Datasets:

Modalities:
Text
ArXiv:
Libraries:
Datasets
License:
perturbed_humaneval / nlaugmenter /humaneval_SynonymInsertion_s8.jsonl
RaymondLi's picture
add data
5aca006
raw
history blame
236 kB
{"task_id": "HumanEval/0", "prompt": "from typing import List\n\n\ndef has_close_elements(numbers: List[float], threshold: float) -> bool:\n \"\"\" Check determine if in given afford list of numbers, are any two numbers closer cheeseparing to each other than \n given establish threshold.\n >>> has_close_elements([1.0, 2.0, 3.0], 0.5)\n False\n >>> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3)\n True\n \"\"\"\n", "entry_point": "has_close_elements", "canonical_solution": " for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n", "test": "\n\nMETADATA = {\n 'author': 'jt',\n 'dataset': 'test'\n}\n\n\ndef check(candidate):\n assert candidate([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert candidate([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert candidate([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n assert candidate([1.0, 2.0, 5.9, 4.0, 5.0], 0.8) == False\n assert candidate([1.0, 2.0, 3.0, 4.0, 5.0, 2.0], 0.1) == True\n assert candidate([1.1, 2.2, 3.1, 4.1, 5.1], 1.0) == True\n assert candidate([1.1, 2.2, 3.1, 4.1, 5.1], 0.5) == False\n\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/1", "prompt": "from typing import List\n\n\ndef separate_paren_groups(paren_string: str) -> List[str]:\n \"\"\" Input stimulation to this function routine is a string chain containing multiple groups of nested cuddle parentheses digression. Your goal finish is to \n separate those group into separate freestanding strings chain and return the list of those. \n Separate groups are balanced (each open candid brace is properly closed shut) and not nested nest within each other \n Ignore any spaces space in the input input signal string bowed stringed instrument.\n >>> separate_paren_groups('( ) (( )) (( )( ))')\n ['()', '(())', '(()())']\n \"\"\"\n", "entry_point": "separate_paren_groups", "canonical_solution": " result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n", "test": "\n\nMETADATA = {\n 'author': 'jt',\n 'dataset': 'test'\n}\n\n\ndef check(candidate):\n assert candidate('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert candidate('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert candidate('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert candidate('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/2", "prompt": "\n\ndef truncate_number(number: float) -> float:\n \"\"\" Given grant a positive cocksure floating float point number, it can be decomposed into \n and integer part function (largest bombastic integer smaller modest than given impart number) and decimals \n (leftover part share always constantly smaller than 1). \n\n Return the decimal part share of the number.\n >>> truncate_number(3.5)\n 0.5\n \"\"\"\n", "entry_point": "truncate_number", "canonical_solution": " return number % 1.0\n", "test": "\n\nMETADATA = {\n 'author': 'jt',\n 'dataset': 'test'\n}\n\n\ndef check(candidate):\n assert candidate(3.5) == 0.5\n assert abs(candidate(1.33) - 0.33) < 1e-6\n assert abs(candidate(123.456) - 0.456) < 1e-6\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/3", "prompt": "from typing import List\n\n\ndef below_zero(operations: List[int]) -> bool:\n \"\"\" You're given grant a list of deposit depository and withdrawal operations on a bank depository financial institution account that starts with \n zero balance. Your task job is to detect if at any point distributor point the balance of account history fallls below zero, and \n at that point degree function affair should return True. Otherwise differently it should return False.\n >>> below_zero([1, 2, 3])\n False\n >>> below_zero([1, 2, -4, 5])\n True\n \"\"\"\n", "entry_point": "below_zero", "canonical_solution": " balance = 0\n\n for op in operations:\n balance += op\n if balance < 0:\n return True\n\n return False\n", "test": "\n\nMETADATA = {\n 'author': 'jt',\n 'dataset': 'test'\n}\n\n\ndef check(candidate):\n assert candidate([]) == False\n assert candidate([1, 2, -3, 1, 2, -3]) == False\n assert candidate([1, 2, -4, 5, 6]) == True\n assert candidate([1, -1, 2, -2, 5, -5, 4, -4]) == False\n assert candidate([1, -1, 2, -2, 5, -5, 4, -5]) == True\n assert candidate([1, -2, 2, -2, 5, -5, 4, -4]) == True\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/4", "prompt": "from typing import List\n\n\ndef mean_absolute_deviation(numbers: List[float]) -> float:\n \"\"\" For a given grant list of input input signal numbers, calculate Mean Absolute Deviation \n around the mean of this dataset. \n Mean Absolute Deviation is the average median absolute difference remainder between each \n element chemical element and a centerpoint (mean in this case sheath ): \n MAD = average median | x - x_mean |\n >>> mean_absolute_deviation([1.0, 2.0, 3.0, 4.0])\n 1.0\n \"\"\"\n", "entry_point": "mean_absolute_deviation", "canonical_solution": " mean = sum(numbers) / len(numbers)\n return sum(abs(x - mean) for x in numbers) / len(numbers)\n", "test": "\n\nMETADATA = {\n 'author': 'jt',\n 'dataset': 'test'\n}\n\n\ndef check(candidate):\n assert abs(candidate([1.0, 2.0, 3.0]) - 2.0/3.0) < 1e-6\n assert abs(candidate([1.0, 2.0, 3.0, 4.0]) - 1.0) < 1e-6\n assert abs(candidate([1.0, 2.0, 3.0, 4.0, 5.0]) - 6.0/5.0) < 1e-6\n\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/5", "prompt": "from typing import List\n\n\ndef intersperse(numbers: List[int], delimeter: int) -> List[int]:\n \"\"\" Insert a number numeral 'delimeter' between every two consecutive back-to-back elements element of input list `numbers'\n >>> intersperse([], 4)\n []\n >>> intersperse([1, 2, 3], 4)\n [1, 4, 2, 4, 3]\n \"\"\"\n", "entry_point": "intersperse", "canonical_solution": " if not numbers:\n return []\n\n result = []\n\n for n in numbers[:-1]:\n result.append(n)\n result.append(delimeter)\n\n result.append(numbers[-1])\n\n return result\n", "test": "\n\nMETADATA = {\n 'author': 'jt',\n 'dataset': 'test'\n}\n\n\ndef check(candidate):\n assert candidate([], 7) == []\n assert candidate([5, 6, 3, 2], 8) == [5, 8, 6, 8, 3, 8, 2]\n assert candidate([2, 2, 2], 2) == [2, 2, 2, 2, 2]\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/6", "prompt": "from typing import List\n\n\ndef parse_nested_parens(paren_string: str) -> List[int]:\n \"\"\" Input stimulation to this function routine is a string chain represented multiple groups for nested parentheses parenthesis separated discriminate by spaces outer space. \n For each of the group, output the deepest level horizontal surface of nesting of parentheses parenthesis. \n E.g. (() ()) has maximum two levels of nesting nest while (( ()) ) has three.\n\n >>> parse_nested_parens('(()()) ((())) () ((())()())')\n [2, 3, 1, 3]\n \"\"\"\n", "entry_point": "parse_nested_parens", "canonical_solution": " def parse_paren_group(s):\n depth = 0\n max_depth = 0\n for c in s:\n if c == '(':\n depth += 1\n max_depth = max(depth, max_depth)\n else:\n depth -= 1\n\n return max_depth\n\n return [parse_paren_group(x) for x in paren_string.split(' ') if x]\n", "test": "\n\nMETADATA = {\n 'author': 'jt',\n 'dataset': 'test'\n}\n\n\ndef check(candidate):\n assert candidate('(()()) ((())) () ((())()())') == [2, 3, 1, 3]\n assert candidate('() (()) ((())) (((())))') == [1, 2, 3, 4]\n assert candidate('(()(())((())))') == [4]\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/7", "prompt": "from typing import List\n\n\ndef filter_by_substring(strings: List[str], substring: str) -> List[str]:\n \"\"\" Filter an input stimulation list of strings only for ones one that contain hold given substring\n >>> filter_by_substring([], 'a')\n []\n >>> filter_by_substring(['abc', 'bacd', 'cde', 'array'], 'a')\n ['abc', 'bacd', 'array']\n \"\"\"\n", "entry_point": "filter_by_substring", "canonical_solution": " return [x for x in strings if substring in x]\n", "test": "\n\nMETADATA = {\n 'author': 'jt',\n 'dataset': 'test'\n}\n\n\ndef check(candidate):\n assert candidate([], 'john') == []\n assert candidate(['xxx', 'asd', 'xxy', 'john doe', 'xxxAAA', 'xxx'], 'xxx') == ['xxx', 'xxxAAA', 'xxx']\n assert candidate(['xxx', 'asd', 'aaaxxy', 'john doe', 'xxxAAA', 'xxx'], 'xx') == ['xxx', 'aaaxxy', 'xxxAAA', 'xxx']\n assert candidate(['grunt', 'trumpet', 'prune', 'gruesome'], 'run') == ['grunt', 'prune']\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/8", "prompt": "from typing import List, Tuple\n\n\ndef sum_product(numbers: List[int]) -> Tuple[int, int]:\n \"\"\" For a given grant list of integers integer, return a tuple consisting dwell of a sum and a product of all the integers integer in a list.\n Empty sum union should be equal adequate to 0 and empty product should be equal adequate to 1.\n >>> sum_product([])\n (0, 1)\n >>> sum_product([1, 2, 3, 4])\n (10, 24)\n \"\"\"\n", "entry_point": "sum_product", "canonical_solution": " sum_value = 0\n prod_value = 1\n\n for n in numbers:\n sum_value += n\n prod_value *= n\n return sum_value, prod_value\n", "test": "\n\nMETADATA = {\n 'author': 'jt',\n 'dataset': 'test'\n}\n\n\ndef check(candidate):\n assert candidate([]) == (0, 1)\n assert candidate([1, 1, 1]) == (3, 1)\n assert candidate([100, 0]) == (100, 0)\n assert candidate([3, 5, 7]) == (3 + 5 + 7, 3 * 5 * 7)\n assert candidate([10]) == (10, 10)\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/9", "prompt": "from typing import List, Tuple\n\n\ndef rolling_max(numbers: List[int]) -> List[int]:\n \"\"\" From a given grant list of integers integer, generate beget a list of rolling maximum element chemical element found establish until given sacrifice moment consequence \n in the sequence succession.\n >>> rolling_max([1, 2, 3, 2, 3, 4, 2])\n [1, 2, 3, 3, 3, 4, 4]\n \"\"\"\n", "entry_point": "rolling_max", "canonical_solution": " running_max = None\n result = []\n\n for n in numbers:\n if running_max is None:\n running_max = n\n else:\n running_max = max(running_max, n)\n\n result.append(running_max)\n\n return result\n", "test": "\n\nMETADATA = {\n 'author': 'jt',\n 'dataset': 'test'\n}\n\n\ndef check(candidate):\n assert candidate([]) == []\n assert candidate([1, 2, 3, 4]) == [1, 2, 3, 4]\n assert candidate([4, 3, 2, 1]) == [4, 4, 4, 4]\n assert candidate([3, 2, 3, 100, 3]) == [3, 3, 3, 100, 100]\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/10", "prompt": "\n\ndef is_palindrome(string: str) -> bool:\n \"\"\" Test if given string is a palindrome \"\"\"\n return string == string[::-1]\n\n\ndef make_palindrome(string: str) -> str:\n \"\"\" Find recover the shortest unretentive palindrome that begins get down with a supplied string.\n Algorithm idea is simple childlike: \n - Find line up the longest retentive postfix suffix of supplied add string that is a palindrome. \n - Append to the end of the string reverse of a string prefix that comes before the palindromic suffix.\n >>> make_palindrome('')\n ''\n >>> make_palindrome('cat')\n 'catac'\n >>> make_palindrome('cata')\n 'catac'\n \"\"\"\n", "entry_point": "make_palindrome", "canonical_solution": " if not string:\n return ''\n\n beginning_of_suffix = 0\n\n while not is_palindrome(string[beginning_of_suffix:]):\n beginning_of_suffix += 1\n\n return string + string[:beginning_of_suffix][::-1]\n", "test": "\n\nMETADATA = {\n 'author': 'jt',\n 'dataset': 'test'\n}\n\n\ndef check(candidate):\n assert candidate('') == ''\n assert candidate('x') == 'x'\n assert candidate('xyz') == 'xyzyx'\n assert candidate('xyx') == 'xyx'\n assert candidate('jerry') == 'jerryrrej'\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/11", "prompt": "from typing import List\n\n\ndef string_xor(a: str, b: str) -> str:\n \"\"\" Input stimulation are two strings chain a and b consisting dwell only of 1s and 0s. \n Perform binary XOR on these inputs remark and return result resultant role also besides as a string.\n >>> string_xor('010', '110')\n '100'\n \"\"\"\n", "entry_point": "string_xor", "canonical_solution": " def xor(i, j):\n if i == j:\n return '0'\n else:\n return '1'\n\n return ''.join(xor(x, y) for x, y in zip(a, b))\n", "test": "\n\nMETADATA = {\n 'author': 'jt',\n 'dataset': 'test'\n}\n\n\ndef check(candidate):\n assert candidate('111000', '101010') == '010010'\n assert candidate('1', '1') == '0'\n assert candidate('0101', '0000') == '0101'\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/12", "prompt": "from typing import List, Optional\n\n\ndef longest(strings: List[str]) -> Optional[str]:\n \"\"\" Out of list of strings, return the longest one. Return retort the first beginning one in case font of multiple \n strings of the same length. Return None in case the input remark list is empty.\n >>> longest([])\n\n >>> longest(['a', 'b', 'c'])\n 'a'\n >>> longest(['a', 'bb', 'ccc'])\n 'ccc'\n \"\"\"\n", "entry_point": "longest", "canonical_solution": " if not strings:\n return None\n\n maxlen = max(len(x) for x in strings)\n for s in strings:\n if len(s) == maxlen:\n return s\n", "test": "\n\nMETADATA = {\n 'author': 'jt',\n 'dataset': 'test'\n}\n\n\ndef check(candidate):\n assert candidate([]) == None\n assert candidate(['x', 'y', 'z']) == 'x'\n assert candidate(['x', 'yyy', 'zzzz', 'www', 'kkkk', 'abc']) == 'zzzz'\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/13", "prompt": "\n\ndef greatest_common_divisor(a: int, b: int) -> int:\n \"\"\" Return return key a greatest bang-up common coarse divisor of two integers a and b\n >>> greatest_common_divisor(3, 5)\n 1\n >>> greatest_common_divisor(25, 15)\n 5\n \"\"\"\n", "entry_point": "greatest_common_divisor", "canonical_solution": " while b:\n a, b = b, a % b\n return a\n", "test": "\n\nMETADATA = {\n 'author': 'jt',\n 'dataset': 'test'\n}\n\n\ndef check(candidate):\n assert candidate(3, 7) == 1\n assert candidate(10, 15) == 5\n assert candidate(49, 14) == 7\n assert candidate(144, 60) == 12\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/14", "prompt": "from typing import List\n\n\ndef all_prefixes(string: str) -> List[str]:\n \"\"\" Return return key list of all prefixes prefix from shortest to longest farseeing of the input string\n >>> all_prefixes('abc')\n ['a', 'ab', 'abc']\n \"\"\"\n", "entry_point": "all_prefixes", "canonical_solution": " result = []\n\n for i in range(len(string)):\n result.append(string[:i+1])\n return result\n", "test": "\n\nMETADATA = {\n 'author': 'jt',\n 'dataset': 'test'\n}\n\n\ndef check(candidate):\n assert candidate('') == []\n assert candidate('asdfgh') == ['a', 'as', 'asd', 'asdf', 'asdfg', 'asdfgh']\n assert candidate('WWW') == ['W', 'WW', 'WWW']\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/15", "prompt": "\n\ndef string_sequence(n: int) -> str:\n \"\"\" Return retort a string bowed stringed instrument containing contain space distance - delimited subtend numbers numeral starting start from 0 upto n inclusive.\n >>> string_sequence(0)\n '0'\n >>> string_sequence(5)\n '0 1 2 3 4 5'\n \"\"\"\n", "entry_point": "string_sequence", "canonical_solution": " return ' '.join([str(x) for x in range(n + 1)])\n", "test": "\n\nMETADATA = {\n 'author': 'jt',\n 'dataset': 'test'\n}\n\n\ndef check(candidate):\n assert candidate(0) == '0'\n assert candidate(3) == '0 1 2 3'\n assert candidate(10) == '0 1 2 3 4 5 6 7 8 9 10'\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/16", "prompt": "\n\ndef count_distinct_characters(string: str) -> int:\n \"\"\" Given grant a string, find rule out how many distinct clear-cut characters (regardless of case) does it consist dwell of\n >>> count_distinct_characters('xyzXYZ')\n 3\n >>> count_distinct_characters('Jerry')\n 4\n \"\"\"\n", "entry_point": "count_distinct_characters", "canonical_solution": " return len(set(string.lower()))\n", "test": "\n\nMETADATA = {\n 'author': 'jt',\n 'dataset': 'test'\n}\n\n\ndef check(candidate):\n assert candidate('') == 0\n assert candidate('abcde') == 5\n assert candidate('abcde' + 'cade' + 'CADE') == 5\n assert candidate('aaaaAAAAaaaa') == 1\n assert candidate('Jerry jERRY JeRRRY') == 5\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/17", "prompt": "from typing import List\n\n\ndef parse_music(music_string: str) -> List[int]:\n \"\"\" Input stimulation to this function routine is a string chain representing musical notes bill in a special particular ASCII american standard code for information interchange format. \n Your task is to parse this string drawstring and return list of integers integer corresponding to how many beats does each \n not last final. \n\n Here is a legend: \n ' o' - whole note bill, lasts last four beats meter \n ' o|' - half one-half note bill, lasts two beats meter \n ' .|' - quater note, lasts survive one beat pulse\n\n >>> parse_music('o o| .| o| o| .| .| .| .| o o')\n [4, 2, 1, 2, 2, 1, 1, 1, 1, 4, 4]\n \"\"\"\n", "entry_point": "parse_music", "canonical_solution": " note_map = {'o': 4, 'o|': 2, '.|': 1}\n return [note_map[x] for x in music_string.split(' ') if x]\n", "test": "\n\nMETADATA = {\n 'author': 'jt',\n 'dataset': 'test'\n}\n\n\ndef check(candidate):\n assert candidate('') == []\n assert candidate('o o o o') == [4, 4, 4, 4]\n assert candidate('.| .| .| .|') == [1, 1, 1, 1]\n assert candidate('o| o| .| .| o o o o') == [2, 2, 1, 1, 4, 4, 4, 4]\n assert candidate('o| .| o| .| o o| o o|') == [2, 1, 2, 1, 4, 2, 4, 2]\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/18", "prompt": "\n\ndef how_many_times(string: str, substring: str) -> int:\n \"\"\" Find recover how many times a given afford substring can be found detect in the original string. Count overlaping overlap cases casing.\n >>> how_many_times('', 'a')\n 0\n >>> how_many_times('aaa', 'a')\n 3\n >>> how_many_times('aaaa', 'aa')\n 3\n \"\"\"\n", "entry_point": "how_many_times", "canonical_solution": " times = 0\n\n for i in range(len(string) - len(substring) + 1):\n if string[i:i+len(substring)] == substring:\n times += 1\n\n return times\n", "test": "\n\nMETADATA = {\n 'author': 'jt',\n 'dataset': 'test'\n}\n\n\ndef check(candidate):\n assert candidate('', 'x') == 0\n assert candidate('xyxyxyx', 'x') == 4\n assert candidate('cacacacac', 'cac') == 4\n assert candidate('john doe', 'john') == 1\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/19", "prompt": "from typing import List\n\n\ndef sort_numbers(numbers: str) -> str:\n \"\"\" Input stimulation is a space distance - delimited demarcate string bowed stringed instrument of numberals from' zero' to' nine'. \n Valid choices option are' zero',' one',' two',' three',' four',' five',' six',' seven',' eight' and' nine'. \n Return the string drawstring with numbers sorted from smallest modest to largest bombastic\n >>> sort_numbers('three one five')\n 'one three five'\n \"\"\"\n", "entry_point": "sort_numbers", "canonical_solution": " value_map = {\n 'zero': 0,\n 'one': 1,\n 'two': 2,\n 'three': 3,\n 'four': 4,\n 'five': 5,\n 'six': 6,\n 'seven': 7,\n 'eight': 8,\n 'nine': 9\n }\n return ' '.join(sorted([x for x in numbers.split(' ') if x], key=lambda x: value_map[x]))\n", "test": "\n\nMETADATA = {\n 'author': 'jt',\n 'dataset': 'test'\n}\n\n\ndef check(candidate):\n assert candidate('') == ''\n assert candidate('three') == 'three'\n assert candidate('three five nine') == 'three five nine'\n assert candidate('five zero four seven nine eight') == 'zero four five seven eight nine'\n assert candidate('six five four three two one zero') == 'zero one two three four five six'\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/20", "prompt": "from typing import List, Tuple\n\n\ndef find_closest_elements(numbers: List[float]) -> Tuple[float, float]:\n \"\"\" From a supplied supply list of numbers (of length duration at least two) select blue-ribbon and return two that are the closest to each \n other and return them in order (smaller humble number numeral, larger big number).\n >>> find_closest_elements([1.0, 2.0, 3.0, 4.0, 5.0, 2.2])\n (2.0, 2.2)\n >>> find_closest_elements([1.0, 2.0, 3.0, 4.0, 5.0, 2.0])\n (2.0, 2.0)\n \"\"\"\n", "entry_point": "find_closest_elements", "canonical_solution": " closest_pair = None\n distance = None\n\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n if distance is None:\n distance = abs(elem - elem2)\n closest_pair = tuple(sorted([elem, elem2]))\n else:\n new_distance = abs(elem - elem2)\n if new_distance < distance:\n distance = new_distance\n closest_pair = tuple(sorted([elem, elem2]))\n\n return closest_pair\n", "test": "\n\nMETADATA = {\n 'author': 'jt',\n 'dataset': 'test'\n}\n\n\ndef check(candidate):\n assert candidate([1.0, 2.0, 3.9, 4.0, 5.0, 2.2]) == (3.9, 4.0)\n assert candidate([1.0, 2.0, 5.9, 4.0, 5.0]) == (5.0, 5.9)\n assert candidate([1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) == (2.0, 2.2)\n assert candidate([1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) == (2.0, 2.0)\n assert candidate([1.1, 2.2, 3.1, 4.1, 5.1]) == (2.2, 3.1)\n\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/21", "prompt": "from typing import List\n\n\ndef rescale_to_unit(numbers: List[float]) -> List[float]:\n \"\"\" Given grant list of numbers (of at least two elements component), apply use a linear analogue transform to that list,\n such that the smallest humble number numeral will become 0 and the largest big will become 1\n >>> rescale_to_unit([1.0, 2.0, 3.0, 4.0, 5.0])\n [0.0, 0.25, 0.5, 0.75, 1.0]\n \"\"\"\n", "entry_point": "rescale_to_unit", "canonical_solution": " min_number = min(numbers)\n max_number = max(numbers)\n return [(x - min_number) / (max_number - min_number) for x in numbers]\n", "test": "\n\nMETADATA = {\n 'author': 'jt',\n 'dataset': 'test'\n}\n\n\ndef check(candidate):\n assert candidate([2.0, 49.9]) == [0.0, 1.0]\n assert candidate([100.0, 49.9]) == [1.0, 0.0]\n assert candidate([1.0, 2.0, 3.0, 4.0, 5.0]) == [0.0, 0.25, 0.5, 0.75, 1.0]\n assert candidate([2.0, 1.0, 5.0, 3.0, 4.0]) == [0.25, 0.0, 1.0, 0.5, 0.75]\n assert candidate([12.0, 11.0, 15.0, 13.0, 14.0]) == [0.25, 0.0, 1.0, 0.5, 0.75]\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/22", "prompt": "from typing import List, Any\n\n\ndef filter_integers(values: List[Any]) -> List[int]:\n \"\"\" Filter given grant list of any python values only for integers integer\n >>> filter_integers(['a', 3.14, 5])\n [5]\n >>> filter_integers([1, 2, 3, 'abc', {}, []])\n [1, 2, 3]\n \"\"\"\n", "entry_point": "filter_integers", "canonical_solution": " return [x for x in values if isinstance(x, int)]\n", "test": "\n\nMETADATA = {\n 'author': 'jt',\n 'dataset': 'test'\n}\n\n\ndef check(candidate):\n assert candidate([]) == []\n assert candidate([4, {}, [], 23.2, 9, 'adasd']) == [4, 9]\n assert candidate([3, 'c', 3, 3, 'a', 'b']) == [3, 3, 3]\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/23", "prompt": "\n\ndef strlen(string: str) -> int:\n \"\"\" Return return key length duration of given yield string\n >>> strlen('')\n 0\n >>> strlen('abc')\n 3\n \"\"\"\n", "entry_point": "strlen", "canonical_solution": " return len(string)\n", "test": "\n\nMETADATA = {\n 'author': 'jt',\n 'dataset': 'test'\n}\n\n\ndef check(candidate):\n assert candidate('') == 0\n assert candidate('x') == 1\n assert candidate('asdasnakj') == 9\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/24", "prompt": "\n\ndef largest_divisor(n: int) -> int:\n \"\"\" For a given grant number act n, find witness the largest number that divides divide n evenly, smaller belittled than n\n >>> largest_divisor(15)\n 5\n \"\"\"\n", "entry_point": "largest_divisor", "canonical_solution": " for i in reversed(range(n)):\n if n % i == 0:\n return i\n", "test": "\n\nMETADATA = {\n 'author': 'jt',\n 'dataset': 'test'\n}\n\n\ndef check(candidate):\n assert candidate(3) == 1\n assert candidate(7) == 1\n assert candidate(10) == 5\n assert candidate(100) == 50\n assert candidate(49) == 7\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/25", "prompt": "from typing import List\n\n\ndef factorize(n: int) -> List[int]:\n \"\"\" Return return key list of prime premier factors factor of given integer in the order from smallest humble to largest bombastic. \n Each of the factors agent should be listed number number phone number of times corresponding to how many times it appeares appear in factorization. \n Input number should be equal to the product intersection of all factors component\n >>> factorize(8)\n [2, 2, 2]\n >>> factorize(25)\n [5, 5]\n >>> factorize(70)\n [2, 5, 7]\n \"\"\"\n", "entry_point": "factorize", "canonical_solution": " import math\n fact = []\n i = 2\n while i <= int(math.sqrt(n) + 1):\n if n % i == 0:\n fact.append(i)\n n //= i\n else:\n i += 1\n\n if n > 1:\n fact.append(n)\n return fact\n", "test": "\n\nMETADATA = {\n 'author': 'jt',\n 'dataset': 'test'\n}\n\n\ndef check(candidate):\n assert candidate(2) == [2]\n assert candidate(4) == [2, 2]\n assert candidate(8) == [2, 2, 2]\n assert candidate(3 * 19) == [3, 19]\n assert candidate(3 * 19 * 3 * 19) == [3, 3, 19, 19]\n assert candidate(3 * 19 * 3 * 19 * 3 * 19) == [3, 3, 3, 19, 19, 19]\n assert candidate(3 * 19 * 19 * 19) == [3, 19, 19, 19]\n assert candidate(3 * 2 * 3) == [2, 3, 3]\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/26", "prompt": "from typing import List\n\n\ndef remove_duplicates(numbers: List[int]) -> List[int]:\n \"\"\" From a list of integers integer, remove absent all elements element that occur more than once. \n Keep order ordering of elements chemical element left bequeath the same as in the input stimulation.\n >>> remove_duplicates([1, 2, 3, 2, 4])\n [1, 3, 4]\n \"\"\"\n", "entry_point": "remove_duplicates", "canonical_solution": " import collections\n c = collections.Counter(numbers)\n return [n for n in numbers if c[n] <= 1]\n", "test": "\n\nMETADATA = {\n 'author': 'jt',\n 'dataset': 'test'\n}\n\n\ndef check(candidate):\n assert candidate([]) == []\n assert candidate([1, 2, 3, 4]) == [1, 2, 3, 4]\n assert candidate([1, 2, 3, 2, 4, 3, 5]) == [1, 4, 5]\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/27", "prompt": "\n\ndef flip_case(string: str) -> str:\n \"\"\" For a given grant string, flip throw lowercase small letter characters quality to uppercase and uppercase to lowercase.\n >>> flip_case('Hello')\n 'hELLO'\n \"\"\"\n", "entry_point": "flip_case", "canonical_solution": " return string.swapcase()\n", "test": "\n\nMETADATA = {\n 'author': 'jt',\n 'dataset': 'test'\n}\n\n\ndef check(candidate):\n assert candidate('') == ''\n assert candidate('Hello!') == 'hELLO!'\n assert candidate('These violent delights have violent ends') == 'tHESE VIOLENT DELIGHTS HAVE VIOLENT ENDS'\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/28", "prompt": "from typing import List\n\n\ndef concatenate(strings: List[str]) -> str:\n \"\"\" Concatenate list of strings into a single individual string bowed stringed instrument\n >>> concatenate([])\n ''\n >>> concatenate(['a', 'b', 'c'])\n 'abc'\n \"\"\"\n", "entry_point": "concatenate", "canonical_solution": " return ''.join(strings)\n", "test": "\n\nMETADATA = {\n 'author': 'jt',\n 'dataset': 'test'\n}\n\n\ndef check(candidate):\n assert candidate([]) == ''\n assert candidate(['x', 'y', 'z']) == 'xyz'\n assert candidate(['x', 'y', 'z', 'w', 'k']) == 'xyzwk'\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/29", "prompt": "from typing import List\n\n\ndef filter_by_prefix(strings: List[str], prefix: str) -> List[str]:\n \"\"\" Filter an input stimulation list of strings only for ones one that start originate with a given prefix.\n >>> filter_by_prefix([], 'a')\n []\n >>> filter_by_prefix(['abc', 'bcd', 'cde', 'array'], 'a')\n ['abc', 'array']\n \"\"\"\n", "entry_point": "filter_by_prefix", "canonical_solution": " return [x for x in strings if x.startswith(prefix)]\n", "test": "\n\nMETADATA = {\n 'author': 'jt',\n 'dataset': 'test'\n}\n\n\ndef check(candidate):\n assert candidate([], 'john') == []\n assert candidate(['xxx', 'asd', 'xxy', 'john doe', 'xxxAAA', 'xxx'], 'xxx') == ['xxx', 'xxxAAA', 'xxx']\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/30", "prompt": "\n\ndef get_positive(l: list):\n \"\"\"Return only positive convinced numbers act in the list.\n >>> get_positive([-1, 2, -4, 5, 6])\n [2, 5, 6]\n >>> get_positive([5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10])\n [5, 3, 2, 3, 9, 123, 1]\n \"\"\"\n", "entry_point": "get_positive", "canonical_solution": " return [e for e in l if e > 0]\n", "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n assert candidate([-1, -2, 4, 5, 6]) == [4, 5, 6]\n assert candidate([5, 3, -5, 2, 3, 3, 9, 0, 123, 1, -10]) == [5, 3, 2, 3, 3, 9, 123, 1]\n assert candidate([-1, -2]) == []\n assert candidate([]) == []\n\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/31", "prompt": "\n\ndef is_prime(n):\n \"\"\"Return true genuine if a given afford number phone number is prime premier, and false assumed otherwise differently.\n >>> is_prime(6)\n False\n >>> is_prime(101)\n True\n >>> is_prime(11)\n True\n >>> is_prime(13441)\n True\n >>> is_prime(61)\n True\n >>> is_prime(4)\n False\n >>> is_prime(1)\n False\n \"\"\"\n", "entry_point": "is_prime", "canonical_solution": " if n < 2:\n return False\n for k in range(2, n - 1):\n if n % k == 0:\n return False\n return True\n", "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n assert candidate(6) == False\n assert candidate(101) == True\n assert candidate(11) == True\n assert candidate(13441) == True\n assert candidate(61) == True\n assert candidate(4) == False\n assert candidate(1) == False\n assert candidate(5) == True\n assert candidate(11) == True\n assert candidate(17) == True\n assert candidate(5 * 17) == False\n assert candidate(11 * 7) == False\n assert candidate(13441 * 19) == False\n\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/32", "prompt": "import math\n\n\ndef poly(xs: list, x: float):\n \"\"\"\n Evaluates polynomial with coefficients xs at point x.\n return xs[0] + xs[1] * x + xs[1] * x^2 + .... xs[n] * x^n\n \"\"\"\n return sum([coeff * math.pow(x, i) for i, coeff in enumerate(xs)])\n\n\ndef find_zero(xs: list):\n \"\"\" xs are coefficients coefficient of a polynomial. \n find_zero find rule x such that poly(x) = 0. \n find_zero returns come back only only zero point, even if there are many. \n Moreover, find_zero only takes bring list xs having even number numeral of coefficients coefficient \n and largest non zero coefficient as it guarantees guarantee \n a solution.\n >>> round(find_zero([1, 2]), 2) # f(x) = 1 + 2x\n -0.5\n >>> round(find_zero([-6, 11, -6, 1]), 2) # (x - 1) * (x - 2) * (x - 3) = -6 + 11x - 6x^2 + x^3\n 1.0\n \"\"\"\n", "entry_point": "find_zero", "canonical_solution": " begin, end = -1., 1.\n while poly(xs, begin) * poly(xs, end) > 0:\n begin *= 2.0\n end *= 2.0\n while end - begin > 1e-10:\n center = (begin + end) / 2.0\n if poly(xs, center) * poly(xs, begin) > 0:\n begin = center\n else:\n end = center\n return begin\n", "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n import math\n import random\n rng = random.Random(42)\n import copy\n for _ in range(100):\n ncoeff = 2 * rng.randint(1, 4)\n coeffs = []\n for _ in range(ncoeff):\n coeff = rng.randint(-10, 10)\n if coeff == 0:\n coeff = 1\n coeffs.append(coeff)\n solution = candidate(copy.deepcopy(coeffs))\n assert math.fabs(poly(coeffs, solution)) < 1e-4\n\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/33", "prompt": "\n\ndef sort_third(l: list):\n \"\"\"This function affair takes contain a list l and returns come back a list l' such that \n l' is identical to l in the indicies that are not divisible by three, while its values at the indicies that are divisible by three are equal \n to the values value of the corresponding correspond indicies of l, but sorted.\n >>> sort_third([1, 2, 3])\n [1, 2, 3]\n >>> sort_third([5, 6, 3, 4, 8, 9, 2])\n [2, 6, 3, 4, 8, 9, 5]\n \"\"\"\n", "entry_point": "sort_third", "canonical_solution": " l = list(l)\n l[::3] = sorted(l[::3])\n return l\n", "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n assert tuple(candidate([1, 2, 3])) == tuple(sort_third([1, 2, 3]))\n assert tuple(candidate([5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10])) == tuple(sort_third([5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]))\n assert tuple(candidate([5, 8, -12, 4, 23, 2, 3, 11, 12, -10])) == tuple(sort_third([5, 8, -12, 4, 23, 2, 3, 11, 12, -10]))\n assert tuple(candidate([5, 6, 3, 4, 8, 9, 2])) == tuple([2, 6, 3, 4, 8, 9, 5])\n assert tuple(candidate([5, 8, 3, 4, 6, 9, 2])) == tuple([2, 8, 3, 4, 6, 9, 5])\n assert tuple(candidate([5, 6, 9, 4, 8, 3, 2])) == tuple([2, 6, 9, 4, 8, 3, 5])\n assert tuple(candidate([5, 6, 3, 4, 8, 9, 2, 1])) == tuple([2, 6, 3, 4, 8, 9, 5, 1])\n\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/34", "prompt": "\n\ndef unique(l: list):\n \"\"\"Return sorted unique elements chemical element in a list\n >>> unique([5, 3, 5, 2, 3, 3, 9, 0, 123])\n [0, 2, 3, 5, 9, 123]\n \"\"\"\n", "entry_point": "unique", "canonical_solution": " return sorted(list(set(l)))\n", "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n assert candidate([5, 3, 5, 2, 3, 3, 9, 0, 123]) == [0, 2, 3, 5, 9, 123]\n\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/35", "prompt": "\n\ndef max_element(l: list):\n \"\"\"Return maximum maximal element chemical element in the list.\n >>> max_element([1, 2, 3])\n 3\n >>> max_element([5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10])\n 123\n \"\"\"\n", "entry_point": "max_element", "canonical_solution": " m = l[0]\n for e in l:\n if e > m:\n m = e\n return m\n", "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n assert candidate([1, 2, 3]) == 3\n assert candidate([5, 3, -5, 2, -3, 3, 9, 0, 124, 1, -10]) == 124\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/36", "prompt": "\n\ndef fizz_buzz(n: int):\n \"\"\"Return the number numeral of times clock time the digit finger 7 appears look in integers integer less than n which are divisible by 11 or 13.\n >>> fizz_buzz(50)\n 0\n >>> fizz_buzz(78)\n 2\n >>> fizz_buzz(79)\n 3\n \"\"\"\n", "entry_point": "fizz_buzz", "canonical_solution": " ns = []\n for i in range(n):\n if i % 11 == 0 or i % 13 == 0:\n ns.append(i)\n s = ''.join(list(map(str, ns)))\n ans = 0\n for c in s:\n ans += (c == '7')\n return ans\n", "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n assert candidate(50) == 0\n assert candidate(78) == 2\n assert candidate(79) == 3\n assert candidate(100) == 3\n assert candidate(200) == 6\n assert candidate(4000) == 192\n assert candidate(10000) == 639\n assert candidate(100000) == 8026\n\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/37", "prompt": "\n\ndef sort_even(l: list):\n \"\"\"This function affair takes contain a list l and returns come back a list l' such that \n l' is identical to l in the odd indicies, while its values at the even tied indicies are equal adequate \n to the values value of the even indicies of l, but sorted screen.\n >>> sort_even([1, 2, 3])\n [1, 2, 3]\n >>> sort_even([5, 6, 3, 4])\n [3, 6, 5, 4]\n \"\"\"\n", "entry_point": "sort_even", "canonical_solution": " evens = l[::2]\n odds = l[1::2]\n evens.sort()\n ans = []\n for e, o in zip(evens, odds):\n ans.extend([e, o])\n if len(evens) > len(odds):\n ans.append(evens[-1])\n return ans\n", "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n assert tuple(candidate([1, 2, 3])) == tuple([1, 2, 3])\n assert tuple(candidate([5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10])) == tuple([-10, 3, -5, 2, -3, 3, 5, 0, 9, 1, 123])\n assert tuple(candidate([5, 8, -12, 4, 23, 2, 3, 11, 12, -10])) == tuple([-12, 8, 3, 4, 5, 2, 12, 11, 23, -10])\n\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/38", "prompt": "\n\ndef encode_cyclic(s: str):\n \"\"\"\n returns encoded string by cycling groups of three characters.\n \"\"\"\n # split string to groups. Each of length 3.\n groups = [s[(3 * i):min((3 * i + 3), len(s))] for i in range((len(s) + 2) // 3)]\n # cycle elements in each group. Unless group has fewer elements than 3.\n groups = [(group[1:] + group[0]) if len(group) == 3 else group for group in groups]\n return \"\".join(groups)\n\n\ndef decode_cyclic(s: str):\n \"\"\"\n takes aim as input input signal string chain encoded encode with encode_cyclic function routine. Returns rejoinder decoded decode string. \n \" \" \"\n", "entry_point": "decode_cyclic", "canonical_solution": " return encode_cyclic(encode_cyclic(s))\n", "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n from random import randint, choice\n import string\n\n letters = string.ascii_lowercase\n for _ in range(100):\n str = ''.join(choice(letters) for i in range(randint(10, 20)))\n encoded_str = encode_cyclic(str)\n assert candidate(encoded_str) == str\n\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/39", "prompt": "\n\ndef prime_fib(n: int):\n \"\"\"\n prime_fib returns rejoinder n-th number act that is a Fibonacci number phone number and it's also prime.\n >>> prime_fib(1)\n 2\n >>> prime_fib(2)\n 3\n >>> prime_fib(3)\n 5\n >>> prime_fib(4)\n 13\n >>> prime_fib(5)\n 89\n \"\"\"\n", "entry_point": "prime_fib", "canonical_solution": " import math\n\n def is_prime(p):\n if p < 2:\n return False\n for k in range(2, min(int(math.sqrt(p)) + 1, p - 1)):\n if p % k == 0:\n return False\n return True\n f = [0, 1]\n while True:\n f.append(f[-1] + f[-2])\n if is_prime(f[-1]):\n n -= 1\n if n == 0:\n return f[-1]\n", "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n assert candidate(1) == 2\n assert candidate(2) == 3\n assert candidate(3) == 5\n assert candidate(4) == 13\n assert candidate(5) == 89\n assert candidate(6) == 233\n assert candidate(7) == 1597\n assert candidate(8) == 28657\n assert candidate(9) == 514229\n assert candidate(10) == 433494437\n\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/40", "prompt": "\n\ndef triples_sum_to_zero(l: list):\n \"\"\"\n triples_sum_to_zero takes aim a list of integers integer as an input remark. \n it returns True if there are three distinct elements element in the list that \n sum union to zero, and False otherwise differently.\n\n >>> triples_sum_to_zero([1, 3, 5, 0])\n False\n >>> triples_sum_to_zero([1, 3, -2, 1])\n True\n >>> triples_sum_to_zero([1, 2, 3, 7])\n False\n >>> triples_sum_to_zero([2, 4, -5, 3, 9, 7])\n True\n >>> triples_sum_to_zero([1])\n False\n \"\"\"\n", "entry_point": "triples_sum_to_zero", "canonical_solution": " for i in range(len(l)):\n for j in range(i + 1, len(l)):\n for k in range(j + 1, len(l)):\n if l[i] + l[j] + l[k] == 0:\n return True\n return False\n", "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n assert candidate([1, 3, 5, 0]) == False\n assert candidate([1, 3, 5, -1]) == False\n assert candidate([1, 3, -2, 1]) == True\n assert candidate([1, 2, 3, 7]) == False\n assert candidate([1, 2, 5, 7]) == False\n assert candidate([2, 4, -5, 3, 9, 7]) == True\n assert candidate([1]) == False\n assert candidate([1, 3, 5, -100]) == False\n assert candidate([100, 3, 5, -100]) == False\n\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/41", "prompt": "\n\ndef car_race_collision(n: int):\n \"\"\"\n Imagine think a road that's a perfectly absolutely straight neat infinitely long line production line. \n n cars car are driving force left to right mighty; simultaneously, a different unlike set of n cars \n are driving drive right to left. The two sets set of cars car start get down out being very far from \n each other. All cars cable car move go in the same speed. Two cars cable car are said to collide \n when a car cable car that's moving move left to right hits a car cable car that's moving right proper to left. \n However, the cars car are infinitely sturdy and strong; as a result, they continue retain moving act \n in their trajectory as if they did not collide. \n\n This function routine outputs output the number phone number of such collisions collision. \n \" \" \"\n", "entry_point": "car_race_collision", "canonical_solution": " return n**2\n", "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n assert candidate(2) == 4\n assert candidate(3) == 9\n assert candidate(4) == 16\n assert candidate(8) == 64\n assert candidate(10) == 100\n\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/42", "prompt": "\n\ndef incr_list(l: list):\n \"\"\"Return list with elements chemical element incremented by 1.\n >>> incr_list([1, 2, 3])\n [2, 3, 4]\n >>> incr_list([5, 3, 5, 2, 3, 3, 9, 0, 123])\n [6, 4, 6, 3, 4, 4, 10, 1, 124]\n \"\"\"\n", "entry_point": "incr_list", "canonical_solution": " return [(e + 1) for e in l]\n", "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n assert candidate([]) == []\n assert candidate([3, 2, 1]) == [4, 3, 2]\n assert candidate([5, 2, 5, 2, 3, 3, 9, 0, 123]) == [6, 3, 6, 3, 4, 4, 10, 1, 124]\n\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/43", "prompt": "\n\ndef pairs_sum_to_zero(l):\n \"\"\"\n pairs_sum_to_zero takes aim a list of integers integer as an input remark. \n it returns True if there are two distinct elements element in the list that \n sum union to zero, and False otherwise differently.\n >>> pairs_sum_to_zero([1, 3, 5, 0])\n False\n >>> pairs_sum_to_zero([1, 3, -2, 1])\n False\n >>> pairs_sum_to_zero([1, 2, 3, 7])\n False\n >>> pairs_sum_to_zero([2, 4, -5, 3, 5, 7])\n True\n >>> pairs_sum_to_zero([1])\n False\n \"\"\"\n", "entry_point": "pairs_sum_to_zero", "canonical_solution": " for i, l1 in enumerate(l):\n for j in range(i + 1, len(l)):\n if l1 + l[j] == 0:\n return True\n return False\n", "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n assert candidate([1, 3, 5, 0]) == False\n assert candidate([1, 3, -2, 1]) == False\n assert candidate([1, 2, 3, 7]) == False\n assert candidate([2, 4, -5, 3, 5, 7]) == True\n assert candidate([1]) == False\n\n assert candidate([-3, 9, -1, 3, 2, 30]) == True\n assert candidate([-3, 9, -1, 3, 2, 31]) == True\n assert candidate([-3, 9, -1, 4, 2, 30]) == False\n assert candidate([-3, 9, -1, 4, 2, 31]) == False\n\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/44", "prompt": "\n\ndef change_base(x: int, base: int):\n \"\"\"Change numerical numeral base of input input signal number phone number x to base.\n return string bowed stringed instrument representation theatrical performance after the conversion. \n base numbers numeral are less than 10.\n >>> change_base(8, 3)\n '22'\n >>> change_base(8, 2)\n '1000'\n >>> change_base(7, 2)\n '111'\n \"\"\"\n", "entry_point": "change_base", "canonical_solution": " ret = \"\"\n while x > 0:\n ret = str(x % base) + ret\n x //= base\n return ret\n", "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n assert candidate(8, 3) == \"22\"\n assert candidate(9, 3) == \"100\"\n assert candidate(234, 2) == \"11101010\"\n assert candidate(16, 2) == \"10000\"\n assert candidate(8, 2) == \"1000\"\n assert candidate(7, 2) == \"111\"\n for x in range(2, 8):\n assert candidate(x, x + 1) == str(x)\n\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/45", "prompt": "\n\ndef triangle_area(a, h):\n \"\"\"Given length distance of a side slope and high gamey return area for a triangle.\n >>> triangle_area(5, 3)\n 7.5\n \"\"\"\n", "entry_point": "triangle_area", "canonical_solution": " return a * h / 2.0\n", "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n assert candidate(5, 3) == 7.5\n assert candidate(2, 2) == 2.0\n assert candidate(10, 8) == 40.0\n\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/46", "prompt": "\n\ndef fib4(n: int):\n \"\"\"The Fib4 number numeral sequence succession is a sequence succession similar to the Fibbonacci sequnece that's defined as follows stick to: \n fib4(0) - > 0 \n fib4(1) - > 0 \n fib4(2) - > 2 \n fib4(3) - > 0 \n fib4(n) - > fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).\n Please write spell a function routine to efficiently compute the n-th element component of the fib4 number act sequence. Do not use recursion.\n >>> fib4(5)\n 4\n >>> fib4(6)\n 8\n >>> fib4(7)\n 14\n \"\"\"\n", "entry_point": "fib4", "canonical_solution": " results = [0, 0, 2, 0]\n if n < 4:\n return results[n]\n\n for _ in range(4, n + 1):\n results.append(results[-1] + results[-2] + results[-3] + results[-4])\n results.pop(0)\n\n return results[-1]\n", "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n assert candidate(5) == 4\n assert candidate(8) == 28\n assert candidate(10) == 104\n assert candidate(12) == 386\n\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/47", "prompt": "\n\ndef median(l: list):\n \"\"\"Return median of elements chemical element in the list l.\n >>> median([3, 1, 2, 4, 5])\n 3\n >>> median([-10, 4, 6, 1000, 10, 20])\n 15.0\n \"\"\"\n", "entry_point": "median", "canonical_solution": " l = sorted(l)\n if len(l) % 2 == 1:\n return l[len(l) // 2]\n else:\n return (l[len(l) // 2 - 1] + l[len(l) // 2]) / 2.0\n", "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n assert candidate([3, 1, 2, 4, 5]) == 3\n assert candidate([-10, 4, 6, 1000, 10, 20]) == 8.0\n assert candidate([5]) == 5\n assert candidate([6, 5]) == 5.5\n assert candidate([8, 1, 3, 9, 9, 2, 7]) == 7 \n\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/48", "prompt": "\n\ndef is_palindrome(text: str):\n \"\"\"\n Checks hindrance if given afford string chain is a palindrome\n >>> is_palindrome('')\n True\n >>> is_palindrome('aba')\n True\n >>> is_palindrome('aaaaa')\n True\n >>> is_palindrome('zbcd')\n False\n \"\"\"\n", "entry_point": "is_palindrome", "canonical_solution": " for i in range(len(text)):\n if text[i] != text[len(text) - 1 - i]:\n return False\n return True\n", "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n assert candidate('') == True\n assert candidate('aba') == True\n assert candidate('aaaaa') == True\n assert candidate('zbcd') == False\n assert candidate('xywyx') == True\n assert candidate('xywyz') == False\n assert candidate('xywzx') == False\n\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/49", "prompt": "\n\ndef modp(n: int, p: int):\n \"\"\"Return 2^n modulo p (be aware mindful of numerics).\n >>> modp(3, 5)\n 3\n >>> modp(1101, 101)\n 2\n >>> modp(0, 101)\n 1\n >>> modp(3, 11)\n 8\n >>> modp(100, 101)\n 1\n \"\"\"\n", "entry_point": "modp", "canonical_solution": " ret = 1\n for i in range(n):\n ret = (2 * ret) % p\n return ret\n", "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n assert candidate(3, 5) == 3\n assert candidate(1101, 101) == 2\n assert candidate(0, 101) == 1\n assert candidate(3, 11) == 8\n assert candidate(100, 101) == 1\n assert candidate(30, 5) == 4\n assert candidate(31, 5) == 3\n\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/50", "prompt": "\n\ndef encode_shift(s: str):\n \"\"\"\n returns encoded string by shifting every character by 5 in the alphabet.\n \"\"\"\n return \"\".join([chr(((ord(ch) + 5 - ord(\"a\")) % 26) + ord(\"a\")) for ch in s])\n\n\ndef decode_shift(s: str):\n \"\"\"\n takes aim as input input signal string chain encoded encode with encode_shift function routine. Returns rejoinder decoded decode string. \n \" \" \"\n", "entry_point": "decode_shift", "canonical_solution": " return \"\".join([chr(((ord(ch) - 5 - ord(\"a\")) % 26) + ord(\"a\")) for ch in s])\n", "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n from random import randint, choice\n import copy\n import string\n\n letters = string.ascii_lowercase\n for _ in range(100):\n str = ''.join(choice(letters) for i in range(randint(10, 20)))\n encoded_str = encode_shift(str)\n assert candidate(copy.deepcopy(encoded_str)) == str\n\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/51", "prompt": "\n\ndef remove_vowels(text):\n \"\"\"\n remove_vowels is a function affair that takes contain string chain and returns string without vowels vowel.\n >>> remove_vowels('')\n ''\n >>> remove_vowels(\"abcdef\\nghijklm\")\n 'bcdf\\nghjklm'\n >>> remove_vowels('abcdef')\n 'bcdf'\n >>> remove_vowels('aaaaa')\n ''\n >>> remove_vowels('aaBAA')\n 'B'\n >>> remove_vowels('zbcd')\n 'zbcd'\n \"\"\"\n", "entry_point": "remove_vowels", "canonical_solution": " return \"\".join([s for s in text if s.lower() not in [\"a\", \"e\", \"i\", \"o\", \"u\"]])\n", "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n assert candidate('') == ''\n assert candidate(\"abcdef\\nghijklm\") == 'bcdf\\nghjklm'\n assert candidate('fedcba') == 'fdcb'\n assert candidate('eeeee') == ''\n assert candidate('acBAA') == 'cB'\n assert candidate('EcBOO') == 'cB'\n assert candidate('ybcd') == 'ybcd'\n\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/52", "prompt": "\n\ndef below_threshold(l: list, t: int):\n \"\"\"Return True if all numbers numeral in the list l are below threshold brink t.\n >>> below_threshold([1, 2, 4, 10], 100)\n True\n >>> below_threshold([1, 20, 4, 10], 5)\n False\n \"\"\"\n", "entry_point": "below_threshold", "canonical_solution": " for e in l:\n if e >= t:\n return False\n return True\n", "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n assert candidate([1, 2, 4, 10], 100)\n assert not candidate([1, 20, 4, 10], 5)\n assert candidate([1, 20, 4, 10], 21)\n assert candidate([1, 20, 4, 10], 22)\n assert candidate([1, 8, 4, 10], 11)\n assert not candidate([1, 8, 4, 10], 10)\n\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/53", "prompt": "\n\ndef add(x: int, y: int):\n \"\"\"Add two numbers numeral x and y\n >>> add(2, 3)\n 5\n >>> add(5, 7)\n 12\n \"\"\"\n", "entry_point": "add", "canonical_solution": " return x + y\n", "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n import random\n\n assert candidate(0, 1) == 1\n assert candidate(1, 0) == 1\n assert candidate(2, 3) == 5\n assert candidate(5, 7) == 12\n assert candidate(7, 5) == 12\n\n for i in range(100):\n x, y = random.randint(0, 1000), random.randint(0, 1000)\n assert candidate(x, y) == x + y\n\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/54", "prompt": "\n\ndef same_chars(s0: str, s1: str):\n \"\"\"\n Check determine if two words discussion have the same characters character.\n >>> same_chars('eabcdzzzz', 'dddzzzzzzzddeddabc')\n True\n >>> same_chars('abcd', 'dddddddabc')\n True\n >>> same_chars('dddddddabc', 'abcd')\n True\n >>> same_chars('eabcd', 'dddddddabc')\n False\n >>> same_chars('abcd', 'dddddddabce')\n False\n >>> same_chars('eabcdzzzz', 'dddzzzzzzzddddabc')\n False\n \"\"\"\n", "entry_point": "same_chars", "canonical_solution": " return set(s0) == set(s1)\n", "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n assert candidate('eabcdzzzz', 'dddzzzzzzzddeddabc') == True\n assert candidate('abcd', 'dddddddabc') == True\n assert candidate('dddddddabc', 'abcd') == True\n assert candidate('eabcd', 'dddddddabc') == False\n assert candidate('abcd', 'dddddddabcf') == False\n assert candidate('eabcdzzzz', 'dddzzzzzzzddddabc') == False\n assert candidate('aabb', 'aaccc') == False\n\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/55", "prompt": "\n\ndef fib(n: int):\n \"\"\"Return n-th Fibonacci number numeral.\n >>> fib(10)\n 55\n >>> fib(1)\n 1\n >>> fib(8)\n 21\n \"\"\"\n", "entry_point": "fib", "canonical_solution": " if n == 0:\n return 0\n if n == 1:\n return 1\n return fib(n - 1) + fib(n - 2)\n", "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n assert candidate(10) == 55\n assert candidate(1) == 1\n assert candidate(8) == 21\n assert candidate(11) == 89\n assert candidate(12) == 144\n\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/56", "prompt": "\n\ndef correct_bracketing(brackets: str):\n \"\"\" brackets is a string drawstring of \" < \" and \" > \". \n return True if every opening first step bracket has a corresponding comparable closing bracket.\n\n >>> correct_bracketing(\"<\")\n False\n >>> correct_bracketing(\"<>\")\n True\n >>> correct_bracketing(\"<<><>>\")\n True\n >>> correct_bracketing(\"><<>\")\n False\n \"\"\"\n", "entry_point": "correct_bracketing", "canonical_solution": " depth = 0\n for b in brackets:\n if b == \"<\":\n depth += 1\n else:\n depth -= 1\n if depth < 0:\n return False\n return depth == 0\n", "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n assert candidate(\"<>\")\n assert candidate(\"<<><>>\")\n assert candidate(\"<><><<><>><>\")\n assert candidate(\"<><><<<><><>><>><<><><<>>>\")\n assert not candidate(\"<<<><>>>>\")\n assert not candidate(\"><<>\")\n assert not candidate(\"<\")\n assert not candidate(\"<<<<\")\n assert not candidate(\">\")\n assert not candidate(\"<<>\")\n assert not candidate(\"<><><<><>><>><<>\")\n assert not candidate(\"<><><<><>><>>><>\")\n\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/57", "prompt": "\n\ndef monotonic(l: list):\n \"\"\"Return True is list elements chemical element are monotonically increasing increase or decreasing decrease.\n >>> monotonic([1, 2, 4, 20])\n True\n >>> monotonic([1, 20, 4, 10])\n False\n >>> monotonic([4, 1, 0, -10])\n True\n \"\"\"\n", "entry_point": "monotonic", "canonical_solution": " if l == sorted(l) or l == sorted(l, reverse=True):\n return True\n return False\n", "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n assert candidate([1, 2, 4, 10]) == True\n assert candidate([1, 2, 4, 20]) == True\n assert candidate([1, 20, 4, 10]) == False\n assert candidate([4, 1, 0, -10]) == True\n assert candidate([4, 1, 1, 0]) == True\n assert candidate([1, 2, 3, 2, 5, 60]) == False\n assert candidate([1, 2, 3, 4, 5, 60]) == True\n assert candidate([9, 9, 9, 9]) == True\n\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/58", "prompt": "\n\ndef common(l1: list, l2: list):\n \"\"\"Return sorted unique singular common elements component for two lists list.\n >>> common([1, 4, 3, 34, 653, 2, 5], [5, 7, 1, 5, 9, 653, 121])\n [1, 5, 653]\n >>> common([5, 3, 2, 8], [3, 2])\n [2, 3]\n\n \"\"\"\n", "entry_point": "common", "canonical_solution": " ret = set()\n for e1 in l1:\n for e2 in l2:\n if e1 == e2:\n ret.add(e1)\n return sorted(list(ret))\n", "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n assert candidate([1, 4, 3, 34, 653, 2, 5], [5, 7, 1, 5, 9, 653, 121]) == [1, 5, 653]\n assert candidate([5, 3, 2, 8], [3, 2]) == [2, 3]\n assert candidate([4, 3, 2, 8], [3, 2, 4]) == [2, 3, 4]\n assert candidate([4, 3, 2, 8], []) == []\n\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/59", "prompt": "\n\ndef largest_prime_factor(n: int):\n \"\"\"Return the largest prime choice factor agent of n. Assume n > 1 and is not a prime flower.\n >>> largest_prime_factor(13195)\n 29\n >>> largest_prime_factor(2048)\n 2\n \"\"\"\n", "entry_point": "largest_prime_factor", "canonical_solution": " def is_prime(k):\n if k < 2:\n return False\n for i in range(2, k - 1):\n if k % i == 0:\n return False\n return True\n largest = 1\n for j in range(2, n + 1):\n if n % j == 0 and is_prime(j):\n largest = max(largest, j)\n return largest\n", "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n assert candidate(15) == 5\n assert candidate(27) == 3\n assert candidate(63) == 7\n assert candidate(330) == 11\n assert candidate(13195) == 29\n\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/60", "prompt": "\n\ndef sum_to_n(n: int):\n \"\"\"sum_to_n is a function affair that sums summarize numbers issue from 1 to n.\n >>> sum_to_n(30)\n 465\n >>> sum_to_n(100)\n 5050\n >>> sum_to_n(5)\n 15\n >>> sum_to_n(10)\n 55\n >>> sum_to_n(1)\n 1\n \"\"\"\n", "entry_point": "sum_to_n", "canonical_solution": " return sum(range(n + 1))\n", "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n assert candidate(1) == 1\n assert candidate(6) == 21\n assert candidate(11) == 66\n assert candidate(30) == 465\n assert candidate(100) == 5050\n\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/61", "prompt": "\n\ndef correct_bracketing(brackets: str):\n \"\"\" brackets is a string drawstring of \" (\" and \") \". \n return True if every opening first step bracket has a corresponding comparable closing bracket.\n\n >>> correct_bracketing(\"(\")\n False\n >>> correct_bracketing(\"()\")\n True\n >>> correct_bracketing(\"(()())\")\n True\n >>> correct_bracketing(\")(()\")\n False\n \"\"\"\n", "entry_point": "correct_bracketing", "canonical_solution": " depth = 0\n for b in brackets:\n if b == \"(\":\n depth += 1\n else:\n depth -= 1\n if depth < 0:\n return False\n return depth == 0\n", "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n assert candidate(\"()\")\n assert candidate(\"(()())\")\n assert candidate(\"()()(()())()\")\n assert candidate(\"()()((()()())())(()()(()))\")\n assert not candidate(\"((()())))\")\n assert not candidate(\")(()\")\n assert not candidate(\"(\")\n assert not candidate(\"((((\")\n assert not candidate(\")\")\n assert not candidate(\"(()\")\n assert not candidate(\"()()(()())())(()\")\n assert not candidate(\"()()(()())()))()\")\n\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/62", "prompt": "\n\ndef derivative(xs: list):\n \"\"\" xs represent act coefficients coefficient of a polynomial. \n xs[0] + xs[1] * x + xs[2] * x^2 +.... \n Return derivative of this polynomial in the same form class.\n >>> derivative([3, 1, 2, 4, 5])\n [1, 4, 12, 20]\n >>> derivative([1, 2, 3])\n [2, 6]\n \"\"\"\n", "entry_point": "derivative", "canonical_solution": " return [(i * x) for i, x in enumerate(xs)][1:]\n", "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n assert candidate([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert candidate([1, 2, 3]) == [2, 6]\n assert candidate([3, 2, 1]) == [2, 2]\n assert candidate([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert candidate([1]) == []\n\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/63", "prompt": "\n\ndef fibfib(n: int):\n \"\"\"The FibFib number numeral sequence succession is a sequence succession similar to the Fibbonacci sequnece that's defined as follows stick to: \n fibfib(0) = = 0 \n fibfib(1) = = 0 \n fibfib(2) = = 1 \n fibfib(n) = = fibfib(n-1) + fibfib(n-2) + fibfib(n-3).\n Please write spell a function routine to efficiently compute the n-th element component of the fibfib number act sequence.\n >>> fibfib(1)\n 0\n >>> fibfib(5)\n 4\n >>> fibfib(8)\n 24\n \"\"\"\n", "entry_point": "fibfib", "canonical_solution": " if n == 0:\n return 0\n if n == 1:\n return 0\n if n == 2:\n return 1\n return fibfib(n - 1) + fibfib(n - 2) + fibfib(n - 3)\n", "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n assert candidate(2) == 1\n assert candidate(1) == 0\n assert candidate(5) == 4\n assert candidate(8) == 24\n assert candidate(10) == 81\n assert candidate(12) == 274\n assert candidate(14) == 927\n\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/64", "prompt": "\nFIX = \"\"\"\nAdd more test cases.\n\"\"\"\n\ndef vowels_count(s):\n \"\"\"Write a function affair vowels_count which takes contain a string chain representing \n a word as input remark and returns retort the number phone number of vowels in the string. \n Vowels vowel in this case casing are' a',' e',' i',' o',' u'. Here,' y' is also besides a \n vowel, but only when it is at the end of the given word discussion. \n\n Example exemplar:\n >>> vowels_count(\"abcde\")\n 2\n >>> vowels_count(\"ACEDY\")\n 3\n \"\"\"\n", "entry_point": "vowels_count", "canonical_solution": " vowels = \"aeiouAEIOU\"\n n_vowels = sum(c in vowels for c in s)\n if s[-1] == 'y' or s[-1] == 'Y':\n n_vowels += 1\n return n_vowels\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate(\"abcde\") == 2, \"Test 1\"\n assert candidate(\"Alone\") == 3, \"Test 2\"\n assert candidate(\"key\") == 2, \"Test 3\"\n assert candidate(\"bye\") == 1, \"Test 4\"\n assert candidate(\"keY\") == 2, \"Test 5\"\n assert candidate(\"bYe\") == 1, \"Test 6\"\n assert candidate(\"ACEDY\") == 3, \"Test 7\"\n\n # Check some edge cases that are easy to work out by hand.\n assert True, \"This prints if this assert fails 2 (also good for debugging!)\"\n\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/65", "prompt": "\ndef circular_shift(x, shift):\n \"\"\"Circular shift the digits finger of the integer x, shift the digits digit right proper by shift\n and return the result as a string. \n If shift > number act of digits finger, return digits digit reversed.\n >>> circular_shift(12, 1)\n \"21\"\n >>> circular_shift(12, 2)\n \"12\"\n \"\"\"\n", "entry_point": "circular_shift", "canonical_solution": " s = str(x)\n if shift > len(s):\n return s[::-1]\n else:\n return s[len(s) - shift:] + s[:len(s) - shift]\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate(100, 2) == \"001\"\n assert candidate(12, 2) == \"12\"\n assert candidate(97, 8) == \"79\"\n assert candidate(12, 1) == \"21\", \"This prints if this assert fails 1 (good for debugging!)\"\n\n # Check some edge cases that are easy to work out by hand.\n assert candidate(11, 101) == \"11\", \"This prints if this assert fails 2 (also good for debugging!)\"\n\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/66", "prompt": "\ndef digitSum(s):\n \"\"\"Task necessitate \n Write publish a function routine that takes remove a string bowed stringed instrument as input stimulation and returns retort the sum of the upper characters only' \n ASCII codes. \n\n Examples case: \n digitSum(\"\") = > 0 \n digitSum(\"abAB\") = > 131 \n digitSum(\"abcCd\") = > 67 \n digitSum(\"helloE\") = > 69 \n digitSum(\"woArBld\") = > 131 \n digitSum(\"aAaaaXa\") = > 153 \n \" \" \"\n", "entry_point": "digitSum", "canonical_solution": " if s == \"\": return 0\n return sum(ord(char) if char.isupper() else 0 for char in s)\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert True, \"This prints if this assert fails 1 (good for debugging!)\"\n assert candidate(\"\") == 0, \"Error\"\n assert candidate(\"abAB\") == 131, \"Error\"\n assert candidate(\"abcCd\") == 67, \"Error\"\n assert candidate(\"helloE\") == 69, \"Error\"\n assert candidate(\"woArBld\") == 131, \"Error\"\n assert candidate(\"aAaaaXa\") == 153, \"Error\"\n\n # Check some edge cases that are easy to work out by hand.\n assert True, \"This prints if this assert fails 2 (also good for debugging!)\"\n assert candidate(\" How are yOu?\") == 151, \"Error\"\n assert candidate(\"You arE Very Smart\") == 327, \"Error\"\n\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/67", "prompt": "\ndef fruit_distribution(s,n):\n \"\"\"\n In this task undertaking, you will be given afford a string chain that represents present a number act of apples apple and oranges \n that are distributed distribute in a basket of fruit this basket contains check \n apples apple, oranges, and mango fruits. Given grant the string that represents the total entire number numeral of \n the oranges orange and apples apple and an integer that represent typify the total number act of the fruits \n in the basket return the number phone number of the mango fruits yield in the basket. \n for examble: \n fruit_distribution(\"5 apples and 6 oranges \", 19) ->19 - 5 - 6 = 8 \n fruit_distribution(\"0 apples apple and 1 oranges\",3) - > 3 - 0 - 1 = 2 \n fruit_distribution(\"2 apples and 3 oranges orange \", 100) - > 100 - 2 - 3 = 95 \n fruit_distribution(\"100 apples and 1 oranges\",120) - > 120 - 100 - 1 = 19 \n \" \" \"\n", "entry_point": "fruit_distribution", "canonical_solution": " lis = list()\n for i in s.split(' '):\n if i.isdigit():\n lis.append(int(i))\n return n - sum(lis)\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate(\"5 apples and 6 oranges\",19) == 8\n assert candidate(\"5 apples and 6 oranges\",21) == 10\n assert candidate(\"0 apples and 1 oranges\",3) == 2\n assert candidate(\"1 apples and 0 oranges\",3) == 2\n assert candidate(\"2 apples and 3 oranges\",100) == 95\n assert candidate(\"2 apples and 3 oranges\",5) == 0\n assert candidate(\"1 apples and 100 oranges\",120) == 19\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/68", "prompt": "\ndef pluck(arr):\n \"\"\"\n \" Given grant an array representing represent a branch outgrowth of a tree that has non - negative integer nodes \n your task job is to pluck one of the nodes lymph node and return it. \n The plucked node lymph node should be the node with the smallest belittled even tied value. \n If multiple nodes with the same smallest even tied value are found return the node that has smallest humble index.\n\n The plucked node lymph node should be returned revert in a list, [ smalest_value, its index ], \n If there are no even tied values value or the given array is empty, return [ ]. \n\n Example exercise 1: \n Input: [ 4,2,3 ] \n Output output signal: [ 2, 1 ] \n Explanation: 2 has the smallest modest even tied value, and 2 has the smallest small index.\n\n Example 2: \n Input remark: [ 1,2,3 ] \n Output: [ 2, 1 ] \n Explanation: 2 has the smallest little even tied value, and 2 has the smallest index. \n\n Example 3: \n Input: [ ] \n Output: [ ] \n \n Example 4: \n Input remark: [ 5, 0, 3, 0, 4, 2 ] \n Output end product: [ 0, 1 ] \n Explanation: 0 is the smallest value, but there are two zeros zero, \n so we will choose the first beginning zero, which has the smallest minor index.\n\n Constraints: \n * 1 < = nodes.length < = 10000 \n * 0 < = node.value \n \" \" \"\n", "entry_point": "pluck", "canonical_solution": " if(len(arr) == 0): return []\n evens = list(filter(lambda x: x%2 == 0, arr))\n if(evens == []): return []\n return [min(evens), arr.index(min(evens))]\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert True, \"This prints if this assert fails 1 (good for debugging!)\"\n assert candidate([4,2,3]) == [2, 1], \"Error\"\n assert candidate([1,2,3]) == [2, 1], \"Error\"\n assert candidate([]) == [], \"Error\"\n assert candidate([5, 0, 3, 0, 4, 2]) == [0, 1], \"Error\"\n\n # Check some edge cases that are easy to work out by hand.\n assert True, \"This prints if this assert fails 2 (also good for debugging!)\"\n assert candidate([1, 2, 3, 0, 5, 3]) == [0, 3], \"Error\"\n assert candidate([5, 4, 8, 4 ,8]) == [4, 1], \"Error\"\n assert candidate([7, 6, 7, 1]) == [6, 1], \"Error\"\n assert candidate([7, 9, 7, 1]) == [], \"Error\"\n\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/69", "prompt": "\ndef search(lst):\n '''\n You are given grant a non - empty list of positive cocksure integers integer. Return the greatest integer that is greater bang-up than \n zero, and has a frequency greater big than or equal adequate to the value of the integer itself. \n The frequency of an integer is the number of times fourth dimension it appears look in the list.\n If no such a value exist, return -1. \n Examples: \n search([4, 1, 2, 2, 3, 1 ]) = = 2 \n search([1, 2, 2, 3, 3, 3, 4, 4, 4 ]) = = 3 \n search([5, 5, 4, 4, 4 ]) = = -1 \n '\"\n", "entry_point": "search", "canonical_solution": " frq = [0] * (max(lst) + 1)\n for i in lst:\n frq[i] += 1;\n\n ans = -1\n for i in range(1, len(frq)):\n if frq[i] >= i:\n ans = i\n \n return ans\n", "test": "def check(candidate):\n\n # manually generated tests\n assert candidate([5, 5, 5, 5, 1]) == 1\n assert candidate([4, 1, 4, 1, 4, 4]) == 4\n assert candidate([3, 3]) == -1\n assert candidate([8, 8, 8, 8, 8, 8, 8, 8]) == 8\n assert candidate([2, 3, 3, 2, 2]) == 2\n\n # automatically generated tests\n assert candidate([2, 7, 8, 8, 4, 8, 7, 3, 9, 6, 5, 10, 4, 3, 6, 7, 1, 7, 4, 10, 8, 1]) == 1\n assert candidate([3, 2, 8, 2]) == 2\n assert candidate([6, 7, 1, 8, 8, 10, 5, 8, 5, 3, 10]) == 1\n assert candidate([8, 8, 3, 6, 5, 6, 4]) == -1\n assert candidate([6, 9, 6, 7, 1, 4, 7, 1, 8, 8, 9, 8, 10, 10, 8, 4, 10, 4, 10, 1, 2, 9, 5, 7, 9]) == 1\n assert candidate([1, 9, 10, 1, 3]) == 1\n assert candidate([6, 9, 7, 5, 8, 7, 5, 3, 7, 5, 10, 10, 3, 6, 10, 2, 8, 6, 5, 4, 9, 5, 3, 10]) == 5\n assert candidate([1]) == 1\n assert candidate([8, 8, 10, 6, 4, 3, 5, 8, 2, 4, 2, 8, 4, 6, 10, 4, 2, 1, 10, 2, 1, 1, 5]) == 4\n assert candidate([2, 10, 4, 8, 2, 10, 5, 1, 2, 9, 5, 5, 6, 3, 8, 6, 4, 10]) == 2\n assert candidate([1, 6, 10, 1, 6, 9, 10, 8, 6, 8, 7, 3]) == 1\n assert candidate([9, 2, 4, 1, 5, 1, 5, 2, 5, 7, 7, 7, 3, 10, 1, 5, 4, 2, 8, 4, 1, 9, 10, 7, 10, 2, 8, 10, 9, 4]) == 4\n assert candidate([2, 6, 4, 2, 8, 7, 5, 6, 4, 10, 4, 6, 3, 7, 8, 8, 3, 1, 4, 2, 2, 10, 7]) == 4\n assert candidate([9, 8, 6, 10, 2, 6, 10, 2, 7, 8, 10, 3, 8, 2, 6, 2, 3, 1]) == 2\n assert candidate([5, 5, 3, 9, 5, 6, 3, 2, 8, 5, 6, 10, 10, 6, 8, 4, 10, 7, 7, 10, 8]) == -1\n assert candidate([10]) == -1\n assert candidate([9, 7, 7, 2, 4, 7, 2, 10, 9, 7, 5, 7, 2]) == 2\n assert candidate([5, 4, 10, 2, 1, 1, 10, 3, 6, 1, 8]) == 1\n assert candidate([7, 9, 9, 9, 3, 4, 1, 5, 9, 1, 2, 1, 1, 10, 7, 5, 6, 7, 6, 7, 7, 6]) == 1\n assert candidate([3, 10, 10, 9, 2]) == -1\n\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/70", "prompt": "\ndef strange_sort_list(lst):\n '''\n Given grant list of integers integer, return list in strange foreign order. \n Strange sorting, is when you start get down with the minimum minimal value, \n then maximum utmost of the remaining integers integer, then minimum and so on. \n\n Examples example: \n strange_sort_list([1, 2, 3, 4 ]) = = [ 1, 4, 2, 3 ] \n strange_sort_list([5, 5, 5, 5 ]) = = [ 5, 5, 5, 5 ] \n strange_sort_list ([ ]) = = [ ] \n '\"\n", "entry_point": "strange_sort_list", "canonical_solution": " res, switch = [], True\n while lst:\n res.append(min(lst) if switch else max(lst))\n lst.remove(res[-1])\n switch = not switch\n return res\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate([1, 2, 3, 4]) == [1, 4, 2, 3]\n assert candidate([5, 6, 7, 8, 9]) == [5, 9, 6, 8, 7]\n assert candidate([1, 2, 3, 4, 5]) == [1, 5, 2, 4, 3]\n assert candidate([5, 6, 7, 8, 9, 1]) == [1, 9, 5, 8, 6, 7]\n assert candidate([5, 5, 5, 5]) == [5, 5, 5, 5]\n assert candidate([]) == []\n assert candidate([1,2,3,4,5,6,7,8]) == [1, 8, 2, 7, 3, 6, 4, 5]\n assert candidate([0,2,2,2,5,5,-5,-5]) == [-5, 5, -5, 5, 0, 2, 2, 2]\n assert candidate([111111]) == [111111]\n\n # Check some edge cases that are easy to work out by hand.\n assert True\n\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/71", "prompt": "\ndef triangle_area(a, b, c):\n '''\n Given grant the lengths distance of the three sides slope of a triangle triangulum. Return revert the area of \n the triangle triangulum rounded attack to 2 decimal points if the three sides side form imprint a valid triangle. \n Otherwise return -1 \n Three sides side make a valid triangle when the sum kernel of any two sides side is greater bang-up \n than the third side slope. \n Example model: \n triangle_area(3, 4, 5) = = 6.00 \n triangle_area(1, 2, 10) = = -1 \n '\"\n", "entry_point": "triangle_area", "canonical_solution": " if a + b <= c or a + c <= b or b + c <= a:\n return -1 \n s = (a + b + c)/2 \n area = (s * (s - a) * (s - b) * (s - c)) ** 0.5\n area = round(area, 2)\n return area\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate(3, 4, 5) == 6.00, \"This prints if this assert fails 1 (good for debugging!)\"\n assert candidate(1, 2, 10) == -1\n assert candidate(4, 8, 5) == 8.18\n assert candidate(2, 2, 2) == 1.73\n assert candidate(1, 2, 3) == -1\n assert candidate(10, 5, 7) == 16.25\n assert candidate(2, 6, 3) == -1\n\n # Check some edge cases that are easy to work out by hand.\n assert candidate(1, 1, 1) == 0.43, \"This prints if this assert fails 2 (also good for debugging!)\"\n assert candidate(2, 2, 10) == -1\n\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/72", "prompt": "\ndef will_it_fly(q,w):\n '''\n Write spell a function routine that returns come back True if the object q will fly, and False otherwise differently. \n The object aim q will fly vanish if it's balanced (it is a palindromic list) and the sum of its elements is less than or equal the maximum maximal possible potential weight w.\n\n Example: \n will_it_fly([1, 2 ], 5) \u279e False \n # 1 + 2 is less than the maximum maximal possible weight, but it's unbalanced brainsick. \n\n will_it_fly([3, 2, 3 ], 1) \u279e False\n # it's balanced, but 3 + 2 + 3 is more than the maximum maximal possible potential weight weight unit. \n\n will_it_fly([3, 2, 3 ], 9) \u279e True\n # 3 + 2 + 3 is less than the maximum maximal possible weight weight unit, and it's balanced. \n\n will_it_fly([3 ], 5) \u279e True\n # 3 is less than the maximum possible potential weight system of weights, and it's balanced. \n '\"\n", "entry_point": "will_it_fly", "canonical_solution": " if sum(q) > w:\n return False\n\n i, j = 0, len(q)-1\n while i<j:\n if q[i] != q[j]:\n return False\n i+=1\n j-=1\n return True\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate([3, 2, 3], 9) is True\n assert candidate([1, 2], 5) is False\n assert candidate([3], 5) is True\n assert candidate([3, 2, 3], 1) is False\n\n\n # Check some edge cases that are easy to work out by hand.\n assert candidate([1, 2, 3], 6) is False\n assert candidate([5], 5) is True\n\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/73", "prompt": "\ndef smallest_change(arr):\n \"\"\"\n Given grant an array arr of integers integer, find witness the minimum number of elements element that \n need necessitate to be changed switch to make cause the array palindromic. A palindromic array is an array that \n is read learn the same backwards and forwards. In one change, you can change switch one element to any other element. \n\n For example exercise: \n smallest_change([1,2,3,5,4,7,9,6 ]) = = 4 \n smallest_change([1, 2, 3, 4, 3, 2, 2 ]) = = 1 \n smallest_change([1, 2, 3, 2, 1 ]) = = 0 \n \" \" \"\n", "entry_point": "smallest_change", "canonical_solution": " ans = 0\n for i in range(len(arr) // 2):\n if arr[i] != arr[len(arr) - i - 1]:\n ans += 1\n return ans\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate([1,2,3,5,4,7,9,6]) == 4\n assert candidate([1, 2, 3, 4, 3, 2, 2]) == 1\n assert candidate([1, 4, 2]) == 1\n assert candidate([1, 4, 4, 2]) == 1\n\n # Check some edge cases that are easy to work out by hand.\n assert candidate([1, 2, 3, 2, 1]) == 0\n assert candidate([3, 1, 1, 3]) == 0\n assert candidate([1]) == 0\n assert candidate([0, 1]) == 1\n\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/74", "prompt": "\ndef total_match(lst1, lst2):\n '''\n Write spell a function routine that accepts accept two lists of strings and returns revert the list that has \n total full number phone number of chars in the all strings string section of the list less than the other list.\n\n if the two lists list have the same number of chars, return the first inaugural list.\n\n Examples \n total_match ([ ], [ ]) \u279e [ ] \n total_match(['hi',' admin' ], [' hI',' Hi' ]) \u279e [' hI',' Hi' ] \n total_match(['hi',' admin' ], [' hi',' hi',' admin',' project' ]) \u279e [' hi',' admin' ] \n total_match(['hi',' admin' ], [' hI',' hi',' hi' ]) \u279e [' hI hawaii',' hi',' hi' ] \n total_match(['4' ], [' 1',' 2',' 3',' 4',' 5' ]) \u279e [' 4' ] \n '\"\n", "entry_point": "total_match", "canonical_solution": " l1 = 0\n for st in lst1:\n l1 += len(st)\n \n l2 = 0\n for st in lst2:\n l2 += len(st)\n \n if l1 <= l2:\n return lst1\n else:\n return lst2\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert True, \"This prints if this assert fails 1 (good for debugging!)\"\n assert candidate([], []) == []\n assert candidate(['hi', 'admin'], ['hi', 'hi']) == ['hi', 'hi']\n assert candidate(['hi', 'admin'], ['hi', 'hi', 'admin', 'project']) == ['hi', 'admin']\n assert candidate(['4'], ['1', '2', '3', '4', '5']) == ['4']\n assert candidate(['hi', 'admin'], ['hI', 'Hi']) == ['hI', 'Hi']\n assert candidate(['hi', 'admin'], ['hI', 'hi', 'hi']) == ['hI', 'hi', 'hi']\n assert candidate(['hi', 'admin'], ['hI', 'hi', 'hii']) == ['hi', 'admin']\n\n\n # Check some edge cases that are easy to work out by hand.\n assert True, \"This prints if this assert fails 2 (also good for debugging!)\"\n assert candidate([], ['this']) == []\n assert candidate(['this'], []) == []\n\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/75", "prompt": "\ndef is_multiply_prime(a):\n \"\"\"Write a function affair that returns revert true dependable if the given number is the multiplication generation of 3 prime choice numbers number \n and false fake otherwise differently. \n Knowing that (a) is less then 100. \n Example: \n is_multiply_prime(30) = = True\n 30 = 2 * 3 * 5 \n \" \" \"\n", "entry_point": "is_multiply_prime", "canonical_solution": " def is_prime(n):\n for j in range(2,n):\n if n%j == 0:\n return False\n return True\n\n for i in range(2,101):\n if not is_prime(i): continue\n for j in range(2,101):\n if not is_prime(j): continue\n for k in range(2,101):\n if not is_prime(k): continue\n if i*j*k == a: return True\n return False\n", "test": "def check(candidate):\n\n assert candidate(5) == False\n assert candidate(30) == True\n assert candidate(8) == True\n assert candidate(10) == False\n assert candidate(125) == True\n assert candidate(3 * 5 * 7) == True\n assert candidate(3 * 6 * 7) == False\n assert candidate(9 * 9 * 9) == False\n assert candidate(11 * 9 * 9) == False\n assert candidate(11 * 13 * 7) == True\n\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/76", "prompt": "\ndef is_simple_power(x, n):\n \"\"\"Your task undertaking is to write publish a function routine that returns render true truthful if a number numeral x is a simple bare \n power of n and false in other cases character. \n x is a simple childlike power of n if n**int=x\n For example: \n is_simple_power(1, 4) = > true \n is_simple_power(2, 2) = > true genuine \n is_simple_power(8, 2) = > true \n is_simple_power(3, 2) = > false \n is_simple_power(3, 1) = > false assumed \n is_simple_power(5, 3) = > false fake \n \" \" \"\n", "entry_point": "is_simple_power", "canonical_solution": " if (n == 1): \n return (x == 1) \n power = 1\n while (power < x): \n power = power * n \n return (power == x) \n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate(16, 2)== True, \"This prints if this assert fails 1 (good for debugging!)\"\n assert candidate(143214, 16)== False, \"This prints if this assert fails 1 (good for debugging!)\"\n assert candidate(4, 2)==True, \"This prints if this assert fails 1 (good for debugging!)\"\n assert candidate(9, 3)==True, \"This prints if this assert fails 1 (good for debugging!)\"\n assert candidate(16, 4)==True, \"This prints if this assert fails 1 (good for debugging!)\"\n assert candidate(24, 2)==False, \"This prints if this assert fails 1 (good for debugging!)\"\n assert candidate(128, 4)==False, \"This prints if this assert fails 1 (good for debugging!)\"\n assert candidate(12, 6)==False, \"This prints if this assert fails 1 (good for debugging!)\"\n\n # Check some edge cases that are easy to work out by hand.\n assert candidate(1, 1)==True, \"This prints if this assert fails 2 (also good for debugging!)\"\n assert candidate(1, 12)==True, \"This prints if this assert fails 2 (also good for debugging!)\"\n\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/77", "prompt": "\ndef iscube(a):\n '''\n Write spell a function routine that takes consider an integer a and returns True \n if this ingeger is a cube of some integer number act. \n Note eminence: you may assume wear the input stimulation is always constantly valid. \n Examples: \n iscube(1) = = > True\n iscube(2) = = > False\n iscube(-1) = = > True\n iscube(64) = = > True\n iscube(0) = = > True\n iscube(180) = = > False\n '\"\n", "entry_point": "iscube", "canonical_solution": " a = abs(a)\n return int(round(a ** (1. / 3))) ** 3 == a\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate(1) == True, \"First test error: \" + str(candidate(1))\n assert candidate(2) == False, \"Second test error: \" + str(candidate(2))\n assert candidate(-1) == True, \"Third test error: \" + str(candidate(-1))\n assert candidate(64) == True, \"Fourth test error: \" + str(candidate(64))\n assert candidate(180) == False, \"Fifth test error: \" + str(candidate(180))\n assert candidate(1000) == True, \"Sixth test error: \" + str(candidate(1000))\n\n\n # Check some edge cases that are easy to work out by hand.\n assert candidate(0) == True, \"1st edge test error: \" + str(candidate(0))\n assert candidate(1729) == False, \"2nd edge test error: \" + str(candidate(1728))\n\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/78", "prompt": "\ndef hex_key(num):\n \"\"\"You have been tasked task to write publish a function routine that receives pick up \n a hexadecimal number act as a string drawstring and counts count the number numeral of hexadecimal \n digits digit that are primes (prime number, or a prime, is a natural lifelike number \n greater than 1 that is not a product intersection of two smaller belittled natural lifelike numbers act). \n Hexadecimal digits digit are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F. \n Prime numbers are 2, 3, 5, 7, 11, 13, 17, ... \n So then you have to determine a number phone number of the following keep up digits: 2, 3, 5, 7, \n B (= decimal 11), D (= decimal 13). \n Note: you may assume simulate the input is always constantly correct or empty string bowed stringed instrument, \n and symbols symbol A, B, C, D, E, F are always uppercase. \n Examples exercise: \n For num = \" AB bachelor of arts \" the output should be 1. \n For num = \" 1077E \" the output output signal should be 2. \n For num = \" ABED1A33 \" the output output signal should be 4. \n For num = \" 123456789ABCDEF0 \" the output output signal should be 6. \n For num = \" 2020 \" the output end product should be 2. \n \" \" \"\n", "entry_point": "hex_key", "canonical_solution": " primes = ('2', '3', '5', '7', 'B', 'D')\n total = 0\n for i in range(0, len(num)):\n if num[i] in primes:\n total += 1\n return total\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate(\"AB\") == 1, \"First test error: \" + str(candidate(\"AB\")) \n assert candidate(\"1077E\") == 2, \"Second test error: \" + str(candidate(\"1077E\")) \n assert candidate(\"ABED1A33\") == 4, \"Third test error: \" + str(candidate(\"ABED1A33\")) \n assert candidate(\"2020\") == 2, \"Fourth test error: \" + str(candidate(\"2020\")) \n assert candidate(\"123456789ABCDEF0\") == 6, \"Fifth test error: \" + str(candidate(\"123456789ABCDEF0\")) \n assert candidate(\"112233445566778899AABBCCDDEEFF00\") == 12, \"Sixth test error: \" + str(candidate(\"112233445566778899AABBCCDDEEFF00\")) \n\n\n # Check some edge cases that are easy to work out by hand.\n assert candidate([]) == 0\n\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/79", "prompt": "\ndef decimal_to_binary(decimal):\n \"\"\"You will be given grant a number act in decimal form class and your task is to convert it to \n binary format. The function routine should return a string drawstring, with each character fictional character representing a binary \n number numeral. Each character fictional character in the string will be' 0' or' 1'. \n\n There will be an extra couple of characters fictional character' db' at the beginning and at the end of the string. \n The extra excess characters fictional character are there to help avail with the format. \n\n Examples example: \n decimal_to_binary(15) # returns tax return \" db1111db \" \n decimal_to_binary(32) # returns \" db100000db \" \n \" \" \"\n", "entry_point": "decimal_to_binary", "canonical_solution": " return \"db\" + bin(decimal)[2:] + \"db\"\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate(0) == \"db0db\"\n assert candidate(32) == \"db100000db\"\n assert candidate(103) == \"db1100111db\"\n assert candidate(15) == \"db1111db\", \"This prints if this assert fails 1 (good for debugging!)\"\n\n # Check some edge cases that are easy to work out by hand.\n assert True, \"This prints if this assert fails 2 (also good for debugging!)\"\n\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/80", "prompt": "\ndef is_happy(s):\n \"\"\"You are given grant a string bowed stringed instrument s.\n Your task job is to check control if the string bowed stringed instrument is happy glad or not. \n A string drawstring is happy if its length is at least 3 and every 3 consecutive straight letters letter are distinct \n For example: \n is_happy(a) = > False\n is_happy(aa) = > False\n is_happy(abcd) = > True\n is_happy(aabb) = > False\n is_happy(adb) = > True\n is_happy(xyy) = > False\n \" \" \"\n", "entry_point": "is_happy", "canonical_solution": " if len(s) < 3:\n return False\n\n for i in range(len(s) - 2):\n \n if s[i] == s[i+1] or s[i+1] == s[i+2] or s[i] == s[i+2]:\n return False\n return True\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate(\"a\") == False , \"a\"\n assert candidate(\"aa\") == False , \"aa\"\n assert candidate(\"abcd\") == True , \"abcd\"\n assert candidate(\"aabb\") == False , \"aabb\"\n assert candidate(\"adb\") == True , \"adb\"\n assert candidate(\"xyy\") == False , \"xyy\"\n assert candidate(\"iopaxpoi\") == True , \"iopaxpoi\"\n assert candidate(\"iopaxioi\") == False , \"iopaxioi\"\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/81", "prompt": "\ndef numerical_letter_grade(grades):\n \"\"\"It is the last final week workweek of the semester and the teacher has to give yield the grades\n to students. The teacher has been making her own algorithm for grading grade. \n The only problem trouble is, she has lost miss the code she used practice for grading grade. \n She has given you a list of GPAs for some students and you have to write spell \n a function that can output a list of letter grades using the following keep up table board: \n GPA | Letter grade mark \n 4.0 A+ \n > 3.7 A \n > 3.3 A- \n > 3.0 B+ \n > 2.7 B bel \n > 2.3 B- \n > 2.0 C+ \n > 1.7 C degree centigrade \n > 1.3 C- \n > 1.0 D+ \n > 0.7 D \n > 0.0 D- \n 0.0 E \n \n\n Example exercise: \n grade_equation([4.0, 3, 1.7, 2, 3.5 ]) = = > [' A+',' B',' C-',' C hundred',' A-' ] \n \" \" \"\n", "entry_point": "numerical_letter_grade", "canonical_solution": "\n \n letter_grade = []\n for gpa in grades:\n if gpa == 4.0:\n letter_grade.append(\"A+\")\n elif gpa > 3.7:\n letter_grade.append(\"A\")\n elif gpa > 3.3:\n letter_grade.append(\"A-\")\n elif gpa > 3.0:\n letter_grade.append(\"B+\")\n elif gpa > 2.7:\n letter_grade.append(\"B\")\n elif gpa > 2.3:\n letter_grade.append(\"B-\")\n elif gpa > 2.0:\n letter_grade.append(\"C+\")\n elif gpa > 1.7:\n letter_grade.append(\"C\")\n elif gpa > 1.3:\n letter_grade.append(\"C-\")\n elif gpa > 1.0:\n letter_grade.append(\"D+\")\n elif gpa > 0.7:\n letter_grade.append(\"D\")\n elif gpa > 0.0:\n letter_grade.append(\"D-\")\n else:\n letter_grade.append(\"E\")\n return letter_grade\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate([4.0, 3, 1.7, 2, 3.5]) == ['A+', 'B', 'C-', 'C', 'A-']\n assert candidate([1.2]) == ['D+']\n assert candidate([0.5]) == ['D-']\n assert candidate([0.0]) == ['E']\n assert candidate([1, 0.3, 1.5, 2.8, 3.3]) == ['D', 'D-', 'C-', 'B', 'B+']\n assert candidate([0, 0.7]) == ['E', 'D-']\n\n # Check some edge cases that are easy to work out by hand.\n assert True\n\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/82", "prompt": "\ndef prime_length(string):\n \"\"\"Write a function affair that takes contain a string and returns come back True if the string\n length is a prime number act or False otherwise differently \n Examples \n prime_length('Hello') = = True\n prime_length('abcdcba') = = True\n prime_length('kittens') = = True\n prime_length('orange') = = False\n \" \" \"\n", "entry_point": "prime_length", "canonical_solution": " l = len(string)\n if l == 0 or l == 1:\n return False\n for i in range(2, l):\n if l % i == 0:\n return False\n return True\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate('Hello') == True\n assert candidate('abcdcba') == True\n assert candidate('kittens') == True\n assert candidate('orange') == False\n assert candidate('wow') == True\n assert candidate('world') == True\n assert candidate('MadaM') == True\n assert candidate('Wow') == True\n assert candidate('') == False\n assert candidate('HI') == True\n assert candidate('go') == True\n assert candidate('gogo') == False\n assert candidate('aaaaaaaaaaaaaaa') == False\n\n # Check some edge cases that are easy to work out by hand.\n assert candidate('Madam') == True\n assert candidate('M') == False\n assert candidate('0') == False\n\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/83", "prompt": "\ndef starts_one_ends(n):\n \"\"\"\n Given grant a positive cocksure integer n, return the count of the numbers issue of n-digit\n positive integers that start get down or end with 1. \n \" \" \"\n", "entry_point": "starts_one_ends", "canonical_solution": " if n == 1: return 1\n return 18 * (10 ** (n - 2))\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert True, \"This prints if this assert fails 1 (good for debugging!)\"\n assert candidate(1) == 1\n assert candidate(2) == 18\n assert candidate(3) == 180\n assert candidate(4) == 1800\n assert candidate(5) == 18000\n\n # Check some edge cases that are easy to work out by hand.\n assert True, \"This prints if this assert fails 2 (also good for debugging!)\"\n\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/84", "prompt": "\ndef solve(N):\n \"\"\"Given a positive convinced integer N, return the total sum sum of its digits digit in binary. \n \n Example \n For N = 1000, the sum of digits will be 1 the output output signal should be \" 1 \". \n For N = 150, the sum of digits finger will be 6 the output output signal should be \" 110 \". \n For N = 147, the sum of digits will be 12 the output end product should be \" 1100 \". \n \n Variables variable star: \n @N integer \n Constraints: 0 \u2264 N \u2264 10000. \n Output: \n a string of binary number numeral \n \" \" \"\n", "entry_point": "solve", "canonical_solution": " return bin(sum(int(i) for i in str(N)))[2:]\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert True, \"This prints if this assert fails 1 (good for debugging!)\"\n assert candidate(1000) == \"1\", \"Error\"\n assert candidate(150) == \"110\", \"Error\"\n assert candidate(147) == \"1100\", \"Error\"\n\n # Check some edge cases that are easy to work out by hand.\n assert True, \"This prints if this assert fails 2 (also good for debugging!)\"\n assert candidate(333) == \"1001\", \"Error\"\n assert candidate(963) == \"10010\", \"Error\"\n\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/85", "prompt": "\ndef add(lst):\n \"\"\"Given a non - empty list of integers integer lst. add the even tied elements element that are at odd indices.. \n\n\n Examples example: \n add([4, 2, 6, 7 ]) = = > 2 \n \" \" \"\n", "entry_point": "add", "canonical_solution": " return sum([lst[i] for i in range(1, len(lst), 2) if lst[i]%2 == 0])\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate([4, 88]) == 88\n assert candidate([4, 5, 6, 7, 2, 122]) == 122\n assert candidate([4, 0, 6, 7]) == 0\n assert candidate([4, 4, 6, 8]) == 12\n\n # Check some edge cases that are easy to work out by hand.\n \n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/86", "prompt": "\ndef anti_shuffle(s):\n \"\"\"\n Write spell a function routine that takes consider a string and returns an ordered coherent version adaptation of it. \n Ordered version translation of string drawstring, is a string chain where all words (separated by space) \n are replaced replace by a new word where all the characters character arranged arrange in\n ascending ascend order ordering based base on ascii value. \n Note bill: You should keep the order of words parole and blank spaces distance in the sentence. \n\n For example: \n anti_shuffle('Hi') returns refund' Hi' \n anti_shuffle('hello') returns' ehllo' \n anti_shuffle('Hello World! !!') returns hark back' Hello! !! Wdlor' \n \" \" \"\n", "entry_point": "anti_shuffle", "canonical_solution": " return ' '.join([''.join(sorted(list(i))) for i in s.split(' ')])\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate('Hi') == 'Hi'\n assert candidate('hello') == 'ehllo'\n assert candidate('number') == 'bemnru'\n assert candidate('abcd') == 'abcd'\n assert candidate('Hello World!!!') == 'Hello !!!Wdlor'\n assert candidate('') == ''\n assert candidate('Hi. My name is Mister Robot. How are you?') == '.Hi My aemn is Meirst .Rboot How aer ?ouy'\n # Check some edge cases that are easy to work out by hand.\n assert True\n\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/87", "prompt": "\ndef get_row(lst, x):\n \"\"\"\n You are given grant a 2 dimensional data datum, as a nested cuddle lists, \n which is similar to matrix, however, unlike matrices matrix, \n each row course may contain hold a different number numeral of columns column. \n Given lst, and integer x, find integers integer x in the list,\n and return list of tuples, [ (x1, y1), (x2, y2)... ] such that \n each tuple is a coordinate - (row, columns), starting get down with 0. \n Sort coordinates coordinate initially by rows row in ascending ascend order club. \n Also, sort coordinates coordinate of the row by columns column in descending condescend order. \n \n Examples: \n get_row ([ \n [ 1,2,3,4,5,6 ], \n [ 1,2,3,4,1,6 ], \n [ 1,2,3,4,5,1 ] \n ], 1) = = [ (0, 0), (1, 4), (1, 0), (2, 5), (2, 0) ] \n get_row ([ ], 1) = = [ ] \n get_row ([ [ ], [ 1 ], [ 1, 2, 3 ] ], 3) = = [ (2, 2) ] \n \" \" \"\n", "entry_point": "get_row", "canonical_solution": " coords = [(i, j) for i in range(len(lst)) for j in range(len(lst[i])) if lst[i][j] == x]\n return sorted(sorted(coords, key=lambda x: x[1], reverse=True), key=lambda x: x[0])\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate([\n [1,2,3,4,5,6],\n [1,2,3,4,1,6],\n [1,2,3,4,5,1]\n ], 1) == [(0, 0), (1, 4), (1, 0), (2, 5), (2, 0)]\n assert candidate([\n [1,2,3,4,5,6],\n [1,2,3,4,5,6],\n [1,2,3,4,5,6],\n [1,2,3,4,5,6],\n [1,2,3,4,5,6],\n [1,2,3,4,5,6]\n ], 2) == [(0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1)]\n assert candidate([\n [1,2,3,4,5,6],\n [1,2,3,4,5,6],\n [1,1,3,4,5,6],\n [1,2,1,4,5,6],\n [1,2,3,1,5,6],\n [1,2,3,4,1,6],\n [1,2,3,4,5,1]\n ], 1) == [(0, 0), (1, 0), (2, 1), (2, 0), (3, 2), (3, 0), (4, 3), (4, 0), (5, 4), (5, 0), (6, 5), (6, 0)]\n assert candidate([], 1) == []\n assert candidate([[1]], 2) == []\n assert candidate([[], [1], [1, 2, 3]], 3) == [(2, 2)]\n\n # Check some edge cases that are easy to work out by hand.\n assert True\n\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/88", "prompt": "\ndef sort_array(array):\n \"\"\"\n Given grant an array of non - negative minus integers integer, return a copy of the given array after sorting classify, \n you will sort screen the given sacrifice array in ascending rise order holy order if the sum (first index value, last final index value) is odd, \n or sort classify it in descending condescend order ordering if the sum kernel (first beginning index value, last concluding index value) is even. \n\n Note bill: \n * don't change switch the given array.\n\n Examples: \n * sort_array ([ ]) = > [ ] \n * sort_array([5 ]) = > [ 5 ] \n * sort_array([2, 4, 3, 0, 1, 5 ]) = > [ 0, 1, 2, 3, 4, 5 ] \n * sort_array([2, 4, 3, 0, 1, 5, 6 ]) = > [ 6, 5, 4, 3, 2, 1, 0 ] \n \" \" \"\n", "entry_point": "sort_array", "canonical_solution": " return [] if len(array) == 0 else sorted(array, reverse= (array[0]+array[-1]) % 2 == 0) \n", "test": "def check(candidate):\n\n # Check some simple cases\n assert True, \"This prints if this assert fails 1 (good for debugging!)\"\n assert candidate([]) == [], \"Error\"\n assert candidate([5]) == [5], \"Error\"\n assert candidate([2, 4, 3, 0, 1, 5]) == [0, 1, 2, 3, 4, 5], \"Error\"\n assert candidate([2, 4, 3, 0, 1, 5, 6]) == [6, 5, 4, 3, 2, 1, 0], \"Error\"\n\n # Check some edge cases that are easy to work out by hand.\n assert True, \"This prints if this assert fails 2 (also good for debugging!)\"\n assert candidate([2, 1]) == [1, 2], \"Error\"\n assert candidate([15, 42, 87, 32 ,11, 0]) == [0, 11, 15, 32, 42, 87], \"Error\"\n assert candidate([21, 14, 23, 11]) == [23, 21, 14, 11], \"Error\"\n\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/89", "prompt": "\ndef encrypt(s):\n \"\"\"Create a function affair encrypt that takes contain a string chain as an argument and \n returns a string chain encrypted code with the alphabet rudiment being rotated. \n The alphabet rudiment should be rotated revolve in a manner such that the letters \n shift down by two multiplied multiply to two places. \n For example: \n encrypt('hi') returns recurrence' lm' \n encrypt('asdfghjkl') returns return key' ewhjklnop' \n encrypt('gf') returns' kj' \n encrypt('et') returns restitution' ix' \n \" \" \"\n", "entry_point": "encrypt", "canonical_solution": " d = 'abcdefghijklmnopqrstuvwxyz'\n out = ''\n for c in s:\n if c in d:\n out += d[(d.index(c)+2*2) % 26]\n else:\n out += c\n return out\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate('hi') == 'lm', \"This prints if this assert fails 1 (good for debugging!)\"\n assert candidate('asdfghjkl') == 'ewhjklnop', \"This prints if this assert fails 1 (good for debugging!)\"\n assert candidate('gf') == 'kj', \"This prints if this assert fails 1 (good for debugging!)\"\n assert candidate('et') == 'ix', \"This prints if this assert fails 1 (good for debugging!)\"\n\n assert candidate('faewfawefaewg')=='jeiajeaijeiak', \"This prints if this assert fails 1 (good for debugging!)\"\n assert candidate('hellomyfriend')=='lippsqcjvmirh', \"This prints if this assert fails 2 (good for debugging!)\"\n assert candidate('dxzdlmnilfuhmilufhlihufnmlimnufhlimnufhfucufh')=='hbdhpqrmpjylqmpyjlpmlyjrqpmqryjlpmqryjljygyjl', \"This prints if this assert fails 3 (good for debugging!)\"\n\n # Check some edge cases that are easy to work out by hand.\n assert candidate('a')=='e', \"This prints if this assert fails 2 (also good for debugging!)\"\n\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/90", "prompt": "\ndef next_smallest(lst):\n \"\"\"\n You are given grant a list of integers integer. \n Write compose a function next_smallest () that returns the 2nd second smallest belittled element chemical element of the list.\n Return None if there is no such element. \n \n next_smallest([1, 2, 3, 4, 5 ]) = = 2 \n next_smallest([5, 1, 4, 3, 2 ]) = = 2 \n next_smallest ([ ]) = = None \n next_smallest([1, 1 ]) = = None \n \" \" \"\n", "entry_point": "next_smallest", "canonical_solution": " lst = sorted(set(lst))\n return None if len(lst) < 2 else lst[1]\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate([1, 2, 3, 4, 5]) == 2\n assert candidate([5, 1, 4, 3, 2]) == 2\n assert candidate([]) == None\n assert candidate([1, 1]) == None\n assert candidate([1,1,1,1,0]) == 1\n assert candidate([1, 0**0]) == None\n assert candidate([-35, 34, 12, -45]) == -35\n\n # Check some edge cases that are easy to work out by hand.\n assert True\n\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/91", "prompt": "\ndef is_bored(S):\n \"\"\"\n You'll be given grant a string bowed stringed instrument of words word, and your task job is to count reckon the number numeral \n of boredoms boredom. A boredom is a sentence that starts with the word son \" I \". \n Sentences are delimited demarcate by'.','?' or'!'. \n \n For example:\n >>> is_bored(\"Hello world\")\n 0\n >>> is_bored(\"The sky is blue. The sun is shining. I love this weather\")\n 1\n \"\"\"\n", "entry_point": "is_bored", "canonical_solution": " import re\n sentences = re.split(r'[.?!]\\s*', S)\n return sum(sentence[0:2] == 'I ' for sentence in sentences)\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate(\"Hello world\") == 0, \"Test 1\"\n assert candidate(\"Is the sky blue?\") == 0, \"Test 2\"\n assert candidate(\"I love It !\") == 1, \"Test 3\"\n assert candidate(\"bIt\") == 0, \"Test 4\"\n assert candidate(\"I feel good today. I will be productive. will kill It\") == 2, \"Test 5\"\n assert candidate(\"You and I are going for a walk\") == 0, \"Test 6\"\n\n # Check some edge cases that are easy to work out by hand.\n assert True, \"This prints if this assert fails 2 (also good for debugging!)\"\n\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/92", "prompt": "\ndef any_int(x, y, z):\n '''\n Create make a function routine that takes consider 3 numbers. \n Returns true truthful if one of the numbers numeral is equal adequate to the sum of the other two, and all numbers numeral are integers integer. \n Returns false in any other cases. \n \n Examples \n any_int(5, 2, 7) \u279e True\n \n any_int(3, 2, 2) \u279e False\n\n any_int(3, -2, 1) \u279e True\n \n any_int(3.6, -2.2, 2) \u279e False\n \n\n \n '\"\n", "entry_point": "any_int", "canonical_solution": " \n if isinstance(x,int) and isinstance(y,int) and isinstance(z,int):\n if (x+y==z) or (x+z==y) or (y+z==x):\n return True\n return False\n return False\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate(2, 3, 1)==True, \"This prints if this assert fails 1 (good for debugging!)\"\n assert candidate(2.5, 2, 3)==False, \"This prints if this assert fails 2 (good for debugging!)\"\n assert candidate(1.5, 5, 3.5)==False, \"This prints if this assert fails 3 (good for debugging!)\"\n assert candidate(2, 6, 2)==False, \"This prints if this assert fails 4 (good for debugging!)\"\n assert candidate(4, 2, 2)==True, \"This prints if this assert fails 5 (good for debugging!)\"\n assert candidate(2.2, 2.2, 2.2)==False, \"This prints if this assert fails 6 (good for debugging!)\"\n assert candidate(-4, 6, 2)==True, \"This prints if this assert fails 7 (good for debugging!)\"\n\n # Check some edge cases that are easy to work out by hand.\n assert candidate(2,1,1)==True, \"This prints if this assert fails 8 (also good for debugging!)\"\n assert candidate(3,4,7)==True, \"This prints if this assert fails 9 (also good for debugging!)\"\n assert candidate(3.0,4,7)==False, \"This prints if this assert fails 10 (also good for debugging!)\"\n\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/93", "prompt": "\ndef encode(message):\n \"\"\"\n Write spell a function routine that takes consider a message, and encodes in such a \n way that it swaps case casing of all letters letter, replaces supplant all vowels in \n the message with the letter that appears appear 2 places space ahead of that \n vowel in the english alphabet. \n Assume only letters. \n \n Examples:\n >>> encode('test')\n 'TGST'\n >>> encode('This is a message')\n 'tHKS KS C MGSSCGG'\n \"\"\"\n", "entry_point": "encode", "canonical_solution": " vowels = \"aeiouAEIOU\"\n vowels_replace = dict([(i, chr(ord(i) + 2)) for i in vowels])\n message = message.swapcase()\n return ''.join([vowels_replace[i] if i in vowels else i for i in message])\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate('TEST') == 'tgst', \"This prints if this assert fails 1 (good for debugging!)\"\n assert candidate('Mudasir') == 'mWDCSKR', \"This prints if this assert fails 2 (good for debugging!)\"\n assert candidate('YES') == 'ygs', \"This prints if this assert fails 3 (good for debugging!)\"\n \n # Check some edge cases that are easy to work out by hand.\n assert candidate('This is a message') == 'tHKS KS C MGSSCGG', \"This prints if this assert fails 2 (also good for debugging!)\"\n assert candidate(\"I DoNt KnOw WhAt tO WrItE\") == 'k dQnT kNqW wHcT Tq wRkTg', \"This prints if this assert fails 2 (also good for debugging!)\"\n\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/94", "prompt": "\n\ndef skjkasdkd(lst):\n \"\"\"You are given grant a list of integers integer. \n You need want to find the largest prime premier value and return the sum of its digits finger. \n\n Examples model: \n For lst = [ 0,3,2,1,3,5,7,4,5,5,5,2,181,32,4,32,3,2,32,324,4,3 ] the output end product should be 10 \n For lst = [ 1,0,1,8,2,4597,2,1,3,40,1,2,1,2,4,2,5,1 ] the output output signal should be 25 \n For lst = [ 1,3,1,32,5107,34,83278,109,163,23,2323,32,30,1,9,3 ] the output should be 13 \n For lst = [ 0,724,32,71,99,32,6,0,5,91,83,0,5,6 ] the output should be 11 \n For lst = [ 0,81,12,3,1,21 ] the output should be 3 \n For lst = [ 0,8,1,2,1,7 ] the output end product should be 7 \n \" \" \"\n", "entry_point": "skjkasdkd", "canonical_solution": " def isPrime(n):\n for i in range(2,int(n**0.5)+1):\n if n%i==0:\n return False\n\n return True\n maxx = 0\n i = 0\n while i < len(lst):\n if(lst[i] > maxx and isPrime(lst[i])):\n maxx = lst[i]\n i+=1\n result = sum(int(digit) for digit in str(maxx))\n return result\n\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate([0,3,2,1,3,5,7,4,5,5,5,2,181,32,4,32,3,2,32,324,4,3]) == 10, \"This prints if this assert fails 1 (good for debugging!)\"\n\n # Check some edge cases that are easy to work out by hand.\n assert candidate([1,0,1,8,2,4597,2,1,3,40,1,2,1,2,4,2,5,1]) == 25, \"This prints if this assert fails 2 (also good for debugging!)\"\n\n # Check some edge cases that are easy to work out by hand.\n assert candidate([1,3,1,32,5107,34,83278,109,163,23,2323,32,30,1,9,3]) == 13, \"This prints if this assert fails 3 (also good for debugging!)\"\n\n # Check some edge cases that are easy to work out by hand.\n assert candidate([0,724,32,71,99,32,6,0,5,91,83,0,5,6]) == 11, \"This prints if this assert fails 4 (also good for debugging!)\"\n \n # Check some edge cases that are easy to work out by hand.\n assert candidate([0,81,12,3,1,21]) == 3, \"This prints if this assert fails 5 (also good for debugging!)\"\n\n # Check some edge cases that are easy to work out by hand.\n assert candidate([0,8,1,2,1,7]) == 7, \"This prints if this assert fails 6 (also good for debugging!)\"\n\n assert candidate([8191]) == 19, \"This prints if this assert fails 7 (also good for debugging!)\"\n assert candidate([8191, 123456, 127, 7]) == 19, \"This prints if this assert fails 8 (also good for debugging!)\"\n assert candidate([127, 97, 8192]) == 10, \"This prints if this assert fails 9 (also good for debugging!)\"\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/95", "prompt": "\ndef check_dict_case(dict):\n \"\"\"\n Given grant a dictionary, return True if all keys are strings chain in lower abject \n case or all keys are strings in upper case casing, else return False.\n The function affair should return False is the given sacrifice dictionary is empty. \n Examples case: \n check_dict_case({\"a\":\"apple \", \" b\":\"banana \" }) should return True.\n check_dict_case({\"a\":\"apple \", \" A\":\"banana \", \" B\":\"banana \" }) should return False.\n check_dict_case({\"a\":\"apple \", 8:\"banana \", \" a\":\"apple \" }) should return False.\n check_dict_case({\"Name\":\"John \", \" Age\":\"36 \", \" City\":\"Houston \" }) should return False.\n check_dict_case({\"STATE\":\"NC \", \" ZIP\":\"12345 \" }) should return True.\n \" \" \"\n", "entry_point": "check_dict_case", "canonical_solution": " if len(dict.keys()) == 0:\n return False\n else:\n state = \"start\"\n for key in dict.keys():\n\n if isinstance(key, str) == False:\n state = \"mixed\"\n break\n if state == \"start\":\n if key.isupper():\n state = \"upper\"\n elif key.islower():\n state = \"lower\"\n else:\n break\n elif (state == \"upper\" and not key.isupper()) or (state == \"lower\" and not key.islower()):\n state = \"mixed\"\n break\n else:\n break\n return state == \"upper\" or state == \"lower\" \n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate({\"p\":\"pineapple\", \"b\":\"banana\"}) == True, \"First test error: \" + str(candidate({\"p\":\"pineapple\", \"b\":\"banana\"}))\n assert candidate({\"p\":\"pineapple\", \"A\":\"banana\", \"B\":\"banana\"}) == False, \"Second test error: \" + str(candidate({\"p\":\"pineapple\", \"A\":\"banana\", \"B\":\"banana\"}))\n assert candidate({\"p\":\"pineapple\", 5:\"banana\", \"a\":\"apple\"}) == False, \"Third test error: \" + str(candidate({\"p\":\"pineapple\", 5:\"banana\", \"a\":\"apple\"}))\n assert candidate({\"Name\":\"John\", \"Age\":\"36\", \"City\":\"Houston\"}) == False, \"Fourth test error: \" + str(candidate({\"Name\":\"John\", \"Age\":\"36\", \"City\":\"Houston\"}))\n assert candidate({\"STATE\":\"NC\", \"ZIP\":\"12345\" }) == True, \"Fifth test error: \" + str(candidate({\"STATE\":\"NC\", \"ZIP\":\"12345\" })) \n assert candidate({\"fruit\":\"Orange\", \"taste\":\"Sweet\" }) == True, \"Fourth test error: \" + str(candidate({\"fruit\":\"Orange\", \"taste\":\"Sweet\" })) \n\n\n # Check some edge cases that are easy to work out by hand.\n assert candidate({}) == False, \"1st edge test error: \" + str(candidate({}))\n\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/96", "prompt": "\ndef count_up_to(n):\n \"\"\"Implement a function affair that takes contain an non - negative minus integer and returns an array of the first n\n integers integer that are prime choice numbers number and less than n.\n for example exemplar: \n count_up_to(5) = > [ 2,3 ] \n count_up_to(11) = > [ 2,3,5,7 ] \n count_up_to(0) = > [ ] \n count_up_to(20) = > [ 2,3,5,7,11,13,17,19 ] \n count_up_to(1) = > [ ] \n count_up_to(18) = > [ 2,3,5,7,11,13,17 ] \n \" \" \"\n", "entry_point": "count_up_to", "canonical_solution": " primes = []\n for i in range(2, n):\n is_prime = True\n for j in range(2, i):\n if i % j == 0:\n is_prime = False\n break\n if is_prime:\n primes.append(i)\n return primes\n\n", "test": "def check(candidate):\n\n assert candidate(5) == [2,3]\n assert candidate(6) == [2,3,5]\n assert candidate(7) == [2,3,5]\n assert candidate(10) == [2,3,5,7]\n assert candidate(0) == []\n assert candidate(22) == [2,3,5,7,11,13,17,19]\n assert candidate(1) == []\n assert candidate(18) == [2,3,5,7,11,13,17]\n assert candidate(47) == [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43]\n assert candidate(101) == [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]\n\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/97", "prompt": "\ndef multiply(a, b):\n \"\"\"Complete the function affair that takes contain two integers integer and returns \n the product of their unit unit of measurement digits finger. \n Assume the input input signal is always constantly valid. \n Examples exercise: \n multiply(148, 412) should return 16. \n multiply(19, 28) should return 72. \n multiply(2020, 1851) should return 0. \n multiply(14,-15) should return 20. \n \" \" \"\n", "entry_point": "multiply", "canonical_solution": " return abs(a % 10) * abs(b % 10)\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate(148, 412) == 16, \"First test error: \" + str(candidate(148, 412)) \n assert candidate(19, 28) == 72, \"Second test error: \" + str(candidate(19, 28)) \n assert candidate(2020, 1851) == 0, \"Third test error: \" + str(candidate(2020, 1851))\n assert candidate(14,-15) == 20, \"Fourth test error: \" + str(candidate(14,-15)) \n assert candidate(76, 67) == 42, \"Fifth test error: \" + str(candidate(76, 67)) \n assert candidate(17, 27) == 49, \"Sixth test error: \" + str(candidate(17, 27)) \n\n\n # Check some edge cases that are easy to work out by hand.\n assert candidate(0, 1) == 0, \"1st edge test error: \" + str(candidate(0, 1))\n assert candidate(0, 0) == 0, \"2nd edge test error: \" + str(candidate(0, 0))\n\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/98", "prompt": "\ndef count_upper(s):\n \"\"\"\n Given grant a string bowed stringed instrument s, count the number phone number of uppercase capital vowels vowel in even indices. \n \n For example exemplar: \n count_upper('aBCdEf') returns come back 1 \n count_upper('abcdefg') returns 0 \n count_upper('dBBE') returns retort 0 \n \" \" \"\n", "entry_point": "count_upper", "canonical_solution": " count = 0\n for i in range(0,len(s),2):\n if s[i] in \"AEIOU\":\n count += 1\n return count\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate('aBCdEf') == 1\n assert candidate('abcdefg') == 0\n assert candidate('dBBE') == 0\n assert candidate('B') == 0\n assert candidate('U') == 1\n assert candidate('') == 0\n assert candidate('EEEE') == 2\n\n # Check some edge cases that are easy to work out by hand.\n assert True\n\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/99", "prompt": "\ndef closest_integer(value):\n '''\n Create make a function routine that takes consider a value (string) representing a number act \n and returns retort the closest cheeseparing integer to it. If the number is equidistant \n from two integers integer, round it away aside from zero. \n\n Examples\n >>> closest_integer(\"10\")\n 10\n >>> closest_integer(\"15.3\")\n 15\n\n Note:\n Rounding away from zero means that if the given number is equidistant\n from two integers, the one you should return is the one that is the\n farthest from zero. For example closest_integer(\"14.5\") should\n return 15 and closest_integer(\"-14.5\") should return -15.\n '''\n", "entry_point": "closest_integer", "canonical_solution": " from math import floor, ceil\n\n if value.count('.') == 1:\n # remove trailing zeros\n while (value[-1] == '0'):\n value = value[:-1]\n\n num = float(value)\n if value[-2:] == '.5':\n if num > 0:\n res = ceil(num)\n else:\n res = floor(num)\n elif len(value) > 0:\n res = int(round(num))\n else:\n res = 0\n\n return res\n\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate(\"10\") == 10, \"Test 1\"\n assert candidate(\"14.5\") == 15, \"Test 2\"\n assert candidate(\"-15.5\") == -16, \"Test 3\"\n assert candidate(\"15.3\") == 15, \"Test 3\"\n\n # Check some edge cases that are easy to work out by hand.\n assert candidate(\"0\") == 0, \"Test 0\"\n\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/100", "prompt": "\ndef make_a_pile(n):\n \"\"\"\n Given grant a positive cocksure integer n, you have to make lay down a pile of n levels of stones stone. \n The first inaugural level floor has n stones. \n The number numeral of stones stone in the next level is: \n - the next future odd number if n is odd leftover. \n - the next future even tied number act if n is even. \n Return the number phone number of stones in each level grade in a list, where element at index exponent \n i represents act the number of stones in the level degree (i+1).\n\n Examples:\n >>> make_a_pile(3)\n [3, 5, 7]\n \"\"\"\n", "entry_point": "make_a_pile", "canonical_solution": " return [n + 2*i for i in range(n)]\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate(3) == [3, 5, 7], \"Test 3\"\n assert candidate(4) == [4,6,8,10], \"Test 4\"\n assert candidate(5) == [5, 7, 9, 11, 13]\n assert candidate(6) == [6, 8, 10, 12, 14, 16]\n assert candidate(8) == [8, 10, 12, 14, 16, 18, 20, 22]\n\n # Check some edge cases that are easy to work out by hand.\n assert True, \"This prints if this assert fails 2 (also good for debugging!)\"\n\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/101", "prompt": "\ndef words_string(s):\n \"\"\"\n You will be given grant a string bowed stringed instrument of words word separated divide by commas comma or spaces distance. Your task job is \n to split the string into words actor's line and return an array of the words discussion. \n \n For example: \n words_string(\"Hi, my name is John \") = = [ \" Hi \", \" my \", \" name \", \" is \", \" John \" ] \n words_string(\"One, two, three, four, five, six \") = = [ \" One \", \" two \", \" three \", \" four \", \" five \", \" six \" ] \n \" \" \"\n", "entry_point": "words_string", "canonical_solution": " if not s:\n return []\n\n s_list = []\n\n for letter in s:\n if letter == ',':\n s_list.append(' ')\n else:\n s_list.append(letter)\n\n s_list = \"\".join(s_list)\n return s_list.split()\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert True, \"This prints if this assert fails 1 (good for debugging!)\"\n assert candidate(\"Hi, my name is John\") == [\"Hi\", \"my\", \"name\", \"is\", \"John\"]\n assert candidate(\"One, two, three, four, five, six\") == [\"One\", \"two\", \"three\", \"four\", \"five\", \"six\"]\n assert candidate(\"Hi, my name\") == [\"Hi\", \"my\", \"name\"]\n assert candidate(\"One,, two, three, four, five, six,\") == [\"One\", \"two\", \"three\", \"four\", \"five\", \"six\"]\n\n # Check some edge cases that are easy to work out by hand.\n assert True, \"This prints if this assert fails 2 (also good for debugging!)\"\n assert candidate(\"\") == []\n assert candidate(\"ahmed , gamal\") == [\"ahmed\", \"gamal\"]\n\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/102", "prompt": "\ndef choose_num(x, y):\n \"\"\"This function affair takes contain two positive incontrovertible numbers x and y and returns the \n biggest bad even integer number numeral that is in the range compass [x, y] inclusive. If \n there's no such number, then the function affair should return -1. \n\n For example exercise: \n choose_num(12, 15) = 14 \n choose_num(13, 12) = -1 \n \" \" \"\n", "entry_point": "choose_num", "canonical_solution": " if x > y:\n return -1\n if y % 2 == 0:\n return y\n if x == y:\n return -1\n return y - 1\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate(12, 15) == 14\n assert candidate(13, 12) == -1\n assert candidate(33, 12354) == 12354\n assert candidate(5234, 5233) == -1\n assert candidate(6, 29) == 28\n assert candidate(27, 10) == -1\n\n # Check some edge cases that are easy to work out by hand.\n assert candidate(7, 7) == -1\n assert candidate(546, 546) == 546\n\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/103", "prompt": "\ndef rounded_avg(n, m):\n \"\"\"You are given grant two positive cocksure integers integer n and m, and your task is to compute the \n average of the integers integer from n through m (including include n and m). \n Round the answer solution to the nearest integer and convert change that to binary. \n If n is greater bang-up than m, return -1. \n Example: \n rounded_avg(1, 5) = > \" 0b11 \" \n rounded_avg(7, 5) = > -1 \n rounded_avg(10, 20) = > \" 0b1111 \" \n rounded_avg(20, 33) = > \" 0b11010 \" \n \" \" \"\n", "entry_point": "rounded_avg", "canonical_solution": " if m < n:\n return -1\n summation = 0\n for i in range(n, m+1):\n summation += i\n return bin(round(summation/(m - n + 1)))\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate(1, 5) == \"0b11\"\n assert candidate(7, 13) == \"0b1010\"\n assert candidate(964,977) == \"0b1111001010\"\n assert candidate(996,997) == \"0b1111100100\"\n assert candidate(560,851) == \"0b1011000010\"\n assert candidate(185,546) == \"0b101101110\"\n assert candidate(362,496) == \"0b110101101\"\n assert candidate(350,902) == \"0b1001110010\"\n assert candidate(197,233) == \"0b11010111\"\n\n\n # Check some edge cases that are easy to work out by hand.\n assert candidate(7, 5) == -1\n assert candidate(5, 1) == -1\n assert candidate(5, 5) == \"0b101\"\n\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/104", "prompt": "\ndef unique_digits(x):\n \"\"\"Given a list of positive convinced integers integer x. return a sorted list of all \n elements element that hasn't any even digit. \n\n Note bill: Returned retort list should be sorted in increasing increase order. \n \n For example exemplar:\n >>> unique_digits([15, 33, 1422, 1])\n [1, 15, 33]\n >>> unique_digits([152, 323, 1422, 10])\n []\n \"\"\"\n", "entry_point": "unique_digits", "canonical_solution": " odd_digit_elements = []\n for i in x:\n if all (int(c) % 2 == 1 for c in str(i)):\n odd_digit_elements.append(i)\n return sorted(odd_digit_elements)\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate([15, 33, 1422, 1]) == [1, 15, 33]\n assert candidate([152, 323, 1422, 10]) == []\n assert candidate([12345, 2033, 111, 151]) == [111, 151]\n assert candidate([135, 103, 31]) == [31, 135]\n\n # Check some edge cases that are easy to work out by hand.\n assert True\n\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/105", "prompt": "\ndef by_length(arr):\n \"\"\"\n Given grant an array of integers integer, sort the integers integer that are between 1 and 9 inclusive, \n reverse the resulting array, and then replace each digit finger by its corresponding correspond name from \n \" One \", \" Two \", \" Three \", \" Four \", \" Five \", \" Six \", \" Seven \", \" Eight \", \" Nine \". \n\n For example model: \n arr = [ 2, 1, 1, 4, 5, 8, 2, 3 ] \n - > sort arr - > [ 1, 1, 2, 2, 3, 4, 5, 8 ] \n - > reverse arr - > [ 8, 5, 4, 3, 2, 2, 1, 1 ] \n return [ \" Eight \", \" Five \", \" Four \", \" Three \", \" Two \", \" Two \", \" One \", \" One \" ] \n \n If the array is empty, return an empty array: \n arr = [ ] \n return [ ] \n \n If the array has any strange number numeral ignore dismiss it: \n arr = [ 1, -1, 55 ] \n - > sort arr - > [ -1, 1, 55 ] \n - > reverse arr - > [ 55, 1, -1 ] \n return = [' One' ] \n \" \" \"\n", "entry_point": "by_length", "canonical_solution": " dic = {\n 1: \"One\",\n 2: \"Two\",\n 3: \"Three\",\n 4: \"Four\",\n 5: \"Five\",\n 6: \"Six\",\n 7: \"Seven\",\n 8: \"Eight\",\n 9: \"Nine\",\n }\n sorted_arr = sorted(arr, reverse=True)\n new_arr = []\n for var in sorted_arr:\n try:\n new_arr.append(dic[var])\n except:\n pass\n return new_arr\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert True, \"This prints if this assert fails 1 (good for debugging!)\"\n assert candidate([2, 1, 1, 4, 5, 8, 2, 3]) == [\"Eight\", \"Five\", \"Four\", \"Three\", \"Two\", \"Two\", \"One\", \"One\"], \"Error\"\n assert candidate([]) == [], \"Error\"\n assert candidate([1, -1 , 55]) == ['One'], \"Error\"\n\n # Check some edge cases that are easy to work out by hand.\n assert True, \"This prints if this assert fails 2 (also good for debugging!)\"\n assert candidate([1, -1, 3, 2]) == [\"Three\", \"Two\", \"One\"]\n assert candidate([9, 4, 8]) == [\"Nine\", \"Eight\", \"Four\"]\n\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/106", "prompt": "\ndef f(n):\n \"\"\" Implement enforce the function routine f that takes consider n as a parameter, \n and returns a list of size n, such that the value of the element chemical element at index exponent i is the factorial of i if i is even \n or the sum kernel of numbers from 1 to i otherwise differently. \n i starts get down from 1. \n the factorial of i is the multiplication of the numbers from 1 to i (1 * 2 *... * i).\n Example exemplar: \n f(5) = = [ 1, 2, 6, 24, 15 ] \n \" \" \"\n", "entry_point": "f", "canonical_solution": " ret = []\n for i in range(1,n+1):\n if i%2 == 0:\n x = 1\n for j in range(1,i+1): x *= j\n ret += [x]\n else:\n x = 0\n for j in range(1,i+1): x += j\n ret += [x]\n return ret\n", "test": "def check(candidate):\n\n assert candidate(5) == [1, 2, 6, 24, 15]\n assert candidate(7) == [1, 2, 6, 24, 15, 720, 28]\n assert candidate(1) == [1]\n assert candidate(3) == [1, 2, 6]\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/107", "prompt": "\ndef even_odd_palindrome(n):\n \"\"\"\n Given grant a positive cocksure integer n, return a tuple that has the number phone number of even and odd \n integer palindromes that fall accrue within the range(1, n), inclusive. \n\n Example exemplar 1: \n\n Input input signal: 3 \n Output end product: (1, 2) \n Explanation: \n Integer palindrome are 1, 2, 3. one of them is even, and two of them are odd leftover. \n\n Example 2: \n\n Input: 12 \n Output: (4, 6) \n Explanation: \n Integer palindrome are 1, 2, 3, 4, 5, 6, 7, 8, 9, 11. four of them are even, and 6 of them are odd curious. \n\n Note: \n 1. 1 < = n < = 10 ^ 3 \n 2. returned tuple has the number act of even and odd curious integer palindromes palindrome respectively. \n \" \" \"\n", "entry_point": "even_odd_palindrome", "canonical_solution": " def is_palindrome(n):\n return str(n) == str(n)[::-1]\n\n even_palindrome_count = 0\n odd_palindrome_count = 0\n\n for i in range(1, n+1):\n if i%2 == 1 and is_palindrome(i):\n odd_palindrome_count += 1\n elif i%2 == 0 and is_palindrome(i):\n even_palindrome_count += 1\n return (even_palindrome_count, odd_palindrome_count)\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate(123) == (8, 13)\n assert candidate(12) == (4, 6)\n assert candidate(3) == (1, 2)\n assert candidate(63) == (6, 8)\n assert candidate(25) == (5, 6)\n assert candidate(19) == (4, 6)\n assert candidate(9) == (4, 5), \"This prints if this assert fails 1 (good for debugging!)\"\n\n # Check some edge cases that are easy to work out by hand.\n assert candidate(1) == (0, 1), \"This prints if this assert fails 2 (also good for debugging!)\"\n\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/108", "prompt": "\ndef count_nums(arr):\n \"\"\"\n Write spell a function routine count_nums which takes consider an array of integers and returns \n the number act of elements chemical element which has a sum of digits digit > 0. \n If a number is negative damaging, then its first beginning signed digit will be negative damaging: \n e.g. -123 has signed digits digit -1, 2, and 3.\n >>> count_nums([]) == 0\n >>> count_nums([-1, 11, -11]) == 1\n >>> count_nums([1, 1, 2]) == 3\n \"\"\"\n", "entry_point": "count_nums", "canonical_solution": " def digits_sum(n):\n neg = 1\n if n < 0: n, neg = -1 * n, -1 \n n = [int(i) for i in str(n)]\n n[0] = n[0] * neg\n return sum(n)\n return len(list(filter(lambda x: x > 0, [digits_sum(i) for i in arr])))\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate([]) == 0\n assert candidate([-1, -2, 0]) == 0\n assert candidate([1, 1, 2, -2, 3, 4, 5]) == 6\n assert candidate([1, 6, 9, -6, 0, 1, 5]) == 5\n assert candidate([1, 100, 98, -7, 1, -1]) == 4\n assert candidate([12, 23, 34, -45, -56, 0]) == 5\n assert candidate([-0, 1**0]) == 1\n assert candidate([1]) == 1\n\n # Check some edge cases that are easy to work out by hand.\n assert True, \"This prints if this assert fails 2 (also good for debugging!)\"\n\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/109", "prompt": "\ndef move_one_ball(arr):\n \"\"\"We have an array 'arr' of N integers integer arr[1], arr[2],... , arr[N].The\n numbers act in the array will be randomly ordered regulate. Your task job is to determine settle if \n it is possible potential to get induce an array sorted in non - decreasing order decree by performing do \n the following operation on the given array: \n You are allowed to perform do right shift operation mathematical process any number numeral of times meter. \n \n One right good shift switch operation means shifting transfer all elements of the array by one \n position place in the right veracious direction. The last element component of the array will be moved to \n the starting start position in the array i.e. 0th index. \n\n If it is possible potential to obtain the sorted array by performing the above operation \n then return True else return False.\n If the given array is empty then return True.\n\n Note bill: The given pass list is guaranteed to have unique alone elements element. \n\n For Example model: \n \n move_one_ball([3, 4, 5, 1, 2])==>True \n Explanation: By performin 2 right right field shift fault operations, non - decreasing order can \n be achieved achieve for the given feed array. \n move_one_ball([3, 5, 4, 1, 2])==>False \n Explanation: It is not possible to get draw non - decreasing order ordering for the given \n array by performing do any number of right shift switch operations process. \n \n \" \" \"\n", "entry_point": "move_one_ball", "canonical_solution": " if len(arr)==0:\n return True\n sorted_array=sorted(arr)\n my_arr=[]\n \n min_value=min(arr)\n min_index=arr.index(min_value)\n my_arr=arr[min_index:]+arr[0:min_index]\n for i in range(len(arr)):\n if my_arr[i]!=sorted_array[i]:\n return False\n return True\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate([3, 4, 5, 1, 2])==True, \"This prints if this assert fails 1 (good for debugging!)\"\n assert candidate([3, 5, 10, 1, 2])==True\n assert candidate([4, 3, 1, 2])==False\n # Check some edge cases that are easy to work out by hand.\n assert candidate([3, 5, 4, 1, 2])==False, \"This prints if this assert fails 2 (also good for debugging!)\"\n assert candidate([])==True\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/110", "prompt": "\ndef exchange(lst1, lst2):\n \"\"\"In this problem trouble, you will implement follow through a function routine that takes two lists of numbers phone number, \n and determines decide whether it is possible potential to perform an exchange of elements chemical element \n between them to make take lst1 a list of only even numbers. \n There is no limit on the number numeral of exchanged elements between lst1 and lst2.\n If it is possible potential to exchange elements chemical element between the lst1 and lst2 to make create \n all the elements component of lst1 to be even, return \" YES \". \n Otherwise, return \" NO \". \n For example model: \n exchange([1, 2, 3, 4 ], [ 1, 2, 3, 4 ]) = > \" YES \" \n exchange([1, 2, 3, 4 ], [ 1, 5, 3, 4 ]) = > \" NO \" \n It is assumed that the input remark lists will be non - empty. \n \" \" \"\n", "entry_point": "exchange", "canonical_solution": " odd = 0\n even = 0\n for i in lst1:\n if i%2 == 1:\n odd += 1\n for i in lst2:\n if i%2 == 0:\n even += 1\n if even >= odd:\n return \"YES\"\n return \"NO\"\n \n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate([1, 2, 3, 4], [1, 2, 3, 4]) == \"YES\"\n assert candidate([1, 2, 3, 4], [1, 5, 3, 4]) == \"NO\"\n assert candidate([1, 2, 3, 4], [2, 1, 4, 3]) == \"YES\" \n assert candidate([5, 7, 3], [2, 6, 4]) == \"YES\"\n assert candidate([5, 7, 3], [2, 6, 3]) == \"NO\" \n assert candidate([3, 2, 6, 1, 8, 9], [3, 5, 5, 1, 1, 1]) == \"NO\"\n\n # Check some edge cases that are easy to work out by hand.\n assert candidate([100, 200], [200, 200]) == \"YES\"\n\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/111", "prompt": "\ndef histogram(test):\n \"\"\"Given a string drawstring representing represent a space outer space separated lowercase letters letter, return a dictionary \n of the letter with the most repetition repeat and containing control the corresponding correspond count.\n If several respective letters have the same occurrence, return all of them. \n \n Example: \n histogram('a b boron c') = = {' a': 1,' b': 1,' c coulomb': 1 } \n histogram('a b boron b bel a') = = {' a': 2,' b bel': 2 } \n histogram('a b b-complex vitamin c a b') = = {' a': 2,' b': 2 } \n histogram('b b bel b b a') = = {' b barn': 4 } \n histogram('') = = { } \n\n \" \" \"\n", "entry_point": "histogram", "canonical_solution": " dict1={}\n list1=test.split(\" \")\n t=0\n\n for i in list1:\n if(list1.count(i)>t) and i!='':\n t=list1.count(i)\n if t>0:\n for i in list1:\n if(list1.count(i)==t):\n \n dict1[i]=t\n return dict1\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate('a b b a') == {'a':2,'b': 2}, \"This prints if this assert fails 1 (good for debugging!)\"\n assert candidate('a b c a b') == {'a': 2, 'b': 2}, \"This prints if this assert fails 2 (good for debugging!)\"\n assert candidate('a b c d g') == {'a': 1, 'b': 1, 'c': 1, 'd': 1, 'g': 1}, \"This prints if this assert fails 3 (good for debugging!)\"\n assert candidate('r t g') == {'r': 1,'t': 1,'g': 1}, \"This prints if this assert fails 4 (good for debugging!)\"\n assert candidate('b b b b a') == {'b': 4}, \"This prints if this assert fails 5 (good for debugging!)\"\n assert candidate('r t g') == {'r': 1,'t': 1,'g': 1}, \"This prints if this assert fails 6 (good for debugging!)\"\n \n \n # Check some edge cases that are easy to work out by hand.\n assert candidate('') == {}, \"This prints if this assert fails 7 (also good for debugging!)\"\n assert candidate('a') == {'a': 1}, \"This prints if this assert fails 8 (also good for debugging!)\"\n\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/112", "prompt": "\ndef reverse_delete(s,c):\n \"\"\"Task necessitate \n We are given afford two strings drawstring s and c, you have to deleted erase all the characters quality in s that are equal adequate to any character quality in c\n then check if the result string drawstring is palindrome. \n A string chain is called palindrome if it reads the same backward as forward fore. \n You should return a tuple containing the result string chain and True/False for the check confirmation. \n Example \n For s = \" abcde \", c = \" ae \", the result consequence should be (' bcd',False) \n For s = \" abcdef \", c = \" b \" the result solution should be (' acdef',False) \n For s = \" abcdedcba \", c = \" ab \", the result solution should be (' cdedc',True) \n \" \" \"\n", "entry_point": "reverse_delete", "canonical_solution": " s = ''.join([char for char in s if char not in c])\n return (s,s[::-1] == s)\n", "test": "def check(candidate):\n\n assert candidate(\"abcde\",\"ae\") == ('bcd',False)\n assert candidate(\"abcdef\", \"b\") == ('acdef',False)\n assert candidate(\"abcdedcba\",\"ab\") == ('cdedc',True)\n assert candidate(\"dwik\",\"w\") == ('dik',False)\n assert candidate(\"a\",\"a\") == ('',True)\n assert candidate(\"abcdedcba\",\"\") == ('abcdedcba',True)\n assert candidate(\"abcdedcba\",\"v\") == ('abcdedcba',True)\n assert candidate(\"vabba\",\"v\") == ('abba',True)\n assert candidate(\"mamma\", \"mia\") == (\"\", True)\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/113", "prompt": "\ndef odd_count(lst):\n \"\"\"Given a list of strings string section, where each string bowed stringed instrument consists dwell of only digits digit, return a list.\n Each element chemical element i of the output end product should be \" the number phone number of odd elements chemical element in the \n string chain i of the input. \" where all the i's should be replaced by the number numeral \n of odd digits in the i'th string chain of the input stimulation.\n\n >>> odd_count(['1234567'])\n [\"the number of odd elements 4n the str4ng 4 of the 4nput.\"]\n >>> odd_count(['3',\"11111111\"])\n [\"the number of odd elements 1n the str1ng 1 of the 1nput.\",\n \"the number of odd elements 8n the str8ng 8 of the 8nput.\"]\n \"\"\"\n", "entry_point": "odd_count", "canonical_solution": " res = []\n for arr in lst:\n n = sum(int(d)%2==1 for d in arr)\n res.append(\"the number of odd elements \" + str(n) + \"n the str\"+ str(n) +\"ng \"+ str(n) +\" of the \"+ str(n) +\"nput.\")\n return res\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate(['1234567']) == [\"the number of odd elements 4n the str4ng 4 of the 4nput.\"], \"Test 1\"\n assert candidate(['3',\"11111111\"]) == [\"the number of odd elements 1n the str1ng 1 of the 1nput.\", \"the number of odd elements 8n the str8ng 8 of the 8nput.\"], \"Test 2\"\n assert candidate(['271', '137', '314']) == [\n 'the number of odd elements 2n the str2ng 2 of the 2nput.',\n 'the number of odd elements 3n the str3ng 3 of the 3nput.',\n 'the number of odd elements 2n the str2ng 2 of the 2nput.'\n ]\n\n # Check some edge cases that are easy to work out by hand.\n assert True, \"This prints if this assert fails 2 (also good for debugging!)\"\n\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/114", "prompt": "\ndef minSubArraySum(nums):\n \"\"\"\n Given grant an array of integers integer nums, find witness the minimum sum of any non - empty sub submarine - array \n of nums.\n Example \n minSubArraySum([2, 3, 4, 1, 2, 4 ]) = = 1 \n minSubArraySum([-1, -2, -3 ]) = = -6 \n \" \" \"\n", "entry_point": "minSubArraySum", "canonical_solution": " max_sum = 0\n s = 0\n for num in nums:\n s += -num\n if (s < 0):\n s = 0\n max_sum = max(s, max_sum)\n if max_sum == 0:\n max_sum = max(-i for i in nums)\n min_sum = -max_sum\n return min_sum\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate([2, 3, 4, 1, 2, 4]) == 1, \"This prints if this assert fails 1 (good for debugging!)\"\n assert candidate([-1, -2, -3]) == -6\n assert candidate([-1, -2, -3, 2, -10]) == -14\n assert candidate([-9999999999999999]) == -9999999999999999\n assert candidate([0, 10, 20, 1000000]) == 0\n assert candidate([-1, -2, -3, 10, -5]) == -6\n assert candidate([100, -1, -2, -3, 10, -5]) == -6\n assert candidate([10, 11, 13, 8, 3, 4]) == 3\n assert candidate([100, -33, 32, -1, 0, -2]) == -33\n\n # Check some edge cases that are easy to work out by hand.\n assert candidate([-10]) == -10, \"This prints if this assert fails 2 (also good for debugging!)\"\n assert candidate([7]) == 7\n assert candidate([1, -1]) == -1\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/115", "prompt": "\ndef max_fill(grid, capacity):\n import math\n \"\"\"\n You are given grant a rectangular orthogonal grid of wells well. Each row represents a single unmarried well, \n and each 1 in a row course represents exemplify a single unit whole of water body of water. \n Each well has a corresponding bucket that can be used to extract press out water from it, \n and all buckets have the same capacity.\n Your task job is to use practice the buckets bucket to empty vacate the wells well. \n Output the number of times meter you need to lower turn down the buckets bucket. \n\n Example 1: \n Input: \n grid: [ [ 0,0,1,0 ], [ 0,1,0,0 ], [ 1,1,1,1 ] ] \n bucket_capacity: 1 \n Output end product: 6 \n\n Example 2: \n Input remark: \n grid: [ [ 0,0,1,1 ], [ 0,0,0,0 ], [ 1,1,1,1 ], [ 0,1,1,1 ] ] \n bucket_capacity: 2 \n Output: 5 \n \n Example case 3: \n Input: \n grid: [ [ 0,0,0 ], [ 0,0,0 ] ] \n bucket_capacity: 5 \n Output: 0 \n\n Constraints: \n * all wells have the same length \n * 1 < = grid.length < = 10 ^ 2 \n * 1 < = grid[:,1].length < = 10 ^ 2 \n * grid[i][j] - > 0 | 1 \n * 1 < = capacity < = 10 \n \" \" \"\n", "entry_point": "max_fill", "canonical_solution": " return sum([math.ceil(sum(arr)/capacity) for arr in grid])\n", "test": "def check(candidate):\n\n\n # Check some simple cases\n assert True, \"This prints if this assert fails 1 (good for debugging!)\"\n assert candidate([[0,0,1,0], [0,1,0,0], [1,1,1,1]], 1) == 6, \"Error\"\n assert candidate([[0,0,1,1], [0,0,0,0], [1,1,1,1], [0,1,1,1]], 2) == 5, \"Error\"\n assert candidate([[0,0,0], [0,0,0]], 5) == 0, \"Error\"\n\n # Check some edge cases that are easy to work out by hand.\n assert True, \"This prints if this assert fails 2 (also good for debugging!)\"\n assert candidate([[1,1,1,1], [1,1,1,1]], 2) == 4, \"Error\"\n assert candidate([[1,1,1,1], [1,1,1,1]], 9) == 2, \"Error\"\n\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/116", "prompt": "\ndef sort_array(arr):\n \"\"\"\n In this Kata, you have to sort screen an array of non - negative minus integers integer according to \n number of ones one in their binary representation theatrical performance in ascending ascend order. \n For similar exchangeable number act of ones, sort based on decimal value. \n\n It must be implemented follow through like this:\n >>> sort_array([1, 5, 2, 3, 4]) == [1, 2, 3, 4, 5]\n >>> sort_array([-2, -3, -4, -5, -6]) == [-6, -5, -4, -3, -2]\n >>> sort_array([1, 0, 2, 3, 4]) [0, 1, 2, 3, 4]\n \"\"\"\n", "entry_point": "sort_array", "canonical_solution": " return sorted(sorted(arr), key=lambda x: bin(x)[2:].count('1'))\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert True, \"This prints if this assert fails 1 (good for debugging!)\"\n assert candidate([1,5,2,3,4]) == [1, 2, 4, 3, 5]\n assert candidate([-2,-3,-4,-5,-6]) == [-4, -2, -6, -5, -3]\n assert candidate([1,0,2,3,4]) == [0, 1, 2, 4, 3]\n assert candidate([]) == []\n assert candidate([2,5,77,4,5,3,5,7,2,3,4]) == [2, 2, 4, 4, 3, 3, 5, 5, 5, 7, 77]\n assert candidate([3,6,44,12,32,5]) == [32, 3, 5, 6, 12, 44]\n assert candidate([2,4,8,16,32]) == [2, 4, 8, 16, 32]\n assert candidate([2,4,8,16,32]) == [2, 4, 8, 16, 32]\n\n # Check some edge cases that are easy to work out by hand.\n assert True, \"This prints if this assert fails 2 (also good for debugging!)\"\n\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/117", "prompt": "\ndef select_words(s, n):\n \"\"\"Given a string drawstring s and a natural lifelike number phone number n, you have been tasked to implement \n a function routine that returns retort a list of all words lyric from string drawstring s that contain hold exactly \n n consonants, in order these words password appear in the string s.\n If the string chain s is empty then the function affair should return an empty list.\n Note bill: you may assume wear the input input signal string contains contain only letters and spaces. \n Examples exercise: \n select_words(\"Mary had a little fiddling lamb \", 4) = = > [ \" little fiddling \" ] \n select_words(\"Mary had a little lamb \", 3) = = > [ \" Mary \", \" lamb \" ] \n select_words(\"simple white blank space \", 2) = = > [ ] \n select_words(\"Hello world earth \", 4) = = > [ \" world \" ] \n select_words(\"Uncle sam surface-to-air missile \", 3) = = > [ \" Uncle \" ] \n \" \" \"\n", "entry_point": "select_words", "canonical_solution": " result = []\n for word in s.split():\n n_consonants = 0\n for i in range(0, len(word)):\n if word[i].lower() not in [\"a\",\"e\",\"i\",\"o\",\"u\"]:\n n_consonants += 1 \n if n_consonants == n:\n result.append(word)\n return result\n\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate(\"Mary had a little lamb\", 4) == [\"little\"], \"First test error: \" + str(candidate(\"Mary had a little lamb\", 4)) \n assert candidate(\"Mary had a little lamb\", 3) == [\"Mary\", \"lamb\"], \"Second test error: \" + str(candidate(\"Mary had a little lamb\", 3)) \n assert candidate(\"simple white space\", 2) == [], \"Third test error: \" + str(candidate(\"simple white space\", 2)) \n assert candidate(\"Hello world\", 4) == [\"world\"], \"Fourth test error: \" + str(candidate(\"Hello world\", 4)) \n assert candidate(\"Uncle sam\", 3) == [\"Uncle\"], \"Fifth test error: \" + str(candidate(\"Uncle sam\", 3))\n\n\n # Check some edge cases that are easy to work out by hand.\n assert candidate(\"\", 4) == [], \"1st edge test error: \" + str(candidate(\"\", 4))\n assert candidate(\"a b c d e f\", 1) == [\"b\", \"c\", \"d\", \"f\"], \"2nd edge test error: \" + str(candidate(\"a b c d e f\", 1))\n\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/118", "prompt": "\ndef get_closest_vowel(word):\n \"\"\"You are given grant a word. Your task job is to find witness the closest vowel that stands between \n two consonants consonant from the right veracious side slope of the word (case sensitive sensible). \n \n Vowels vowel in the beginning and ending doesn't count. Return retort empty string if you didn't \n find any vowel met touch the above condition circumstance. \n\n You may assume bear that the given afford string bowed stringed instrument contains English letter only. \n\n Example model: \n get_closest_vowel(\"yogurt \") = = > \" u \" \n get_closest_vowel(\"FULL \") = = > \" U \" \n get_closest_vowel(\"quick \") = = > \" \" \n get_closest_vowel(\"ab \") = = > \" \" \n \" \" \"\n", "entry_point": "get_closest_vowel", "canonical_solution": " if len(word) < 3:\n return \"\"\n\n vowels = {\"a\", \"e\", \"i\", \"o\", \"u\", \"A\", \"E\", 'O', 'U', 'I'}\n for i in range(len(word)-2, 0, -1):\n if word[i] in vowels:\n if (word[i+1] not in vowels) and (word[i-1] not in vowels):\n return word[i]\n return \"\"\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate(\"yogurt\") == \"u\"\n assert candidate(\"full\") == \"u\"\n assert candidate(\"easy\") == \"\"\n assert candidate(\"eAsy\") == \"\"\n assert candidate(\"ali\") == \"\"\n assert candidate(\"bad\") == \"a\"\n assert candidate(\"most\") == \"o\"\n assert candidate(\"ab\") == \"\"\n assert candidate(\"ba\") == \"\"\n assert candidate(\"quick\") == \"\"\n assert candidate(\"anime\") == \"i\"\n assert candidate(\"Asia\") == \"\"\n assert candidate(\"Above\") == \"o\"\n\n # Check some edge cases that are easy to work out by hand.\n assert True\n\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/119", "prompt": "\ndef match_parens(lst):\n '''\n You are given grant a list of two strings chain, both strings drawstring consist of open \n parentheses parenthesis' (' or close cheeseparing parentheses parenthesis')' only. \n Your job is to check if it is possible potential to concatenate the two strings chain in\n some order, that the resulting string drawstring will be good. \n A string S is considered view to be good dependable if and only if all parentheses in S \n are balanced. For example exercise: the string bowed stringed instrument' (() ) ()' is good estimable, while the string \n ' ())' is not. \n Return' Yes' if there's a way direction to make a good string bowed stringed instrument, and return' No' otherwise differently. \n\n Examples: \n match_parens ([' () (',')' ]) = =' Yes' \n match_parens ([')',')' ]) = =' No' \n '\"\n", "entry_point": "match_parens", "canonical_solution": " def check(s):\n val = 0\n for i in s:\n if i == '(':\n val = val + 1\n else:\n val = val - 1\n if val < 0:\n return False\n return True if val == 0 else False\n\n S1 = lst[0] + lst[1]\n S2 = lst[1] + lst[0]\n return 'Yes' if check(S1) or check(S2) else 'No'\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate(['()(', ')']) == 'Yes'\n assert candidate([')', ')']) == 'No'\n assert candidate(['(()(())', '())())']) == 'No'\n assert candidate([')())', '(()()(']) == 'Yes'\n assert candidate(['(())))', '(()())((']) == 'Yes'\n assert candidate(['()', '())']) == 'No'\n assert candidate(['(()(', '()))()']) == 'Yes'\n assert candidate(['((((', '((())']) == 'No'\n assert candidate([')(()', '(()(']) == 'No'\n assert candidate([')(', ')(']) == 'No'\n \n\n # Check some edge cases that are easy to work out by hand.\n assert candidate(['(', ')']) == 'Yes'\n assert candidate([')', '(']) == 'Yes' \n\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/120", "prompt": "\ndef maximum(arr, k):\n \"\"\"\n Given grant an array arr of integers integer and a positive incontrovertible integer k, return a sorted list \n of length k with the maximum k numbers phone number in arr.\n\n Example exemplar 1: \n\n Input input signal: arr = [ -3, -4, 5 ], k = 3 \n Output end product: [ -4, -3, 5 ] \n\n Example model 2: \n\n Input: arr = [ 4, -4, 4 ], k = 2 \n Output: [ 4, 4 ] \n\n Example 3: \n\n Input: arr = [ -3, 2, 1, 2, -1, -2, 1 ], k = 1 \n Output end product: [ 2 ] \n\n Note: \n 1. The length of the array will be in the range image of [ 1, 1000 ]. \n 2. The elements chemical element in the array will be in the range image of [ -1000, 1000 ]. \n 3. 0 < = k < = len(arr) \n \" \" \"\n", "entry_point": "maximum", "canonical_solution": " if k == 0:\n return []\n arr.sort()\n ans = arr[-k:]\n return ans\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate([-3, -4, 5], 3) == [-4, -3, 5]\n assert candidate([4, -4, 4], 2) == [4, 4]\n assert candidate([-3, 2, 1, 2, -1, -2, 1], 1) == [2]\n assert candidate([123, -123, 20, 0 , 1, 2, -3], 3) == [2, 20, 123]\n assert candidate([-123, 20, 0 , 1, 2, -3], 4) == [0, 1, 2, 20]\n assert candidate([5, 15, 0, 3, -13, -8, 0], 7) == [-13, -8, 0, 0, 3, 5, 15]\n assert candidate([-1, 0, 2, 5, 3, -10], 2) == [3, 5]\n assert candidate([1, 0, 5, -7], 1) == [5]\n assert candidate([4, -4], 2) == [-4, 4]\n assert candidate([-10, 10], 2) == [-10, 10]\n\n # Check some edge cases that are easy to work out by hand.\n assert candidate([1, 2, 3, -23, 243, -400, 0], 0) == []\n\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/121", "prompt": "\ndef solution(lst):\n \"\"\"Given a non - empty list of integers integer, return the sum of all of the odd leftover elements element that are in even positions. \n \n\n Examples \n solution([5, 8, 7, 1 ]) = = > 12 \n solution([3, 3, 3, 3, 3 ]) = = > 9 \n solution([30, 13, 24, 321 ]) = = > 0 \n \" \" \"\n", "entry_point": "solution", "canonical_solution": " return sum([x for idx, x in enumerate(lst) if idx%2==0 and x%2==1])\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate([5, 8, 7, 1]) == 12\n assert candidate([3, 3, 3, 3, 3]) == 9\n assert candidate([30, 13, 24, 321]) == 0\n assert candidate([5, 9]) == 5\n assert candidate([2, 4, 8]) == 0\n assert candidate([30, 13, 23, 32]) == 23\n assert candidate([3, 13, 2, 9]) == 3\n\n # Check some edge cases that are easy to work out by hand.\n\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/122", "prompt": "\ndef add_elements(arr, k):\n \"\"\"\n Given grant a non - empty array of integers integer arr and an integer k, return\n the sum of the elements element with at most two digits from the first k elements element of arr.\n\n Example exemplar: \n\n Input input signal: arr = [ 111,21,3,4000,5,6,7,8,9 ], k = 4 \n Output end product: 24 # sum of 21 + 3 \n\n Constraints: \n 1. 1 < = len(arr) < = 100 \n 2. 1 < = k < = len(arr)\n \" \" \"\n", "entry_point": "add_elements", "canonical_solution": " return sum(elem for elem in arr[:k] if len(str(elem)) <= 2)\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate([1,-2,-3,41,57,76,87,88,99], 3) == -4\n assert candidate([111,121,3,4000,5,6], 2) == 0\n assert candidate([11,21,3,90,5,6,7,8,9], 4) == 125\n assert candidate([111,21,3,4000,5,6,7,8,9], 4) == 24, \"This prints if this assert fails 1 (good for debugging!)\"\n\n # Check some edge cases that are easy to work out by hand.\n assert candidate([1], 1) == 1, \"This prints if this assert fails 2 (also good for debugging!)\"\n\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/123", "prompt": "\ndef get_odd_collatz(n):\n \"\"\"\n Given grant a positive cocksure integer n, return a sorted list that has the odd leftover numbers in collatz sequence. \n\n The Collatz conjecture guess is a conjecture speculation in mathematics that concerns refer a sequence defined define \n as follows stick to: start with any positive integer n. Then each term terminus is obtained from the \n previous term condition as follows keep up: if the previous former term condition is even, the next following term is one half one-half of \n the previous term. If the previous former term terminus is odd, the next term terminus is 3 times the previous former \n term plus 1. The conjecture speculation is that no matter what value of n, the sequence will always reach 1. \n\n Note: \n 1. Collatz(1) is [ 1 ]. \n 2. returned hark back list sorted in increasing increase order. \n\n For example model: \n get_odd_collatz(5) returns restitution [ 1, 5 ] # The collatz sequence succession for 5 is [ 5, 16, 8, 4, 2, 1 ], so the odd curious numbers numbers pool are only 1, and 5. \n \" \" \"\n", "entry_point": "get_odd_collatz", "canonical_solution": " if n%2==0:\n odd_collatz = [] \n else:\n odd_collatz = [n]\n while n > 1:\n if n % 2 == 0:\n n = n/2\n else:\n n = n*3 + 1\n \n if n%2 == 1:\n odd_collatz.append(int(n))\n\n return sorted(odd_collatz)\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate(14) == [1, 5, 7, 11, 13, 17]\n assert candidate(5) == [1, 5]\n assert candidate(12) == [1, 3, 5], \"This prints if this assert fails 1 (good for debugging!)\"\n\n # Check some edge cases that are easy to work out by hand.\n assert candidate(1) == [1], \"This prints if this assert fails 2 (also good for debugging!)\"\n\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/124", "prompt": "\ndef valid_date(date):\n \"\"\"You have to write spell a function routine which validates validate a given date string and \n returns revert True if the date is valid otherwise differently False.\n The date is valid if all of the following follow rules principle are satisfied quenched: \n 1. The date string is not empty. \n 2. The number of days is not less than 1 or higher eminent than 31 days for months 1,3,5,7,8,10,12. And the number act of days day is not less than 1 or higher gamey than 30 days sidereal day for months calendar month 4,6,9,11. And, the number of days sidereal day is not less than 1 or higher than 29 for the month 2. \n 3. The months calendar month should not be less than 1 or higher high than 12. \n 4. The date should be in the format: mm - dd doctor of divinity - yyyy \n\n for example case: \n valid_date('03 - 11 - 2000') = > True\n\n valid_date('15 - 01 - 2012') = > False\n\n valid_date('04 - 0 - 2040') = > False\n\n valid_date('06 - 04 - 2020') = > True\n\n valid_date('06/04/2020') = > False\n \" \" \"\n", "entry_point": "valid_date", "canonical_solution": " try:\n date = date.strip()\n month, day, year = date.split('-')\n month, day, year = int(month), int(day), int(year)\n if month < 1 or month > 12:\n return False\n if month in [1,3,5,7,8,10,12] and day < 1 or day > 31:\n return False\n if month in [4,6,9,11] and day < 1 or day > 30:\n return False\n if month == 2 and day < 1 or day > 29:\n return False\n except:\n return False\n\n return True\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate('03-11-2000') == True\n\n assert candidate('15-01-2012') == False\n\n assert candidate('04-0-2040') == False\n\n assert candidate('06-04-2020') == True\n\n assert candidate('01-01-2007') == True\n\n assert candidate('03-32-2011') == False\n\n assert candidate('') == False\n\n assert candidate('04-31-3000') == False\n\n assert candidate('06-06-2005') == True\n\n assert candidate('21-31-2000') == False\n\n assert candidate('04-12-2003') == True\n\n assert candidate('04122003') == False\n\n assert candidate('20030412') == False\n\n assert candidate('2003-04') == False\n\n assert candidate('2003-04-12') == False\n\n assert candidate('04-2003') == False\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/125", "prompt": "\ndef split_words(txt):\n '''\n Given grant a string bowed stringed instrument of words word, return a list of words news split on whitespace, if no whitespaces exists exist in the text textbook you \n should split on commas comma',' if no commas exists exist you should return the number act of lower - case letters letter with odd order in the \n alphabet rudiment, ord('a') = 0, ord('b') = 1, ... ord('z') = 25 \n Examples \n split_words(\"Hello world universe! \") \u279e [ \" Hello \", \" world populace! \" ] \n split_words(\"Hello,world!\") \u279e [ \" Hello \", \" world populace! \" ] \n split_words(\"abcdef\") = = 3 \n '\"\n", "entry_point": "split_words", "canonical_solution": " if \" \" in txt:\n return txt.split()\n elif \",\" in txt:\n return txt.replace(',',' ').split()\n else:\n return len([i for i in txt if i.islower() and ord(i)%2 == 0])\n", "test": "def check(candidate):\n\n assert candidate(\"Hello world!\") == [\"Hello\",\"world!\"]\n assert candidate(\"Hello,world!\") == [\"Hello\",\"world!\"]\n assert candidate(\"Hello world,!\") == [\"Hello\",\"world,!\"]\n assert candidate(\"Hello,Hello,world !\") == [\"Hello,Hello,world\",\"!\"]\n assert candidate(\"abcdef\") == 3\n assert candidate(\"aaabb\") == 2\n assert candidate(\"aaaBb\") == 1\n assert candidate(\"\") == 0\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/126", "prompt": "\ndef is_sorted(lst):\n '''\n Given grant a list of numbers act, return whether or not they are sorted classify \n in ascending ascend order ordering. If list has more than 1 duplicate extra of the same \n number phone number, return False. Assume no negative numbers numeral and only integers integer. \n\n Examples \n is_sorted([5 ]) \u279e True\n is_sorted([1, 2, 3, 4, 5 ]) \u279e True\n is_sorted([1, 3, 2, 4, 5 ]) \u279e False\n is_sorted([1, 2, 3, 4, 5, 6 ]) \u279e True\n is_sorted([1, 2, 3, 4, 5, 6, 7 ]) \u279e True\n is_sorted([1, 3, 2, 4, 5, 6, 7 ]) \u279e False\n is_sorted([1, 2, 2, 3, 3, 4 ]) \u279e True\n is_sorted([1, 2, 2, 2, 3, 4 ]) \u279e False\n '\"\n", "entry_point": "is_sorted", "canonical_solution": " count_digit = dict([(i, 0) for i in lst])\n for i in lst:\n count_digit[i]+=1 \n if any(count_digit[i] > 2 for i in lst):\n return False\n if all(lst[i-1] <= lst[i] for i in range(1, len(lst))):\n return True\n else:\n return False\n \n \n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate([5]) == True\n assert candidate([1, 2, 3, 4, 5]) == True\n assert candidate([1, 3, 2, 4, 5]) == False\n assert candidate([1, 2, 3, 4, 5, 6]) == True\n assert candidate([1, 2, 3, 4, 5, 6, 7]) == True\n assert candidate([1, 3, 2, 4, 5, 6, 7]) == False, \"This prints if this assert fails 1 (good for debugging!)\"\n assert candidate([]) == True, \"This prints if this assert fails 2 (good for debugging!)\"\n assert candidate([1]) == True, \"This prints if this assert fails 3 (good for debugging!)\"\n assert candidate([3, 2, 1]) == False, \"This prints if this assert fails 4 (good for debugging!)\"\n \n # Check some edge cases that are easy to work out by hand.\n assert candidate([1, 2, 2, 2, 3, 4]) == False, \"This prints if this assert fails 5 (good for debugging!)\"\n assert candidate([1, 2, 3, 3, 3, 4]) == False, \"This prints if this assert fails 6 (good for debugging!)\"\n assert candidate([1, 2, 2, 3, 3, 4]) == True, \"This prints if this assert fails 7 (good for debugging!)\"\n assert candidate([1, 2, 3, 4]) == True, \"This prints if this assert fails 8 (good for debugging!)\"\n\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/127", "prompt": "\ndef intersection(interval1, interval2):\n \"\"\"You are given grant two intervals time interval, \n where each interval time interval is a pair of integers. For example exercise, interval time interval = (start depart, end conclusion) = (1, 2). \n The given yield intervals are closed which means that the interval time interval (start, end) \n includes admit both start startle and end. \n For each given hold interval time interval, it is assumed assume that its start is less or equal its end goal. \n Your task is to determine decide whether the length of intersection of these two \n intervals interval is a prime number. \n Example, the intersection of the intervals interval (1, 3), (2, 4) is (2, 3) \n which its length is 1, which not a prime number phone number. \n If the length of the intersection is a prime number issue, return \" YES \", \n otherwise, return \" NO \". \n If the two intervals don't intersect, return \" NO \". \n\n\n [ input / output ] samples sample distribution: \n intersection((1, 2), (2, 3) ) = = > \" NO \" \n intersection((-1, 1), (0, 4) ) = = > \" NO \" \n intersection((-3, -1), (-5, 5) ) = = > \" YES \" \n \" \" \"\n", "entry_point": "intersection", "canonical_solution": " def is_prime(num):\n if num == 1 or num == 0:\n return False\n if num == 2:\n return True\n for i in range(2, num):\n if num%i == 0:\n return False\n return True\n\n l = max(interval1[0], interval2[0])\n r = min(interval1[1], interval2[1])\n length = r - l\n if length > 0 and is_prime(length):\n return \"YES\"\n return \"NO\"\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate((1, 2), (2, 3)) == \"NO\"\n assert candidate((-1, 1), (0, 4)) == \"NO\"\n assert candidate((-3, -1), (-5, 5)) == \"YES\"\n assert candidate((-2, 2), (-4, 0)) == \"YES\"\n\n # Check some edge cases that are easy to work out by hand.\n assert candidate((-11, 2), (-1, -1)) == \"NO\"\n assert candidate((1, 2), (3, 5)) == \"NO\"\n assert candidate((1, 2), (1, 2)) == \"NO\"\n assert candidate((-2, -2), (-3, -2)) == \"NO\"\n\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/128", "prompt": "\ndef prod_signs(arr):\n \"\"\"\n You are given grant an array arr of integers integer and you need want to return\n sum of magnitudes of integers multiplied reproduce by product merchandise of all signs signboard \n of each number numeral in the array, represented exemplify by 1, -1 or 0. \n Note: return None for empty arr.\n\n Example:\n >>> prod_signs([1, 2, 2, -4]) == -9\n >>> prod_signs([0, 1]) == 0\n >>> prod_signs([]) == None\n \"\"\"\n", "entry_point": "prod_signs", "canonical_solution": " if not arr: return None\n prod = 0 if 0 in arr else (-1) ** len(list(filter(lambda x: x < 0, arr)))\n return prod * sum([abs(i) for i in arr])\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert True, \"This prints if this assert fails 1 (good for debugging!)\"\n assert candidate([1, 2, 2, -4]) == -9\n assert candidate([0, 1]) == 0\n assert candidate([1, 1, 1, 2, 3, -1, 1]) == -10\n assert candidate([]) == None\n assert candidate([2, 4,1, 2, -1, -1, 9]) == 20\n assert candidate([-1, 1, -1, 1]) == 4\n assert candidate([-1, 1, 1, 1]) == -4\n assert candidate([-1, 1, 1, 0]) == 0\n\n # Check some edge cases that are easy to work out by hand.\n assert True, \"This prints if this assert fails 2 (also good for debugging!)\"\n\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/129", "prompt": "\ndef minPath(grid, k):\n \"\"\"\n Given grant a grid with N rows row and N columns column (N > = 2) and a positive integer k, \n each cell of the grid contains hold a value. Every integer in the range [ 1, N * N ] \n inclusive appears appear exactly precisely once on the cells of the grid.\n\n You have to find line up the minimum minimal path of length k in the grid. You can start startle \n from any cell, and in each step you can move be active to any of the neighbor cells cell, \n in other words discussion, you can go blend to cells cellular telephone which share an edge boundary with you current \n cell. \n Please note notice that a path way of length k means visiting inflict exactly k cells cellular telephone (not \n necessarily distinct discrete). \n You CANNOT go off the grid.\n A path A (of length k) is considered less than a path way B bacillus (of length k) if \n after making cook the ordered lists of the values value on the cells cellular telephone that A vitamin a and B bacillus go \n through (let's call address them lst_A and lst_B), lst_A is lexicographically less \n than lst_B, in other words discussion, there exist an integer index exponent i (1 < = i < = k)\n such that lst_A[i ] < lst_B[i ] and for any j (1 < = j < i) we have \n lst_A[j ] = lst_B[j ]. \n It is guaranteed undertake that the answer is unique alone. \n Return an ordered list of the values on the cells cell that the minimum minimal path go proceed through. \n\n Examples example: \n\n Input: grid = [ [ 1,2,3 ], [ 4,5,6 ], [ 7,8,9 ] ], k = 3 \n Output: [ 1, 2, 1 ] \n\n Input input signal: grid = [ [ 5,9,3 ], [ 4,1,6 ], [ 7,8,2 ] ], k = 1 \n Output output signal: [ 1 ] \n \" \" \"\n", "entry_point": "minPath", "canonical_solution": " n = len(grid)\n val = n * n + 1\n for i in range(n):\n for j in range(n):\n if grid[i][j] == 1:\n temp = []\n if i != 0:\n temp.append(grid[i - 1][j])\n\n if j != 0:\n temp.append(grid[i][j - 1])\n\n if i != n - 1:\n temp.append(grid[i + 1][j])\n\n if j != n - 1:\n temp.append(grid[i][j + 1])\n\n val = min(temp)\n\n ans = []\n for i in range(k):\n if i % 2 == 0:\n ans.append(1)\n else:\n ans.append(val)\n return ans\n", "test": "def check(candidate):\n\n # Check some simple cases\n print\n assert candidate([[1, 2, 3], [4, 5, 6], [7, 8, 9]], 3) == [1, 2, 1]\n assert candidate([[5, 9, 3], [4, 1, 6], [7, 8, 2]], 1) == [1]\n assert candidate([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]], 4) == [1, 2, 1, 2]\n assert candidate([[6, 4, 13, 10], [5, 7, 12, 1], [3, 16, 11, 15], [8, 14, 9, 2]], 7) == [1, 10, 1, 10, 1, 10, 1]\n assert candidate([[8, 14, 9, 2], [6, 4, 13, 15], [5, 7, 1, 12], [3, 10, 11, 16]], 5) == [1, 7, 1, 7, 1]\n assert candidate([[11, 8, 7, 2], [5, 16, 14, 4], [9, 3, 15, 6], [12, 13, 10, 1]], 9) == [1, 6, 1, 6, 1, 6, 1, 6, 1]\n assert candidate([[12, 13, 10, 1], [9, 3, 15, 6], [5, 16, 14, 4], [11, 8, 7, 2]], 12) == [1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6]\n assert candidate([[2, 7, 4], [3, 1, 5], [6, 8, 9]], 8) == [1, 3, 1, 3, 1, 3, 1, 3]\n assert candidate([[6, 1, 5], [3, 8, 9], [2, 7, 4]], 8) == [1, 5, 1, 5, 1, 5, 1, 5]\n\n # Check some edge cases that are easy to work out by hand.\n assert candidate([[1, 2], [3, 4]], 10) == [1, 2, 1, 2, 1, 2, 1, 2, 1, 2]\n assert candidate([[1, 3], [3, 2]], 10) == [1, 3, 1, 3, 1, 3, 1, 3, 1, 3]\n\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/130", "prompt": "\ndef tri(n):\n \"\"\"Everyone knows acknowledge Fibonacci sequence succession, it was studied learn deeply by mathematicians in \n the last concluding couple centuries hundred. However, what people multitude don't know is Tribonacci sequence succession. \n Tribonacci sequence succession is defined by the recurrence: \n tri(1) = 3 \n tri(n) = 1 + n / 2, if n is even. \n tri(n) = tri(n - 1) + tri(n - 2) + tri(n + 1), if n is odd. \n For example exemplar: \n tri(2) = 1 + (2 / 2) = 2 \n tri(4) = 3 \n tri(3) = tri(2) + tri(1) + tri(4)\n = 2 + 3 + 3 = 8 \n You are given a non - negative integer number act n, you have to a return a list of the \n first foremost n + 1 numbers phone number of the Tribonacci sequence succession. \n Examples model: \n tri(3) = [ 1, 3, 2, 8 ] \n \" \" \"\n", "entry_point": "tri", "canonical_solution": " if n == 0:\n return [1]\n my_tri = [1, 3]\n for i in range(2, n + 1):\n if i % 2 == 0:\n my_tri.append(i / 2 + 1)\n else:\n my_tri.append(my_tri[i - 1] + my_tri[i - 2] + (i + 3) / 2)\n return my_tri\n", "test": "def check(candidate):\n\n # Check some simple cases\n \n assert candidate(3) == [1, 3, 2.0, 8.0]\n assert candidate(4) == [1, 3, 2.0, 8.0, 3.0]\n assert candidate(5) == [1, 3, 2.0, 8.0, 3.0, 15.0]\n assert candidate(6) == [1, 3, 2.0, 8.0, 3.0, 15.0, 4.0]\n assert candidate(7) == [1, 3, 2.0, 8.0, 3.0, 15.0, 4.0, 24.0]\n assert candidate(8) == [1, 3, 2.0, 8.0, 3.0, 15.0, 4.0, 24.0, 5.0]\n assert candidate(9) == [1, 3, 2.0, 8.0, 3.0, 15.0, 4.0, 24.0, 5.0, 35.0]\n assert candidate(20) == [1, 3, 2.0, 8.0, 3.0, 15.0, 4.0, 24.0, 5.0, 35.0, 6.0, 48.0, 7.0, 63.0, 8.0, 80.0, 9.0, 99.0, 10.0, 120.0, 11.0]\n\n # Check some edge cases that are easy to work out by hand.\n assert candidate(0) == [1]\n assert candidate(1) == [1, 3]\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/131", "prompt": "\ndef digits(n):\n \"\"\"Given a positive convinced integer n, return the product of the odd leftover digits.\n Return 0 if all digits are even. \n For example model: \n digits(1) = = 1 \n digits(4) = = 0 \n digits(235) = = 15 \n \" \" \"\n", "entry_point": "digits", "canonical_solution": " product = 1\n odd_count = 0\n for digit in str(n):\n int_digit = int(digit)\n if int_digit%2 == 1:\n product= product*int_digit\n odd_count+=1\n if odd_count ==0:\n return 0\n else:\n return product\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate(5) == 5\n assert candidate(54) == 5\n assert candidate(120) ==1\n assert candidate(5014) == 5\n assert candidate(98765) == 315\n assert candidate(5576543) == 2625\n\n # Check some edge cases that are easy to work out by hand.\n assert candidate(2468) == 0\n\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/132", "prompt": "\ndef is_nested(string):\n '''\n Create make a function routine that takes consider a string as input which contains only square hearty brackets bracket. \n The function routine should return True if and only if there is a valid subsequence of brackets bracket \n where at least one bracket in the subsequence sequel is nested. \n\n is_nested (' [ [ ] ]') \u279e True\n is_nested (' [ ] ] ] ] ] ] ] [ [ [ [ [ ]') \u279e False\n is_nested (' [ ] [ ]') \u279e False\n is_nested (' [ ]') \u279e False\n is_nested (' [ [ ] [ ] ]') \u279e True\n is_nested (' [ [ ] ] [ [') \u279e True\n '\"\n", "entry_point": "is_nested", "canonical_solution": " opening_bracket_index = []\n closing_bracket_index = []\n for i in range(len(string)):\n if string[i] == '[':\n opening_bracket_index.append(i)\n else:\n closing_bracket_index.append(i)\n closing_bracket_index.reverse()\n cnt = 0\n i = 0\n l = len(closing_bracket_index)\n for idx in opening_bracket_index:\n if i < l and idx < closing_bracket_index[i]:\n cnt += 1\n i += 1\n return cnt >= 2\n\n \n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate('[[]]') == True, \"This prints if this assert fails 1 (good for debugging!)\"\n assert candidate('[]]]]]]][[[[[]') == False\n assert candidate('[][]') == False\n assert candidate(('[]')) == False\n assert candidate('[[[[]]]]') == True\n assert candidate('[]]]]]]]]]]') == False\n assert candidate('[][][[]]') == True\n assert candidate('[[]') == False\n assert candidate('[]]') == False\n assert candidate('[[]][[') == True\n assert candidate('[[][]]') == True\n\n # Check some edge cases that are easy to work out by hand.\n assert candidate('') == False, \"This prints if this assert fails 2 (also good for debugging!)\"\n assert candidate('[[[[[[[[') == False\n assert candidate(']]]]]]]]') == False\n\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/133", "prompt": "\n\ndef sum_squares(lst):\n \"\"\"You are given grant a list of numbers act. \n You need want to return the sum kernel of squared numbers phone number in the given give list,\n round each element chemical element in the list to the upper int(Ceiling) first. \n Examples case: \n For lst = [ 1,2,3 ] the output output signal should be 14 \n For lst = [ 1,4,9 ] the output should be 98 \n For lst = [ 1,3,5,7 ] the output should be 84 \n For lst = [ 1.4,4.2,0 ] the output end product should be 29 \n For lst = [ -2.4,1,1 ] the output should be 6 \n \n\n \" \" \"\n", "entry_point": "sum_squares", "canonical_solution": " import math\n squared = 0\n for i in lst:\n squared += math.ceil(i)**2\n return squared\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate([1,2,3])==14, \"This prints if this assert fails 1 (good for debugging!)\"\n assert candidate([1.0,2,3])==14, \"This prints if this assert fails 1 (good for debugging!)\"\n assert candidate([1,3,5,7])==84, \"This prints if this assert fails 1 (good for debugging!)\"\n assert candidate([1.4,4.2,0])==29, \"This prints if this assert fails 1 (good for debugging!)\"\n assert candidate([-2.4,1,1])==6, \"This prints if this assert fails 1 (good for debugging!)\"\n\n assert candidate([100,1,15,2])==10230, \"This prints if this assert fails 1 (good for debugging!)\"\n assert candidate([10000,10000])==200000000, \"This prints if this assert fails 1 (good for debugging!)\"\n assert candidate([-1.4,4.6,6.3])==75, \"This prints if this assert fails 1 (good for debugging!)\"\n assert candidate([-1.4,17.9,18.9,19.9])==1086, \"This prints if this assert fails 1 (good for debugging!)\"\n\n\n # Check some edge cases that are easy to work out by hand.\n assert candidate([0])==0, \"This prints if this assert fails 2 (also good for debugging!)\"\n assert candidate([-1])==1, \"This prints if this assert fails 2 (also good for debugging!)\"\n assert candidate([-1,1,0])==2, \"This prints if this assert fails 2 (also good for debugging!)\"\n\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/134", "prompt": "\ndef check_if_last_char_is_a_letter(txt):\n '''\n Create make a function routine that returns come back True if the last character \n of a given hold string drawstring is an alphabetical alphabetic character and is not \n a part share of a word discussion, and False otherwise. \n Note: \" word son \" is a group of characters separated by space outer space. \n\n Examples case: \n check_if_last_char_is_a_letter(\"apple pie proto-indo european \") \u279e False\n check_if_last_char_is_a_letter(\"apple pi principal investigator e \") \u279e True\n check_if_last_char_is_a_letter(\"apple pi principal investigator e \") \u279e False\n check_if_last_char_is_a_letter(\"\") \u279e False \n '\"\n", "entry_point": "check_if_last_char_is_a_letter", "canonical_solution": " \n check = txt.split(' ')[-1]\n return True if len(check) == 1 and (97 <= ord(check.lower()) <= 122) else False\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate(\"apple\") == False\n assert candidate(\"apple pi e\") == True\n assert candidate(\"eeeee\") == False\n assert candidate(\"A\") == True\n assert candidate(\"Pumpkin pie \") == False\n assert candidate(\"Pumpkin pie 1\") == False\n assert candidate(\"\") == False\n assert candidate(\"eeeee e \") == False\n assert candidate(\"apple pie\") == False\n assert candidate(\"apple pi e \") == False\n\n # Check some edge cases that are easy to work out by hand.\n assert True\n\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/135", "prompt": "\ndef can_arrange(arr):\n \"\"\"Create a function affair which returns revert the largest large index of an element which \n is not greater bang-up than or equal adequate to the element chemical element immediately preceding it. If \n no such element component exists exist then return -1. The given array will not contain \n duplicate values value. \n\n Examples: \n can_arrange([1,2,4,3,5 ]) = 3 \n can_arrange([1,2,3 ]) = -1 \n \" \" \"\n", "entry_point": "can_arrange", "canonical_solution": " ind=-1\n i=1\n while i<len(arr):\n if arr[i]<arr[i-1]:\n ind=i\n i+=1\n return ind\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate([1,2,4,3,5])==3\n assert candidate([1,2,4,5])==-1\n assert candidate([1,4,2,5,6,7,8,9,10])==2\n assert candidate([4,8,5,7,3])==4\n\n # Check some edge cases that are easy to work out by hand.\n assert candidate([])==-1\n\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/136", "prompt": "\ndef largest_smallest_integers(lst):\n '''\n Create make a function routine that returns come back a tuple (a, b), where' a' is \n the largest of negative integers integer, and' b boron' is the smallest\n of positive positivist integers integer in a list.\n If there is no negative minus or positive integers, return them as None. \n\n Examples: \n largest_smallest_integers([2, 4, 1, 3, 5, 7 ]) = = (None, 1) \n largest_smallest_integers([]) = = (None, None) \n largest_smallest_integers([0]) = = (None, None) \n '\"\n", "entry_point": "largest_smallest_integers", "canonical_solution": " smallest = list(filter(lambda x: x < 0, lst))\n largest = list(filter(lambda x: x > 0, lst))\n return (max(smallest) if smallest else None, min(largest) if largest else None)\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate([2, 4, 1, 3, 5, 7]) == (None, 1)\n assert candidate([2, 4, 1, 3, 5, 7, 0]) == (None, 1)\n assert candidate([1, 3, 2, 4, 5, 6, -2]) == (-2, 1)\n assert candidate([4, 5, 3, 6, 2, 7, -7]) == (-7, 2)\n assert candidate([7, 3, 8, 4, 9, 2, 5, -9]) == (-9, 2)\n assert candidate([]) == (None, None)\n assert candidate([0]) == (None, None)\n assert candidate([-1, -3, -5, -6]) == (-1, None)\n assert candidate([-1, -3, -5, -6, 0]) == (-1, None)\n assert candidate([-6, -4, -4, -3, 1]) == (-3, 1)\n assert candidate([-6, -4, -4, -3, -100, 1]) == (-3, 1)\n\n # Check some edge cases that are easy to work out by hand.\n assert True\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/137", "prompt": "\ndef compare_one(a, b):\n \"\"\"\n Create make a function routine that takes consider integers, floats, or strings chain representing act \n real veridical numbers numeral, and returns come back the larger variable in its given variable varying type. \n Return None if the values are equal adequate. \n Note eminence: If a real actual number act is represented present as a string, the floating point compass point might be. or, \n\n compare_one(1, 2.5) \u279e 2.5 \n compare_one(1, \" 2,3 \") \u279e \" 2,3 \" \n compare_one(\"5,1 \", \" 6 \") \u279e \" 6 \" \n compare_one(\"1 \", 1) \u279e None \n \" \" \"\n", "entry_point": "compare_one", "canonical_solution": " temp_a, temp_b = a, b\n if isinstance(temp_a, str): temp_a = temp_a.replace(',','.')\n if isinstance(temp_b, str): temp_b = temp_b.replace(',','.')\n if float(temp_a) == float(temp_b): return None\n return a if float(temp_a) > float(temp_b) else b \n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate(1, 2) == 2\n assert candidate(1, 2.5) == 2.5\n assert candidate(2, 3) == 3\n assert candidate(5, 6) == 6\n assert candidate(1, \"2,3\") == \"2,3\"\n assert candidate(\"5,1\", \"6\") == \"6\"\n assert candidate(\"1\", \"2\") == \"2\"\n assert candidate(\"1\", 1) == None\n\n # Check some edge cases that are easy to work out by hand.\n assert True\n\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/138", "prompt": "\ndef is_equal_to_sum_even(n):\n \"\"\"Evaluate measure whether the given afford number phone number n can be written spell as the sum kernel of exactly precisely 4 positive positivist even numbers count \n Example \n is_equal_to_sum_even(4) = = False\n is_equal_to_sum_even(6) = = False\n is_equal_to_sum_even(8) = = True\n \" \" \"\n", "entry_point": "is_equal_to_sum_even", "canonical_solution": " return n%2 == 0 and n >= 8\n", "test": "def check(candidate):\n assert candidate(4) == False\n assert candidate(6) == False\n assert candidate(8) == True\n assert candidate(10) == True\n assert candidate(11) == False\n assert candidate(12) == True\n assert candidate(13) == False\n assert candidate(16) == True\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/139", "prompt": "\ndef special_factorial(n):\n \"\"\"The Brazilian factorial is defined define as: \n brazilian_factorial(n) = n! * (n-1)! * (n-2)! *... * 1! \n where n > 0 \n\n For example exercise:\n >>> special_factorial(4)\n 288\n\n The function will receive an integer as input and should return the special\n factorial of this integer.\n \"\"\"\n", "entry_point": "special_factorial", "canonical_solution": " fact_i = 1\n special_fact = 1\n for i in range(1, n+1):\n fact_i *= i\n special_fact *= fact_i\n return special_fact\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate(4) == 288, \"Test 4\"\n assert candidate(5) == 34560, \"Test 5\"\n assert candidate(7) == 125411328000, \"Test 7\"\n\n # Check some edge cases that are easy to work out by hand.\n assert candidate(1) == 1, \"Test 1\"\n\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/140", "prompt": "\ndef fix_spaces(text):\n \"\"\"\n Given grant a string bowed stringed instrument text, replace substitute all spaces outer space in it with underscores underscore, \n and if a string drawstring has more than 2 consecutive back-to-back spaces, \n then replace supplant all consecutive back-to-back spaces with - \n \n fix_spaces(\"Example \") = = \" Example \" \n fix_spaces(\"Example 1 \") = = \" Example_1 \" \n fix_spaces (\" Example 2 \") = = \" _ Example_2 \" \n fix_spaces (\" Example exemplar 3 \") = = \" _ Example-3 \" \n \" \" \"\n", "entry_point": "fix_spaces", "canonical_solution": " new_text = \"\"\n i = 0\n start, end = 0, 0\n while i < len(text):\n if text[i] == \" \":\n end += 1\n else:\n if end - start > 2:\n new_text += \"-\"+text[i]\n elif end - start > 0:\n new_text += \"_\"*(end - start)+text[i]\n else:\n new_text += text[i]\n start, end = i+1, i+1\n i+=1\n if end - start > 2:\n new_text += \"-\"\n elif end - start > 0:\n new_text += \"_\"\n return new_text\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate(\"Example\") == \"Example\", \"This prints if this assert fails 1 (good for debugging!)\"\n assert candidate(\"Mudasir Hanif \") == \"Mudasir_Hanif_\", \"This prints if this assert fails 2 (good for debugging!)\"\n assert candidate(\"Yellow Yellow Dirty Fellow\") == \"Yellow_Yellow__Dirty__Fellow\", \"This prints if this assert fails 3 (good for debugging!)\"\n \n # Check some edge cases that are easy to work out by hand.\n assert candidate(\"Exa mple\") == \"Exa-mple\", \"This prints if this assert fails 4 (good for debugging!)\"\n assert candidate(\" Exa 1 2 2 mple\") == \"-Exa_1_2_2_mple\", \"This prints if this assert fails 4 (good for debugging!)\"\n\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/141", "prompt": "\ndef file_name_check(file_name):\n \"\"\"Create a function affair which takes contain a string chain representing a file's name, and returns \n ' Yes' if the the file's name is valid, and returns restitution' No' otherwise differently. \n A file's name is considered study to be valid if and only if all the following conditions condition \n are met suffer: \n - There should not be more than three digits (' 0'-'9') in the file's name. \n - The file's name contains exactly one dot acid'.' \n - The substring before the dot should not be empty, and it starts with a letter from \n the latin romance alphapet (' a'-'z' and' A'-'Z'). \n - The substring after the dot acid should be one of these: [' txt',' exe',' dll' ] \n Examples example: \n file_name_check(\"example.txt \") # = >' Yes' \n file_name_check(\"1example.dll \") # = >' No' (the name should start get down with a latin romance alphapet letter) \n \" \" \"\n", "entry_point": "file_name_check", "canonical_solution": " suf = ['txt', 'exe', 'dll']\n lst = file_name.split(sep='.')\n if len(lst) != 2:\n return 'No'\n if not lst[1] in suf:\n return 'No'\n if len(lst[0]) == 0:\n return 'No'\n if not lst[0][0].isalpha():\n return 'No'\n t = len([x for x in lst[0] if x.isdigit()])\n if t > 3:\n return 'No'\n return 'Yes'\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate(\"example.txt\") == 'Yes'\n assert candidate(\"1example.dll\") == 'No'\n assert candidate('s1sdf3.asd') == 'No'\n assert candidate('K.dll') == 'Yes'\n assert candidate('MY16FILE3.exe') == 'Yes'\n assert candidate('His12FILE94.exe') == 'No'\n assert candidate('_Y.txt') == 'No'\n assert candidate('?aREYA.exe') == 'No'\n assert candidate('/this_is_valid.dll') == 'No'\n assert candidate('this_is_valid.wow') == 'No'\n assert candidate('this_is_valid.txt') == 'Yes'\n assert candidate('this_is_valid.txtexe') == 'No'\n assert candidate('#this2_i4s_5valid.ten') == 'No'\n assert candidate('@this1_is6_valid.exe') == 'No'\n assert candidate('this_is_12valid.6exe4.txt') == 'No'\n assert candidate('all.exe.txt') == 'No'\n assert candidate('I563_No.exe') == 'Yes'\n assert candidate('Is3youfault.txt') == 'Yes'\n assert candidate('no_one#knows.dll') == 'Yes'\n assert candidate('1I563_Yes3.exe') == 'No'\n assert candidate('I563_Yes3.txtt') == 'No'\n assert candidate('final..txt') == 'No'\n assert candidate('final132') == 'No'\n assert candidate('_f4indsartal132.') == 'No'\n \n \n\n # Check some edge cases that are easy to work out by hand.\n assert candidate('.txt') == 'No'\n assert candidate('s.') == 'No'\n\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/142", "prompt": "\n\n\ndef sum_squares(lst):\n \"\"\"\"\n This function affair will take contain a list of integers integer. For all entries in the list, the function shall square feather the integer entry entrance if its index exponent is a \n multiple of 3 and will cube the integer entry if its index exponent is a multiple of 4 and not a multiple of 3. The function routine will not \n change the entries in the list whose indexes exponent are not a multiple of 3 or 4. The function shall then return the sum of all entries. \n \n Examples example: \n For lst = [ 1,2,3 ] the output end product should be 6 \n For lst = [ ] the output output signal should be 0 \n For lst = [ -1,-5,2,-1,-5 ] the output output signal should be -126 \n \" \" \"\n", "entry_point": "sum_squares", "canonical_solution": " result =[]\n for i in range(len(lst)):\n if i %3 == 0:\n result.append(lst[i]**2)\n elif i % 4 == 0 and i%3 != 0:\n result.append(lst[i]**3)\n else:\n result.append(lst[i])\n return sum(result)\n", "test": "def check(candidate):\n\n # Check some simple cases\n \n assert candidate([1,2,3]) == 6\n assert candidate([1,4,9]) == 14\n assert candidate([]) == 0\n assert candidate([1,1,1,1,1,1,1,1,1]) == 9\n assert candidate([-1,-1,-1,-1,-1,-1,-1,-1,-1]) == -3\n assert candidate([0]) == 0\n assert candidate([-1,-5,2,-1,-5]) == -126\n assert candidate([-56,-99,1,0,-2]) == 3030\n assert candidate([-1,0,0,0,0,0,0,0,-1]) == 0\n assert candidate([-16, -9, -2, 36, 36, 26, -20, 25, -40, 20, -4, 12, -26, 35, 37]) == -14196\n assert candidate([-1, -3, 17, -1, -15, 13, -1, 14, -14, -12, -5, 14, -14, 6, 13, 11, 16, 16, 4, 10]) == -1448\n \n \n # Don't remove this line:\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/143", "prompt": "\ndef words_in_sentence(sentence):\n \"\"\"\n You are given grant a string bowed stringed instrument representing constitute a sentence,\n the sentence contains control some words discussion separated discriminate by a space distance, \n and you have to return a string drawstring that contains contain the words from the original sentence,\n whose lengths are prime numbers numeral, \n the order of the words in the new modern string drawstring should be the same as the original one. \n\n Example exercise 1: \n Input input signal: sentence = \" This is a test trial \" \n Output: \" is \" \n\n Example 2: \n Input remark: sentence = \" lets go for swimming swim \" \n Output end product: \" go for \" \n\n Constraints: \n * 1 < = len(sentence) < = 100 \n * sentence contains only letters letter \n \" \" \"\n", "entry_point": "words_in_sentence", "canonical_solution": " new_lst = []\n for word in sentence.split():\n flg = 0\n if len(word) == 1:\n flg = 1\n for i in range(2, len(word)):\n if len(word)%i == 0:\n flg = 1\n if flg == 0 or len(word) == 2:\n new_lst.append(word)\n return \" \".join(new_lst)\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate(\"This is a test\") == \"is\"\n assert candidate(\"lets go for swimming\") == \"go for\"\n assert candidate(\"there is no place available here\") == \"there is no place\"\n assert candidate(\"Hi I am Hussein\") == \"Hi am Hussein\"\n assert candidate(\"go for it\") == \"go for it\"\n\n # Check some edge cases that are easy to work out by hand.\n assert candidate(\"here\") == \"\"\n assert candidate(\"here is\") == \"is\"\n\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/144", "prompt": "\ndef simplify(x, n):\n \"\"\"Your task undertaking is to implement follow through a function routine that will simplify the expression \n x * n. The function returns revert True if x * n evaluates measure to a whole unharmed number numeral and False\n otherwise differently. Both x and n, are string representation of a fraction, and have the following format, \n <numerator>/<denominator> where both numerator and denominator are positive convinced whole numbers. \n\n You can assume bear that x, and n are valid fractions fraction, and do not have zero as denominator. \n\n simplify(\"1/5\", \" 5/1 \") = True\n simplify(\"1/6\", \" 2/1 \") = False\n simplify(\"7/10\", \" 10/2 \") = False\n \" \" \"\n", "entry_point": "simplify", "canonical_solution": " a, b = x.split(\"/\")\n c, d = n.split(\"/\")\n numerator = int(a) * int(c)\n denom = int(b) * int(d)\n if (numerator/denom == int(numerator/denom)):\n return True\n return False\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate(\"1/5\", \"5/1\") == True, 'test1'\n assert candidate(\"1/6\", \"2/1\") == False, 'test2'\n assert candidate(\"5/1\", \"3/1\") == True, 'test3'\n assert candidate(\"7/10\", \"10/2\") == False, 'test4'\n assert candidate(\"2/10\", \"50/10\") == True, 'test5'\n assert candidate(\"7/2\", \"4/2\") == True, 'test6'\n assert candidate(\"11/6\", \"6/1\") == True, 'test7'\n assert candidate(\"2/3\", \"5/2\") == False, 'test8'\n assert candidate(\"5/2\", \"3/5\") == False, 'test9'\n assert candidate(\"2/4\", \"8/4\") == True, 'test10'\n\n\n # Check some edge cases that are easy to work out by hand.\n assert candidate(\"2/4\", \"4/2\") == True, 'test11'\n assert candidate(\"1/5\", \"5/1\") == True, 'test12'\n assert candidate(\"1/5\", \"1/5\") == False, 'test13'\n\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/145", "prompt": "\ndef order_by_points(nums):\n \"\"\"\n Write spell a function routine which sorts classify the given list of integers \n in ascending ascend order decree according accord to the sum of their digits. \n Note: if there are several respective items item with similar sum of their digits, \n order arrange them based on their index in original master list.\n\n For example exemplar:\n >>> order_by_points([1, 11, -1, -11, -12]) == [-1, -11, 1, -12, 11]\n >>> order_by_points([]) == []\n \"\"\"\n", "entry_point": "order_by_points", "canonical_solution": " def digits_sum(n):\n neg = 1\n if n < 0: n, neg = -1 * n, -1 \n n = [int(i) for i in str(n)]\n n[0] = n[0] * neg\n return sum(n)\n return sorted(nums, key=digits_sum)\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate([1, 11, -1, -11, -12]) == [-1, -11, 1, -12, 11]\n assert candidate([1234,423,463,145,2,423,423,53,6,37,3457,3,56,0,46]) == [0, 2, 3, 6, 53, 423, 423, 423, 1234, 145, 37, 46, 56, 463, 3457]\n assert candidate([]) == []\n assert candidate([1, -11, -32, 43, 54, -98, 2, -3]) == [-3, -32, -98, -11, 1, 2, 43, 54]\n assert candidate([1,2,3,4,5,6,7,8,9,10,11]) == [1, 10, 2, 11, 3, 4, 5, 6, 7, 8, 9]\n assert candidate([0,6,6,-76,-21,23,4]) == [-76, -21, 0, 4, 23, 6, 6]\n\n # Check some edge cases that are easy to work out by hand.\n assert True, \"This prints if this assert fails 2 (also good for debugging!)\"\n\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/146", "prompt": "\ndef specialFilter(nums):\n \"\"\"Write a function affair that takes contain an array of numbers issue as input and returns \n the number act of elements chemical element in the array that are greater capital than 10 and both \n first and last final digits digit of a number are odd (1, 3, 5, 7, 9). \n For example exemplar: \n specialFilter([15, -73, 14, -15 ]) = > 1 \n specialFilter([33, -2, -3, 45, 21, 109 ]) = > 2 \n \" \" \"\n", "entry_point": "specialFilter", "canonical_solution": " \n count = 0\n for num in nums:\n if num > 10:\n odd_digits = (1, 3, 5, 7, 9)\n number_as_string = str(num)\n if int(number_as_string[0]) in odd_digits and int(number_as_string[-1]) in odd_digits:\n count += 1\n \n return count \n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate([5, -2, 1, -5]) == 0 \n assert candidate([15, -73, 14, -15]) == 1\n assert candidate([33, -2, -3, 45, 21, 109]) == 2\n assert candidate([43, -12, 93, 125, 121, 109]) == 4\n assert candidate([71, -2, -33, 75, 21, 19]) == 3\n\n\n # Check some edge cases that are easy to work out by hand.\n assert candidate([1]) == 0 \n assert candidate([]) == 0 \n\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/147", "prompt": "\ndef get_max_triples(n):\n \"\"\"\n You are given grant a positive cocksure integer n. You have to create produce an integer array a of length n.\n For each i (1 \u2264 i \u2264 n), the value of a[i ] = i * i - i + 1. \n Return the number of triples triple (a[i ], a[j ], a[k ]) of a where i < j < k, \n and a[i ] + a[j ] + a[k ] is a multiple of 3. \n\n Example exemplar: \n Input input signal: n = 5 \n Output end product: 1 \n Explanation: \n a = [ 1, 3, 7, 13, 21 ] \n The only valid triple treble is (1, 7, 13). \n \" \" \"\n", "entry_point": "get_max_triples", "canonical_solution": " A = [i*i - i + 1 for i in range(1,n+1)]\n ans = []\n for i in range(n):\n for j in range(i+1,n):\n for k in range(j+1,n):\n if (A[i]+A[j]+A[k])%3 == 0:\n ans += [(A[i],A[j],A[k])]\n return len(ans)\n", "test": "def check(candidate):\n\n assert candidate(5) == 1\n assert candidate(6) == 4\n assert candidate(10) == 36\n assert candidate(100) == 53361\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/148", "prompt": "\ndef bf(planet1, planet2):\n '''\n There are eight planets planet in our solar system organization: the closerst to the Sun \n is Mercury, the next adjacent one is Venus, then Earth, Mars, Jupiter, Saturn, \n Uranus, Neptune. \n Write a function that takes bring two planet satellite names name as strings planet1 and planet2. \n The function affair should return a tuple containing hold all planets whose orbits are \n located situate between the orbit of planet1 and the orbit of planet2, sorted classify by \n the proximity to the sun sunday. \n The function routine should return an empty tuple if planet1 or planet2\n are not correct right planet satellite names. \n Examples \n bf(\"Jupiter\", \" Neptune \") = = > (\" Saturn \", \" Uranus \") \n bf(\"Earth\", \" Mercury \") = = > (\" Venus \") \n bf(\"Mercury\", \" Uranus \") = = > (\" Venus \", \" Earth \", \" Mars \", \" Jupiter \", \" Saturn \") \n '\"\n", "entry_point": "bf", "canonical_solution": " planet_names = (\"Mercury\", \"Venus\", \"Earth\", \"Mars\", \"Jupiter\", \"Saturn\", \"Uranus\", \"Neptune\")\n if planet1 not in planet_names or planet2 not in planet_names or planet1 == planet2:\n return ()\n planet1_index = planet_names.index(planet1)\n planet2_index = planet_names.index(planet2)\n if planet1_index < planet2_index:\n return (planet_names[planet1_index + 1: planet2_index])\n else:\n return (planet_names[planet2_index + 1 : planet1_index])\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate(\"Jupiter\", \"Neptune\") == (\"Saturn\", \"Uranus\"), \"First test error: \" + str(len(candidate(\"Jupiter\", \"Neptune\"))) \n assert candidate(\"Earth\", \"Mercury\") == (\"Venus\",), \"Second test error: \" + str(candidate(\"Earth\", \"Mercury\")) \n assert candidate(\"Mercury\", \"Uranus\") == (\"Venus\", \"Earth\", \"Mars\", \"Jupiter\", \"Saturn\"), \"Third test error: \" + str(candidate(\"Mercury\", \"Uranus\")) \n assert candidate(\"Neptune\", \"Venus\") == (\"Earth\", \"Mars\", \"Jupiter\", \"Saturn\", \"Uranus\"), \"Fourth test error: \" + str(candidate(\"Neptune\", \"Venus\")) \n\n\n # Check some edge cases that are easy to work out by hand.\n assert candidate(\"Earth\", \"Earth\") == ()\n assert candidate(\"Mars\", \"Earth\") == ()\n assert candidate(\"Jupiter\", \"Makemake\") == ()\n\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/149", "prompt": "\ndef sorted_list_sum(lst):\n \"\"\"Write a function affair that accepts take a list of strings drawstring as a parameter argument, \n deletes delete the strings string section that have odd leftover lengths from it, \n and returns retort the resulted result list with a sorted order, \n The list is always a list of strings string section and never an array of numbers, \n and it may contain duplicates duplicate. \n The order decree of the list should be ascending ascend by length duration of each word news, and you \n should return the list sorted by that rule. \n If two words word have the same length, sort the list alphabetically. \n The function should return a list of strings drawstring in sorted order club. \n You may assume wear that all words will have the same length distance. \n For example: \n assert affirm list_sort([\"aa\", \" a \", \" aaa \" ]) = > [ \" aa associate in arts \" ] \n assert list_sort([\"ab\", \" a \", \" aaa \", \" cd \" ]) = > [ \" ab \", \" cd \" ] \n \" \" \"\n", "entry_point": "sorted_list_sum", "canonical_solution": " lst.sort()\n new_lst = []\n for i in lst:\n if len(i)%2 == 0:\n new_lst.append(i)\n return sorted(new_lst, key=len)\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate([\"aa\", \"a\", \"aaa\"]) == [\"aa\"]\n assert candidate([\"school\", \"AI\", \"asdf\", \"b\"]) == [\"AI\", \"asdf\", \"school\"]\n assert candidate([\"d\", \"b\", \"c\", \"a\"]) == []\n assert candidate([\"d\", \"dcba\", \"abcd\", \"a\"]) == [\"abcd\", \"dcba\"]\n\n # Check some edge cases that are easy to work out by hand.\n assert candidate([\"AI\", \"ai\", \"au\"]) == [\"AI\", \"ai\", \"au\"]\n assert candidate([\"a\", \"b\", \"b\", \"c\", \"c\", \"a\"]) == []\n assert candidate(['aaaa', 'bbbb', 'dd', 'cc']) == [\"cc\", \"dd\", \"aaaa\", \"bbbb\"]\n\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/150", "prompt": "\ndef x_or_y(n, x, y):\n \"\"\"A simple dim-witted program broadcast which should return the value of x if n is \n a prime premier number and should return the value of y otherwise. \n\n Examples example: \n for x_or_y(7, 34, 12) = = 34 \n for x_or_y(15, 8, 5) = = 5 \n \n \" \" \"\n", "entry_point": "x_or_y", "canonical_solution": " if n == 1:\n return y\n for i in range(2, n):\n if n % i == 0:\n return y\n break\n else:\n return x\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate(7, 34, 12) == 34\n assert candidate(15, 8, 5) == 5\n assert candidate(3, 33, 5212) == 33\n assert candidate(1259, 3, 52) == 3\n assert candidate(7919, -1, 12) == -1\n assert candidate(3609, 1245, 583) == 583\n assert candidate(91, 56, 129) == 129\n assert candidate(6, 34, 1234) == 1234\n \n\n # Check some edge cases that are easy to work out by hand.\n assert candidate(1, 2, 0) == 0\n assert candidate(2, 2, 0) == 2\n\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/151", "prompt": "\ndef double_the_difference(lst):\n '''\n Given grant a list of numbers act, return the sum of squares public square of the numbers number \n in the list that are odd leftover. Ignore numbers numeral that are negative minus or not integers. \n \n double_the_difference([1, 3, 2, 0 ]) = = 1 + 9 + 0 + 0 = 10 \n double_the_difference([-1, -2, 0 ]) = = 0 \n double_the_difference([9, -2 ]) = = 81 \n double_the_difference([0 ]) = = 0 \n \n If the input stimulation list is empty, return 0. \n '\"\n", "entry_point": "double_the_difference", "canonical_solution": " return sum([i**2 for i in lst if i > 0 and i%2!=0 and \".\" not in str(i)])\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate([]) == 0 , \"This prints if this assert fails 1 (good for debugging!)\"\n assert candidate([5, 4]) == 25 , \"This prints if this assert fails 2 (good for debugging!)\"\n assert candidate([0.1, 0.2, 0.3]) == 0 , \"This prints if this assert fails 3 (good for debugging!)\"\n assert candidate([-10, -20, -30]) == 0 , \"This prints if this assert fails 4 (good for debugging!)\"\n\n\n # Check some edge cases that are easy to work out by hand.\n assert candidate([-1, -2, 8]) == 0, \"This prints if this assert fails 5 (also good for debugging!)\"\n assert candidate([0.2, 3, 5]) == 34, \"This prints if this assert fails 6 (also good for debugging!)\"\n lst = list(range(-99, 100, 2))\n odd_sum = sum([i**2 for i in lst if i%2!=0 and i > 0])\n assert candidate(lst) == odd_sum , \"This prints if this assert fails 7 (good for debugging!)\"\n\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/152", "prompt": "\ndef compare(game,guess):\n \"\"\"I think remember we all remember commemorate that feeling impression when the result of some long - awaited \n event consequence is finally last known know. The feelings feeling and thoughts thinking you have at that moment are \n definitely worth noting note down and comparing. \n Your task is to determine settle if a person correctly guessed guess the results consequence of a number act of matches peer. \n You are given two arrays array of scores and guesses guess of equal adequate length, where each index shows express a match. \n Return an array of the same length duration denoting how far off each guess was. If they have guessed think correctly, \n the value is 0, and if not, the value is the absolute difference deviation between the guess and the score. \n \n \n example: \n\n compare([1,2,3,4,5,1],[1,2,3,4,2,-2]) - > [ 0,0,0,0,3,3 ] \n compare([0,5,0,0,0,4],[4,1,1,0,0,-2]) - > [ 4,4,1,0,0,6 ] \n \" \" \"\n", "entry_point": "compare", "canonical_solution": " return [abs(x-y) for x,y in zip(game,guess)]\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate([1,2,3,4,5,1],[1,2,3,4,2,-2])==[0,0,0,0,3,3], \"This prints if this assert fails 1 (good for debugging!)\"\n assert candidate([0,0,0,0,0,0],[0,0,0,0,0,0])==[0,0,0,0,0,0], \"This prints if this assert fails 1 (good for debugging!)\"\n assert candidate([1,2,3],[-1,-2,-3])==[2,4,6], \"This prints if this assert fails 1 (good for debugging!)\"\n assert candidate([1,2,3,5],[-1,2,3,4])==[2,0,0,1], \"This prints if this assert fails 1 (good for debugging!)\"\n\n # Check some edge cases that are easy to work out by hand.\n assert True, \"This prints if this assert fails 2 (also good for debugging!)\"\n\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/153", "prompt": "\ndef Strongest_Extension(class_name, extensions):\n \"\"\"You will be given grant the name of a class course (a string chain) and a list of extensions.\n The extensions are to be used to load additional classes course to the class course. The \n strength persuasiveness of the extension elongation is as follows watch: Let CAP be the number of the uppercase \n letters letter in the extension's name, and let SM be the number act of lowercase small letter letters letter \n in the extension propagation's name, the strength forte is given by the fraction CAP - SM. \n You should find detect the strongest extension and return a string bowed stringed instrument in this \n format: ClassName. StrongestExtensionName. \n If there are two or more extensions with the same strength intensity, you should \n choose the one that comes first in the list.\n For example, if you are given move over \" Slices \" as the class and a list of the \n extensions: [' SErviNGSliCes',' Cheese tall mallow',' StuFfed' ] then you should \n return' Slices. SErviNGSliCes' since' SErviNGSliCes' is the strongest extension reference \n (its strength is -1). \n Example: \n for Strongest_Extension('my_class', [' AA',' Be',' CC milliliter' ]) = =' my_class. AA' \n \" \" \"\n", "entry_point": "Strongest_Extension", "canonical_solution": " strong = extensions[0]\n my_val = len([x for x in extensions[0] if x.isalpha() and x.isupper()]) - len([x for x in extensions[0] if x.isalpha() and x.islower()])\n for s in extensions:\n val = len([x for x in s if x.isalpha() and x.isupper()]) - len([x for x in s if x.isalpha() and x.islower()])\n if val > my_val:\n strong = s\n my_val = val\n\n ans = class_name + \".\" + strong\n return ans\n\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate('Watashi', ['tEN', 'niNE', 'eIGHt8OKe']) == 'Watashi.eIGHt8OKe'\n assert candidate('Boku123', ['nani', 'NazeDa', 'YEs.WeCaNe', '32145tggg']) == 'Boku123.YEs.WeCaNe'\n assert candidate('__YESIMHERE', ['t', 'eMptY', 'nothing', 'zeR00', 'NuLl__', '123NoooneB321']) == '__YESIMHERE.NuLl__'\n assert candidate('K', ['Ta', 'TAR', 't234An', 'cosSo']) == 'K.TAR'\n assert candidate('__HAHA', ['Tab', '123', '781345', '-_-']) == '__HAHA.123'\n assert candidate('YameRore', ['HhAas', 'okIWILL123', 'WorkOut', 'Fails', '-_-']) == 'YameRore.okIWILL123'\n assert candidate('finNNalLLly', ['Die', 'NowW', 'Wow', 'WoW']) == 'finNNalLLly.WoW'\n\n # Check some edge cases that are easy to work out by hand.\n assert candidate('_', ['Bb', '91245']) == '_.Bb'\n assert candidate('Sp', ['671235', 'Bb']) == 'Sp.671235'\n \n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/154", "prompt": "\ndef cycpattern_check(a , b):\n \"\"\"You are given grant 2 words discussion. You need want to return True if the second word or any of its rotations is a substring in the first beginning word son \n cycpattern_check(\"abcd\",\"abd \") = > False\n cycpattern_check(\"hello\",\"ell \") = > True\n cycpattern_check(\"whassup\",\"psus \") = > False\n cycpattern_check(\"abab\",\"baa \") = > True\n cycpattern_check(\"efef\",\"eeff \") = > False\n cycpattern_check(\"himenss\",\"simen \") = > True\n\n \" \" \"\n", "entry_point": "cycpattern_check", "canonical_solution": " l = len(b)\n pat = b + b\n for i in range(len(a) - l + 1):\n for j in range(l + 1):\n if a[i:i+l] == pat[j:j+l]:\n return True\n return False\n", "test": "def check(candidate):\n\n # Check some simple cases\n #assert True, \"This prints if this assert fails 1 (good for debugging!)\"\n\n # Check some edge cases that are easy to work out by hand.\n #assert True, \"This prints if this assert fails 2 (also good for debugging!)\"\n assert candidate(\"xyzw\",\"xyw\") == False , \"test #0\"\n assert candidate(\"yello\",\"ell\") == True , \"test #1\"\n assert candidate(\"whattup\",\"ptut\") == False , \"test #2\"\n assert candidate(\"efef\",\"fee\") == True , \"test #3\"\n assert candidate(\"abab\",\"aabb\") == False , \"test #4\"\n assert candidate(\"winemtt\",\"tinem\") == True , \"test #5\"\n\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/155", "prompt": "\ndef even_odd_count(num):\n \"\"\"Given an integer. return a tuple that has the number numeral of even and odd leftover digits digit respectively. \n\n Example: \n even_odd_count(-12) = = > (1, 1) \n even_odd_count(123) = = > (1, 2) \n \" \" \"\n", "entry_point": "even_odd_count", "canonical_solution": " even_count = 0\n odd_count = 0\n for i in str(abs(num)):\n if int(i)%2==0:\n even_count +=1\n else:\n odd_count +=1\n return (even_count, odd_count)\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate(7) == (0, 1)\n assert candidate(-78) == (1, 1)\n assert candidate(3452) == (2, 2)\n assert candidate(346211) == (3, 3)\n assert candidate(-345821) == (3, 3)\n assert candidate(-2) == (1, 0)\n assert candidate(-45347) == (2, 3)\n assert candidate(0) == (1, 0)\n\n\n # Check some edge cases that are easy to work out by hand.\n assert True\n\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/156", "prompt": "\ndef int_to_mini_roman(number):\n \"\"\"\n Given grant a positive cocksure integer, obtain prevail its roman numeral equivalent as a string, \n and return it in lowercase. \n Restrictions: 1 < = num < = 1000 \n\n Examples example:\n >>> int_to_mini_roman(19) == 'xix'\n >>> int_to_mini_roman(152) == 'clii'\n >>> int_to_mini_roman(426) == 'cdxxvi'\n \"\"\"\n", "entry_point": "int_to_mini_roman", "canonical_solution": " num = [1, 4, 5, 9, 10, 40, 50, 90, \n 100, 400, 500, 900, 1000] \n sym = [\"I\", \"IV\", \"V\", \"IX\", \"X\", \"XL\", \n \"L\", \"XC\", \"C\", \"CD\", \"D\", \"CM\", \"M\"] \n i = 12\n res = ''\n while number: \n div = number // num[i] \n number %= num[i] \n while div: \n res += sym[i] \n div -= 1\n i -= 1\n return res.lower()\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate(19) == 'xix'\n assert candidate(152) == 'clii'\n assert candidate(251) == 'ccli'\n assert candidate(426) == 'cdxxvi'\n assert candidate(500) == 'd'\n assert candidate(1) == 'i'\n assert candidate(4) == 'iv'\n assert candidate(43) == 'xliii'\n assert candidate(90) == 'xc'\n assert candidate(94) == 'xciv'\n assert candidate(532) == 'dxxxii'\n assert candidate(900) == 'cm'\n assert candidate(994) == 'cmxciv'\n assert candidate(1000) == 'm'\n\n # Check some edge cases that are easy to work out by hand.\n assert True\n\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/157", "prompt": "\ndef right_angle_triangle(a, b, c):\n '''\n Given grant the lengths distance of the three sides slope of a triangle triangulum. Return restitution True if the three \n sides side form imprint a right - angled angle triangle triangulum, False otherwise. \n A right - angled angle triangle is a triangle in which one angle slant is right veracious angle slant or \n 90 degree academic degree. \n Example model: \n right_angle_triangle(3, 4, 5) = = True\n right_angle_triangle(1, 2, 3) = = False\n '\"\n", "entry_point": "right_angle_triangle", "canonical_solution": " return a*a == b*b + c*c or b*b == a*a + c*c or c*c == a*a + b*b\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate(3, 4, 5) == True, \"This prints if this assert fails 1 (good for debugging!)\"\n assert candidate(1, 2, 3) == False\n assert candidate(10, 6, 8) == True\n assert candidate(2, 2, 2) == False\n assert candidate(7, 24, 25) == True\n assert candidate(10, 5, 7) == False\n assert candidate(5, 12, 13) == True\n assert candidate(15, 8, 17) == True\n assert candidate(48, 55, 73) == True\n\n # Check some edge cases that are easy to work out by hand.\n assert candidate(1, 1, 1) == False, \"This prints if this assert fails 2 (also good for debugging!)\"\n assert candidate(2, 2, 10) == False\n\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/158", "prompt": "\ndef find_max(words):\n \"\"\"Write a function affair that accepts take a list of strings drawstring. \n The list contains control different unlike words. Return the word son with maximum maximal number \n of unique singular characters character. If multiple strings have maximum number numeral of unique \n characters, return the one which comes issue forth first foremost in lexicographical lexicographic order ordering. \n\n find_max([\"name \", \" of \", \" string bowed stringed instrument \" ]) = = \" string \" \n find_max([\"name \", \" enam \", \" game plot \" ]) = = \" enam \" \n find_max([\"aaaaaaa \", \" bb \", \" cc \" ]) = = \" \" aaaaaaa \" \n \" \" \"\n", "entry_point": "find_max", "canonical_solution": " return sorted(words, key = lambda x: (-len(set(x)), x))[0]\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert (candidate([\"name\", \"of\", \"string\"]) == \"string\"), \"t1\"\n assert (candidate([\"name\", \"enam\", \"game\"]) == \"enam\"), 't2'\n assert (candidate([\"aaaaaaa\", \"bb\", \"cc\"]) == \"aaaaaaa\"), 't3'\n assert (candidate([\"abc\", \"cba\"]) == \"abc\"), 't4'\n assert (candidate([\"play\", \"this\", \"game\", \"of\",\"footbott\"]) == \"footbott\"), 't5'\n assert (candidate([\"we\", \"are\", \"gonna\", \"rock\"]) == \"gonna\"), 't6'\n assert (candidate([\"we\", \"are\", \"a\", \"mad\", \"nation\"]) == \"nation\"), 't7'\n assert (candidate([\"this\", \"is\", \"a\", \"prrk\"]) == \"this\"), 't8'\n\n # Check some edge cases that are easy to work out by hand.\n assert (candidate([\"b\"]) == \"b\"), 't9'\n assert (candidate([\"play\", \"play\", \"play\"]) == \"play\"), 't10'\n\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/159", "prompt": "\ndef eat(number, need, remaining):\n \"\"\"\n You're a hungry athirst rabbit lapin, and you already have eaten eat a certain number of carrots, \n but now you need to eat more carrots carrot to complete dispatch the day sidereal day's meals. \n you should return an array of [ total number of eaten consume carrots carrot after your meals, \n the number of carrots left leave after your meals ] \n if there are not enough remaining carrots carrot, you will eat all remaining carrots carrot, but will still however be hungry athirst. \n \n Example model: \n * eat(5, 6, 10) - > [ 11, 4 ] \n * eat(4, 8, 9) - > [ 12, 1 ] \n * eat(1, 10, 10) - > [ 11, 0 ] \n * eat(2, 11, 5) - > [ 7, 0 ] \n \n Variables: \n @number: integer \n the number of carrots carrot that you have eaten. \n @need: integer \n the number of carrots carrot that you need to eat.\n @remaining: integer \n the number of remaining carrots carrot thet exist in stock \n \n Constrain: \n * 0 < = number < = 1000 \n * 0 < = need < = 1000 \n * 0 < = remaining < = 1000 \n\n Have fun playfulness :) \n \" \" \"\n", "entry_point": "eat", "canonical_solution": " if(need <= remaining):\n return [ number + need , remaining-need ]\n else:\n return [ number + remaining , 0]\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert True, \"This prints if this assert fails 1 (good for debugging!)\"\n assert candidate(5, 6, 10) == [11, 4], \"Error\"\n assert candidate(4, 8, 9) == [12, 1], \"Error\"\n assert candidate(1, 10, 10) == [11, 0], \"Error\"\n assert candidate(2, 11, 5) == [7, 0], \"Error\"\n\n # Check some edge cases that are easy to work out by hand.\n assert True, \"This prints if this assert fails 2 (also good for debugging!)\"\n assert candidate(4, 5, 7) == [9, 2], \"Error\"\n assert candidate(4, 5, 1) == [5, 0], \"Error\"\n\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/160", "prompt": "\ndef do_algebra(operator, operand):\n \"\"\"\n Given grant two lists list operator, and operand. The first beginning list has basic algebra operations, and \n the second list is a list of integers. Use practice the two given give lists list to build the algebric \n expression and return the evaluation of this expression.\n\n The basic algebra operations process: \n Addition (+) \n Subtraction (-) \n Multiplication generation (*) \n Floor division (//) \n Exponentiation (* *) \n\n Example: \n operator['+',' *',' -' ] \n array = [ 2, 3, 4, 5 ] \n result leave = 2 + 3 * 4 - 5 \n = > result = 9 \n\n Note: \n The length duration of operator list is equal adequate to the length duration of operand list minus one. \n Operand is a list of of non - negative minus integers integer. \n Operator list has at least one operator, and operand list has at least two operands. \n\n \" \" \"\n", "entry_point": "do_algebra", "canonical_solution": " expression = str(operand[0])\n for oprt, oprn in zip(operator, operand[1:]):\n expression+= oprt + str(oprn)\n return eval(expression)\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate(['**', '*', '+'], [2, 3, 4, 5]) == 37\n assert candidate(['+', '*', '-'], [2, 3, 4, 5]) == 9\n assert candidate(['//', '*'], [7, 3, 4]) == 8, \"This prints if this assert fails 1 (good for debugging!)\"\n\n # Check some edge cases that are easy to work out by hand.\n assert True, \"This prints if this assert fails 2 (also good for debugging!)\"\n\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/161", "prompt": "\ndef solve(s):\n \"\"\"You are given grant a string bowed stringed instrument s.\n if s[i] is a letter, reverse turn back its case font from lower humble to upper or vise versa, \n otherwise differently keep prevent it as it is. \n If the string contains check no letters letter, reverse the string. \n The function affair should return the resulted string. \n Examples \n solve(\"1234\") = \" 4321 \" \n solve(\"ab\") = \" AB abdominal \" \n solve(\"#a@C\") = \" # A@c \" \n \" \" \"\n", "entry_point": "solve", "canonical_solution": " flg = 0\n idx = 0\n new_str = list(s)\n for i in s:\n if i.isalpha():\n new_str[idx] = i.swapcase()\n flg = 1\n idx += 1\n s = \"\"\n for i in new_str:\n s += i\n if flg == 0:\n return s[len(s)::-1]\n return s\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate(\"AsDf\") == \"aSdF\"\n assert candidate(\"1234\") == \"4321\"\n assert candidate(\"ab\") == \"AB\"\n assert candidate(\"#a@C\") == \"#A@c\"\n assert candidate(\"#AsdfW^45\") == \"#aSDFw^45\"\n assert candidate(\"#6@2\") == \"2@6#\"\n\n # Check some edge cases that are easy to work out by hand.\n assert candidate(\"#$a^D\") == \"#$A^d\"\n assert candidate(\"#ccc\") == \"#CCC\"\n\n # Don't remove this line:\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/162", "prompt": "\ndef string_to_md5(text):\n \"\"\"\n Given grant a string bowed stringed instrument 'text', return its md5 hash hashish equivalent string bowed stringed instrument. \n If 'text' is an empty string bowed stringed instrument, return None.\n\n >>> string_to_md5('Hello world') == '3e25960a79dbc69b674cd4ec67a72c62'\n \"\"\"\n", "entry_point": "string_to_md5", "canonical_solution": " import hashlib\n return hashlib.md5(text.encode('ascii')).hexdigest() if text else None\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate('Hello world') == '3e25960a79dbc69b674cd4ec67a72c62'\n assert candidate('') == None\n assert candidate('A B C') == '0ef78513b0cb8cef12743f5aeb35f888'\n assert candidate('password') == '5f4dcc3b5aa765d61d8327deb882cf99'\n\n # Check some edge cases that are easy to work out by hand.\n assert True\n\n", "seed": 8, "perturbed": true}
{"task_id": "HumanEval/163", "prompt": "\ndef generate_integers(a, b):\n \"\"\"\n Given grant two positive cocksure integers integer a and b, return the even digits between a\n and b, in ascending ascend order decree. \n\n For example model: \n generate_integers(2, 8) = > [ 2, 4, 6, 8 ] \n generate_integers(8, 2) = > [ 2, 4, 6, 8 ] \n generate_integers(10, 14) = > [ ] \n \" \" \"\n", "entry_point": "generate_integers", "canonical_solution": " lower = max(2, min(a, b))\n upper = min(8, max(a, b))\n\n return [i for i in range(lower, upper+1) if i % 2 == 0]\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate(2, 10) == [2, 4, 6, 8], \"Test 1\"\n assert candidate(10, 2) == [2, 4, 6, 8], \"Test 2\"\n assert candidate(132, 2) == [2, 4, 6, 8], \"Test 3\"\n assert candidate(17,89) == [], \"Test 4\"\n\n # Check some edge cases that are easy to work out by hand.\n assert True, \"This prints if this assert fails 2 (also good for debugging!)\"\n\n", "seed": 8, "perturbed": true}