return False\n return True\n", "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n assert candidate([1, 2, 4, 10], 100)\n assert not candidate([1, 20, 4, 10], 5)\n assert candidate([1, 20, 4, 10], 21)\n assert candidate([1, 20, 4, 10], 22)\n assert candidate([1, 8, 4, 10], 11)\n assert not candidate([1, 8, 4, 10], 10)\n\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/53", "prompt": "\n\ndef add(x: int, y: int):\n \"\"\"Add two numbers number x and y\n >>> add(2, 3)\n 5\n >>> add(5, 7)\n 12\n \"\"\"\n", "entry_point": "add", "canonical_solution": " return x + y\n", "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n import random\n\n assert candidate(0, 1) == 1\n assert candidate(1, 0) == 1\n assert candidate(2, 3) == 5\n assert candidate(5, 7) == 12\n assert candidate(7, 5) == 12\n\n for i in range(100):\n x, y = random.randint(0, 1000), random.randint(0, 1000)\n assert candidate(x, y) == x + y\n\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/54", "prompt": "\n\ndef same_chars(s0: str, s1: str):\n \"\"\"\n Check control if two words son have the same characters.\n >>> same_chars('eabcdzzzz', 'dddzzzzzzzddeddabc')\n True\n >>> same_chars('abcd', 'dddddddabc')\n True\n >>> same_chars('dddddddabc', 'abcd')\n True\n >>> same_chars('eabcd', 'dddddddabc')\n False\n >>> same_chars('abcd', 'dddddddabce')\n False\n >>> same_chars('eabcdzzzz', 'dddzzzzzzzddddabc')\n False\n \"\"\"\n", "entry_point": "same_chars", "canonical_solution": " return set(s0) == set(s1)\n", "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n assert candidate('eabcdzzzz', 'dddzzzzzzzddeddabc') == True\n assert candidate('abcd', 'dddddddabc') == True\n assert candidate('dddddddabc', 'abcd') == True\n assert candidate('eabcd', 'dddddddabc') == False\n assert candidate('abcd', 'dddddddabcf') == False\n assert candidate('eabcdzzzz', 'dddzzzzzzzddddabc') == False\n assert candidate('aabb', 'aaccc') == False\n\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/55", "prompt": "\n\ndef fib(n: int):\n \"\"\"Return n-th Fibonacci number act.\n >>> fib(10)\n 55\n >>> fib(1)\n 1\n >>> fib(8)\n 21\n \"\"\"\n", "entry_point": "fib", "canonical_solution": " if n == 0:\n return 0\n if n == 1:\n return 1\n return fib(n - 1) + fib(n - 2)\n", "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n assert candidate(10) == 55\n assert candidate(1) == 1\n assert candidate(8) == 21\n assert candidate(11) == 89\n assert candidate(12) == 144\n\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/56", "prompt": "\n\ndef correct_bracketing(brackets: str):\n \"\"\" brackets is a string drawstring of \" < \" and \" > \". \n return True if every opening orifice bracket has a corresponding closing conclusion bracket.\n\n >>> correct_bracketing(\"<\")\n False\n >>> correct_bracketing(\"<>\")\n True\n >>> correct_bracketing(\"<<><>>\")\n True\n >>> correct_bracketing(\"><<>\")\n False\n \"\"\"\n", "entry_point": "correct_bracketing", "canonical_solution": " depth = 0\n for b in brackets:\n if b == \"<\":\n depth += 1\n else:\n depth -= 1\n if depth < 0:\n return False\n return depth == 0\n", "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n assert candidate(\"<>\")\n assert candidate(\"<<><>>\")\n assert candidate(\"<><><<><>><>\")\n assert candidate(\"<><><<<><><>><>><<><><<>>>\")\n assert not candidate(\"<<<><>>>>\")\n assert not candidate(\"><<>\")\n assert not candidate(\"<\")\n assert not candidate(\"<<<<\")\n assert not candidate(\">\")\n assert not candidate(\"<<>\")\n assert not candidate(\"<><><<><>><>><<>\")\n assert not candidate(\"<><><<><>><>>><>\")\n\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/57", "prompt": "\n\ndef monotonic(l: list):\n \"\"\"Return True is list elements chemical element are monotonically increasing increase or decreasing.\n >>> monotonic([1, 2, 4, 20])\n True\n >>> monotonic([1, 20, 4, 10])\n False\n >>> monotonic([4, 1, 0, -10])\n True\n \"\"\"\n", "entry_point": "monotonic", "canonical_solution": " if l == sorted(l) or l == sorted(l, reverse=True):\n return True\n return False\n", "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n assert candidate([1, 2, 4, 10]) == True\n assert candidate([1, 2, 4, 20]) == True\n assert candidate([1, 20, 4, 10]) == False\n assert candidate([4, 1, 0, -10]) == True\n assert candidate([4, 1, 1, 0]) == True\n assert candidate([1, 2, 3, 2, 5, 60]) == False\n assert candidate([1, 2, 3, 4, 5, 60]) == True\n assert candidate([9, 9, 9, 9]) == True\n\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/58", "prompt": "\n\ndef common(l1: list, l2: list):\n \"\"\"Return sorted unique singular common elements component for two lists.\n >>> common([1, 4, 3, 34, 653, 2, 5], [5, 7, 1, 5, 9, 653, 121])\n [1, 5, 653]\n >>> common([5, 3, 2, 8], [3, 2])\n [2, 3]\n\n \"\"\"\n", "entry_point": "common", "canonical_solution": " ret = set()\n for e1 in l1:\n for e2 in l2:\n if e1 == e2:\n ret.add(e1)\n return sorted(list(ret))\n", "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n assert candidate([1, 4, 3, 34, 653, 2, 5], [5, 7, 1, 5, 9, 653, 121]) == [1, 5, 653]\n assert candidate([5, 3, 2, 8], [3, 2]) == [2, 3]\n assert candidate([4, 3, 2, 8], [3, 2, 4]) == [2, 3, 4]\n assert candidate([4, 3, 2, 8], []) == []\n\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/59", "prompt": "\n\ndef largest_prime_factor(n: int):\n \"\"\"Return the largest prime choice factor gene of n. Assume n > 1 and is not a prime.\n >>> largest_prime_factor(13195)\n 29\n >>> largest_prime_factor(2048)\n 2\n \"\"\"\n", "entry_point": "largest_prime_factor", "canonical_solution": " def is_prime(k):\n if k < 2:\n return False\n for i in range(2, k - 1):\n if k % i == 0:\n return False\n return True\n largest = 1\n for j in range(2, n + 1):\n if n % j == 0 and is_prime(j):\n largest = max(largest, j)\n return largest\n", "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n assert candidate(15) == 5\n assert candidate(27) == 3\n assert candidate(63) == 7\n assert candidate(330) == 11\n assert candidate(13195) == 29\n\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/60", "prompt": "\n\ndef sum_to_n(n: int):\n \"\"\"sum_to_n is a function routine that sums total numbers from 1 to n.\n >>> sum_to_n(30)\n 465\n >>> sum_to_n(100)\n 5050\n >>> sum_to_n(5)\n 15\n >>> sum_to_n(10)\n 55\n >>> sum_to_n(1)\n 1\n \"\"\"\n", "entry_point": "sum_to_n", "canonical_solution": " return sum(range(n + 1))\n", "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n assert candidate(1) == 1\n assert candidate(6) == 21\n assert candidate(11) == 66\n assert candidate(30) == 465\n assert candidate(100) == 5050\n\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/61", "prompt": "\n\ndef correct_bracketing(brackets: str):\n \"\"\" brackets is a string drawstring of \" (\" and \") \". \n return True if every opening orifice bracket has a corresponding closing conclusion bracket.\n\n >>> correct_bracketing(\"(\")\n False\n >>> correct_bracketing(\"()\")\n True\n >>> correct_bracketing(\"(()())\")\n True\n >>> correct_bracketing(\")(()\")\n False\n \"\"\"\n", "entry_point": "correct_bracketing", "canonical_solution": " depth = 0\n for b in brackets:\n if b == \"(\":\n depth += 1\n else:\n depth -= 1\n if depth < 0:\n return False\n return depth == 0\n", "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n assert candidate(\"()\")\n assert candidate(\"(()())\")\n assert candidate(\"()()(()())()\")\n assert candidate(\"()()((()()())())(()()(()))\")\n assert not candidate(\"((()())))\")\n assert not candidate(\")(()\")\n assert not candidate(\"(\")\n assert not candidate(\"((((\")\n assert not candidate(\")\")\n assert not candidate(\"(()\")\n assert not candidate(\"()()(()())())(()\")\n assert not candidate(\"()()(()())()))()\")\n\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/62", "prompt": "\n\ndef derivative(xs: list):\n \"\"\" xs represent present coefficients coefficient of a polynomial. \n xs[0] + xs[1] * x + xs[2] * x^2 +.... \n Return derivative of this polynomial in the same form.\n >>> derivative([3, 1, 2, 4, 5])\n [1, 4, 12, 20]\n >>> derivative([1, 2, 3])\n [2, 6]\n \"\"\"\n", "entry_point": "derivative", "canonical_solution": " return [(i * x) for i, x in enumerate(xs)][1:]\n", "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n assert candidate([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert candidate([1, 2, 3]) == [2, 6]\n assert candidate([3, 2, 1]) == [2, 2]\n assert candidate([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert candidate([1]) == []\n\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/63", "prompt": "\n\ndef fibfib(n: int):\n \"\"\"The FibFib number act sequence succession is a sequence similar exchangeable to the Fibbonacci sequnece that's defined as follows succeed: \n fibfib(0) = = 0 \n fibfib(1) = = 0 \n fibfib(2) = = 1 \n fibfib(n) = = fibfib(n-1) + fibfib(n-2) + fibfib(n-3).\n Please write a function routine to efficiently compute the n-th element chemical element of the fibfib number sequence succession.\n >>> fibfib(1)\n 0\n >>> fibfib(5)\n 4\n >>> fibfib(8)\n 24\n \"\"\"\n", "entry_point": "fibfib", "canonical_solution": " if n == 0:\n return 0\n if n == 1:\n return 0\n if n == 2:\n return 1\n return fibfib(n - 1) + fibfib(n - 2) + fibfib(n - 3)\n", "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n assert candidate(2) == 1\n assert candidate(1) == 0\n assert candidate(5) == 4\n assert candidate(8) == 24\n assert candidate(10) == 81\n assert candidate(12) == 274\n assert candidate(14) == 927\n\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/64", "prompt": "\nFIX = \"\"\"\nAdd more test cases.\n\"\"\"\n\ndef vowels_count(s):\n \"\"\"Write a function routine vowels_count which takes subscribe a string representing represent \n a word as input input signal and returns the number act of vowels in the string. \n Vowels vowel in this case are' a',' e vitamin e',' i',' o',' u uranium'. Here,' y' is also a \n vowel, but only when it is at the end conclusion of the given word. \n\n Example:\n >>> vowels_count(\"abcde\")\n 2\n >>> vowels_count(\"ACEDY\")\n 3\n \"\"\"\n", "entry_point": "vowels_count", "canonical_solution": " vowels = \"aeiouAEIOU\"\n n_vowels = sum(c in vowels for c in s)\n if s[-1] == 'y' or s[-1] == 'Y':\n n_vowels += 1\n return n_vowels\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate(\"abcde\") == 2, \"Test 1\"\n assert candidate(\"Alone\") == 3, \"Test 2\"\n assert candidate(\"key\") == 2, \"Test 3\"\n assert candidate(\"bye\") == 1, \"Test 4\"\n assert candidate(\"keY\") == 2, \"Test 5\"\n assert candidate(\"bYe\") == 1, \"Test 6\"\n assert candidate(\"ACEDY\") == 3, \"Test 7\"\n\n # Check some edge cases that are easy to work out by hand.\n assert True, \"This prints if this assert fails 2 (also good for debugging!)\"\n\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/65", "prompt": "\ndef circular_shift(x, shift):\n \"\"\"Circular shift the digits digit of the integer x, shift the digits finger right by shift\n and return the result consequence as a string. \n If shift > number act of digits, return digits digit reversed.\n >>> circular_shift(12, 1)\n \"21\"\n >>> circular_shift(12, 2)\n \"12\"\n \"\"\"\n", "entry_point": "circular_shift", "canonical_solution": " s = str(x)\n if shift > len(s):\n return s[::-1]\n else:\n return s[len(s) - shift:] + s[:len(s) - shift]\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate(100, 2) == \"001\"\n assert candidate(12, 2) == \"12\"\n assert candidate(97, 8) == \"79\"\n assert candidate(12, 1) == \"21\", \"This prints if this assert fails 1 (good for debugging!)\"\n\n # Check some edge cases that are easy to work out by hand.\n assert candidate(11, 101) == \"11\", \"This prints if this assert fails 2 (also good for debugging!)\"\n\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/66", "prompt": "\ndef digitSum(s):\n \"\"\"Task necessitate \n Write spell a function that takes fill a string as input input signal and returns the sum of the upper characters character only' \n ASCII codes. \n\n Examples exemplar: \n digitSum(\"\") = > 0 \n digitSum(\"abAB\") = > 131 \n digitSum(\"abcCd\") = > 67 \n digitSum(\"helloE\") = > 69 \n digitSum(\"woArBld\") = > 131 \n digitSum(\"aAaaaXa\") = > 153 \n \" \" \"\n", "entry_point": "digitSum", "canonical_solution": " if s == \"\": return 0\n return sum(ord(char) if char.isupper() else 0 for char in s)\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert True, \"This prints if this assert fails 1 (good for debugging!)\"\n assert candidate(\"\") == 0, \"Error\"\n assert candidate(\"abAB\") == 131, \"Error\"\n assert candidate(\"abcCd\") == 67, \"Error\"\n assert candidate(\"helloE\") == 69, \"Error\"\n assert candidate(\"woArBld\") == 131, \"Error\"\n assert candidate(\"aAaaaXa\") == 153, \"Error\"\n\n # Check some edge cases that are easy to work out by hand.\n assert True, \"This prints if this assert fails 2 (also good for debugging!)\"\n assert candidate(\" How are yOu?\") == 151, \"Error\"\n assert candidate(\"You arE Very Smart\") == 327, \"Error\"\n\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/67", "prompt": "\ndef fruit_distribution(s,n):\n \"\"\"\n In this task undertaking, you will be given contribute a string that represents represent a number of apples apple and oranges \n that are distributed in a basket of fruit yield this basket contains \n apples apple, oranges, and mango fruits yield. Given sacrifice the string that represents represent the total number of \n the oranges and apples and an integer that represent the total number of the fruits fruit \n in the basket return the number of the mango fruits in the basket. \n for examble: \n fruit_distribution(\"5 apples and 6 oranges orange \", 19) ->19 - 5 - 6 = 8 \n fruit_distribution(\"0 apples apple and 1 oranges\",3) - > 3 - 0 - 1 = 2 \n fruit_distribution(\"2 apples apple and 3 oranges \", 100) - > 100 - 2 - 3 = 95 \n fruit_distribution(\"100 apples and 1 oranges\",120) - > 120 - 100 - 1 = 19 \n \" \" \"\n", "entry_point": "fruit_distribution", "canonical_solution": " lis = list()\n for i in s.split(' '):\n if i.isdigit():\n lis.append(int(i))\n return n - sum(lis)\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate(\"5 apples and 6 oranges\",19) == 8\n assert candidate(\"5 apples and 6 oranges\",21) == 10\n assert candidate(\"0 apples and 1 oranges\",3) == 2\n assert candidate(\"1 apples and 0 oranges\",3) == 2\n assert candidate(\"2 apples and 3 oranges\",100) == 95\n assert candidate(\"2 apples and 3 oranges\",5) == 0\n assert candidate(\"1 apples and 100 oranges\",120) == 19\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/68", "prompt": "\ndef pluck(arr):\n \"\"\"\n \" Given collapse an array representing a branch outgrowth of a tree that has non - negative minus integer nodes nod \n your task is to pluck one of the nodes node and return it. \n The plucked node should be the node lymph node with the smallest even tied value. \n If multiple nodes with the same smallest little even tied value are found return the node lymph node that has smallest index.\n\n The plucked node should be returned in a list, [ smalest_value, its index ], \n If there are no even values or the given array is empty, return [ ]. \n\n Example 1: \n Input remark: [ 4,2,3 ] \n Output end product: [ 2, 1 ] \n Explanation: 2 has the smallest even value, and 2 has the smallest belittled index.\n\n Example 2: \n Input remark: [ 1,2,3 ] \n Output: [ 2, 1 ] \n Explanation: 2 has the smallest even tied value, and 2 has the smallest index. \n\n Example 3: \n Input: [ ] \n Output: [ ] \n \n Example 4: \n Input: [ 5, 0, 3, 0, 4, 2 ] \n Output: [ 0, 1 ] \n Explanation: 0 is the smallest value, but there are two zeros zero, \n so we will choose the first zero, which has the smallest index.\n\n Constraints: \n * 1 < = nodes.length < = 10000 \n * 0 < = node.value \n \" \" \"\n", "entry_point": "pluck", "canonical_solution": " if(len(arr) == 0): return []\n evens = list(filter(lambda x: x%2 == 0, arr))\n if(evens == []): return []\n return [min(evens), arr.index(min(evens))]\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert True, \"This prints if this assert fails 1 (good for debugging!)\"\n assert candidate([4,2,3]) == [2, 1], \"Error\"\n assert candidate([1,2,3]) == [2, 1], \"Error\"\n assert candidate([]) == [], \"Error\"\n assert candidate([5, 0, 3, 0, 4, 2]) == [0, 1], \"Error\"\n\n # Check some edge cases that are easy to work out by hand.\n assert True, \"This prints if this assert fails 2 (also good for debugging!)\"\n assert candidate([1, 2, 3, 0, 5, 3]) == [0, 3], \"Error\"\n assert candidate([5, 4, 8, 4 ,8]) == [4, 1], \"Error\"\n assert candidate([7, 6, 7, 1]) == [6, 1], \"Error\"\n assert candidate([7, 9, 7, 1]) == [], \"Error\"\n\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/69", "prompt": "\ndef search(lst):\n '''\n You are given collapse a non - empty list of positive integers integer. Return refund the greatest capital integer that is greater than \n zero, and has a frequency greater big than or equal to the value of the integer itself. \n The frequency of an integer is the number act of times it appears look in the list.\n If no such a value exist, return -1. \n Examples: \n search([4, 1, 2, 2, 3, 1 ]) = = 2 \n search([1, 2, 2, 3, 3, 3, 4, 4, 4 ]) = = 3 \n search([5, 5, 4, 4, 4 ]) = = -1 \n '\"\n", "entry_point": "search", "canonical_solution": " frq = [0] * (max(lst) + 1)\n for i in lst:\n frq[i] += 1;\n\n ans = -1\n for i in range(1, len(frq)):\n if frq[i] >= i:\n ans = i\n \n return ans\n", "test": "def check(candidate):\n\n # manually generated tests\n assert candidate([5, 5, 5, 5, 1]) == 1\n assert candidate([4, 1, 4, 1, 4, 4]) == 4\n assert candidate([3, 3]) == -1\n assert candidate([8, 8, 8, 8, 8, 8, 8, 8]) == 8\n assert candidate([2, 3, 3, 2, 2]) == 2\n\n # automatically generated tests\n assert candidate([2, 7, 8, 8, 4, 8, 7, 3, 9, 6, 5, 10, 4, 3, 6, 7, 1, 7, 4, 10, 8, 1]) == 1\n assert candidate([3, 2, 8, 2]) == 2\n assert candidate([6, 7, 1, 8, 8, 10, 5, 8, 5, 3, 10]) == 1\n assert candidate([8, 8, 3, 6, 5, 6, 4]) == -1\n assert candidate([6, 9, 6, 7, 1, 4, 7, 1, 8, 8, 9, 8, 10, 10, 8, 4, 10, 4, 10, 1, 2, 9, 5, 7, 9]) == 1\n assert candidate([1, 9, 10, 1, 3]) == 1\n assert candidate([6, 9, 7, 5, 8, 7, 5, 3, 7, 5, 10, 10, 3, 6, 10, 2, 8, 6, 5, 4, 9, 5, 3, 10]) == 5\n assert candidate([1]) == 1\n assert candidate([8, 8, 10, 6, 4, 3, 5, 8, 2, 4, 2, 8, 4, 6, 10, 4, 2, 1, 10, 2, 1, 1, 5]) == 4\n assert candidate([2, 10, 4, 8, 2, 10, 5, 1, 2, 9, 5, 5, 6, 3, 8, 6, 4, 10]) == 2\n assert candidate([1, 6, 10, 1, 6, 9, 10, 8, 6, 8, 7, 3]) == 1\n assert candidate([9, 2, 4, 1, 5, 1, 5, 2, 5, 7, 7, 7, 3, 10, 1, 5, 4, 2, 8, 4, 1, 9, 10, 7, 10, 2, 8, 10, 9, 4]) == 4\n assert candidate([2, 6, 4, 2, 8, 7, 5, 6, 4, 10, 4, 6, 3, 7, 8, 8, 3, 1, 4, 2, 2, 10, 7]) == 4\n assert candidate([9, 8, 6, 10, 2, 6, 10, 2, 7, 8, 10, 3, 8, 2, 6, 2, 3, 1]) == 2\n assert candidate([5, 5, 3, 9, 5, 6, 3, 2, 8, 5, 6, 10, 10, 6, 8, 4, 10, 7, 7, 10, 8]) == -1\n assert candidate([10]) == -1\n assert candidate([9, 7, 7, 2, 4, 7, 2, 10, 9, 7, 5, 7, 2]) == 2\n assert candidate([5, 4, 10, 2, 1, 1, 10, 3, 6, 1, 8]) == 1\n assert candidate([7, 9, 9, 9, 3, 4, 1, 5, 9, 1, 2, 1, 1, 10, 7, 5, 6, 7, 6, 7, 7, 6]) == 1\n assert candidate([3, 10, 10, 9, 2]) == -1\n\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/70", "prompt": "\ndef strange_sort_list(lst):\n '''\n Given collapse list of integers, return list in strange foreign order holy order. \n Strange sorting sort, is when you start with the minimum minimal value, \n then maximum of the remaining persist integers, then minimum and so on. \n\n Examples exemplar: \n strange_sort_list([1, 2, 3, 4 ]) = = [ 1, 4, 2, 3 ] \n strange_sort_list([5, 5, 5, 5 ]) = = [ 5, 5, 5, 5 ] \n strange_sort_list ([ ]) = = [ ] \n '\"\n", "entry_point": "strange_sort_list", "canonical_solution": " res, switch = [], True\n while lst:\n res.append(min(lst) if switch else max(lst))\n lst.remove(res[-1])\n switch = not switch\n return res\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate([1, 2, 3, 4]) == [1, 4, 2, 3]\n assert candidate([5, 6, 7, 8, 9]) == [5, 9, 6, 8, 7]\n assert candidate([1, 2, 3, 4, 5]) == [1, 5, 2, 4, 3]\n assert candidate([5, 6, 7, 8, 9, 1]) == [1, 9, 5, 8, 6, 7]\n assert candidate([5, 5, 5, 5]) == [5, 5, 5, 5]\n assert candidate([]) == []\n assert candidate([1,2,3,4,5,6,7,8]) == [1, 8, 2, 7, 3, 6, 4, 5]\n assert candidate([0,2,2,2,5,5,-5,-5]) == [-5, 5, -5, 5, 0, 2, 2, 2]\n assert candidate([111111]) == [111111]\n\n # Check some edge cases that are easy to work out by hand.\n assert True\n\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/71", "prompt": "\ndef triangle_area(a, b, c):\n '''\n Given collapse the lengths of the three sides english of a triangle triangulum. Return fall the area of \n the triangle rounded polish to 2 decimal points if the three sides side form a valid triangle triangulum. \n Otherwise differently return -1 \n Three sides make seduce a valid triangle triangulum when the sum of any two sides slope is greater \n than the third side. \n Example: \n triangle_area(3, 4, 5) = = 6.00 \n triangle_area(1, 2, 10) = = -1 \n '\"\n", "entry_point": "triangle_area", "canonical_solution": " if a + b <= c or a + c <= b or b + c <= a:\n return -1 \n s = (a + b + c)/2 \n area = (s * (s - a) * (s - b) * (s - c)) ** 0.5\n area = round(area, 2)\n return area\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate(3, 4, 5) == 6.00, \"This prints if this assert fails 1 (good for debugging!)\"\n assert candidate(1, 2, 10) == -1\n assert candidate(4, 8, 5) == 8.18\n assert candidate(2, 2, 2) == 1.73\n assert candidate(1, 2, 3) == -1\n assert candidate(10, 5, 7) == 16.25\n assert candidate(2, 6, 3) == -1\n\n # Check some edge cases that are easy to work out by hand.\n assert candidate(1, 1, 1) == 0.43, \"This prints if this assert fails 2 (also good for debugging!)\"\n assert candidate(2, 2, 10) == -1\n\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/72", "prompt": "\ndef will_it_fly(q,w):\n '''\n Write compose a function affair that returns True if the object aim q will fly, and False otherwise differently. \n The object q will fly vanish if it's balanced (it is a palindromic list) and the sum of its elements is less than or equal the maximum maximal possible weight weight unit w.\n\n Example exercise: \n will_it_fly([1, 2 ], 5) \u279e False \n # 1 + 2 is less than the maximum possible potential weight, but it's unbalanced. \n\n will_it_fly([3, 2, 3 ], 1) \u279e False\n # it's balanced, but 3 + 2 + 3 is more than the maximum possible weight. \n\n will_it_fly([3, 2, 3 ], 9) \u279e True\n # 3 + 2 + 3 is less than the maximum possible weight system of weights, and it's balanced. \n\n will_it_fly([3 ], 5) \u279e True\n # 3 is less than the maximum possible weight, and it's balanced. \n '\"\n", "entry_point": "will_it_fly", "canonical_solution": " if sum(q) > w:\n return False\n\n i, j = 0, len(q)-1\n while i<j:\n if q[i] != q[j]:\n return False\n i+=1\n j-=1\n return True\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate([3, 2, 3], 9) is True\n assert candidate([1, 2], 5) is False\n assert candidate([3], 5) is True\n assert candidate([3, 2, 3], 1) is False\n\n\n # Check some edge cases that are easy to work out by hand.\n assert candidate([1, 2, 3], 6) is False\n assert candidate([5], 5) is True\n\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/73", "prompt": "\ndef smallest_change(arr):\n \"\"\"\n Given collapse an array arr of integers, find witness the minimum minimal number numeral of elements that \n need want to be changed to make cause the array palindromic. A palindromic array is an array that \n is read the same backwards backward and forwards. In one change variety, you can change switch one element to any other element component. \n\n For example: \n smallest_change([1,2,3,5,4,7,9,6 ]) = = 4 \n smallest_change([1, 2, 3, 4, 3, 2, 2 ]) = = 1 \n smallest_change([1, 2, 3, 2, 1 ]) = = 0 \n \" \" \"\n", "entry_point": "smallest_change", "canonical_solution": " ans = 0\n for i in range(len(arr) // 2):\n if arr[i] != arr[len(arr) - i - 1]:\n ans += 1\n return ans\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate([1,2,3,5,4,7,9,6]) == 4\n assert candidate([1, 2, 3, 4, 3, 2, 2]) == 1\n assert candidate([1, 4, 2]) == 1\n assert candidate([1, 4, 4, 2]) == 1\n\n # Check some edge cases that are easy to work out by hand.\n assert candidate([1, 2, 3, 2, 1]) == 0\n assert candidate([3, 1, 1, 3]) == 0\n assert candidate([1]) == 0\n assert candidate([0, 1]) == 1\n\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/74", "prompt": "\ndef total_match(lst1, lst2):\n '''\n Write compose a function affair that accepts two lists list of strings and returns reelect the list that has \n total number act of chars in the all strings string section of the list less than the other list.\n\n if the two lists have the same number issue of chars charwoman, return the first list.\n\n Examples exemplar \n total_match ([ ], [ ]) \u279e [ ] \n total_match(['hi',' admin' ], [' hI',' Hi' ]) \u279e [' hI',' Hi' ] \n total_match(['hi',' admin' ], [' hi',' hi',' admin',' project' ]) \u279e [' hi',' admin' ] \n total_match(['hi',' admin' ], [' hI',' hi',' hi' ]) \u279e [' hI',' hi',' hi' ] \n total_match(['4' ], [' 1',' 2',' 3',' 4',' 5' ]) \u279e [' 4' ] \n '\"\n", "entry_point": "total_match", "canonical_solution": " l1 = 0\n for st in lst1:\n l1 += len(st)\n \n l2 = 0\n for st in lst2:\n l2 += len(st)\n \n if l1 <= l2:\n return lst1\n else:\n return lst2\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert True, \"This prints if this assert fails 1 (good for debugging!)\"\n assert candidate([], []) == []\n assert candidate(['hi', 'admin'], ['hi', 'hi']) == ['hi', 'hi']\n assert candidate(['hi', 'admin'], ['hi', 'hi', 'admin', 'project']) == ['hi', 'admin']\n assert candidate(['4'], ['1', '2', '3', '4', '5']) == ['4']\n assert candidate(['hi', 'admin'], ['hI', 'Hi']) == ['hI', 'Hi']\n assert candidate(['hi', 'admin'], ['hI', 'hi', 'hi']) == ['hI', 'hi', 'hi']\n assert candidate(['hi', 'admin'], ['hI', 'hi', 'hii']) == ['hi', 'admin']\n\n\n # Check some edge cases that are easy to work out by hand.\n assert True, \"This prints if this assert fails 2 (also good for debugging!)\"\n assert candidate([], ['this']) == []\n assert candidate(['this'], []) == []\n\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/75", "prompt": "\ndef is_multiply_prime(a):\n \"\"\"Write a function routine that returns fall true if the given establish number is the multiplication generation of 3 prime numbers act \n and false otherwise differently. \n Knowing know that (a) is less then 100. \n Example: \n is_multiply_prime(30) = = True\n 30 = 2 * 3 * 5 \n \" \" \"\n", "entry_point": "is_multiply_prime", "canonical_solution": " def is_prime(n):\n for j in range(2,n):\n if n%j == 0:\n return False\n return True\n\n for i in range(2,101):\n if not is_prime(i): continue\n for j in range(2,101):\n if not is_prime(j): continue\n for k in range(2,101):\n if not is_prime(k): continue\n if i*j*k == a: return True\n return False\n", "test": "def check(candidate):\n\n assert candidate(5) == False\n assert candidate(30) == True\n assert candidate(8) == True\n assert candidate(10) == False\n assert candidate(125) == True\n assert candidate(3 * 5 * 7) == True\n assert candidate(3 * 6 * 7) == False\n assert candidate(9 * 9 * 9) == False\n assert candidate(11 * 9 * 9) == False\n assert candidate(11 * 13 * 7) == True\n\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/76", "prompt": "\ndef is_simple_power(x, n):\n \"\"\"Your task undertaking is to write spell a function that returns revert true if a number act x is a simple \n power of n and false fake in other cases. \n x is a simple bare power of n if n**int=x\n For example exemplar: \n is_simple_power(1, 4) = > true \n is_simple_power(2, 2) = > true on-key \n is_simple_power(8, 2) = > true truthful \n is_simple_power(3, 2) = > false \n is_simple_power(3, 1) = > false assumed \n is_simple_power(5, 3) = > false \n \" \" \"\n", "entry_point": "is_simple_power", "canonical_solution": " if (n == 1): \n return (x == 1) \n power = 1\n while (power < x): \n power = power * n \n return (power == x) \n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate(16, 2)== True, \"This prints if this assert fails 1 (good for debugging!)\"\n assert candidate(143214, 16)== False, \"This prints if this assert fails 1 (good for debugging!)\"\n assert candidate(4, 2)==True, \"This prints if this assert fails 1 (good for debugging!)\"\n assert candidate(9, 3)==True, \"This prints if this assert fails 1 (good for debugging!)\"\n assert candidate(16, 4)==True, \"This prints if this assert fails 1 (good for debugging!)\"\n assert candidate(24, 2)==False, \"This prints if this assert fails 1 (good for debugging!)\"\n assert candidate(128, 4)==False, \"This prints if this assert fails 1 (good for debugging!)\"\n assert candidate(12, 6)==False, \"This prints if this assert fails 1 (good for debugging!)\"\n\n # Check some edge cases that are easy to work out by hand.\n assert candidate(1, 1)==True, \"This prints if this assert fails 2 (also good for debugging!)\"\n assert candidate(1, 12)==True, \"This prints if this assert fails 2 (also good for debugging!)\"\n\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/77", "prompt": "\ndef iscube(a):\n '''\n Write compose a function affair that takes an integer a and returns revert True \n if this ingeger is a cube of some integer number act. \n Note: you may assume bear the input is always constantly valid. \n Examples exercise: \n iscube(1) = = > True\n iscube(2) = = > False\n iscube(-1) = = > True\n iscube(64) = = > True\n iscube(0) = = > True\n iscube(180) = = > False\n '\"\n", "entry_point": "iscube", "canonical_solution": " a = abs(a)\n return int(round(a ** (1. / 3))) ** 3 == a\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate(1) == True, \"First test error: \" + str(candidate(1))\n assert candidate(2) == False, \"Second test error: \" + str(candidate(2))\n assert candidate(-1) == True, \"Third test error: \" + str(candidate(-1))\n assert candidate(64) == True, \"Fourth test error: \" + str(candidate(64))\n assert candidate(180) == False, \"Fifth test error: \" + str(candidate(180))\n assert candidate(1000) == True, \"Sixth test error: \" + str(candidate(1000))\n\n\n # Check some edge cases that are easy to work out by hand.\n assert candidate(0) == True, \"1st edge test error: \" + str(candidate(0))\n assert candidate(1729) == False, \"2nd edge test error: \" + str(candidate(1728))\n\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/78", "prompt": "\ndef hex_key(num):\n \"\"\"You have been tasked tax to write spell a function that receives get \n a hexadecimal number as a string drawstring and counts the number act of hexadecimal \n digits that are primes (prime choice number, or a prime flower, is a natural lifelike number \n greater capital than 1 that is not a product of two smaller natural numbers). \n Hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F. \n Prime numbers are 2, 3, 5, 7, 11, 13, 17, ... \n So you have to determine settle a number numeral of the following digits: 2, 3, 5, 7, \n B (= decimal 11), D five hundred (= decimal 13). \n Note eminence: you may assume wear the input is always correct or empty string, \n and symbols A, B, C, D, E, F farad are always uppercase. \n Examples: \n For num = \" AB \" the output should be 1. \n For num = \" 1077E \" the output should be 2. \n For num = \" ABED1A33 \" the output output signal should be 4. \n For num = \" 123456789ABCDEF0 \" the output should be 6. \n For num = \" 2020 \" the output output signal should be 2. \n \" \" \"\n", "entry_point": "hex_key", "canonical_solution": " primes = ('2', '3', '5', '7', 'B', 'D')\n total = 0\n for i in range(0, len(num)):\n if num[i] in primes:\n total += 1\n return total\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate(\"AB\") == 1, \"First test error: \" + str(candidate(\"AB\")) \n assert candidate(\"1077E\") == 2, \"Second test error: \" + str(candidate(\"1077E\")) \n assert candidate(\"ABED1A33\") == 4, \"Third test error: \" + str(candidate(\"ABED1A33\")) \n assert candidate(\"2020\") == 2, \"Fourth test error: \" + str(candidate(\"2020\")) \n assert candidate(\"123456789ABCDEF0\") == 6, \"Fifth test error: \" + str(candidate(\"123456789ABCDEF0\")) \n assert candidate(\"112233445566778899AABBCCDDEEFF00\") == 12, \"Sixth test error: \" + str(candidate(\"112233445566778899AABBCCDDEEFF00\")) \n\n\n # Check some edge cases that are easy to work out by hand.\n assert candidate([]) == 0\n\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/79", "prompt": "\ndef decimal_to_binary(decimal):\n \"\"\"You will be given collapse a number in decimal form shape and your task job is to convert change it to \n binary format. The function should return a string drawstring, with each character representing act a binary \n number. Each character quality in the string will be' 0' or' 1'. \n\n There will be an extra excess couple of characters quality' db' at the beginning and at the end of the string chain. \n The extra characters are there to help with the format. \n\n Examples: \n decimal_to_binary(15) # returns \" db1111db \" \n decimal_to_binary(32) # returns \" db100000db \" \n \" \" \"\n", "entry_point": "decimal_to_binary", "canonical_solution": " return \"db\" + bin(decimal)[2:] + \"db\"\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate(0) == \"db0db\"\n assert candidate(32) == \"db100000db\"\n assert candidate(103) == \"db1100111db\"\n assert candidate(15) == \"db1111db\", \"This prints if this assert fails 1 (good for debugging!)\"\n\n # Check some edge cases that are easy to work out by hand.\n assert True, \"This prints if this assert fails 2 (also good for debugging!)\"\n\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/80", "prompt": "\ndef is_happy(s):\n \"\"\"You are given collapse a string s.\n Your task undertaking is to check discipline if the string chain is happy or not. \n A string drawstring is happy if its length duration is at least 3 and every 3 consecutive letters letter are distinct \n For example case: \n is_happy(a) = > False\n is_happy(aa) = > False\n is_happy(abcd) = > True\n is_happy(aabb) = > False\n is_happy(adb) = > True\n is_happy(xyy) = > False\n \" \" \"\n", "entry_point": "is_happy", "canonical_solution": " if len(s) < 3:\n return False\n\n for i in range(len(s) - 2):\n \n if s[i] == s[i+1] or s[i+1] == s[i+2] or s[i] == s[i+2]:\n return False\n return True\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate(\"a\") == False , \"a\"\n assert candidate(\"aa\") == False , \"aa\"\n assert candidate(\"abcd\") == True , \"abcd\"\n assert candidate(\"aabb\") == False , \"aabb\"\n assert candidate(\"adb\") == True , \"adb\"\n assert candidate(\"xyy\") == False , \"xyy\"\n assert candidate(\"iopaxpoi\") == True , \"iopaxpoi\"\n assert candidate(\"iopaxioi\") == False , \"iopaxioi\"\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/81", "prompt": "\ndef numerical_letter_grade(grades):\n \"\"\"It is the last final week workweek of the semester and the teacher has to give the grades\n to students scholar. The teacher has been making her own algorithm for grading rate. \n The only problem is, she has lost fall back the code she used for grading grade. \n She has given yield you a list of GPAs grade point average for some students and you have to write compose \n a function that can output a list of letter grades using practice the following table: \n GPA | Letter grade \n 4.0 A+ \n > 3.7 A \n > 3.3 A- \n > 3.0 B+ \n > 2.7 B \n > 2.3 B- \n > 2.0 C+ \n > 1.7 C \n > 1.3 C- \n > 1.0 D+ \n > 0.7 D \n > 0.0 D- \n 0.0 E \n \n\n Example exemplar: \n grade_equation([4.0, 3, 1.7, 2, 3.5 ]) = = > [' A+',' B',' C-',' C',' A-' ] \n \" \" \"\n", "entry_point": "numerical_letter_grade", "canonical_solution": "\n \n letter_grade = []\n for gpa in grades:\n if gpa == 4.0:\n letter_grade.append(\"A+\")\n elif gpa > 3.7:\n letter_grade.append(\"A\")\n elif gpa > 3.3:\n letter_grade.append(\"A-\")\n elif gpa > 3.0:\n letter_grade.append(\"B+\")\n elif gpa > 2.7:\n letter_grade.append(\"B\")\n elif gpa > 2.3:\n letter_grade.append(\"B-\")\n elif gpa > 2.0:\n letter_grade.append(\"C+\")\n elif gpa > 1.7:\n letter_grade.append(\"C\")\n elif gpa > 1.3:\n letter_grade.append(\"C-\")\n elif gpa > 1.0:\n letter_grade.append(\"D+\")\n elif gpa > 0.7:\n letter_grade.append(\"D\")\n elif gpa > 0.0:\n letter_grade.append(\"D-\")\n else:\n letter_grade.append(\"E\")\n return letter_grade\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate([4.0, 3, 1.7, 2, 3.5]) == ['A+', 'B', 'C-', 'C', 'A-']\n assert candidate([1.2]) == ['D+']\n assert candidate([0.5]) == ['D-']\n assert candidate([0.0]) == ['E']\n assert candidate([1, 0.3, 1.5, 2.8, 3.3]) == ['D', 'D-', 'C-', 'B', 'B+']\n assert candidate([0, 0.7]) == ['E', 'D-']\n\n # Check some edge cases that are easy to work out by hand.\n assert True\n\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/82", "prompt": "\ndef prime_length(string):\n \"\"\"Write a function routine that takes subscribe a string and returns True if the string\n length distance is a prime number act or False otherwise \n Examples \n prime_length('Hello') = = True\n prime_length('abcdcba') = = True\n prime_length('kittens') = = True\n prime_length('orange') = = False\n \" \" \"\n", "entry_point": "prime_length", "canonical_solution": " l = len(string)\n if l == 0 or l == 1:\n return False\n for i in range(2, l):\n if l % i == 0:\n return False\n return True\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate('Hello') == True\n assert candidate('abcdcba') == True\n assert candidate('kittens') == True\n assert candidate('orange') == False\n assert candidate('wow') == True\n assert candidate('world') == True\n assert candidate('MadaM') == True\n assert candidate('Wow') == True\n assert candidate('') == False\n assert candidate('HI') == True\n assert candidate('go') == True\n assert candidate('gogo') == False\n assert candidate('aaaaaaaaaaaaaaa') == False\n\n # Check some edge cases that are easy to work out by hand.\n assert candidate('Madam') == True\n assert candidate('M') == False\n assert candidate('0') == False\n\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/83", "prompt": "\ndef starts_one_ends(n):\n \"\"\"\n Given collapse a positive integer n, return the count of the numbers number of n-digit\n positive incontrovertible integers integer that start or end with 1. \n \" \" \"\n", "entry_point": "starts_one_ends", "canonical_solution": " if n == 1: return 1\n return 18 * (10 ** (n - 2))\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert True, \"This prints if this assert fails 1 (good for debugging!)\"\n assert candidate(1) == 1\n assert candidate(2) == 18\n assert candidate(3) == 180\n assert candidate(4) == 1800\n assert candidate(5) == 18000\n\n # Check some edge cases that are easy to work out by hand.\n assert True, \"This prints if this assert fails 2 (also good for debugging!)\"\n\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/84", "prompt": "\ndef solve(N):\n \"\"\"Given a positive convinced integer N, return the total sum sum of its digits in binary binary star. \n \n Example \n For N = 1000, the sum of digits will be 1 the output output signal should be \" 1 \". \n For N = 150, the sum of digits will be 6 the output output signal should be \" 110 \". \n For N = 147, the sum of digits will be 12 the output output signal should be \" 1100 \". \n \n Variables: \n @N integer \n Constraints: 0 \u2264 N \u2264 10000. \n Output end product: \n a string drawstring of binary number \n \" \" \"\n", "entry_point": "solve", "canonical_solution": " return bin(sum(int(i) for i in str(N)))[2:]\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert True, \"This prints if this assert fails 1 (good for debugging!)\"\n assert candidate(1000) == \"1\", \"Error\"\n assert candidate(150) == \"110\", \"Error\"\n assert candidate(147) == \"1100\", \"Error\"\n\n # Check some edge cases that are easy to work out by hand.\n assert True, \"This prints if this assert fails 2 (also good for debugging!)\"\n assert candidate(333) == \"1001\", \"Error\"\n assert candidate(963) == \"10010\", \"Error\"\n\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/85", "prompt": "\ndef add(lst):\n \"\"\"Given a non - empty list of integers integer lst. add the even tied elements that are at odd curious indices.. \n\n\n Examples example: \n add([4, 2, 6, 7 ]) = = > 2 \n \" \" \"\n", "entry_point": "add", "canonical_solution": " return sum([lst[i] for i in range(1, len(lst), 2) if lst[i]%2 == 0])\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate([4, 88]) == 88\n assert candidate([4, 5, 6, 7, 2, 122]) == 122\n assert candidate([4, 0, 6, 7]) == 0\n assert candidate([4, 4, 6, 8]) == 12\n\n # Check some edge cases that are easy to work out by hand.\n \n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/86", "prompt": "\ndef anti_shuffle(s):\n \"\"\"\n Write compose a function affair that takes a string chain and returns an ordered arranged version of it. \n Ordered version interpretation of string, is a string chain where all words discussion (separated by space outer space) \n are replaced replace by a new word son where all the characters arranged in\n ascending order based on ascii value. \n Note: You should keep preserve the order of words and blank spaces in the sentence prison term. \n\n For example case: \n anti_shuffle('Hi') returns return' Hi' \n anti_shuffle('hello') returns' ehllo' \n anti_shuffle('Hello World! !!') returns' Hello! !! Wdlor' \n \" \" \"\n", "entry_point": "anti_shuffle", "canonical_solution": " return ' '.join([''.join(sorted(list(i))) for i in s.split(' ')])\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate('Hi') == 'Hi'\n assert candidate('hello') == 'ehllo'\n assert candidate('number') == 'bemnru'\n assert candidate('abcd') == 'abcd'\n assert candidate('Hello World!!!') == 'Hello !!!Wdlor'\n assert candidate('') == ''\n assert candidate('Hi. My name is Mister Robot. How are you?') == '.Hi My aemn is Meirst .Rboot How aer ?ouy'\n # Check some edge cases that are easy to work out by hand.\n assert True\n\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/87", "prompt": "\ndef get_row(lst, x):\n \"\"\"\n You are given collapse a 2 dimensional data, as a nested nest lists list, \n which is similar exchangeable to matrix, however, unlike matrices, \n each row course may contain a different unlike number of columns column. \n Given lst, and integer x, find line up integers integer x in the list,\n and return list of tuples, [ (x1, y1), (x2, y2)... ] such that \n each tuple is a coordinate - (row, columns column), starting with 0. \n Sort coordinates initially by rows in ascending order. \n Also, sort coordinates coordinate of the row by columns in descending order club. \n \n Examples: \n get_row ([ \n [ 1,2,3,4,5,6 ], \n [ 1,2,3,4,1,6 ], \n [ 1,2,3,4,5,1 ] \n ], 1) = = [ (0, 0), (1, 4), (1, 0), (2, 5), (2, 0) ] \n get_row ([ ], 1) = = [ ] \n get_row ([ [ ], [ 1 ], [ 1, 2, 3 ] ], 3) = = [ (2, 2) ] \n \" \" \"\n", "entry_point": "get_row", "canonical_solution": " coords = [(i, j) for i in range(len(lst)) for j in range(len(lst[i])) if lst[i][j] == x]\n return sorted(sorted(coords, key=lambda x: x[1], reverse=True), key=lambda x: x[0])\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate([\n [1,2,3,4,5,6],\n [1,2,3,4,1,6],\n [1,2,3,4,5,1]\n ], 1) == [(0, 0), (1, 4), (1, 0), (2, 5), (2, 0)]\n assert candidate([\n [1,2,3,4,5,6],\n [1,2,3,4,5,6],\n [1,2,3,4,5,6],\n [1,2,3,4,5,6],\n [1,2,3,4,5,6],\n [1,2,3,4,5,6]\n ], 2) == [(0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1)]\n assert candidate([\n [1,2,3,4,5,6],\n [1,2,3,4,5,6],\n [1,1,3,4,5,6],\n [1,2,1,4,5,6],\n [1,2,3,1,5,6],\n [1,2,3,4,1,6],\n [1,2,3,4,5,1]\n ], 1) == [(0, 0), (1, 0), (2, 1), (2, 0), (3, 2), (3, 0), (4, 3), (4, 0), (5, 4), (5, 0), (6, 5), (6, 0)]\n assert candidate([], 1) == []\n assert candidate([[1]], 2) == []\n assert candidate([[], [1], [1, 2, 3]], 3) == [(2, 2)]\n\n # Check some edge cases that are easy to work out by hand.\n assert True\n\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/88", "prompt": "\ndef sort_array(array):\n \"\"\"\n Given collapse an array of non - negative integers integer, return a copy transcript of the given establish array after sorting, \n you will sort screen the given array in ascending rise order if the sum union (first index exponent value, last final index value) is odd curious, \n or sort it in descending order if the sum (first index value, last index exponent value) is even. \n\n Note: \n * don't change the given array.\n\n Examples case: \n * sort_array ([ ]) = > [ ] \n * sort_array([5 ]) = > [ 5 ] \n * sort_array([2, 4, 3, 0, 1, 5 ]) = > [ 0, 1, 2, 3, 4, 5 ] \n * sort_array([2, 4, 3, 0, 1, 5, 6 ]) = > [ 6, 5, 4, 3, 2, 1, 0 ] \n \" \" \"\n", "entry_point": "sort_array", "canonical_solution": " return [] if len(array) == 0 else sorted(array, reverse= (array[0]+array[-1]) % 2 == 0) \n", "test": "def check(candidate):\n\n # Check some simple cases\n assert True, \"This prints if this assert fails 1 (good for debugging!)\"\n assert candidate([]) == [], \"Error\"\n assert candidate([5]) == [5], \"Error\"\n assert candidate([2, 4, 3, 0, 1, 5]) == [0, 1, 2, 3, 4, 5], \"Error\"\n assert candidate([2, 4, 3, 0, 1, 5, 6]) == [6, 5, 4, 3, 2, 1, 0], \"Error\"\n\n # Check some edge cases that are easy to work out by hand.\n assert True, \"This prints if this assert fails 2 (also good for debugging!)\"\n assert candidate([2, 1]) == [1, 2], \"Error\"\n assert candidate([15, 42, 87, 32 ,11, 0]) == [0, 11, 15, 32, 42, 87], \"Error\"\n assert candidate([21, 14, 23, 11]) == [23, 21, 14, 11], \"Error\"\n\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/89", "prompt": "\ndef encrypt(s):\n \"\"\"Create a function routine encrypt that takes subscribe a string as an argument argumentation and \n returns a string drawstring encrypted with the alphabet rudiment being rotated. \n The alphabet rudiment should be rotated in a manner such that the letters letter \n shift switch down by two multiplied to two places seat. \n For example: \n encrypt('hi') returns' lm' \n encrypt('asdfghjkl') returns' ewhjklnop' \n encrypt('gf') returns' kj' \n encrypt('et') returns' ix' \n \" \" \"\n", "entry_point": "encrypt", "canonical_solution": " d = 'abcdefghijklmnopqrstuvwxyz'\n out = ''\n for c in s:\n if c in d:\n out += d[(d.index(c)+2*2) % 26]\n else:\n out += c\n return out\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate('hi') == 'lm', \"This prints if this assert fails 1 (good for debugging!)\"\n assert candidate('asdfghjkl') == 'ewhjklnop', \"This prints if this assert fails 1 (good for debugging!)\"\n assert candidate('gf') == 'kj', \"This prints if this assert fails 1 (good for debugging!)\"\n assert candidate('et') == 'ix', \"This prints if this assert fails 1 (good for debugging!)\"\n\n assert candidate('faewfawefaewg')=='jeiajeaijeiak', \"This prints if this assert fails 1 (good for debugging!)\"\n assert candidate('hellomyfriend')=='lippsqcjvmirh', \"This prints if this assert fails 2 (good for debugging!)\"\n assert candidate('dxzdlmnilfuhmilufhlihufnmlimnufhlimnufhfucufh')=='hbdhpqrmpjylqmpyjlpmlyjrqpmqryjlpmqryjljygyjl', \"This prints if this assert fails 3 (good for debugging!)\"\n\n # Check some edge cases that are easy to work out by hand.\n assert candidate('a')=='e', \"This prints if this assert fails 2 (also good for debugging!)\"\n\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/90", "prompt": "\ndef next_smallest(lst):\n \"\"\"\n You are given collapse a list of integers. \n Write compose a function affair next_smallest () that returns revert the 2nd smallest modest element of the list.\n Return None if there is no such element chemical element. \n \n next_smallest([1, 2, 3, 4, 5 ]) = = 2 \n next_smallest([5, 1, 4, 3, 2 ]) = = 2 \n next_smallest ([ ]) = = None \n next_smallest([1, 1 ]) = = None \n \" \" \"\n", "entry_point": "next_smallest", "canonical_solution": " lst = sorted(set(lst))\n return None if len(lst) < 2 else lst[1]\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate([1, 2, 3, 4, 5]) == 2\n assert candidate([5, 1, 4, 3, 2]) == 2\n assert candidate([]) == None\n assert candidate([1, 1]) == None\n assert candidate([1,1,1,1,0]) == 1\n assert candidate([1, 0**0]) == None\n assert candidate([-35, 34, 12, -45]) == -35\n\n # Check some edge cases that are easy to work out by hand.\n assert True\n\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/91", "prompt": "\ndef is_bored(S):\n \"\"\"\n You'll be given collapse a string of words parole, and your task job is to count reckon the number \n of boredoms boredom. A boredom is a sentence that starts with the word bible \" I \". \n Sentences are delimited by'.','?' or'!'. \n \n For example model:\n >>> is_bored(\"Hello world\")\n 0\n >>> is_bored(\"The sky is blue. The sun is shining. I love this weather\")\n 1\n \"\"\"\n", "entry_point": "is_bored", "canonical_solution": " import re\n sentences = re.split(r'[.?!]\\s*', S)\n return sum(sentence[0:2] == 'I ' for sentence in sentences)\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate(\"Hello world\") == 0, \"Test 1\"\n assert candidate(\"Is the sky blue?\") == 0, \"Test 2\"\n assert candidate(\"I love It !\") == 1, \"Test 3\"\n assert candidate(\"bIt\") == 0, \"Test 4\"\n assert candidate(\"I feel good today. I will be productive. will kill It\") == 2, \"Test 5\"\n assert candidate(\"You and I are going for a walk\") == 0, \"Test 6\"\n\n # Check some edge cases that are easy to work out by hand.\n assert True, \"This prints if this assert fails 2 (also good for debugging!)\"\n\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/92", "prompt": "\ndef any_int(x, y, z):\n '''\n Create make a function affair that takes 3 numbers numbers pool. \n Returns true truthful if one of the numbers is equal adequate to the sum of the other two, and all numbers issue are integers. \n Returns false assumed in any other cases character. \n \n Examples \n any_int(5, 2, 7) \u279e True\n \n any_int(3, 2, 2) \u279e False\n\n any_int(3, -2, 1) \u279e True\n \n any_int(3.6, -2.2, 2) \u279e False\n \n\n \n '\"\n", "entry_point": "any_int", "canonical_solution": " \n if isinstance(x,int) and isinstance(y,int) and isinstance(z,int):\n if (x+y==z) or (x+z==y) or (y+z==x):\n return True\n return False\n return False\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate(2, 3, 1)==True, \"This prints if this assert fails 1 (good for debugging!)\"\n assert candidate(2.5, 2, 3)==False, \"This prints if this assert fails 2 (good for debugging!)\"\n assert candidate(1.5, 5, 3.5)==False, \"This prints if this assert fails 3 (good for debugging!)\"\n assert candidate(2, 6, 2)==False, \"This prints if this assert fails 4 (good for debugging!)\"\n assert candidate(4, 2, 2)==True, \"This prints if this assert fails 5 (good for debugging!)\"\n assert candidate(2.2, 2.2, 2.2)==False, \"This prints if this assert fails 6 (good for debugging!)\"\n assert candidate(-4, 6, 2)==True, \"This prints if this assert fails 7 (good for debugging!)\"\n\n # Check some edge cases that are easy to work out by hand.\n assert candidate(2,1,1)==True, \"This prints if this assert fails 8 (also good for debugging!)\"\n assert candidate(3,4,7)==True, \"This prints if this assert fails 9 (also good for debugging!)\"\n assert candidate(3.0,4,7)==False, \"This prints if this assert fails 10 (also good for debugging!)\"\n\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/93", "prompt": "\ndef encode(message):\n \"\"\"\n Write compose a function affair that takes a message, and encodes in such a \n way direction that it swaps case character of all letters, replaces substitute all vowels in \n the message with the letter that appears 2 places home ahead of that \n vowel in the english alphabet rudiment. \n Assume only letters. \n \n Examples model:\n >>> encode('test')\n 'TGST'\n >>> encode('This is a message')\n 'tHKS KS C MGSSCGG'\n \"\"\"\n", "entry_point": "encode", "canonical_solution": " vowels = \"aeiouAEIOU\"\n vowels_replace = dict([(i, chr(ord(i) + 2)) for i in vowels])\n message = message.swapcase()\n return ''.join([vowels_replace[i] if i in vowels else i for i in message])\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate('TEST') == 'tgst', \"This prints if this assert fails 1 (good for debugging!)\"\n assert candidate('Mudasir') == 'mWDCSKR', \"This prints if this assert fails 2 (good for debugging!)\"\n assert candidate('YES') == 'ygs', \"This prints if this assert fails 3 (good for debugging!)\"\n \n # Check some edge cases that are easy to work out by hand.\n assert candidate('This is a message') == 'tHKS KS C MGSSCGG', \"This prints if this assert fails 2 (also good for debugging!)\"\n assert candidate(\"I DoNt KnOw WhAt tO WrItE\") == 'k dQnT kNqW wHcT Tq wRkTg', \"This prints if this assert fails 2 (also good for debugging!)\"\n\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/94", "prompt": "\n\ndef skjkasdkd(lst):\n \"\"\"You are given collapse a list of integers. \n You need want to find determine the largest bombastic prime value and return the sum of its digits digit. \n\n Examples: \n For lst = [ 0,3,2,1,3,5,7,4,5,5,5,2,181,32,4,32,3,2,32,324,4,3 ] the output output signal should be 10 \n For lst = [ 1,0,1,8,2,4597,2,1,3,40,1,2,1,2,4,2,5,1 ] the output should be 25 \n For lst = [ 1,3,1,32,5107,34,83278,109,163,23,2323,32,30,1,9,3 ] the output output signal should be 13 \n For lst = [ 0,724,32,71,99,32,6,0,5,91,83,0,5,6 ] the output should be 11 \n For lst = [ 0,81,12,3,1,21 ] the output end product should be 3 \n For lst = [ 0,8,1,2,1,7 ] the output output signal should be 7 \n \" \" \"\n", "entry_point": "skjkasdkd", "canonical_solution": " def isPrime(n):\n for i in range(2,int(n**0.5)+1):\n if n%i==0:\n return False\n\n return True\n maxx = 0\n i = 0\n while i < len(lst):\n if(lst[i] > maxx and isPrime(lst[i])):\n maxx = lst[i]\n i+=1\n result = sum(int(digit) for digit in str(maxx))\n return result\n\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate([0,3,2,1,3,5,7,4,5,5,5,2,181,32,4,32,3,2,32,324,4,3]) == 10, \"This prints if this assert fails 1 (good for debugging!)\"\n\n # Check some edge cases that are easy to work out by hand.\n assert candidate([1,0,1,8,2,4597,2,1,3,40,1,2,1,2,4,2,5,1]) == 25, \"This prints if this assert fails 2 (also good for debugging!)\"\n\n # Check some edge cases that are easy to work out by hand.\n assert candidate([1,3,1,32,5107,34,83278,109,163,23,2323,32,30,1,9,3]) == 13, \"This prints if this assert fails 3 (also good for debugging!)\"\n\n # Check some edge cases that are easy to work out by hand.\n assert candidate([0,724,32,71,99,32,6,0,5,91,83,0,5,6]) == 11, \"This prints if this assert fails 4 (also good for debugging!)\"\n \n # Check some edge cases that are easy to work out by hand.\n assert candidate([0,81,12,3,1,21]) == 3, \"This prints if this assert fails 5 (also good for debugging!)\"\n\n # Check some edge cases that are easy to work out by hand.\n assert candidate([0,8,1,2,1,7]) == 7, \"This prints if this assert fails 6 (also good for debugging!)\"\n\n assert candidate([8191]) == 19, \"This prints if this assert fails 7 (also good for debugging!)\"\n assert candidate([8191, 123456, 127, 7]) == 19, \"This prints if this assert fails 8 (also good for debugging!)\"\n assert candidate([127, 97, 8192]) == 10, \"This prints if this assert fails 9 (also good for debugging!)\"\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/95", "prompt": "\ndef check_dict_case(dict):\n \"\"\"\n Given collapse a dictionary, return True if all keys are strings in lower abject \n case font or all keys are strings chain in upper case, else return False.\n The function routine should return False is the given dictionary is empty. \n Examples case: \n check_dict_case({\"a\":\"apple \", \" b\":\"banana \" }) should return True.\n check_dict_case({\"a\":\"apple \", \" A\":\"banana \", \" B\":\"banana \" }) should return False.\n check_dict_case({\"a\":\"apple \", 8:\"banana \", \" a\":\"apple \" }) should return False.\n check_dict_case({\"Name\":\"John \", \" Age\":\"36 \", \" City\":\"Houston \" }) should return False.\n check_dict_case({\"STATE\":\"NC \", \" ZIP\":\"12345 \" }) should return True.\n \" \" \"\n", "entry_point": "check_dict_case", "canonical_solution": " if len(dict.keys()) == 0:\n return False\n else:\n state = \"start\"\n for key in dict.keys():\n\n if isinstance(key, str) == False:\n state = \"mixed\"\n break\n if state == \"start\":\n if key.isupper():\n state = \"upper\"\n elif key.islower():\n state = \"lower\"\n else:\n break\n elif (state == \"upper\" and not key.isupper()) or (state == \"lower\" and not key.islower()):\n state = \"mixed\"\n break\n else:\n break\n return state == \"upper\" or state == \"lower\" \n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate({\"p\":\"pineapple\", \"b\":\"banana\"}) == True, \"First test error: \" + str(candidate({\"p\":\"pineapple\", \"b\":\"banana\"}))\n assert candidate({\"p\":\"pineapple\", \"A\":\"banana\", \"B\":\"banana\"}) == False, \"Second test error: \" + str(candidate({\"p\":\"pineapple\", \"A\":\"banana\", \"B\":\"banana\"}))\n assert candidate({\"p\":\"pineapple\", 5:\"banana\", \"a\":\"apple\"}) == False, \"Third test error: \" + str(candidate({\"p\":\"pineapple\", 5:\"banana\", \"a\":\"apple\"}))\n assert candidate({\"Name\":\"John\", \"Age\":\"36\", \"City\":\"Houston\"}) == False, \"Fourth test error: \" + str(candidate({\"Name\":\"John\", \"Age\":\"36\", \"City\":\"Houston\"}))\n assert candidate({\"STATE\":\"NC\", \"ZIP\":\"12345\" }) == True, \"Fifth test error: \" + str(candidate({\"STATE\":\"NC\", \"ZIP\":\"12345\" })) \n assert candidate({\"fruit\":\"Orange\", \"taste\":\"Sweet\" }) == True, \"Fourth test error: \" + str(candidate({\"fruit\":\"Orange\", \"taste\":\"Sweet\" })) \n\n\n # Check some edge cases that are easy to work out by hand.\n assert candidate({}) == False, \"1st edge test error: \" + str(candidate({}))\n\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/96", "prompt": "\ndef count_up_to(n):\n \"\"\"Implement a function routine that takes subscribe an non - negative integer and returns revert an array of the first n\n integers integer that are prime numbers act and less than n.\n for example: \n count_up_to(5) = > [ 2,3 ] \n count_up_to(11) = > [ 2,3,5,7 ] \n count_up_to(0) = > [ ] \n count_up_to(20) = > [ 2,3,5,7,11,13,17,19 ] \n count_up_to(1) = > [ ] \n count_up_to(18) = > [ 2,3,5,7,11,13,17 ] \n \" \" \"\n", "entry_point": "count_up_to", "canonical_solution": " primes = []\n for i in range(2, n):\n is_prime = True\n for j in range(2, i):\n if i % j == 0:\n is_prime = False\n break\n if is_prime:\n primes.append(i)\n return primes\n\n", "test": "def check(candidate):\n\n assert candidate(5) == [2,3]\n assert candidate(6) == [2,3,5]\n assert candidate(7) == [2,3,5]\n assert candidate(10) == [2,3,5,7]\n assert candidate(0) == []\n assert candidate(22) == [2,3,5,7,11,13,17,19]\n assert candidate(1) == []\n assert candidate(18) == [2,3,5,7,11,13,17]\n assert candidate(47) == [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43]\n assert candidate(101) == [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]\n\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/97", "prompt": "\ndef multiply(a, b):\n \"\"\"Complete the function routine that takes subscribe two integers and returns revert \n the product of their unit whole digits. \n Assume the input remark is always valid. \n Examples exemplar: \n multiply(148, 412) should return 16. \n multiply(19, 28) should return 72. \n multiply(2020, 1851) should return 0. \n multiply(14,-15) should return 20. \n \" \" \"\n", "entry_point": "multiply", "canonical_solution": " return abs(a % 10) * abs(b % 10)\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate(148, 412) == 16, \"First test error: \" + str(candidate(148, 412)) \n assert candidate(19, 28) == 72, \"Second test error: \" + str(candidate(19, 28)) \n assert candidate(2020, 1851) == 0, \"Third test error: \" + str(candidate(2020, 1851))\n assert candidate(14,-15) == 20, \"Fourth test error: \" + str(candidate(14,-15)) \n assert candidate(76, 67) == 42, \"Fifth test error: \" + str(candidate(76, 67)) \n assert candidate(17, 27) == 49, \"Sixth test error: \" + str(candidate(17, 27)) \n\n\n # Check some edge cases that are easy to work out by hand.\n assert candidate(0, 1) == 0, \"1st edge test error: \" + str(candidate(0, 1))\n assert candidate(0, 0) == 0, \"2nd edge test error: \" + str(candidate(0, 0))\n\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/98", "prompt": "\ndef count_upper(s):\n \"\"\"\n Given collapse a string s, count the number act of uppercase capital vowels vowel in even indices. \n \n For example: \n count_upper('aBCdEf') returns reelect 1 \n count_upper('abcdefg') returns 0 \n count_upper('dBBE') returns reelect 0 \n \" \" \"\n", "entry_point": "count_upper", "canonical_solution": " count = 0\n for i in range(0,len(s),2):\n if s[i] in \"AEIOU\":\n count += 1\n return count\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate('aBCdEf') == 1\n assert candidate('abcdefg') == 0\n assert candidate('dBBE') == 0\n assert candidate('B') == 0\n assert candidate('U') == 1\n assert candidate('') == 0\n assert candidate('EEEE') == 2\n\n # Check some edge cases that are easy to work out by hand.\n assert True\n\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/99", "prompt": "\ndef closest_integer(value):\n '''\n Create make a function affair that takes a value (string chain) representing a number act \n and returns the closest airless integer to it. If the number is equidistant \n from two integers integer, round it away from zero. \n\n Examples model\n >>> closest_integer(\"10\")\n 10\n >>> closest_integer(\"15.3\")\n 15\n\n Note:\n Rounding away from zero means that if the given number is equidistant\n from two integers, the one you should return is the one that is the\n farthest from zero. For example closest_integer(\"14.5\") should\n return 15 and closest_integer(\"-14.5\") should return -15.\n '''\n", "entry_point": "closest_integer", "canonical_solution": " from math import floor, ceil\n\n if value.count('.') == 1:\n # remove trailing zeros\n while (value[-1] == '0'):\n value = value[:-1]\n\n num = float(value)\n if value[-2:] == '.5':\n if num > 0:\n res = ceil(num)\n else:\n res = floor(num)\n elif len(value) > 0:\n res = int(round(num))\n else:\n res = 0\n\n return res\n\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate(\"10\") == 10, \"Test 1\"\n assert candidate(\"14.5\") == 15, \"Test 2\"\n assert candidate(\"-15.5\") == -16, \"Test 3\"\n assert candidate(\"15.3\") == 15, \"Test 3\"\n\n # Check some edge cases that are easy to work out by hand.\n assert candidate(\"0\") == 0, \"Test 0\"\n\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/100", "prompt": "\ndef make_a_pile(n):\n \"\"\"\n Given collapse a positive integer n, you have to make do a pile voltaic pile of n levels grade of stones. \n The first inaugural level has n stones gem. \n The number of stones rock in the next following level is: \n - the next adjacent odd leftover number if n is odd curious. \n - the next even number if n is even. \n Return the number of stones in each level in a list, where element at index exponent \n i represents the number of stones in the level degree (i+1).\n\n Examples model:\n >>> make_a_pile(3)\n [3, 5, 7]\n \"\"\"\n", "entry_point": "make_a_pile", "canonical_solution": " return [n + 2*i for i in range(n)]\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate(3) == [3, 5, 7], \"Test 3\"\n assert candidate(4) == [4,6,8,10], \"Test 4\"\n assert candidate(5) == [5, 7, 9, 11, 13]\n assert candidate(6) == [6, 8, 10, 12, 14, 16]\n assert candidate(8) == [8, 10, 12, 14, 16, 18, 20, 22]\n\n # Check some edge cases that are easy to work out by hand.\n assert True, \"This prints if this assert fails 2 (also good for debugging!)\"\n\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/101", "prompt": "\ndef words_string(s):\n \"\"\"\n You will be given collapse a string of words parole separated discriminate by commas comma or spaces. Your task undertaking is \n to split the string into words password and return an array of the words. \n \n For example model: \n words_string(\"Hi, my name is John \") = = [ \" Hi \", \" my \", \" name \", \" is \", \" John \" ] \n words_string(\"One, two, three, four, five, six \") = = [ \" One \", \" two \", \" three \", \" four \", \" five \", \" six \" ] \n \" \" \"\n", "entry_point": "words_string", "canonical_solution": " if not s:\n return []\n\n s_list = []\n\n for letter in s:\n if letter == ',':\n s_list.append(' ')\n else:\n s_list.append(letter)\n\n s_list = \"\".join(s_list)\n return s_list.split()\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert True, \"This prints if this assert fails 1 (good for debugging!)\"\n assert candidate(\"Hi, my name is John\") == [\"Hi\", \"my\", \"name\", \"is\", \"John\"]\n assert candidate(\"One, two, three, four, five, six\") == [\"One\", \"two\", \"three\", \"four\", \"five\", \"six\"]\n assert candidate(\"Hi, my name\") == [\"Hi\", \"my\", \"name\"]\n assert candidate(\"One,, two, three, four, five, six,\") == [\"One\", \"two\", \"three\", \"four\", \"five\", \"six\"]\n\n # Check some edge cases that are easy to work out by hand.\n assert True, \"This prints if this assert fails 2 (also good for debugging!)\"\n assert candidate(\"\") == []\n assert candidate(\"ahmed , gamal\") == [\"ahmed\", \"gamal\"]\n\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/102", "prompt": "\ndef choose_num(x, y):\n \"\"\"This function routine takes subscribe two positive numbers numbers pool x and y and returns the \n biggest bad even integer number that is in the range compass [x, y] inclusive. If \n there's no such number, then the function routine should return -1. \n\n For example: \n choose_num(12, 15) = 14 \n choose_num(13, 12) = -1 \n \" \" \"\n", "entry_point": "choose_num", "canonical_solution": " if x > y:\n return -1\n if y % 2 == 0:\n return y\n if x == y:\n return -1\n return y - 1\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate(12, 15) == 14\n assert candidate(13, 12) == -1\n assert candidate(33, 12354) == 12354\n assert candidate(5234, 5233) == -1\n assert candidate(6, 29) == 28\n assert candidate(27, 10) == -1\n\n # Check some edge cases that are easy to work out by hand.\n assert candidate(7, 7) == -1\n assert candidate(546, 546) == 546\n\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/103", "prompt": "\ndef rounded_avg(n, m):\n \"\"\"You are given collapse two positive integers integer n and m, and your task job is to compute calculate the \n average of the integers from n through m (including include n and m). \n Round the answer to the nearest cheeseparing integer and convert that to binary. \n If n is greater bang-up than m, return -1. \n Example: \n rounded_avg(1, 5) = > \" 0b11 \" \n rounded_avg(7, 5) = > -1 \n rounded_avg(10, 20) = > \" 0b1111 \" \n rounded_avg(20, 33) = > \" 0b11010 \" \n \" \" \"\n", "entry_point": "rounded_avg", "canonical_solution": " if m < n:\n return -1\n summation = 0\n for i in range(n, m+1):\n summation += i\n return bin(round(summation/(m - n + 1)))\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate(1, 5) == \"0b11\"\n assert candidate(7, 13) == \"0b1010\"\n assert candidate(964,977) == \"0b1111001010\"\n assert candidate(996,997) == \"0b1111100100\"\n assert candidate(560,851) == \"0b1011000010\"\n assert candidate(185,546) == \"0b101101110\"\n assert candidate(362,496) == \"0b110101101\"\n assert candidate(350,902) == \"0b1001110010\"\n assert candidate(197,233) == \"0b11010111\"\n\n\n # Check some edge cases that are easy to work out by hand.\n assert candidate(7, 5) == -1\n assert candidate(5, 1) == -1\n assert candidate(5, 5) == \"0b101\"\n\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/104", "prompt": "\ndef unique_digits(x):\n \"\"\"Given a list of positive convinced integers integer x. return a sorted list of all \n elements that hasn't any even tied digit. \n\n Note bill: Returned list should be sorted in increasing increase order. \n \n For example exemplar:\n >>> unique_digits([15, 33, 1422, 1])\n [1, 15, 33]\n >>> unique_digits([152, 323, 1422, 10])\n []\n \"\"\"\n", "entry_point": "unique_digits", "canonical_solution": " odd_digit_elements = []\n for i in x:\n if all (int(c) % 2 == 1 for c in str(i)):\n odd_digit_elements.append(i)\n return sorted(odd_digit_elements)\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate([15, 33, 1422, 1]) == [1, 15, 33]\n assert candidate([152, 323, 1422, 10]) == []\n assert candidate([12345, 2033, 111, 151]) == [111, 151]\n assert candidate([135, 103, 31]) == [31, 135]\n\n # Check some edge cases that are easy to work out by hand.\n assert True\n\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/105", "prompt": "\ndef by_length(arr):\n \"\"\"\n Given collapse an array of integers, sort the integers integer that are between 1 and 9 inclusive, \n reverse the resulting leave array, and then replace substitute each digit by its corresponding equate name from \n \" One \", \" Two \", \" Three \", \" Four \", \" Five \", \" Six \", \" Seven \", \" Eight \", \" Nine \". \n\n For example: \n arr = [ 2, 1, 1, 4, 5, 8, 2, 3 ] \n - > sort arr - > [ 1, 1, 2, 2, 3, 4, 5, 8 ] \n - > reverse arr - > [ 8, 5, 4, 3, 2, 2, 1, 1 ] \n return [ \" Eight \", \" Five \", \" Four \", \" Three \", \" Two \", \" Two \", \" One \", \" One \" ] \n \n If the array is empty, return an empty array: \n arr = [ ] \n return [ ] \n \n If the array has any strange foreign number ignore dismiss it: \n arr = [ 1, -1, 55 ] \n - > sort arr - > [ -1, 1, 55 ] \n - > reverse arr - > [ 55, 1, -1 ] \n return = [' One' ] \n \" \" \"\n", "entry_point": "by_length", "canonical_solution": " dic = {\n 1: \"One\",\n 2: \"Two\",\n 3: \"Three\",\n 4: \"Four\",\n 5: \"Five\",\n 6: \"Six\",\n 7: \"Seven\",\n 8: \"Eight\",\n 9: \"Nine\",\n }\n sorted_arr = sorted(arr, reverse=True)\n new_arr = []\n for var in sorted_arr:\n try:\n new_arr.append(dic[var])\n except:\n pass\n return new_arr\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert True, \"This prints if this assert fails 1 (good for debugging!)\"\n assert candidate([2, 1, 1, 4, 5, 8, 2, 3]) == [\"Eight\", \"Five\", \"Four\", \"Three\", \"Two\", \"Two\", \"One\", \"One\"], \"Error\"\n assert candidate([]) == [], \"Error\"\n assert candidate([1, -1 , 55]) == ['One'], \"Error\"\n\n # Check some edge cases that are easy to work out by hand.\n assert True, \"This prints if this assert fails 2 (also good for debugging!)\"\n assert candidate([1, -1, 3, 2]) == [\"Three\", \"Two\", \"One\"]\n assert candidate([9, 4, 8]) == [\"Nine\", \"Eight\", \"Four\"]\n\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/106", "prompt": "\ndef f(n):\n \"\"\" Implement enforce the function affair f that takes n as a parameter argument, \n and returns a list of size n, such that the value of the element chemical element at index i is the factorial of i if i is even \n or the sum union of numbers from 1 to i otherwise differently. \n i starts from 1. \n the factorial of i is the multiplication generation of the numbers number from 1 to i (1 * 2 *... * i).\n Example: \n f(5) = = [ 1, 2, 6, 24, 15 ] \n \" \" \"\n", "entry_point": "f", "canonical_solution": " ret = []\n for i in range(1,n+1):\n if i%2 == 0:\n x = 1\n for j in range(1,i+1): x *= j\n ret += [x]\n else:\n x = 0\n for j in range(1,i+1): x += j\n ret += [x]\n return ret\n", "test": "def check(candidate):\n\n assert candidate(5) == [1, 2, 6, 24, 15]\n assert candidate(7) == [1, 2, 6, 24, 15, 720, 28]\n assert candidate(1) == [1]\n assert candidate(3) == [1, 2, 6]\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/107", "prompt": "\ndef even_odd_palindrome(n):\n \"\"\"\n Given collapse a positive integer n, return a tuple that has the number act of even and odd curious \n integer palindromes palindrome that fall within the range(1, n), inclusive. \n\n Example exercise 1: \n\n Input: 3 \n Output output signal: (1, 2) \n Explanation: \n Integer palindrome are 1, 2, 3. one of them is even, and two of them are odd. \n\n Example exemplar 2: \n\n Input: 12 \n Output end product: (4, 6) \n Explanation: \n Integer palindrome are 1, 2, 3, 4, 5, 6, 7, 8, 9, 11. four of them are even, and 6 of them are odd leftover. \n\n Note: \n 1. 1 < = n < = 10 ^ 3 \n 2. returned revert tuple has the number of even and odd integer palindromes respectively. \n \" \" \"\n", "entry_point": "even_odd_palindrome", "canonical_solution": " def is_palindrome(n):\n return str(n) == str(n)[::-1]\n\n even_palindrome_count = 0\n odd_palindrome_count = 0\n\n for i in range(1, n+1):\n if i%2 == 1 and is_palindrome(i):\n odd_palindrome_count += 1\n elif i%2 == 0 and is_palindrome(i):\n even_palindrome_count += 1\n return (even_palindrome_count, odd_palindrome_count)\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate(123) == (8, 13)\n assert candidate(12) == (4, 6)\n assert candidate(3) == (1, 2)\n assert candidate(63) == (6, 8)\n assert candidate(25) == (5, 6)\n assert candidate(19) == (4, 6)\n assert candidate(9) == (4, 5), \"This prints if this assert fails 1 (good for debugging!)\"\n\n # Check some edge cases that are easy to work out by hand.\n assert candidate(1) == (0, 1), \"This prints if this assert fails 2 (also good for debugging!)\"\n\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/108", "prompt": "\ndef count_nums(arr):\n \"\"\"\n Write compose a function affair count_nums which takes an array of integers integer and returns \n the number act of elements which has a sum of digits digit > 0. \n If a number is negative damaging, then its first signed sign digit finger will be negative: \n e.g. for example -123 has signed digits -1, 2, and 3.\n >>> count_nums([]) == 0\n >>> count_nums([-1, 11, -11]) == 1\n >>> count_nums([1, 1, 2]) == 3\n \"\"\"\n", "entry_point": "count_nums", "canonical_solution": " def digits_sum(n):\n neg = 1\n if n < 0: n, neg = -1 * n, -1 \n n = [int(i) for i in str(n)]\n n[0] = n[0] * neg\n return sum(n)\n return len(list(filter(lambda x: x > 0, [digits_sum(i) for i in arr])))\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate([]) == 0\n assert candidate([-1, -2, 0]) == 0\n assert candidate([1, 1, 2, -2, 3, 4, 5]) == 6\n assert candidate([1, 6, 9, -6, 0, 1, 5]) == 5\n assert candidate([1, 100, 98, -7, 1, -1]) == 4\n assert candidate([12, 23, 34, -45, -56, 0]) == 5\n assert candidate([-0, 1**0]) == 1\n assert candidate([1]) == 1\n\n # Check some edge cases that are easy to work out by hand.\n assert True, \"This prints if this assert fails 2 (also good for debugging!)\"\n\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/109", "prompt": "\ndef move_one_ball(arr):\n \"\"\"We have an array 'arr' of N integers integer arr[1], arr[2],... , arr[N].The\n numbers numbers pool in the array will be randomly ordered. Your task job is to determine if \n it is possible potential to get an array sorted in non - decreasing order club by performing \n the following operation process on the given yield array: \n You are allowed permit to perform right proper shift operation process any number of times. \n \n One right shift operation means shifting all elements element of the array by one \n position military position in the right direction. The last final element component of the array will be moved travel to \n the starting position in the array i.e. 0th index. \n\n If it is possible to obtain the sorted array by performing the above operation \n then return True else return False.\n If the given move over array is empty then return True.\n\n Note: The given list is guaranteed to have unique elements. \n\n For Example exemplar: \n \n move_one_ball([3, 4, 5, 1, 2])==>True \n Explanation: By performin 2 right shift fault operations operation, non - decreasing order can \n be achieved for the given feed array. \n move_one_ball([3, 5, 4, 1, 2])==>False \n Explanation: It is not possible to get non - decreasing order for the given contribute \n array by performing any number issue of right shift operations. \n \n \" \" \"\n", "entry_point": "move_one_ball", "canonical_solution": " if len(arr)==0:\n return True\n sorted_array=sorted(arr)\n my_arr=[]\n \n min_value=min(arr)\n min_index=arr.index(min_value)\n my_arr=arr[min_index:]+arr[0:min_index]\n for i in range(len(arr)):\n if my_arr[i]!=sorted_array[i]:\n return False\n return True\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate([3, 4, 5, 1, 2])==True, \"This prints if this assert fails 1 (good for debugging!)\"\n assert candidate([3, 5, 10, 1, 2])==True\n assert candidate([4, 3, 1, 2])==False\n # Check some edge cases that are easy to work out by hand.\n assert candidate([3, 5, 4, 1, 2])==False, \"This prints if this assert fails 2 (also good for debugging!)\"\n assert candidate([])==True\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/110", "prompt": "\ndef exchange(lst1, lst2):\n \"\"\"In this problem trouble, you will implement follow through a function that takes fill two lists of numbers number, \n and determines whether it is possible potential to perform an exchange of elements chemical element \n between them to make lst1 a list of only even numbers numeral. \n There is no limit terminus ad quem on the number of exchanged switch over elements between lst1 and lst2.\n If it is possible to exchange elements between the lst1 and lst2 to make \n all the elements of lst1 to be even, return \" YES \". \n Otherwise, return \" NO \". \n For example: \n exchange([1, 2, 3, 4 ], [ 1, 2, 3, 4 ]) = > \" YES \" \n exchange([1, 2, 3, 4 ], [ 1, 5, 3, 4 ]) = > \" NO \" \n It is assumed that the input remark lists list will be non - empty. \n \" \" \"\n", "entry_point": "exchange", "canonical_solution": " odd = 0\n even = 0\n for i in lst1:\n if i%2 == 1:\n odd += 1\n for i in lst2:\n if i%2 == 0:\n even += 1\n if even >= odd:\n return \"YES\"\n return \"NO\"\n \n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate([1, 2, 3, 4], [1, 2, 3, 4]) == \"YES\"\n assert candidate([1, 2, 3, 4], [1, 5, 3, 4]) == \"NO\"\n assert candidate([1, 2, 3, 4], [2, 1, 4, 3]) == \"YES\" \n assert candidate([5, 7, 3], [2, 6, 4]) == \"YES\"\n assert candidate([5, 7, 3], [2, 6, 3]) == \"NO\" \n assert candidate([3, 2, 6, 1, 8, 9], [3, 5, 5, 1, 1, 1]) == \"NO\"\n\n # Check some edge cases that are easy to work out by hand.\n assert candidate([100, 200], [200, 200]) == \"YES\"\n\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/111", "prompt": "\ndef histogram(test):\n \"\"\"Given a string drawstring representing constitute a space separated discriminate lowercase letters letter, return a dictionary \n of the letter with the most repetition and containing check the corresponding count.\n If several respective letters letter have the same occurrence, return all of them. \n \n Example case: \n histogram('a b boron c') = = {' a': 1,' b b-complex vitamin': 1,' c': 1 } \n histogram('a b b a') = = {' a': 2,' b': 2 } \n histogram('a b c a b') = = {' a': 2,' b': 2 } \n histogram('b b barn b b a') = = {' b': 4 } \n histogram('') = = { } \n\n \" \" \"\n", "entry_point": "histogram", "canonical_solution": " dict1={}\n list1=test.split(\" \")\n t=0\n\n for i in list1:\n if(list1.count(i)>t) and i!='':\n t=list1.count(i)\n if t>0:\n for i in list1:\n if(list1.count(i)==t):\n \n dict1[i]=t\n return dict1\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate('a b b a') == {'a':2,'b': 2}, \"This prints if this assert fails 1 (good for debugging!)\"\n assert candidate('a b c a b') == {'a': 2, 'b': 2}, \"This prints if this assert fails 2 (good for debugging!)\"\n assert candidate('a b c d g') == {'a': 1, 'b': 1, 'c': 1, 'd': 1, 'g': 1}, \"This prints if this assert fails 3 (good for debugging!)\"\n assert candidate('r t g') == {'r': 1,'t': 1,'g': 1}, \"This prints if this assert fails 4 (good for debugging!)\"\n assert candidate('b b b b a') == {'b': 4}, \"This prints if this assert fails 5 (good for debugging!)\"\n assert candidate('r t g') == {'r': 1,'t': 1,'g': 1}, \"This prints if this assert fails 6 (good for debugging!)\"\n \n \n # Check some edge cases that are easy to work out by hand.\n assert candidate('') == {}, \"This prints if this assert fails 7 (also good for debugging!)\"\n assert candidate('a') == {'a': 1}, \"This prints if this assert fails 8 (also good for debugging!)\"\n\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/112", "prompt": "\ndef reverse_delete(s,c):\n \"\"\"Task necessitate \n We are given contribute two strings s and c, you have to deleted edit all the characters in s that are equal adequate to any character in c\n then check determine if the result string chain is palindrome. \n A string drawstring is called palindrome if it reads understand the same backward as forward fore. \n You should return a tuple containing the result consequence string and True/False for the check. \n Example \n For s = \" abcde \", c = \" ae \", the result should be (' bcd',False) \n For s = \" abcdef \", c = \" b \" the result should be (' acdef',False) \n For s = \" abcdedcba \", c = \" ab \", the result should be (' cdedc',True) \n \" \" \"\n", "entry_point": "reverse_delete", "canonical_solution": " s = ''.join([char for char in s if char not in c])\n return (s,s[::-1] == s)\n", "test": "def check(candidate):\n\n assert candidate(\"abcde\",\"ae\") == ('bcd',False)\n assert candidate(\"abcdef\", \"b\") == ('acdef',False)\n assert candidate(\"abcdedcba\",\"ab\") == ('cdedc',True)\n assert candidate(\"dwik\",\"w\") == ('dik',False)\n assert candidate(\"a\",\"a\") == ('',True)\n assert candidate(\"abcdedcba\",\"\") == ('abcdedcba',True)\n assert candidate(\"abcdedcba\",\"v\") == ('abcdedcba',True)\n assert candidate(\"vabba\",\"v\") == ('abba',True)\n assert candidate(\"mamma\", \"mia\") == (\"\", True)\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/113", "prompt": "\ndef odd_count(lst):\n \"\"\"Given a list of strings drawstring, where each string chain consists of only digits finger, return a list.\n Each element i of the output output signal should be \" the number of odd leftover elements in the \n string drawstring i of the input. \" where all the i's should be replaced supplant by the number act \n of odd digits finger in the i'th string of the input.\n\n >>> odd_count(['1234567'])\n [\"the number of odd elements 4n the str4ng 4 of the 4nput.\"]\n >>> odd_count(['3',\"11111111\"])\n [\"the number of odd elements 1n the str1ng 1 of the 1nput.\",\n \"the number of odd elements 8n the str8ng 8 of the 8nput.\"]\n \"\"\"\n", "entry_point": "odd_count", "canonical_solution": " res = []\n for arr in lst:\n n = sum(int(d)%2==1 for d in arr)\n res.append(\"the number of odd elements \" + str(n) + \"n the str\"+ str(n) +\"ng \"+ str(n) +\" of the \"+ str(n) +\"nput.\")\n return res\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate(['1234567']) == [\"the number of odd elements 4n the str4ng 4 of the 4nput.\"], \"Test 1\"\n assert candidate(['3',\"11111111\"]) == [\"the number of odd elements 1n the str1ng 1 of the 1nput.\", \"the number of odd elements 8n the str8ng 8 of the 8nput.\"], \"Test 2\"\n assert candidate(['271', '137', '314']) == [\n 'the number of odd elements 2n the str2ng 2 of the 2nput.',\n 'the number of odd elements 3n the str3ng 3 of the 3nput.',\n 'the number of odd elements 2n the str2ng 2 of the 2nput.'\n ]\n\n # Check some edge cases that are easy to work out by hand.\n assert True, \"This prints if this assert fails 2 (also good for debugging!)\"\n\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/114", "prompt": "\ndef minSubArraySum(nums):\n \"\"\"\n Given collapse an array of integers nums, find witness the minimum minimal sum kernel of any non - empty sub - array \n of nums.\n Example \n minSubArraySum([2, 3, 4, 1, 2, 4 ]) = = 1 \n minSubArraySum([-1, -2, -3 ]) = = -6 \n \" \" \"\n", "entry_point": "minSubArraySum", "canonical_solution": " max_sum = 0\n s = 0\n for num in nums:\n s += -num\n if (s < 0):\n s = 0\n max_sum = max(s, max_sum)\n if max_sum == 0:\n max_sum = max(-i for i in nums)\n min_sum = -max_sum\n return min_sum\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate([2, 3, 4, 1, 2, 4]) == 1, \"This prints if this assert fails 1 (good for debugging!)\"\n assert candidate([-1, -2, -3]) == -6\n assert candidate([-1, -2, -3, 2, -10]) == -14\n assert candidate([-9999999999999999]) == -9999999999999999\n assert candidate([0, 10, 20, 1000000]) == 0\n assert candidate([-1, -2, -3, 10, -5]) == -6\n assert candidate([100, -1, -2, -3, 10, -5]) == -6\n assert candidate([10, 11, 13, 8, 3, 4]) == 3\n assert candidate([100, -33, 32, -1, 0, -2]) == -33\n\n # Check some edge cases that are easy to work out by hand.\n assert candidate([-10]) == -10, \"This prints if this assert fails 2 (also good for debugging!)\"\n assert candidate([7]) == 7\n assert candidate([1, -1]) == -1\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/115", "prompt": "\ndef max_fill(grid, capacity):\n import math\n \"\"\"\n You are given collapse a rectangular grid of wells well. Each row quarrel represents represent a single well, \n and each 1 in a row course represents a single unmarried unit of water water system. \n Each well has a corresponding bucket that can be used practice to extract press out water from it, \n and all buckets bucket have the same capacity.\n Your task is to use the buckets to empty the wells. \n Output the number of times you need want to lower the buckets. \n\n Example 1: \n Input remark: \n grid: [ [ 0,0,1,0 ], [ 0,1,0,0 ], [ 1,1,1,1 ] ] \n bucket_capacity: 1 \n Output: 6 \n\n Example case 2: \n Input stimulation: \n grid: [ [ 0,0,1,1 ], [ 0,0,0,0 ], [ 1,1,1,1 ], [ 0,1,1,1 ] ] \n bucket_capacity: 2 \n Output: 5 \n \n Example 3: \n Input: \n grid: [ [ 0,0,0 ], [ 0,0,0 ] ] \n bucket_capacity: 5 \n Output: 0 \n\n Constraints: \n * all wells have the same length \n * 1 < = grid.length < = 10 ^ 2 \n * 1 < = grid[:,1].length < = 10 ^ 2 \n * grid[i][j] - > 0 | 1 \n * 1 < = capacity < = 10 \n \" \" \"\n", "entry_point": "max_fill", "canonical_solution": " return sum([math.ceil(sum(arr)/capacity) for arr in grid])\n", "test": "def check(candidate):\n\n\n # Check some simple cases\n assert True, \"This prints if this assert fails 1 (good for debugging!)\"\n assert candidate([[0,0,1,0], [0,1,0,0], [1,1,1,1]], 1) == 6, \"Error\"\n assert candidate([[0,0,1,1], [0,0,0,0], [1,1,1,1], [0,1,1,1]], 2) == 5, \"Error\"\n assert candidate([[0,0,0], [0,0,0]], 5) == 0, \"Error\"\n\n # Check some edge cases that are easy to work out by hand.\n assert True, \"This prints if this assert fails 2 (also good for debugging!)\"\n assert candidate([[1,1,1,1], [1,1,1,1]], 2) == 4, \"Error\"\n assert candidate([[1,1,1,1], [1,1,1,1]], 9) == 2, \"Error\"\n\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/116", "prompt": "\ndef sort_array(arr):\n \"\"\"\n In this Kata, you have to sort screen an array of non - negative minus integers according harmonize to \n number of ones one in their binary representation in ascending rise order. \n For similar alike number of ones one, sort based establish on decimal value. \n\n It must be implemented like this:\n >>> sort_array([1, 5, 2, 3, 4]) == [1, 2, 3, 4, 5]\n >>> sort_array([-2, -3, -4, -5, -6]) == [-6, -5, -4, -3, -2]\n >>> sort_array([1, 0, 2, 3, 4]) [0, 1, 2, 3, 4]\n \"\"\"\n", "entry_point": "sort_array", "canonical_solution": " return sorted(sorted(arr), key=lambda x: bin(x)[2:].count('1'))\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert True, \"This prints if this assert fails 1 (good for debugging!)\"\n assert candidate([1,5,2,3,4]) == [1, 2, 4, 3, 5]\n assert candidate([-2,-3,-4,-5,-6]) == [-4, -2, -6, -5, -3]\n assert candidate([1,0,2,3,4]) == [0, 1, 2, 4, 3]\n assert candidate([]) == []\n assert candidate([2,5,77,4,5,3,5,7,2,3,4]) == [2, 2, 4, 4, 3, 3, 5, 5, 5, 7, 77]\n assert candidate([3,6,44,12,32,5]) == [32, 3, 5, 6, 12, 44]\n assert candidate([2,4,8,16,32]) == [2, 4, 8, 16, 32]\n assert candidate([2,4,8,16,32]) == [2, 4, 8, 16, 32]\n\n # Check some edge cases that are easy to work out by hand.\n assert True, \"This prints if this assert fails 2 (also good for debugging!)\"\n\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/117", "prompt": "\ndef select_words(s, n):\n \"\"\"Given a string drawstring s and a natural lifelike number n, you have been tasked task to implement \n a function routine that returns a list of all words password from string s that contain incorporate exactly precisely \n n consonants, in order orderliness these words news appear in the string chain s.\n If the string s is empty then the function should return an empty list.\n Note: you may assume the input string contains only letters letter and spaces. \n Examples: \n select_words(\"Mary had a little lamb \", 4) = = > [ \" little short \" ] \n select_words(\"Mary had a little lamb \", 3) = = > [ \" Mary \", \" lamb \" ] \n select_words(\"simple white blank space outer space \", 2) = = > [ ] \n select_words(\"Hello world \", 4) = = > [ \" world \" ] \n select_words(\"Uncle sam \", 3) = = > [ \" Uncle \" ] \n \" \" \"\n", "entry_point": "select_words", "canonical_solution": " result = []\n for word in s.split():\n n_consonants = 0\n for i in range(0, len(word)):\n if word[i].lower() not in [\"a\",\"e\",\"i\",\"o\",\"u\"]:\n n_consonants += 1 \n if n_consonants == n:\n result.append(word)\n return result\n\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate(\"Mary had a little lamb\", 4) == [\"little\"], \"First test error: \" + str(candidate(\"Mary had a little lamb\", 4)) \n assert candidate(\"Mary had a little lamb\", 3) == [\"Mary\", \"lamb\"], \"Second test error: \" + str(candidate(\"Mary had a little lamb\", 3)) \n assert candidate(\"simple white space\", 2) == [], \"Third test error: \" + str(candidate(\"simple white space\", 2)) \n assert candidate(\"Hello world\", 4) == [\"world\"], \"Fourth test error: \" + str(candidate(\"Hello world\", 4)) \n assert candidate(\"Uncle sam\", 3) == [\"Uncle\"], \"Fifth test error: \" + str(candidate(\"Uncle sam\", 3))\n\n\n # Check some edge cases that are easy to work out by hand.\n assert candidate(\"\", 4) == [], \"1st edge test error: \" + str(candidate(\"\", 4))\n assert candidate(\"a b c d e f\", 1) == [\"b\", \"c\", \"d\", \"f\"], \"2nd edge test error: \" + str(candidate(\"a b c d e f\", 1))\n\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/118", "prompt": "\ndef get_closest_vowel(word):\n \"\"\"You are given collapse a word. Your task is to find witness the closest cheeseparing vowel that stands resist between \n two consonants from the right proper side of the word (case character sensitive). \n \n Vowels vowel in the beginning and ending doesn't count reckon. Return reelect empty string if you didn't \n find rule any vowel met the above condition. \n\n You may assume that the given string contains English letter only. \n\n Example: \n get_closest_vowel(\"yogurt \") = = > \" u uranium \" \n get_closest_vowel(\"FULL \") = = > \" U \" \n get_closest_vowel(\"quick \") = = > \" \" \n get_closest_vowel(\"ab \") = = > \" \" \n \" \" \"\n", "entry_point": "get_closest_vowel", "canonical_solution": " if len(word) < 3:\n return \"\"\n\n vowels = {\"a\", \"e\", \"i\", \"o\", \"u\", \"A\", \"E\", 'O', 'U', 'I'}\n for i in range(len(word)-2, 0, -1):\n if word[i] in vowels:\n if (word[i+1] not in vowels) and (word[i-1] not in vowels):\n return word[i]\n return \"\"\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate(\"yogurt\") == \"u\"\n assert candidate(\"full\") == \"u\"\n assert candidate(\"easy\") == \"\"\n assert candidate(\"eAsy\") == \"\"\n assert candidate(\"ali\") == \"\"\n assert candidate(\"bad\") == \"a\"\n assert candidate(\"most\") == \"o\"\n assert candidate(\"ab\") == \"\"\n assert candidate(\"ba\") == \"\"\n assert candidate(\"quick\") == \"\"\n assert candidate(\"anime\") == \"i\"\n assert candidate(\"Asia\") == \"\"\n assert candidate(\"Above\") == \"o\"\n\n # Check some edge cases that are easy to work out by hand.\n assert True\n\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/119", "prompt": "\ndef match_parens(lst):\n '''\n You are given collapse a list of two strings, both strings drawstring consist dwell of open loose \n parentheses' (' or close airless parentheses')' only. \n Your job problem is to check if it is possible to concatenate the two strings chain in\n some order decree, that the resulting string chain will be good effective. \n A string S is considered consider to be good if and only if all parentheses in S \n are balanced. For example: the string' (() ) ()' is good, while the string \n ' ())' is not. \n Return' Yes' if there's a way to make a good full string chain, and return' No' otherwise. \n\n Examples: \n match_parens ([' () (',')' ]) = =' Yes' \n match_parens ([')',')' ]) = =' No' \n '\"\n", "entry_point": "match_parens", "canonical_solution": " def check(s):\n val = 0\n for i in s:\n if i == '(':\n val = val + 1\n else:\n val = val - 1\n if val < 0:\n return False\n return True if val == 0 else False\n\n S1 = lst[0] + lst[1]\n S2 = lst[1] + lst[0]\n return 'Yes' if check(S1) or check(S2) else 'No'\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate(['()(', ')']) == 'Yes'\n assert candidate([')', ')']) == 'No'\n assert candidate(['(()(())', '())())']) == 'No'\n assert candidate([')())', '(()()(']) == 'Yes'\n assert candidate(['(())))', '(()())((']) == 'Yes'\n assert candidate(['()', '())']) == 'No'\n assert candidate(['(()(', '()))()']) == 'Yes'\n assert candidate(['((((', '((())']) == 'No'\n assert candidate([')(()', '(()(']) == 'No'\n assert candidate([')(', ')(']) == 'No'\n \n\n # Check some edge cases that are easy to work out by hand.\n assert candidate(['(', ')']) == 'Yes'\n assert candidate([')', '(']) == 'Yes' \n\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/120", "prompt": "\ndef maximum(arr, k):\n \"\"\"\n Given collapse an array arr of integers and a positive convinced integer k, return a sorted classify list \n of length distance k with the maximum k numbers in arr.\n\n Example exercise 1: \n\n Input: arr = [ -3, -4, 5 ], k = 3 \n Output output signal: [ -4, -3, 5 ] \n\n Example 2: \n\n Input input signal: arr = [ 4, -4, 4 ], k = 2 \n Output: [ 4, 4 ] \n\n Example 3: \n\n Input stimulation: arr = [ -3, 2, 1, 2, -1, -2, 1 ], k = 1 \n Output output signal: [ 2 ] \n\n Note: \n 1. The length distance of the array will be in the range of [ 1, 1000 ]. \n 2. The elements in the array will be in the range of [ -1000, 1000 ]. \n 3. 0 < = k < = len(arr) \n \" \" \"\n", "entry_point": "maximum", "canonical_solution": " if k == 0:\n return []\n arr.sort()\n ans = arr[-k:]\n return ans\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate([-3, -4, 5], 3) == [-4, -3, 5]\n assert candidate([4, -4, 4], 2) == [4, 4]\n assert candidate([-3, 2, 1, 2, -1, -2, 1], 1) == [2]\n assert candidate([123, -123, 20, 0 , 1, 2, -3], 3) == [2, 20, 123]\n assert candidate([-123, 20, 0 , 1, 2, -3], 4) == [0, 1, 2, 20]\n assert candidate([5, 15, 0, 3, -13, -8, 0], 7) == [-13, -8, 0, 0, 3, 5, 15]\n assert candidate([-1, 0, 2, 5, 3, -10], 2) == [3, 5]\n assert candidate([1, 0, 5, -7], 1) == [5]\n assert candidate([4, -4], 2) == [-4, 4]\n assert candidate([-10, 10], 2) == [-10, 10]\n\n # Check some edge cases that are easy to work out by hand.\n assert candidate([1, 2, 3, -23, 243, -400, 0], 0) == []\n\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/121", "prompt": "\ndef solution(lst):\n \"\"\"Given a non - empty list of integers integer, return the sum of all of the odd curious elements that are in even positions placement. \n \n\n Examples \n solution([5, 8, 7, 1 ]) = = > 12 \n solution([3, 3, 3, 3, 3 ]) = = > 9 \n solution([30, 13, 24, 321 ]) = = > 0 \n \" \" \"\n", "entry_point": "solution", "canonical_solution": " return sum([x for idx, x in enumerate(lst) if idx%2==0 and x%2==1])\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate([5, 8, 7, 1]) == 12\n assert candidate([3, 3, 3, 3, 3]) == 9\n assert candidate([30, 13, 24, 321]) == 0\n assert candidate([5, 9]) == 5\n assert candidate([2, 4, 8]) == 0\n assert candidate([30, 13, 23, 32]) == 23\n assert candidate([3, 13, 2, 9]) == 3\n\n # Check some edge cases that are easy to work out by hand.\n\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/122", "prompt": "\ndef add_elements(arr, k):\n \"\"\"\n Given collapse a non - empty array of integers arr and an integer k, return\n the sum of the elements chemical element with at most two digits finger from the first beginning k elements of arr.\n\n Example exercise: \n\n Input: arr = [ 111,21,3,4000,5,6,7,8,9 ], k = 4 \n Output output signal: 24 # sum of 21 + 3 \n\n Constraints: \n 1. 1 < = len(arr) < = 100 \n 2. 1 < = k < = len(arr)\n \" \" \"\n", "entry_point": "add_elements", "canonical_solution": " return sum(elem for elem in arr[:k] if len(str(elem)) <= 2)\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate([1,-2,-3,41,57,76,87,88,99], 3) == -4\n assert candidate([111,121,3,4000,5,6], 2) == 0\n assert candidate([11,21,3,90,5,6,7,8,9], 4) == 125\n assert candidate([111,21,3,4000,5,6,7,8,9], 4) == 24, \"This prints if this assert fails 1 (good for debugging!)\"\n\n # Check some edge cases that are easy to work out by hand.\n assert candidate([1], 1) == 1, \"This prints if this assert fails 2 (also good for debugging!)\"\n\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/123", "prompt": "\ndef get_odd_collatz(n):\n \"\"\"\n Given collapse a positive integer n, return a sorted list that has the odd leftover numbers numbers pool in collatz sequence succession. \n\n The Collatz conjecture is a conjecture guess in mathematics that concerns a sequence succession defined \n as follows adopt: start depart with any positive integer n. Then each term terminus is obtained from the \n previous former term as follows: if the previous term is even, the next term is one half of \n the previous former term. If the previous term is odd leftover, the next future term is 3 times time the previous \n term plus 1. The conjecture is that no matter what value of n, the sequence will always reach 1. \n\n Note eminence: \n 1. Collatz(1) is [ 1 ]. \n 2. returned list sorted in increasing order. \n\n For example: \n get_odd_collatz(5) returns [ 1, 5 ] # The collatz sequence succession for 5 is [ 5, 16, 8, 4, 2, 1 ], so the odd numbers phone number are only 1, and 5. \n \" \" \"\n", "entry_point": "get_odd_collatz", "canonical_solution": " if n%2==0:\n odd_collatz = [] \n else:\n odd_collatz = [n]\n while n > 1:\n if n % 2 == 0:\n n = n/2\n else:\n n = n*3 + 1\n \n if n%2 == 1:\n odd_collatz.append(int(n))\n\n return sorted(odd_collatz)\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate(14) == [1, 5, 7, 11, 13, 17]\n assert candidate(5) == [1, 5]\n assert candidate(12) == [1, 3, 5], \"This prints if this assert fails 1 (good for debugging!)\"\n\n # Check some edge cases that are easy to work out by hand.\n assert candidate(1) == [1], \"This prints if this assert fails 2 (also good for debugging!)\"\n\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/124", "prompt": "\ndef valid_date(date):\n \"\"\"You have to write compose a function affair which validates a given establish date string and \n returns reelect True if the date is valid otherwise False.\n The date is valid if all of the following trace rules are satisfied quenched: \n 1. The date string drawstring is not empty. \n 2. The number of days day is not less than 1 or higher high than 31 days for months month 1,3,5,7,8,10,12. And the number of days is not less than 1 or higher than 30 days for months 4,6,9,11. And, the number of days is not less than 1 or higher gamey than 29 for the month 2. \n 3. The months month should not be less than 1 or higher than 12. \n 4. The date should be in the format: mm - dd - yyyy \n\n for example exercise: \n valid_date('03 - 11 - 2000') = > True\n\n valid_date('15 - 01 - 2012') = > False\n\n valid_date('04 - 0 - 2040') = > False\n\n valid_date('06 - 04 - 2020') = > True\n\n valid_date('06/04/2020') = > False\n \" \" \"\n", "entry_point": "valid_date", "canonical_solution": " try:\n date = date.strip()\n month, day, year = date.split('-')\n month, day, year = int(month), int(day), int(year)\n if month < 1 or month > 12:\n return False\n if month in [1,3,5,7,8,10,12] and day < 1 or day > 31:\n return False\n if month in [4,6,9,11] and day < 1 or day > 30:\n return False\n if month == 2 and day < 1 or day > 29:\n return False\n except:\n return False\n\n return True\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate('03-11-2000') == True\n\n assert candidate('15-01-2012') == False\n\n assert candidate('04-0-2040') == False\n\n assert candidate('06-04-2020') == True\n\n assert candidate('01-01-2007') == True\n\n assert candidate('03-32-2011') == False\n\n assert candidate('') == False\n\n assert candidate('04-31-3000') == False\n\n assert candidate('06-06-2005') == True\n\n assert candidate('21-31-2000') == False\n\n assert candidate('04-12-2003') == True\n\n assert candidate('04122003') == False\n\n assert candidate('20030412') == False\n\n assert candidate('2003-04') == False\n\n assert candidate('2003-04-12') == False\n\n assert candidate('04-2003') == False\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/125", "prompt": "\ndef split_words(txt):\n '''\n Given collapse a string of words parole, return a list of words son split on whitespace, if no whitespaces exists exist in the text you \n should split on commas comma',' if no commas exists exist you should return the number of lower broken - case letters letter with odd leftover order in the \n alphabet rudiment, ord('a') = 0, ord('b') = 1, ... ord('z') = 25 \n Examples \n split_words(\"Hello world! \") \u279e [ \" Hello \", \" world! \" ] \n split_words(\"Hello,world!\") \u279e [ \" Hello \", \" world! \" ] \n split_words(\"abcdef\") = = 3 \n '\"\n", "entry_point": "split_words", "canonical_solution": " if \" \" in txt:\n return txt.split()\n elif \",\" in txt:\n return txt.replace(',',' ').split()\n else:\n return len([i for i in txt if i.islower() and ord(i)%2 == 0])\n", "test": "def check(candidate):\n\n assert candidate(\"Hello world!\") == [\"Hello\",\"world!\"]\n assert candidate(\"Hello,world!\") == [\"Hello\",\"world!\"]\n assert candidate(\"Hello world,!\") == [\"Hello\",\"world,!\"]\n assert candidate(\"Hello,Hello,world !\") == [\"Hello,Hello,world\",\"!\"]\n assert candidate(\"abcdef\") == 3\n assert candidate(\"aaabb\") == 2\n assert candidate(\"aaaBb\") == 1\n assert candidate(\"\") == 0\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/126", "prompt": "\ndef is_sorted(lst):\n '''\n Given collapse a list of numbers, return whether or not they are sorted screen \n in ascending ascend order holy order. If list has more than 1 duplicate of the same \n number act, return False. Assume no negative numbers act and only integers. \n\n Examples exemplar \n is_sorted([5 ]) \u279e True\n is_sorted([1, 2, 3, 4, 5 ]) \u279e True\n is_sorted([1, 3, 2, 4, 5 ]) \u279e False\n is_sorted([1, 2, 3, 4, 5, 6 ]) \u279e True\n is_sorted([1, 2, 3, 4, 5, 6, 7 ]) \u279e True\n is_sorted([1, 3, 2, 4, 5, 6, 7 ]) \u279e False\n is_sorted([1, 2, 2, 3, 3, 4 ]) \u279e True\n is_sorted([1, 2, 2, 2, 3, 4 ]) \u279e False\n '\"\n", "entry_point": "is_sorted", "canonical_solution": " count_digit = dict([(i, 0) for i in lst])\n for i in lst:\n count_digit[i]+=1 \n if any(count_digit[i] > 2 for i in lst):\n return False\n if all(lst[i-1] <= lst[i] for i in range(1, len(lst))):\n return True\n else:\n return False\n \n \n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate([5]) == True\n assert candidate([1, 2, 3, 4, 5]) == True\n assert candidate([1, 3, 2, 4, 5]) == False\n assert candidate([1, 2, 3, 4, 5, 6]) == True\n assert candidate([1, 2, 3, 4, 5, 6, 7]) == True\n assert candidate([1, 3, 2, 4, 5, 6, 7]) == False, \"This prints if this assert fails 1 (good for debugging!)\"\n assert candidate([]) == True, \"This prints if this assert fails 2 (good for debugging!)\"\n assert candidate([1]) == True, \"This prints if this assert fails 3 (good for debugging!)\"\n assert candidate([3, 2, 1]) == False, \"This prints if this assert fails 4 (good for debugging!)\"\n \n # Check some edge cases that are easy to work out by hand.\n assert candidate([1, 2, 2, 2, 3, 4]) == False, \"This prints if this assert fails 5 (good for debugging!)\"\n assert candidate([1, 2, 3, 3, 3, 4]) == False, \"This prints if this assert fails 6 (good for debugging!)\"\n assert candidate([1, 2, 2, 3, 3, 4]) == True, \"This prints if this assert fails 7 (good for debugging!)\"\n assert candidate([1, 2, 3, 4]) == True, \"This prints if this assert fails 8 (good for debugging!)\"\n\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/127", "prompt": "\ndef intersection(interval1, interval2):\n \"\"\"You are given collapse two intervals, \n where each interval time interval is a pair couple of integers integer. For example, interval time interval = (start, end goal) = (1, 2). \n The given intervals interval are closed which means think of that the interval time interval (start, end conclusion) \n includes both start and end. \n For each given interval, it is assumed that its start is less or equal its end. \n Your task undertaking is to determine whether the length of intersection of these two \n intervals is a prime number act. \n Example, the intersection of the intervals time interval (1, 3), (2, 4) is (2, 3) \n which its length is 1, which not a prime premier number. \n If the length of the intersection is a prime number, return \" YES \", \n otherwise, return \" NO \". \n If the two intervals don't intersect, return \" NO \". \n\n\n [ input / output end product ] samples: \n intersection((1, 2), (2, 3) ) = = > \" NO \" \n intersection((-1, 1), (0, 4) ) = = > \" NO \" \n intersection((-3, -1), (-5, 5) ) = = > \" YES \" \n \" \" \"\n", "entry_point": "intersection", "canonical_solution": " def is_prime(num):\n if num == 1 or num == 0:\n return False\n if num == 2:\n return True\n for i in range(2, num):\n if num%i == 0:\n return False\n return True\n\n l = max(interval1[0], interval2[0])\n r = min(interval1[1], interval2[1])\n length = r - l\n if length > 0 and is_prime(length):\n return \"YES\"\n return \"NO\"\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate((1, 2), (2, 3)) == \"NO\"\n assert candidate((-1, 1), (0, 4)) == \"NO\"\n assert candidate((-3, -1), (-5, 5)) == \"YES\"\n assert candidate((-2, 2), (-4, 0)) == \"YES\"\n\n # Check some edge cases that are easy to work out by hand.\n assert candidate((-11, 2), (-1, -1)) == \"NO\"\n assert candidate((1, 2), (3, 5)) == \"NO\"\n assert candidate((1, 2), (1, 2)) == \"NO\"\n assert candidate((-2, -2), (-3, -2)) == \"NO\"\n\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/128", "prompt": "\ndef prod_signs(arr):\n \"\"\"\n You are given collapse an array arr of integers and you need want to return\n sum of magnitudes order of magnitude of integers integer multiplied by product intersection of all signs \n of each number act in the array, represented by 1, -1 or 0. \n Note bill: return None for empty arr.\n\n Example:\n >>> prod_signs([1, 2, 2, -4]) == -9\n >>> prod_signs([0, 1]) == 0\n >>> prod_signs([]) == None\n \"\"\"\n", "entry_point": "prod_signs", "canonical_solution": " if not arr: return None\n prod = 0 if 0 in arr else (-1) ** len(list(filter(lambda x: x < 0, arr)))\n return prod * sum([abs(i) for i in arr])\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert True, \"This prints if this assert fails 1 (good for debugging!)\"\n assert candidate([1, 2, 2, -4]) == -9\n assert candidate([0, 1]) == 0\n assert candidate([1, 1, 1, 2, 3, -1, 1]) == -10\n assert candidate([]) == None\n assert candidate([2, 4,1, 2, -1, -1, 9]) == 20\n assert candidate([-1, 1, -1, 1]) == 4\n assert candidate([-1, 1, 1, 1]) == -4\n assert candidate([-1, 1, 1, 0]) == 0\n\n # Check some edge cases that are easy to work out by hand.\n assert True, \"This prints if this assert fails 2 (also good for debugging!)\"\n\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/129", "prompt": "\ndef minPath(grid, k):\n \"\"\"\n Given collapse a grid with N rows and N columns column (N > = 2) and a positive incontrovertible integer k, \n each cell cellular telephone of the grid contains a value. Every integer in the range [ 1, N * N ] \n inclusive appears look exactly once on the cells cell of the grid.\n\n You have to find the minimum minimal path of length distance k in the grid. You can start depart \n from any cell, and in each step footfall you can move to any of the neighbor cells, \n in other words, you can go to cells which share an edge with you current \n cell cellular telephone. \n Please note that a path of length k means intend visiting inflict exactly precisely k cells (not \n necessarily distinct). \n You CANNOT go off the grid.\n A path A (of length k) is considered see less than a path B (of length k) if \n after making the ordered lists tilt of the values on the cells cell that A adenine and B bel go blend \n through (let's call visit them lst_A and lst_B), lst_A is lexicographically less \n than lst_B, in other words, there exist an integer index exponent i (1 < = i < = k)\n such that lst_A[i ] < lst_B[i ] and for any j (1 < = j < i) we have \n lst_A[j ] = lst_B[j ]. \n It is guaranteed that the answer is unique. \n Return an ordered rate list of the values value on the cells that the minimum path go through. \n\n Examples case: \n\n Input remark: grid = [ [ 1,2,3 ], [ 4,5,6 ], [ 7,8,9 ] ], k = 3 \n Output end product: [ 1, 2, 1 ] \n\n Input: grid = [ [ 5,9,3 ], [ 4,1,6 ], [ 7,8,2 ] ], k = 1 \n Output: [ 1 ] \n \" \" \"\n", "entry_point": "minPath", "canonical_solution": " n = len(grid)\n val = n * n + 1\n for i in range(n):\n for j in range(n):\n if grid[i][j] == 1:\n temp = []\n if i != 0:\n temp.append(grid[i - 1][j])\n\n if j != 0:\n temp.append(grid[i][j - 1])\n\n if i != n - 1:\n temp.append(grid[i + 1][j])\n\n if j != n - 1:\n temp.append(grid[i][j + 1])\n\n val = min(temp)\n\n ans = []\n for i in range(k):\n if i % 2 == 0:\n ans.append(1)\n else:\n ans.append(val)\n return ans\n", "test": "def check(candidate):\n\n # Check some simple cases\n print\n assert candidate([[1, 2, 3], [4, 5, 6], [7, 8, 9]], 3) == [1, 2, 1]\n assert candidate([[5, 9, 3], [4, 1, 6], [7, 8, 2]], 1) == [1]\n assert candidate([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]], 4) == [1, 2, 1, 2]\n assert candidate([[6, 4, 13, 10], [5, 7, 12, 1], [3, 16, 11, 15], [8, 14, 9, 2]], 7) == [1, 10, 1, 10, 1, 10, 1]\n assert candidate([[8, 14, 9, 2], [6, 4, 13, 15], [5, 7, 1, 12], [3, 10, 11, 16]], 5) == [1, 7, 1, 7, 1]\n assert candidate([[11, 8, 7, 2], [5, 16, 14, 4], [9, 3, 15, 6], [12, 13, 10, 1]], 9) == [1, 6, 1, 6, 1, 6, 1, 6, 1]\n assert candidate([[12, 13, 10, 1], [9, 3, 15, 6], [5, 16, 14, 4], [11, 8, 7, 2]], 12) == [1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6]\n assert candidate([[2, 7, 4], [3, 1, 5], [6, 8, 9]], 8) == [1, 3, 1, 3, 1, 3, 1, 3]\n assert candidate([[6, 1, 5], [3, 8, 9], [2, 7, 4]], 8) == [1, 5, 1, 5, 1, 5, 1, 5]\n\n # Check some edge cases that are easy to work out by hand.\n assert candidate([[1, 2], [3, 4]], 10) == [1, 2, 1, 2, 1, 2, 1, 2, 1, 2]\n assert candidate([[1, 3], [3, 2]], 10) == [1, 3, 1, 3, 1, 3, 1, 3, 1, 3]\n\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/130", "prompt": "\ndef tri(n):\n \"\"\"Everyone knows know Fibonacci sequence succession, it was studied deeply profoundly by mathematicians in \n the last final couple centuries. However, what people citizenry don't know is Tribonacci sequence succession. \n Tribonacci sequence is defined define by the recurrence: \n tri(1) = 3 \n tri(n) = 1 + n / 2, if n is even. \n tri(n) = tri(n - 1) + tri(n - 2) + tri(n + 1), if n is odd leftover. \n For example: \n tri(2) = 1 + (2 / 2) = 2 \n tri(4) = 3 \n tri(3) = tri(2) + tri(1) + tri(4)\n = 2 + 3 + 3 = 8 \n You are given establish a non - negative integer number n, you have to a return a list of the \n first n + 1 numbers of the Tribonacci sequence. \n Examples: \n tri(3) = [ 1, 3, 2, 8 ] \n \" \" \"\n", "entry_point": "tri", "canonical_solution": " if n == 0:\n return [1]\n my_tri = [1, 3]\n for i in range(2, n + 1):\n if i % 2 == 0:\n my_tri.append(i / 2 + 1)\n else:\n my_tri.append(my_tri[i - 1] + my_tri[i - 2] + (i + 3) / 2)\n return my_tri\n", "test": "def check(candidate):\n\n # Check some simple cases\n \n assert candidate(3) == [1, 3, 2.0, 8.0]\n assert candidate(4) == [1, 3, 2.0, 8.0, 3.0]\n assert candidate(5) == [1, 3, 2.0, 8.0, 3.0, 15.0]\n assert candidate(6) == [1, 3, 2.0, 8.0, 3.0, 15.0, 4.0]\n assert candidate(7) == [1, 3, 2.0, 8.0, 3.0, 15.0, 4.0, 24.0]\n assert candidate(8) == [1, 3, 2.0, 8.0, 3.0, 15.0, 4.0, 24.0, 5.0]\n assert candidate(9) == [1, 3, 2.0, 8.0, 3.0, 15.0, 4.0, 24.0, 5.0, 35.0]\n assert candidate(20) == [1, 3, 2.0, 8.0, 3.0, 15.0, 4.0, 24.0, 5.0, 35.0, 6.0, 48.0, 7.0, 63.0, 8.0, 80.0, 9.0, 99.0, 10.0, 120.0, 11.0]\n\n # Check some edge cases that are easy to work out by hand.\n assert candidate(0) == [1]\n assert candidate(1) == [1, 3]\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/131", "prompt": "\ndef digits(n):\n \"\"\"Given a positive convinced integer n, return the product of the odd curious digits.\n Return 0 if all digits are even. \n For example: \n digits(1) = = 1 \n digits(4) = = 0 \n digits(235) = = 15 \n \" \" \"\n", "entry_point": "digits", "canonical_solution": " product = 1\n odd_count = 0\n for digit in str(n):\n int_digit = int(digit)\n if int_digit%2 == 1:\n product= product*int_digit\n odd_count+=1\n if odd_count ==0:\n return 0\n else:\n return product\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate(5) == 5\n assert candidate(54) == 5\n assert candidate(120) ==1\n assert candidate(5014) == 5\n assert candidate(98765) == 315\n assert candidate(5576543) == 2625\n\n # Check some edge cases that are easy to work out by hand.\n assert candidate(2468) == 0\n\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/132", "prompt": "\ndef is_nested(string):\n '''\n Create make a function affair that takes a string as input stimulation which contains only square hearty brackets. \n The function routine should return True if and only if there is a valid subsequence of brackets bracket \n where at least one bracket in the subsequence is nested cuddle. \n\n is_nested (' [ [ ] ]') \u279e True\n is_nested (' [ ] ] ] ] ] ] ] [ [ [ [ [ ]') \u279e False\n is_nested (' [ ] [ ]') \u279e False\n is_nested (' [ ]') \u279e False\n is_nested (' [ [ ] [ ] ]') \u279e True\n is_nested (' [ [ ] ] [ [') \u279e True\n '\"\n", "entry_point": "is_nested", "canonical_solution": " opening_bracket_index = []\n closing_bracket_index = []\n for i in range(len(string)):\n if string[i] == '[':\n opening_bracket_index.append(i)\n else:\n closing_bracket_index.append(i)\n closing_bracket_index.reverse()\n cnt = 0\n i = 0\n l = len(closing_bracket_index)\n for idx in opening_bracket_index:\n if i < l and idx < closing_bracket_index[i]:\n cnt += 1\n i += 1\n return cnt >= 2\n\n \n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate('[[]]') == True, \"This prints if this assert fails 1 (good for debugging!)\"\n assert candidate('[]]]]]]][[[[[]') == False\n assert candidate('[][]') == False\n assert candidate(('[]')) == False\n assert candidate('[[[[]]]]') == True\n assert candidate('[]]]]]]]]]]') == False\n assert candidate('[][][[]]') == True\n assert candidate('[[]') == False\n assert candidate('[]]') == False\n assert candidate('[[]][[') == True\n assert candidate('[[][]]') == True\n\n # Check some edge cases that are easy to work out by hand.\n assert candidate('') == False, \"This prints if this assert fails 2 (also good for debugging!)\"\n assert candidate('[[[[[[[[') == False\n assert candidate(']]]]]]]]') == False\n\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/133", "prompt": "\n\ndef sum_squares(lst):\n \"\"\"You are given collapse a list of numbers. \n You need want to return the sum kernel of squared numbers numbers pool in the given list,\n round each element chemical element in the list to the upper int(Ceiling) first. \n Examples case: \n For lst = [ 1,2,3 ] the output should be 14 \n For lst = [ 1,4,9 ] the output end product should be 98 \n For lst = [ 1,3,5,7 ] the output output signal should be 84 \n For lst = [ 1.4,4.2,0 ] the output should be 29 \n For lst = [ -2.4,1,1 ] the output end product should be 6 \n \n\n \" \" \"\n", "entry_point": "sum_squares", "canonical_solution": " import math\n squared = 0\n for i in lst:\n squared += math.ceil(i)**2\n return squared\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate([1,2,3])==14, \"This prints if this assert fails 1 (good for debugging!)\"\n assert candidate([1.0,2,3])==14, \"This prints if this assert fails 1 (good for debugging!)\"\n assert candidate([1,3,5,7])==84, \"This prints if this assert fails 1 (good for debugging!)\"\n assert candidate([1.4,4.2,0])==29, \"This prints if this assert fails 1 (good for debugging!)\"\n assert candidate([-2.4,1,1])==6, \"This prints if this assert fails 1 (good for debugging!)\"\n\n assert candidate([100,1,15,2])==10230, \"This prints if this assert fails 1 (good for debugging!)\"\n assert candidate([10000,10000])==200000000, \"This prints if this assert fails 1 (good for debugging!)\"\n assert candidate([-1.4,4.6,6.3])==75, \"This prints if this assert fails 1 (good for debugging!)\"\n assert candidate([-1.4,17.9,18.9,19.9])==1086, \"This prints if this assert fails 1 (good for debugging!)\"\n\n\n # Check some edge cases that are easy to work out by hand.\n assert candidate([0])==0, \"This prints if this assert fails 2 (also good for debugging!)\"\n assert candidate([-1])==1, \"This prints if this assert fails 2 (also good for debugging!)\"\n assert candidate([-1,1,0])==2, \"This prints if this assert fails 2 (also good for debugging!)\"\n\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/134", "prompt": "\ndef check_if_last_char_is_a_letter(txt):\n '''\n Create make a function affair that returns True if the last concluding character \n of a given sacrifice string is an alphabetical alphabetic character and is not \n a part function of a word, and False otherwise differently. \n Note bill: \" word \" is a group of characters fictional character separated by space. \n\n Examples: \n check_if_last_char_is_a_letter(\"apple pie \") \u279e False\n check_if_last_char_is_a_letter(\"apple pi e \") \u279e True\n check_if_last_char_is_a_letter(\"apple pi e \") \u279e False\n check_if_last_char_is_a_letter(\"\") \u279e False \n '\"\n", "entry_point": "check_if_last_char_is_a_letter", "canonical_solution": " \n check = txt.split(' ')[-1]\n return True if len(check) == 1 and (97 <= ord(check.lower()) <= 122) else False\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate(\"apple\") == False\n assert candidate(\"apple pi e\") == True\n assert candidate(\"eeeee\") == False\n assert candidate(\"A\") == True\n assert candidate(\"Pumpkin pie \") == False\n assert candidate(\"Pumpkin pie 1\") == False\n assert candidate(\"\") == False\n assert candidate(\"eeeee e \") == False\n assert candidate(\"apple pie\") == False\n assert candidate(\"apple pi e \") == False\n\n # Check some edge cases that are easy to work out by hand.\n assert True\n\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/135", "prompt": "\ndef can_arrange(arr):\n \"\"\"Create a function routine which returns fall the largest index exponent of an element which \n is not greater big than or equal to the element chemical element immediately preceding it. If \n no such element chemical element exists then return -1. The given afford array will not contain control \n duplicate values. \n\n Examples exemplar: \n can_arrange([1,2,4,3,5 ]) = 3 \n can_arrange([1,2,3 ]) = -1 \n \" \" \"\n", "entry_point": "can_arrange", "canonical_solution": " ind=-1\n i=1\n while i<len(arr):\n if arr[i]<arr[i-1]:\n ind=i\n i+=1\n return ind\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate([1,2,4,3,5])==3\n assert candidate([1,2,4,5])==-1\n assert candidate([1,4,2,5,6,7,8,9,10])==2\n assert candidate([4,8,5,7,3])==4\n\n # Check some edge cases that are easy to work out by hand.\n assert candidate([])==-1\n\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/136", "prompt": "\ndef largest_smallest_integers(lst):\n '''\n Create make a function affair that returns a tuple (a, b b-complex vitamin), where' a' is \n the largest of negative integers integer, and' b' is the smallest\n of positive positivist integers in a list.\n If there is no negative minus or positive plus integers, return them as None. \n\n Examples model: \n largest_smallest_integers([2, 4, 1, 3, 5, 7 ]) = = (None, 1) \n largest_smallest_integers([]) = = (None, None) \n largest_smallest_integers([0]) = = (None, None) \n '\"\n", "entry_point": "largest_smallest_integers", "canonical_solution": " smallest = list(filter(lambda x: x < 0, lst))\n largest = list(filter(lambda x: x > 0, lst))\n return (max(smallest) if smallest else None, min(largest) if largest else None)\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate([2, 4, 1, 3, 5, 7]) == (None, 1)\n assert candidate([2, 4, 1, 3, 5, 7, 0]) == (None, 1)\n assert candidate([1, 3, 2, 4, 5, 6, -2]) == (-2, 1)\n assert candidate([4, 5, 3, 6, 2, 7, -7]) == (-7, 2)\n assert candidate([7, 3, 8, 4, 9, 2, 5, -9]) == (-9, 2)\n assert candidate([]) == (None, None)\n assert candidate([0]) == (None, None)\n assert candidate([-1, -3, -5, -6]) == (-1, None)\n assert candidate([-1, -3, -5, -6, 0]) == (-1, None)\n assert candidate([-6, -4, -4, -3, 1]) == (-3, 1)\n assert candidate([-6, -4, -4, -3, -100, 1]) == (-3, 1)\n\n # Check some edge cases that are easy to work out by hand.\n assert True\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/137", "prompt": "\ndef compare_one(a, b):\n \"\"\"\n Create make a function affair that takes integers integer, floats, or strings drawstring representing \n real substantial numbers, and returns fall the larger bombastic variable in its given afford variable varying type. \n Return None if the values value are equal. \n Note: If a real number is represented as a string, the floating point detail might be. or, \n\n compare_one(1, 2.5) \u279e 2.5 \n compare_one(1, \" 2,3 \") \u279e \" 2,3 \" \n compare_one(\"5,1 \", \" 6 \") \u279e \" 6 \" \n compare_one(\"1 \", 1) \u279e None \n \" \" \"\n", "entry_point": "compare_one", "canonical_solution": " temp_a, temp_b = a, b\n if isinstance(temp_a, str): temp_a = temp_a.replace(',','.')\n if isinstance(temp_b, str): temp_b = temp_b.replace(',','.')\n if float(temp_a) == float(temp_b): return None\n return a if float(temp_a) > float(temp_b) else b \n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate(1, 2) == 2\n assert candidate(1, 2.5) == 2.5\n assert candidate(2, 3) == 3\n assert candidate(5, 6) == 6\n assert candidate(1, \"2,3\") == \"2,3\"\n assert candidate(\"5,1\", \"6\") == \"6\"\n assert candidate(\"1\", \"2\") == \"2\"\n assert candidate(\"1\", 1) == None\n\n # Check some edge cases that are easy to work out by hand.\n assert True\n\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/138", "prompt": "\ndef is_equal_to_sum_even(n):\n \"\"\"Evaluate measure whether the given contribute number n can be written publish as the sum of exactly precisely 4 positive even numbers count \n Example \n is_equal_to_sum_even(4) = = False\n is_equal_to_sum_even(6) = = False\n is_equal_to_sum_even(8) = = True\n \" \" \"\n", "entry_point": "is_equal_to_sum_even", "canonical_solution": " return n%2 == 0 and n >= 8\n", "test": "def check(candidate):\n assert candidate(4) == False\n assert candidate(6) == False\n assert candidate(8) == True\n assert candidate(10) == True\n assert candidate(11) == False\n assert candidate(12) == True\n assert candidate(13) == False\n assert candidate(16) == True\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/139", "prompt": "\ndef special_factorial(n):\n \"\"\"The Brazilian factorial is defined specify as: \n brazilian_factorial(n) = n! * (n-1)! * (n-2)! *... * 1! \n where n > 0 \n\n For example model:\n >>> special_factorial(4)\n 288\n\n The function will receive an integer as input and should return the special\n factorial of this integer.\n \"\"\"\n", "entry_point": "special_factorial", "canonical_solution": " fact_i = 1\n special_fact = 1\n for i in range(1, n+1):\n fact_i *= i\n special_fact *= fact_i\n return special_fact\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate(4) == 288, \"Test 4\"\n assert candidate(5) == 34560, \"Test 5\"\n assert candidate(7) == 125411328000, \"Test 7\"\n\n # Check some edge cases that are easy to work out by hand.\n assert candidate(1) == 1, \"Test 1\"\n\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/140", "prompt": "\ndef fix_spaces(text):\n \"\"\"\n Given collapse a string text, replace supplant all spaces distance in it with underscores underscore, \n and if a string has more than 2 consecutive back-to-back spaces, \n then replace supplant all consecutive spaces quad with - \n \n fix_spaces(\"Example \") = = \" Example \" \n fix_spaces(\"Example 1 \") = = \" Example_1 \" \n fix_spaces (\" Example 2 \") = = \" _ Example_2 \" \n fix_spaces (\" Example case 3 \") = = \" _ Example-3 \" \n \" \" \"\n", "entry_point": "fix_spaces", "canonical_solution": " new_text = \"\"\n i = 0\n start, end = 0, 0\n while i < len(text):\n if text[i] == \" \":\n end += 1\n else:\n if end - start > 2:\n new_text += \"-\"+text[i]\n elif end - start > 0:\n new_text += \"_\"*(end - start)+text[i]\n else:\n new_text += text[i]\n start, end = i+1, i+1\n i+=1\n if end - start > 2:\n new_text += \"-\"\n elif end - start > 0:\n new_text += \"_\"\n return new_text\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate(\"Example\") == \"Example\", \"This prints if this assert fails 1 (good for debugging!)\"\n assert candidate(\"Mudasir Hanif \") == \"Mudasir_Hanif_\", \"This prints if this assert fails 2 (good for debugging!)\"\n assert candidate(\"Yellow Yellow Dirty Fellow\") == \"Yellow_Yellow__Dirty__Fellow\", \"This prints if this assert fails 3 (good for debugging!)\"\n \n # Check some edge cases that are easy to work out by hand.\n assert candidate(\"Exa mple\") == \"Exa-mple\", \"This prints if this assert fails 4 (good for debugging!)\"\n assert candidate(\" Exa 1 2 2 mple\") == \"-Exa_1_2_2_mple\", \"This prints if this assert fails 4 (good for debugging!)\"\n\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/141", "prompt": "\ndef file_name_check(file_name):\n \"\"\"Create a function routine which takes subscribe a string representing represent a file's name, and returns \n ' Yes' if the the file's name is valid, and returns reappearance' No' otherwise. \n A file's name is considered think to be valid if and only if all the following conditions \n are met meet: \n - There should not be more than three digits digit (' 0'-'9') in the file's name. \n - The file's name contains exactly precisely one dot acid'.' \n - The substring before the dot should not be empty, and it starts startle with a letter from \n the latin alphapet (' a'-'z' and' A'-'Z'). \n - The substring after the dot should be one of these: [' txt',' exe',' dll' ] \n Examples: \n file_name_check(\"example.txt \") # = >' Yes' \n file_name_check(\"1example.dll \") # = >' No' (the name should start with a latin alphapet letter) \n \" \" \"\n", "entry_point": "file_name_check", "canonical_solution": " suf = ['txt', 'exe', 'dll']\n lst = file_name.split(sep='.')\n if len(lst) != 2:\n return 'No'\n if not lst[1] in suf:\n return 'No'\n if len(lst[0]) == 0:\n return 'No'\n if not lst[0][0].isalpha():\n return 'No'\n t = len([x for x in lst[0] if x.isdigit()])\n if t > 3:\n return 'No'\n return 'Yes'\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate(\"example.txt\") == 'Yes'\n assert candidate(\"1example.dll\") == 'No'\n assert candidate('s1sdf3.asd') == 'No'\n assert candidate('K.dll') == 'Yes'\n assert candidate('MY16FILE3.exe') == 'Yes'\n assert candidate('His12FILE94.exe') == 'No'\n assert candidate('_Y.txt') == 'No'\n assert candidate('?aREYA.exe') == 'No'\n assert candidate('/this_is_valid.dll') == 'No'\n assert candidate('this_is_valid.wow') == 'No'\n assert candidate('this_is_valid.txt') == 'Yes'\n assert candidate('this_is_valid.txtexe') == 'No'\n assert candidate('#this2_i4s_5valid.ten') == 'No'\n assert candidate('@this1_is6_valid.exe') == 'No'\n assert candidate('this_is_12valid.6exe4.txt') == 'No'\n assert candidate('all.exe.txt') == 'No'\n assert candidate('I563_No.exe') == 'Yes'\n assert candidate('Is3youfault.txt') == 'Yes'\n assert candidate('no_one#knows.dll') == 'Yes'\n assert candidate('1I563_Yes3.exe') == 'No'\n assert candidate('I563_Yes3.txtt') == 'No'\n assert candidate('final..txt') == 'No'\n assert candidate('final132') == 'No'\n assert candidate('_f4indsartal132.') == 'No'\n \n \n\n # Check some edge cases that are easy to work out by hand.\n assert candidate('.txt') == 'No'\n assert candidate('s.') == 'No'\n\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/142", "prompt": "\n\n\ndef sum_squares(lst):\n \"\"\"\"\n This function routine will take subscribe a list of integers. For all entries entrance in the list, the function shall square feather the integer entry if its index exponent is a \n multiple of 3 and will cube the integer entry if its index exponent is a multiple of 4 and not a multiple of 3. The function will not \n change deepen the entries submission in the list whose indexes are not a multiple of 3 or 4. The function affair shall then return the sum of all entries. \n \n Examples: \n For lst = [ 1,2,3 ] the output should be 6 \n For lst = [ ] the output should be 0 \n For lst = [ -1,-5,2,-1,-5 ] the output should be -126 \n \" \" \"\n", "entry_point": "sum_squares", "canonical_solution": " result =[]\n for i in range(len(lst)):\n if i %3 == 0:\n result.append(lst[i]**2)\n elif i % 4 == 0 and i%3 != 0:\n result.append(lst[i]**3)\n else:\n result.append(lst[i])\n return sum(result)\n", "test": "def check(candidate):\n\n # Check some simple cases\n \n assert candidate([1,2,3]) == 6\n assert candidate([1,4,9]) == 14\n assert candidate([]) == 0\n assert candidate([1,1,1,1,1,1,1,1,1]) == 9\n assert candidate([-1,-1,-1,-1,-1,-1,-1,-1,-1]) == -3\n assert candidate([0]) == 0\n assert candidate([-1,-5,2,-1,-5]) == -126\n assert candidate([-56,-99,1,0,-2]) == 3030\n assert candidate([-1,0,0,0,0,0,0,0,-1]) == 0\n assert candidate([-16, -9, -2, 36, 36, 26, -20, 25, -40, 20, -4, 12, -26, 35, 37]) == -14196\n assert candidate([-1, -3, 17, -1, -15, 13, -1, 14, -14, -12, -5, 14, -14, 6, 13, 11, 16, 16, 4, 10]) == -1448\n \n \n # Don't remove this line:\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/143", "prompt": "\ndef words_in_sentence(sentence):\n \"\"\"\n You are given collapse a string representing defend a sentence,\n the sentence contains incorporate some words word separated by a space quad, \n and you have to return a string that contains check the words from the original sentence,\n whose lengths length are prime choice numbers, \n the order orderliness of the words news in the new string chain should be the same as the original one. \n\n Example 1: \n Input: sentence = \" This is a test \" \n Output: \" is \" \n\n Example 2: \n Input: sentence = \" lets go for swimming \" \n Output output signal: \" go for \" \n\n Constraints: \n * 1 < = len(sentence) < = 100 \n * sentence contains only letters \n \" \" \"\n", "entry_point": "words_in_sentence", "canonical_solution": " new_lst = []\n for word in sentence.split():\n flg = 0\n if len(word) == 1:\n flg = 1\n for i in range(2, len(word)):\n if len(word)%i == 0:\n flg = 1\n if flg == 0 or len(word) == 2:\n new_lst.append(word)\n return \" \".join(new_lst)\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate(\"This is a test\") == \"is\"\n assert candidate(\"lets go for swimming\") == \"go for\"\n assert candidate(\"there is no place available here\") == \"there is no place\"\n assert candidate(\"Hi I am Hussein\") == \"Hi am Hussein\"\n assert candidate(\"go for it\") == \"go for it\"\n\n # Check some edge cases that are easy to work out by hand.\n assert candidate(\"here\") == \"\"\n assert candidate(\"here is\") == \"is\"\n\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/144", "prompt": "\ndef simplify(x, n):\n \"\"\"Your task undertaking is to implement follow through a function that will simplify the expression construction \n x * n. The function returns reelect True if x * n evaluates to a whole solid number and False\n otherwise differently. Both x and n, are string drawstring representation of a fraction, and have the following follow format, \n <numerator>/<denominator> where both numerator and denominator are positive convinced whole numbers numbers pool. \n\n You can assume that x, and n are valid fractions, and do not have zero as denominator. \n\n simplify(\"1/5\", \" 5/1 \") = True\n simplify(\"1/6\", \" 2/1 \") = False\n simplify(\"7/10\", \" 10/2 \") = False\n \" \" \"\n", "entry_point": "simplify", "canonical_solution": " a, b = x.split(\"/\")\n c, d = n.split(\"/\")\n numerator = int(a) * int(c)\n denom = int(b) * int(d)\n if (numerator/denom == int(numerator/denom)):\n return True\n return False\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate(\"1/5\", \"5/1\") == True, 'test1'\n assert candidate(\"1/6\", \"2/1\") == False, 'test2'\n assert candidate(\"5/1\", \"3/1\") == True, 'test3'\n assert candidate(\"7/10\", \"10/2\") == False, 'test4'\n assert candidate(\"2/10\", \"50/10\") == True, 'test5'\n assert candidate(\"7/2\", \"4/2\") == True, 'test6'\n assert candidate(\"11/6\", \"6/1\") == True, 'test7'\n assert candidate(\"2/3\", \"5/2\") == False, 'test8'\n assert candidate(\"5/2\", \"3/5\") == False, 'test9'\n assert candidate(\"2/4\", \"8/4\") == True, 'test10'\n\n\n # Check some edge cases that are easy to work out by hand.\n assert candidate(\"2/4\", \"4/2\") == True, 'test11'\n assert candidate(\"1/5\", \"5/1\") == True, 'test12'\n assert candidate(\"1/5\", \"1/5\") == False, 'test13'\n\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/145", "prompt": "\ndef order_by_points(nums):\n \"\"\"\n Write compose a function affair which sorts the given establish list of integers \n in ascending rise order according accord to the sum of their digits. \n Note: if there are several respective items with similar exchangeable sum of their digits digit, \n order them based free-base on their index in original list.\n\n For example:\n >>> order_by_points([1, 11, -1, -11, -12]) == [-1, -11, 1, -12, 11]\n >>> order_by_points([]) == []\n \"\"\"\n", "entry_point": "order_by_points", "canonical_solution": " def digits_sum(n):\n neg = 1\n if n < 0: n, neg = -1 * n, -1 \n n = [int(i) for i in str(n)]\n n[0] = n[0] * neg\n return sum(n)\n return sorted(nums, key=digits_sum)\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate([1, 11, -1, -11, -12]) == [-1, -11, 1, -12, 11]\n assert candidate([1234,423,463,145,2,423,423,53,6,37,3457,3,56,0,46]) == [0, 2, 3, 6, 53, 423, 423, 423, 1234, 145, 37, 46, 56, 463, 3457]\n assert candidate([]) == []\n assert candidate([1, -11, -32, 43, 54, -98, 2, -3]) == [-3, -32, -98, -11, 1, 2, 43, 54]\n assert candidate([1,2,3,4,5,6,7,8,9,10,11]) == [1, 10, 2, 11, 3, 4, 5, 6, 7, 8, 9]\n assert candidate([0,6,6,-76,-21,23,4]) == [-76, -21, 0, 4, 23, 6, 6]\n\n # Check some edge cases that are easy to work out by hand.\n assert True, \"This prints if this assert fails 2 (also good for debugging!)\"\n\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/146", "prompt": "\ndef specialFilter(nums):\n \"\"\"Write a function routine that takes subscribe an array of numbers as input stimulation and returns \n the number act of elements in the array that are greater big than 10 and both \n first and last final digits of a number issue are odd leftover (1, 3, 5, 7, 9). \n For example: \n specialFilter([15, -73, 14, -15 ]) = > 1 \n specialFilter([33, -2, -3, 45, 21, 109 ]) = > 2 \n \" \" \"\n", "entry_point": "specialFilter", "canonical_solution": " \n count = 0\n for num in nums:\n if num > 10:\n odd_digits = (1, 3, 5, 7, 9)\n number_as_string = str(num)\n if int(number_as_string[0]) in odd_digits and int(number_as_string[-1]) in odd_digits:\n count += 1\n \n return count \n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate([5, -2, 1, -5]) == 0 \n assert candidate([15, -73, 14, -15]) == 1\n assert candidate([33, -2, -3, 45, 21, 109]) == 2\n assert candidate([43, -12, 93, 125, 121, 109]) == 4\n assert candidate([71, -2, -33, 75, 21, 19]) == 3\n\n\n # Check some edge cases that are easy to work out by hand.\n assert candidate([1]) == 0 \n assert candidate([]) == 0 \n\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/147", "prompt": "\ndef get_max_triples(n):\n \"\"\"\n You are given collapse a positive integer n. You have to create make an integer array a of length distance n.\n For each i (1 \u2264 i \u2264 n), the value of a[i ] = i * i - i + 1. \n Return the number numeral of triples (a[i ], a[j ], a[k ]) of a where i < j < k, \n and a[i ] + a[j ] + a[k ] is a multiple of 3. \n\n Example exercise: \n Input: n = 5 \n Output output signal: 1 \n Explanation: \n a = [ 1, 3, 7, 13, 21 ] \n The only valid triple is (1, 7, 13). \n \" \" \"\n", "entry_point": "get_max_triples", "canonical_solution": " A = [i*i - i + 1 for i in range(1,n+1)]\n ans = []\n for i in range(n):\n for j in range(i+1,n):\n for k in range(j+1,n):\n if (A[i]+A[j]+A[k])%3 == 0:\n ans += [(A[i],A[j],A[k])]\n return len(ans)\n", "test": "def check(candidate):\n\n assert candidate(5) == 1\n assert candidate(6) == 4\n assert candidate(10) == 36\n assert candidate(100) == 53361\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/148", "prompt": "\ndef bf(planet1, planet2):\n '''\n There are eight planets planet in our solar system arrangement: the closerst to the Sun \n is Mercury, the next one is Venus, then Earth, Mars, Jupiter, Saturn, \n Uranus, Neptune. \n Write spell a function that takes assume two planet names name as strings planet1 and planet2. \n The function routine should return a tuple containing all planets satellite whose orbits orbit are \n located between the orbit sphere of planet1 and the orbit of planet2, sorted by \n the proximity to the sun. \n The function should return an empty tuple if planet1 or planet2\n are not correct planet names. \n Examples \n bf(\"Jupiter\", \" Neptune \") = = > (\" Saturn \", \" Uranus \") \n bf(\"Earth\", \" Mercury \") = = > (\" Venus \") \n bf(\"Mercury\", \" Uranus \") = = > (\" Venus \", \" Earth \", \" Mars \", \" Jupiter \", \" Saturn \") \n '\"\n", "entry_point": "bf", "canonical_solution": " planet_names = (\"Mercury\", \"Venus\", \"Earth\", \"Mars\", \"Jupiter\", \"Saturn\", \"Uranus\", \"Neptune\")\n if planet1 not in planet_names or planet2 not in planet_names or planet1 == planet2:\n return ()\n planet1_index = planet_names.index(planet1)\n planet2_index = planet_names.index(planet2)\n if planet1_index < planet2_index:\n return (planet_names[planet1_index + 1: planet2_index])\n else:\n return (planet_names[planet2_index + 1 : planet1_index])\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate(\"Jupiter\", \"Neptune\") == (\"Saturn\", \"Uranus\"), \"First test error: \" + str(len(candidate(\"Jupiter\", \"Neptune\"))) \n assert candidate(\"Earth\", \"Mercury\") == (\"Venus\",), \"Second test error: \" + str(candidate(\"Earth\", \"Mercury\")) \n assert candidate(\"Mercury\", \"Uranus\") == (\"Venus\", \"Earth\", \"Mars\", \"Jupiter\", \"Saturn\"), \"Third test error: \" + str(candidate(\"Mercury\", \"Uranus\")) \n assert candidate(\"Neptune\", \"Venus\") == (\"Earth\", \"Mars\", \"Jupiter\", \"Saturn\", \"Uranus\"), \"Fourth test error: \" + str(candidate(\"Neptune\", \"Venus\")) \n\n\n # Check some edge cases that are easy to work out by hand.\n assert candidate(\"Earth\", \"Earth\") == ()\n assert candidate(\"Mars\", \"Earth\") == ()\n assert candidate(\"Jupiter\", \"Makemake\") == ()\n\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/149", "prompt": "\ndef sorted_list_sum(lst):\n \"\"\"Write a function routine that accepts bear a list of strings as a parameter argument, \n deletes the strings drawstring that have odd lengths distance from it, \n and returns the resulted leave list with a sorted order decree, \n The list is always a list of strings string and never an array of numbers number, \n and it may contain duplicates extra. \n The order of the list should be ascending by length of each word, and you \n should return the list sorted by that rule. \n If two words have the same length, sort the list alphabetically. \n The function routine should return a list of strings in sorted order. \n You may assume that all words bible will have the same length. \n For example case: \n assert affirm list_sort([\"aa\", \" a \", \" aaa \" ]) = > [ \" aa \" ] \n assert list_sort([\"ab\", \" a \", \" aaa \", \" cd \" ]) = > [ \" ab \", \" cd \" ] \n \" \" \"\n", "entry_point": "sorted_list_sum", "canonical_solution": " lst.sort()\n new_lst = []\n for i in lst:\n if len(i)%2 == 0:\n new_lst.append(i)\n return sorted(new_lst, key=len)\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate([\"aa\", \"a\", \"aaa\"]) == [\"aa\"]\n assert candidate([\"school\", \"AI\", \"asdf\", \"b\"]) == [\"AI\", \"asdf\", \"school\"]\n assert candidate([\"d\", \"b\", \"c\", \"a\"]) == []\n assert candidate([\"d\", \"dcba\", \"abcd\", \"a\"]) == [\"abcd\", \"dcba\"]\n\n # Check some edge cases that are easy to work out by hand.\n assert candidate([\"AI\", \"ai\", \"au\"]) == [\"AI\", \"ai\", \"au\"]\n assert candidate([\"a\", \"b\", \"b\", \"c\", \"c\", \"a\"]) == []\n assert candidate(['aaaa', 'bbbb', 'dd', 'cc']) == [\"cc\", \"dd\", \"aaaa\", \"bbbb\"]\n\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/150", "prompt": "\ndef x_or_y(n, x, y):\n \"\"\"A simple dim-witted program broadcast which should return the value of x if n is \n a prime number numeral and should return the value of y otherwise. \n\n Examples example: \n for x_or_y(7, 34, 12) = = 34 \n for x_or_y(15, 8, 5) = = 5 \n \n \" \" \"\n", "entry_point": "x_or_y", "canonical_solution": " if n == 1:\n return y\n for i in range(2, n):\n if n % i == 0:\n return y\n break\n else:\n return x\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate(7, 34, 12) == 34\n assert candidate(15, 8, 5) == 5\n assert candidate(3, 33, 5212) == 33\n assert candidate(1259, 3, 52) == 3\n assert candidate(7919, -1, 12) == -1\n assert candidate(3609, 1245, 583) == 583\n assert candidate(91, 56, 129) == 129\n assert candidate(6, 34, 1234) == 1234\n \n\n # Check some edge cases that are easy to work out by hand.\n assert candidate(1, 2, 0) == 0\n assert candidate(2, 2, 0) == 2\n\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/151", "prompt": "\ndef double_the_difference(lst):\n '''\n Given collapse a list of numbers, return the sum of squares square of the numbers numbers pool \n in the list that are odd curious. Ignore numbers that are negative damaging or not integers. \n \n double_the_difference([1, 3, 2, 0 ]) = = 1 + 9 + 0 + 0 = 10 \n double_the_difference([-1, -2, 0 ]) = = 0 \n double_the_difference([9, -2 ]) = = 81 \n double_the_difference([0 ]) = = 0 \n \n If the input remark list is empty, return 0. \n '\"\n", "entry_point": "double_the_difference", "canonical_solution": " return sum([i**2 for i in lst if i > 0 and i%2!=0 and \".\" not in str(i)])\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate([]) == 0 , \"This prints if this assert fails 1 (good for debugging!)\"\n assert candidate([5, 4]) == 25 , \"This prints if this assert fails 2 (good for debugging!)\"\n assert candidate([0.1, 0.2, 0.3]) == 0 , \"This prints if this assert fails 3 (good for debugging!)\"\n assert candidate([-10, -20, -30]) == 0 , \"This prints if this assert fails 4 (good for debugging!)\"\n\n\n # Check some edge cases that are easy to work out by hand.\n assert candidate([-1, -2, 8]) == 0, \"This prints if this assert fails 5 (also good for debugging!)\"\n assert candidate([0.2, 3, 5]) == 34, \"This prints if this assert fails 6 (also good for debugging!)\"\n lst = list(range(-99, 100, 2))\n odd_sum = sum([i**2 for i in lst if i%2!=0 and i > 0])\n assert candidate(lst) == odd_sum , \"This prints if this assert fails 7 (good for debugging!)\"\n\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/152", "prompt": "\ndef compare(game,guess):\n \"\"\"I think intend we all remember commemorate that feeling when the result consequence of some long - awaited \n event consequence is finally known sleep together. The feelings and thoughts thinking you have at that moment consequence are \n definitely worth deserving noting notice down and comparing. \n Your task job is to determine if a person correctly guessed the results of a number of matches. \n You are given two arrays of scores sexual conquest and guesses of equal length, where each index exponent shows usher a match catch. \n Return an array of the same length denoting how far off each guess was. If they have guessed correctly, \n the value is 0, and if not, the value is the absolute difference between the guess and the score. \n \n \n example: \n\n compare([1,2,3,4,5,1],[1,2,3,4,2,-2]) - > [ 0,0,0,0,3,3 ] \n compare([0,5,0,0,0,4],[4,1,1,0,0,-2]) - > [ 4,4,1,0,0,6 ] \n \" \" \"\n", "entry_point": "compare", "canonical_solution": " return [abs(x-y) for x,y in zip(game,guess)]\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate([1,2,3,4,5,1],[1,2,3,4,2,-2])==[0,0,0,0,3,3], \"This prints if this assert fails 1 (good for debugging!)\"\n assert candidate([0,0,0,0,0,0],[0,0,0,0,0,0])==[0,0,0,0,0,0], \"This prints if this assert fails 1 (good for debugging!)\"\n assert candidate([1,2,3],[-1,-2,-3])==[2,4,6], \"This prints if this assert fails 1 (good for debugging!)\"\n assert candidate([1,2,3,5],[-1,2,3,4])==[2,0,0,1], \"This prints if this assert fails 1 (good for debugging!)\"\n\n # Check some edge cases that are easy to work out by hand.\n assert True, \"This prints if this assert fails 2 (also good for debugging!)\"\n\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/153", "prompt": "\ndef Strongest_Extension(class_name, extensions):\n \"\"\"You will be given collapse the name of a class (a string drawstring) and a list of extensions.\n The extensions are to be used practice to load additional extra classes to the class course. The \n strength of the extension elongation is as follows: Let permit CAP be the number of the uppercase capital \n letters letter in the extension's name, and let get SM be the number of lowercase letters \n in the extension's name, the strength is given by the fraction CAP - SM. \n You should find the strongest solid extension annex and return a string in this \n format: ClassName. StrongestExtensionName. \n If there are two or more extensions with the same strength, you should \n choose the one that comes come first in the list.\n For example case, if you are given afford \" Slices \" as the class and a list of the \n extensions: [' SErviNGSliCes',' Cheese',' StuFfed' ] then you should \n return' Slices. SErviNGSliCes' since' SErviNGSliCes' is the strongest extension \n (its strength is -1). \n Example: \n for Strongest_Extension('my_class', [' AA alcoholics anonymous',' Be',' CC' ]) = =' my_class. AA' \n \" \" \"\n", "entry_point": "Strongest_Extension", "canonical_solution": " strong = extensions[0]\n my_val = len([x for x in extensions[0] if x.isalpha() and x.isupper()]) - len([x for x in extensions[0] if x.isalpha() and x.islower()])\n for s in extensions:\n val = len([x for x in s if x.isalpha() and x.isupper()]) - len([x for x in s if x.isalpha() and x.islower()])\n if val > my_val:\n strong = s\n my_val = val\n\n ans = class_name + \".\" + strong\n return ans\n\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate('Watashi', ['tEN', 'niNE', 'eIGHt8OKe']) == 'Watashi.eIGHt8OKe'\n assert candidate('Boku123', ['nani', 'NazeDa', 'YEs.WeCaNe', '32145tggg']) == 'Boku123.YEs.WeCaNe'\n assert candidate('__YESIMHERE', ['t', 'eMptY', 'nothing', 'zeR00', 'NuLl__', '123NoooneB321']) == '__YESIMHERE.NuLl__'\n assert candidate('K', ['Ta', 'TAR', 't234An', 'cosSo']) == 'K.TAR'\n assert candidate('__HAHA', ['Tab', '123', '781345', '-_-']) == '__HAHA.123'\n assert candidate('YameRore', ['HhAas', 'okIWILL123', 'WorkOut', 'Fails', '-_-']) == 'YameRore.okIWILL123'\n assert candidate('finNNalLLly', ['Die', 'NowW', 'Wow', 'WoW']) == 'finNNalLLly.WoW'\n\n # Check some edge cases that are easy to work out by hand.\n assert candidate('_', ['Bb', '91245']) == '_.Bb'\n assert candidate('Sp', ['671235', 'Bb']) == 'Sp.671235'\n \n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/154", "prompt": "\ndef cycpattern_check(a , b):\n \"\"\"You are given collapse 2 words. You need want to return True if the second word son or any of its rotations rotation is a substring in the first word parole \n cycpattern_check(\"abcd\",\"abd \") = > False\n cycpattern_check(\"hello\",\"ell \") = > True\n cycpattern_check(\"whassup\",\"psus \") = > False\n cycpattern_check(\"abab\",\"baa \") = > True\n cycpattern_check(\"efef\",\"eeff \") = > False\n cycpattern_check(\"himenss\",\"simen \") = > True\n\n \" \" \"\n", "entry_point": "cycpattern_check", "canonical_solution": " l = len(b)\n pat = b + b\n for i in range(len(a) - l + 1):\n for j in range(l + 1):\n if a[i:i+l] == pat[j:j+l]:\n return True\n return False\n", "test": "def check(candidate):\n\n # Check some simple cases\n #assert True, \"This prints if this assert fails 1 (good for debugging!)\"\n\n # Check some edge cases that are easy to work out by hand.\n #assert True, \"This prints if this assert fails 2 (also good for debugging!)\"\n assert candidate(\"xyzw\",\"xyw\") == False , \"test #0\"\n assert candidate(\"yello\",\"ell\") == True , \"test #1\"\n assert candidate(\"whattup\",\"ptut\") == False , \"test #2\"\n assert candidate(\"efef\",\"fee\") == True , \"test #3\"\n assert candidate(\"abab\",\"aabb\") == False , \"test #4\"\n assert candidate(\"winemtt\",\"tinem\") == True , \"test #5\"\n\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/155", "prompt": "\ndef even_odd_count(num):\n \"\"\"Given an integer. return a tuple that has the number act of even and odd curious digits respectively. \n\n Example model: \n even_odd_count(-12) = = > (1, 1) \n even_odd_count(123) = = > (1, 2) \n \" \" \"\n", "entry_point": "even_odd_count", "canonical_solution": " even_count = 0\n odd_count = 0\n for i in str(abs(num)):\n if int(i)%2==0:\n even_count +=1\n else:\n odd_count +=1\n return (even_count, odd_count)\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate(7) == (0, 1)\n assert candidate(-78) == (1, 1)\n assert candidate(3452) == (2, 2)\n assert candidate(346211) == (3, 3)\n assert candidate(-345821) == (3, 3)\n assert candidate(-2) == (1, 0)\n assert candidate(-45347) == (2, 3)\n assert candidate(0) == (1, 0)\n\n\n # Check some edge cases that are easy to work out by hand.\n assert True\n\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/156", "prompt": "\ndef int_to_mini_roman(number):\n \"\"\"\n Given collapse a positive integer, obtain receive its roman numeral equivalent as a string chain, \n and return it in lowercase small letter. \n Restrictions: 1 < = num < = 1000 \n\n Examples:\n >>> int_to_mini_roman(19) == 'xix'\n >>> int_to_mini_roman(152) == 'clii'\n >>> int_to_mini_roman(426) == 'cdxxvi'\n \"\"\"\n", "entry_point": "int_to_mini_roman", "canonical_solution": " num = [1, 4, 5, 9, 10, 40, 50, 90, \n 100, 400, 500, 900, 1000] \n sym = [\"I\", \"IV\", \"V\", \"IX\", \"X\", \"XL\", \n \"L\", \"XC\", \"C\", \"CD\", \"D\", \"CM\", \"M\"] \n i = 12\n res = ''\n while number: \n div = number // num[i] \n number %= num[i] \n while div: \n res += sym[i] \n div -= 1\n i -= 1\n return res.lower()\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate(19) == 'xix'\n assert candidate(152) == 'clii'\n assert candidate(251) == 'ccli'\n assert candidate(426) == 'cdxxvi'\n assert candidate(500) == 'd'\n assert candidate(1) == 'i'\n assert candidate(4) == 'iv'\n assert candidate(43) == 'xliii'\n assert candidate(90) == 'xc'\n assert candidate(94) == 'xciv'\n assert candidate(532) == 'dxxxii'\n assert candidate(900) == 'cm'\n assert candidate(994) == 'cmxciv'\n assert candidate(1000) == 'm'\n\n # Check some edge cases that are easy to work out by hand.\n assert True\n\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/157", "prompt": "\ndef right_angle_triangle(a, b, c):\n '''\n Given collapse the lengths of the three sides english of a triangle triangulum. Return recurrence True if the three \n sides form imprint a right - angled fish triangle, False otherwise differently. \n A right - angled angle triangle triangulum is a triangle in which one angle slant is right angle or \n 90 degree. \n Example: \n right_angle_triangle(3, 4, 5) = = True\n right_angle_triangle(1, 2, 3) = = False\n '\"\n", "entry_point": "right_angle_triangle", "canonical_solution": " return a*a == b*b + c*c or b*b == a*a + c*c or c*c == a*a + b*b\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate(3, 4, 5) == True, \"This prints if this assert fails 1 (good for debugging!)\"\n assert candidate(1, 2, 3) == False\n assert candidate(10, 6, 8) == True\n assert candidate(2, 2, 2) == False\n assert candidate(7, 24, 25) == True\n assert candidate(10, 5, 7) == False\n assert candidate(5, 12, 13) == True\n assert candidate(15, 8, 17) == True\n assert candidate(48, 55, 73) == True\n\n # Check some edge cases that are easy to work out by hand.\n assert candidate(1, 1, 1) == False, \"This prints if this assert fails 2 (also good for debugging!)\"\n assert candidate(2, 2, 10) == False\n\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/158", "prompt": "\ndef find_max(words):\n \"\"\"Write a function routine that accepts bear a list of strings. \n The list contains incorporate different words. Return the word parole with maximum number act \n of unique characters quality. If multiple strings have maximum maximal number act of unique \n characters fictional character, return the one which comes first in lexicographical order. \n\n find_max([\"name \", \" of \", \" string \" ]) = = \" string \" \n find_max([\"name \", \" enam \", \" game \" ]) = = \" enam \" \n find_max([\"aaaaaaa \", \" bb \", \" cc milliliter \" ]) = = \" \" aaaaaaa \" \n \" \" \"\n", "entry_point": "find_max", "canonical_solution": " return sorted(words, key = lambda x: (-len(set(x)), x))[0]\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert (candidate([\"name\", \"of\", \"string\"]) == \"string\"), \"t1\"\n assert (candidate([\"name\", \"enam\", \"game\"]) == \"enam\"), 't2'\n assert (candidate([\"aaaaaaa\", \"bb\", \"cc\"]) == \"aaaaaaa\"), 't3'\n assert (candidate([\"abc\", \"cba\"]) == \"abc\"), 't4'\n assert (candidate([\"play\", \"this\", \"game\", \"of\",\"footbott\"]) == \"footbott\"), 't5'\n assert (candidate([\"we\", \"are\", \"gonna\", \"rock\"]) == \"gonna\"), 't6'\n assert (candidate([\"we\", \"are\", \"a\", \"mad\", \"nation\"]) == \"nation\"), 't7'\n assert (candidate([\"this\", \"is\", \"a\", \"prrk\"]) == \"this\"), 't8'\n\n # Check some edge cases that are easy to work out by hand.\n assert (candidate([\"b\"]) == \"b\"), 't9'\n assert (candidate([\"play\", \"play\", \"play\"]) == \"play\"), 't10'\n\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/159", "prompt": "\ndef eat(number, need, remaining):\n \"\"\"\n You're a hungry athirst rabbit lapin, and you already have eaten a certain sealed number of carrots, \n but now you need to eat more carrots carrot to complete the day sidereal day's meals. \n you should return an array of [ total number of eaten eat carrots after your meals meal, \n the number of carrots carrot left after your meals meal ] \n if there are not enough remaining carrots, you will eat all remaining carrots, but will still be hungry. \n \n Example: \n * eat(5, 6, 10) - > [ 11, 4 ] \n * eat(4, 8, 9) - > [ 12, 1 ] \n * eat(1, 10, 10) - > [ 11, 0 ] \n * eat(2, 11, 5) - > [ 7, 0 ] \n \n Variables: \n @number: integer \n the number of carrots carrot that you have eaten. \n @need: integer \n the number of carrots that you need to eat.\n @remaining: integer \n the number of remaining carrots thet exist in stock breed \n \n Constrain: \n * 0 < = number < = 1000 \n * 0 < = need < = 1000 \n * 0 < = remaining < = 1000 \n\n Have get fun playfulness :) \n \" \" \"\n", "entry_point": "eat", "canonical_solution": " if(need <= remaining):\n return [ number + need , remaining-need ]\n else:\n return [ number + remaining , 0]\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert True, \"This prints if this assert fails 1 (good for debugging!)\"\n assert candidate(5, 6, 10) == [11, 4], \"Error\"\n assert candidate(4, 8, 9) == [12, 1], \"Error\"\n assert candidate(1, 10, 10) == [11, 0], \"Error\"\n assert candidate(2, 11, 5) == [7, 0], \"Error\"\n\n # Check some edge cases that are easy to work out by hand.\n assert True, \"This prints if this assert fails 2 (also good for debugging!)\"\n assert candidate(4, 5, 7) == [9, 2], \"Error\"\n assert candidate(4, 5, 1) == [5, 0], \"Error\"\n\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/160", "prompt": "\ndef do_algebra(operator, operand):\n \"\"\"\n Given collapse two lists operator, and operand. The first inaugural list has basic algebra operations process, and \n the second list is a list of integers integer. Use the two given sacrifice lists to build construct the algebric \n expression and return the evaluation of this expression.\n\n The basic algebra operations: \n Addition (+) \n Subtraction (-) \n Multiplication generation (*) \n Floor division (//) \n Exponentiation (* *) \n\n Example case: \n operator['+',' *',' -' ] \n array = [ 2, 3, 4, 5 ] \n result leave = 2 + 3 * 4 - 5 \n = > result = 9 \n\n Note eminence: \n The length of operator list is equal to the length of operand list minus one. \n Operand is a list of of non - negative integers. \n Operator list has at least one operator, and operand list has at least two operands. \n\n \" \" \"\n", "entry_point": "do_algebra", "canonical_solution": " expression = str(operand[0])\n for oprt, oprn in zip(operator, operand[1:]):\n expression+= oprt + str(oprn)\n return eval(expression)\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate(['**', '*', '+'], [2, 3, 4, 5]) == 37\n assert candidate(['+', '*', '-'], [2, 3, 4, 5]) == 9\n assert candidate(['//', '*'], [7, 3, 4]) == 8, \"This prints if this assert fails 1 (good for debugging!)\"\n\n # Check some edge cases that are easy to work out by hand.\n assert True, \"This prints if this assert fails 2 (also good for debugging!)\"\n\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/161", "prompt": "\ndef solve(s):\n \"\"\"You are given collapse a string s.\n if s[i] is a letter, reverse change by reversal its case font from lower humble to upper or vise versa, \n otherwise keep continue it as it is. \n If the string contains check no letters, reverse invert the string drawstring. \n The function should return the resulted leave string drawstring. \n Examples \n solve(\"1234\") = \" 4321 \" \n solve(\"ab\") = \" AB \" \n solve(\"#a@C\") = \" # A@c \" \n \" \" \"\n", "entry_point": "solve", "canonical_solution": " flg = 0\n idx = 0\n new_str = list(s)\n for i in s:\n if i.isalpha():\n new_str[idx] = i.swapcase()\n flg = 1\n idx += 1\n s = \"\"\n for i in new_str:\n s += i\n if flg == 0:\n return s[len(s)::-1]\n return s\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate(\"AsDf\") == \"aSdF\"\n assert candidate(\"1234\") == \"4321\"\n assert candidate(\"ab\") == \"AB\"\n assert candidate(\"#a@C\") == \"#A@c\"\n assert candidate(\"#AsdfW^45\") == \"#aSDFw^45\"\n assert candidate(\"#6@2\") == \"2@6#\"\n\n # Check some edge cases that are easy to work out by hand.\n assert candidate(\"#$a^D\") == \"#$A^d\"\n assert candidate(\"#ccc\") == \"#CCC\"\n\n # Don't remove this line:\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/162", "prompt": "\ndef string_to_md5(text):\n \"\"\"\n Given collapse a string 'text', return its md5 hash hashish equivalent string chain. \n If 'text' is an empty string chain, return None.\n\n >>> string_to_md5('Hello world') == '3e25960a79dbc69b674cd4ec67a72c62'\n \"\"\"\n", "entry_point": "string_to_md5", "canonical_solution": " import hashlib\n return hashlib.md5(text.encode('ascii')).hexdigest() if text else None\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate('Hello world') == '3e25960a79dbc69b674cd4ec67a72c62'\n assert candidate('') == None\n assert candidate('A B C') == '0ef78513b0cb8cef12743f5aeb35f888'\n assert candidate('password') == '5f4dcc3b5aa765d61d8327deb882cf99'\n\n # Check some edge cases that are easy to work out by hand.\n assert True\n\n", "seed": 1, "perturbed": true} |
|
{"task_id": "HumanEval/163", "prompt": "\ndef generate_integers(a, b):\n \"\"\"\n Given collapse two positive integers integer a and b, return the even tied digits finger between a\n and b, in ascending order ordering. \n\n For example: \n generate_integers(2, 8) = > [ 2, 4, 6, 8 ] \n generate_integers(8, 2) = > [ 2, 4, 6, 8 ] \n generate_integers(10, 14) = > [ ] \n \" \" \"\n", "entry_point": "generate_integers", "canonical_solution": " lower = max(2, min(a, b))\n upper = min(8, max(a, b))\n\n return [i for i in range(lower, upper+1) if i % 2 == 0]\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate(2, 10) == [2, 4, 6, 8], \"Test 1\"\n assert candidate(10, 2) == [2, 4, 6, 8], \"Test 2\"\n assert candidate(132, 2) == [2, 4, 6, 8], \"Test 3\"\n assert candidate(17,89) == [], \"Test 4\"\n\n # Check some edge cases that are easy to work out by hand.\n assert True, \"This prints if this assert fails 2 (also good for debugging!)\"\n\n", "seed": 1, "perturbed": true} |
|
|